
A Study of the ITU-T G.729 Speech Coding Algorithm
- Implementation on the Capella ASIC

Master’s Thesis
by

Johannes Celander

Department of Access Signal Processing
at Ericsson AB

Department of Signals, Sensors and Systems
at Royal Institute of Technology

Supervisor Examiner
M.Sc. Tore André Ph.D. Jonas Samuelsson
AL/EAB Access Signal Processing Sound and Image Processing Lab
Ericsson Broadband Access Signals, Sensors & Systems
Stockholm, Sweden Royal Institute of Technology (KTH)

Stockholm, Sweden

Open
MASTER THESIS

2 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Open
MASTER THESIS

3 (78)

Uppgjord - Prepared Datum - Date Rev Dokumentnr - Document no.

Johannes Celander 04-09-28 PA1
Godkänd - Approved Kontr - Checked Tillhör/Referens - File/Reference

Abstract

This Master Thesis is done at Ericsson, Access Signal Processing, in Älvjso, Sweden.
The Access Signal Processing unit is developing an experimental system for Voice over
Internet Protocol (VoIP). The system may use the standardized ITU-T G.729/A speech
coder.

The main objective of this Master’s Thesis is to study the ITU-T G.729/A speech coding
algorithm, and implement it on an Application Specific Integrated Circuit (ASIC) called
Capella. Capella is based on the Flexible ASIC concept in which several customized Digital
Signal Processors (DSP) cores are embedded in one ASIC. The Flexible ASIC concept
also consists of a set of development tools which is used when implementing the G.729/A.

This report also contains a brief overview of speech coding in general, an explanation
of the G.729/A algorithm specifically and also outlines the main elements of different VoIP
solutions.

The implementation of the G.729/A is based on the ANSI-C code provided by ITU-
T. Since the provided code is not intended for implementation purposes it needs to be
modified and optimized to work on a DSP. After the respective modifications the G.729A
functioned correctly on the Capella. However, further optimization work is required to en-
able multiple channels on one Capella, which is desirable in Ericsson’s experimental VoIP
solution.

Open
MASTER THESIS

4 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Open
MASTER THESIS

5 (78)

Uppgjord - Prepared Datum - Date Rev Dokumentnr - Document no.

Johannes Celander 04-09-28 PA1
Godkänd - Approved Kontr - Checked Tillhör/Referens - File/Reference

Acknowledgements

First and foremost, I would like to thank my supervisor at Ericsson, Tore André, who has
been a great support throughout my thesis work and always had his door open for ques-
tions. A special thank you also to Mahfooz Khedri for his general support and interest in
my work, to Anders Lindblad for his help in installing the Flextools and support with UNIX,
as well as to Kenneth Johansson for his assistance in the search for function pointers. A
thank you also to Jonas Rosenberg for inheriting me his Sunblade computer. My gratitude
also to the entire ASP-unit.

I also would like to thank my examiner and supervisor at the Royal Institute of Technol-
ogy, Jonas Samuelsson, for the time and effort he put into this report and for broadening
my views with his constructive criticism.

Finally, I would like to thank my wonderful girlfriend, Corinna, for her support during this
work. Thank you for correcting my English and for powering this project by making me a
lunch-box every day.

Open
MASTER THESIS

6 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Open
MASTER THESIS

7 (78)

Uppgjord - Prepared Datum - Date Rev Dokumentnr - Document no.

Johannes Celander 04-09-28 PA1
Godkänd - Approved Kontr - Checked Tillhör/Referens - File/Reference

Contents

1 Introduction 11
1.1 Thesis Background . 11
1.2 Thesis Goal . 11
1.3 Thesis Outline . 12
1.4 List of Abbreviations . 13

2 Speech Coding Overview 15
2.1 Introduction . 15
2.2 Speech Signal Properties . 15

2.2.1 Human Speech Production . 15
2.2.2 Speech Sounds . 16
2.2.3 Speech-Signal Waveform Characteristics 16

2.3 Speech Analysis . 21
2.3.1 Pitch Estimation . 21
2.3.2 Source-Filter Model . 22
2.3.3 Linear Predictive Coding . 23

2.4 Speech Coding Performance Attributes . 25
2.5 Speech Coding Techniques . 26

2.5.1 Waveform Coders . 26
2.5.2 Voice Coders . 27
2.5.3 Hybrid Coders . 27
2.5.4 Analysis-by-Synthesis Coders . 27
2.5.5 Code Excited Linear Predictive Coding 27
2.5.6 Speech Coding Standards . 29

3 Description of the G.729/A Speech-Coding Algorithm 31
3.1 Introduction . 31
3.2 General Description of the Coder . 31
3.3 Encoder . 31

3.3.1 Fixed Codebook . 32
3.3.2 Adaptive Codebook . 32
3.3.3 Gain Quantization . 33

3.4 Bit Allocation . 33
3.5 Decoder . 33
3.6 G.729A . 36

3.6.1 Encoder Differences Between G.729 and G.729A 36
3.6.2 Decoder Differences Between G.729 and G.729A 38

4 Voice over IP Overview 39
4.1 Introduction . 39

4.1.1 VoIP Advantages . 39
4.1.2 VoIP Advantages . 39
4.1.3 VoIP Routing Possibilities . 39

4.2 VoIP Components . 40
4.2.1 Signal System 7 . 40

Open
MASTER THESIS

8 (78)

Uppgjord - Prepared Datum - Date Rev Dokumentnr - Document no.

Johannes Celander 04-09-28 PA1
Godkänd - Approved Kontr - Checked Tillhör/Referens - File/Reference

4.3 Gateway Control . 41
4.3.1 H.323 . 41
4.3.2 Session Initiation Protocol (SIP) . 41
4.3.3 A Comparison Between H.323 and SIP 42

4.4 RTP and RTCP . 42
4.5 Quality of Service . 43

4.5.1 Packet Loss and Jitters . 44
4.5.2 Latency . 44
4.5.3 The trade-off between bit-rate and voice quality 45

4.6 Frames per packet . 45

5 Overview of the Flexible ASIC Concept 46
5.1 Introduction . 46
5.2 Background . 46
5.3 ASIC and DSP . 46
5.4 DSP cores . 47
5.5 Instruction Set . 49

6 The Capella ASIC 50
6.1 Introduction . 50
6.2 Block Diagram . 50
6.3 Performance Specifics . 51

7 Flexible ASIC Development Tools 52
7.1 The Flexible ASIC Assembler (Flasm) . 52
7.2 ANSI-C Compiler with DSP-C Extension . 52
7.3 Flexible ASIC Link Editor (Flink) . 53
7.4 Fladb/flunk . 54
7.5 Flism . 54

8 Implementation Process 56
8.1 Introduction . 56

8.1.1 Computers Used for Simulation . 56
8.2 ITU-T G.729A Source Code . 56
8.3 Test Run in Microsoft Visual C . 56
8.4 Initial Modifications . 56

8.4.1 Flextools Installation . 56
8.4.2 Makefile Modifications . 58
8.4.3 File Reading . 58

8.5 Initial Simulation Problem . 58
8.6 Flism Simulation Program . 59
8.7 Coder and Decoder Main Files Modification 59
8.8 Error-Seeking and Algorithmic Changes . 60

8.8.1 Big and Little Endian . 60
8.8.2 Known limitations to the C-compiler 61
8.8.3 Rewriting 32bit Comparison Loops 62
8.8.4 Rewriting Function Pointer . 62

Open
MASTER THESIS

9 (78)

Uppgjord - Prepared Datum - Date Rev Dokumentnr - Document no.

Johannes Celander 04-09-28 PA1
Godkänd - Approved Kontr - Checked Tillhör/Referens - File/Reference

8.8.5 Debug Method . 63
8.8.6 Wrong Type Definitions . 63
8.8.7 Increment Problem . 63

8.9 Simulation Results and Aspects . 67
8.9.1 Simulation Results . 67
8.9.2 Simulation Time . 67

8.10 Future Optimization . 67
8.10.1 Compiler Known Functions . 68
8.10.2 Complexity Profile . 68
8.10.3 Optimizing Techniques . 68
8.10.4 Estimation of Optimization Workload 69

9 Conclusion 70

10 References 71

11 Appendix A 73

Open
MASTER THESIS

10 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

List of Figures

1 ToIP. 12
2 Human speech production. 16
3 Phoneme hierarchy . 18
4 Overlapping frames illustration . 18
5 The word ”Ericsson” with waveform in the upper plot and spectogram in the

lower . 19
6 Waveforms and spectrums, for the voiced sound /ih/ and the unvoiced /s/.

The dashed line in the spectrum shows the LPC envelope. 20
7 ACF for the voiced phoneme /ih/ . 21
8 Source-filter model of speech production . 22
9 Production and whitening filter . 24
10 Speech coding techniques . 26
11 Long-term prediction / Adaptive codebook 28
12 CELP encoder . 29
13 Encoding principle of the G.729 . 34
14 Signal flow of the G.729 encoder . 35
15 Decoding principle of the G.729 . 36
16 Signal flow of the G.729 decoder . 37
17 VoIP network with SS-7 to-IP gateway . 40
18 VoIP solution . 42
19 IP header . 42
20 ASIC versus DSP . 47
21 Flexible ASIC layout . 48
22 DSP core layout . 49
23 Block diagram of the Capella ASIC . 50
24 Working environment with flunk . 55

List of Tables

1 List of abbreviations . 13
2 English phonemes . 17
3 Speech coding standards . 30
4 G.729 fixed codebook . 32
5 G.729 bit allocation . 33
6 G.729A source-code files . 57
7 G.729A test-vector files . 57
8 Big and little Endian llustration . 60
9 Bitstream bit allocation . 65
10 G.729A encoder simulation results . 67
11 G.729A decoder simulation results . 67
12 G.729A encoder complexity profile . 73
13 G.729A decoder complexity profile . 76

Open
MASTER THESIS

11 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

1 Introduction

1.1 Thesis Background

Ericsson’s Access Signal Processing unit is developing an experimental system for Voice
over Internet Protocol (VoIP) which is intended to be significantly better than the currently
existing VoIP solutions on the market. In order to symbolize the emphasis on a high speech
quality solution the experimental system is internally called Telephony over Internet Proto-
col (ToIP). One possible definition of ToIP is given below.

”ToIP is different from Voice over IP, because it is intended as a carrier-class
service, fully featured and with quality guarantees, to be offered to large number
of users, eiter overlapping or substituting classical POTS services” [26].

The experimental ToIP system will use the G.711 speech coder and possibly, as an
additional coder, the ITU-T 1 G.729.

The idea of Ericsson’s experimental ToIP system is depicted in Figure 1. The thought is
that telephone calls will go out via the copper lines to a local telephone station in ordinary
fashion. However, then the idea is to encode the speech, place it into packets and send
it over Ethernet. In addition to the G.711 and G.729 speech coders, the ToIP system also
consists of a telephony interface and an echo-canceler. The speech packages are sent
over Ethernet with three protocols: Real Time Protocol (RTP), User Data Protocol (UDP)
and Internet Protocol (IP). To provide an overview of the aspects in VoIP the main issues
are handled in section 4.

The G.729 is considered as an optional coder due to its low bit-rate performance and
high quality of speech. However, since the G.729 is patent protected, one of its disadvan-
tages is that extra cost occur since parts of the G.729 algorithm are patent protected. In
the implementation, the G.729 was replaced by the low-complexity version G.729A. The
G.729 and G.729A coders are described in section 3, and Section 2 provides a background
of speech coding in general.

The G.729A implementation platform for this project is called Capella. Capella is an
Application Specific Integrated Circuit (ASIC) consisting of eight customized Digital Signal
Processor (DSP) cores. The Capella ASIC is based on the Flexible ASIC concept in which
several DSP cores are embedded in one ASIC. The Flexible ASIC concept also includes a
set of development tools which were used when implementing the G.729.

The Flexible ASIC concept is described in section 5 and the characteristics of the
Capella ASIC are stated in section 6.

1.2 Thesis Goal

The stated goal of this thesis is to study the G.729/A speech coding algorithm and im-
plement it on the Capella ASIC. It is desired that the G.729/A coder is optimized so that
several codecs can be run on one Capella, thereby enabling the coder to operate in multi-
channel environments. The implementation process can be divided into stages, where the
first and most important stage is to modify the, by ITU-T provided, C-source code so that
the algorithm functions correctly on Capella. Thereafter, optimization should be performed

1ITU-T Telecommunication Standardization Sector of ITU

Open
MASTER THESIS

12 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Figure 1: ToIP.

in both, C and Assembly, as far as time allows. If possible, the thesis should also give an
estimation of the additional workload required to optimize the coder for multiple channels.

Another part of this thesis is to understand the main aspects of VoIP and investigate
different market solutions and research areas. Also, different speech-coding standards are
analyzed.

1.3 Thesis Outline

This thesis consists of nine sections. Following the introduction is Section 2 which gives
a background to speech coding. Section 3 describes the ITU-T G.729 and G.729A algo-
rithms. In Section 4, an overview of VoIP is given, followed by section 5 where the Flexible
ASIC concept is described. Section 6 states the performance characteristics of Capella.
Section 7 explains the software development tools used in this project. The actual imple-
mentation process is handled in Section 8. Finally, a conclusion is given in Section 9.

A reader familiar with speech coding and Flexible ASIC may directly move on to Section
8 where the implementation is described and simulation results are provided.

Open
MASTER THESIS

13 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

1.4 List of Abbreviations

Table 1: List of abbreviations

Abbreviations
ACELP Algebraic CELP
ACF Autocorrelation function
ADM Adaptive Delta Modulation
ANSI American National Standards Institute
APC Adaptive Predictive Coding
AR Autoregressive
ASIC Application Specific Integrated Circuit
ATM Asynchronous Transfer Mode
BER Bit Error Rate
CCITT Comite Consultatif International Telegraphique et Telephonique
CDM Common Data Memory
CELP Code-Excited Linear Prediction
CKF Compiler Known Function
CPM Common Program Memory
CU Computational Unit
DAM Diagnostic Acceptability Measure
DSP Digital Signal Processor
DFT Discrete Fourier Transform
DRT Diagnostic Rhyme Test
ETSI European Telecommunications Standards Institute
FFT Fast Fourier Transform
FIR Finite Impulse Response
FLACC Flexible ASIC C Compiler
FS Federal Standard
GSM Group Special Mobile
IETF Internet Engineering Task Force
IIR Infinite Impulse Response
IIS Internet Integrated Service
ISD Instruction Set Descriptions
ISPP Interleaved Single-Pulse Permutation
IP Internet Protocol
ITU International Telecommunication Union
LDM Local Data Memory
LP Linear Prediction
LPC Linear Predictive Coding
LSF Line Spectral Frequencies
LSP Line-Spectral Pairs
LTP Long-Term Prediction
MELP Mixed Excitation Linear Prediction
MGCP Media Gateway Control Protocol
MIPS Millions of Instructions Per Second

contiuned on next page

Open
MASTER THESIS

14 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Table 1: continued

Abbreviations
MOS Mean Opinion Score
MPE Multi-Pulse Excitation
MP-MLQ Multipulse-Maximum Likelihood Quantization
MSE Mean Square Error
NA North America
PCB * Printed Circuit Board
PPDPCM Pitch-Predictive Differential Pulse Code Modulation
POTS Plain Old Telephone Service
PSTN Public Switched Telephone Network
QoS Quality of Service
RAM Random Access Memory
RTCP Real-Time Control Protocol
RTP Real-Time Transport Protocol
RPE Regular-Pulse Excitation
RSVP Resource Reservation Protocol
SIP Session Initial Protocol
SS7 Signaling System
TCP Transport Control Protocol
TIA Telecommunications Industy Association
UDP User Datagram Protocol
VLB Very Low Bit-Rate
VQ Vecor Quantizer
VSELP Vector Sum Excited Linear Prediction
3GPP Third Generation Partnership Project
Vocoder Voice Coder

Open
MASTER THESIS

15 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

2 Speech Coding Overview

2.1 Introduction

The purpose of speech coding is to represent a speech signal with as few bits per second
as possible. Thus, speech coding may also be referred to as speech compression. Like
many other technical matters, speech coding research has its roots in military applications.
In the 1950’s, the U.S. Army started developing a voice coder (vocoder) for speech trans-
mission over highly distorted analog lines. The purpose was to decrease the transmission
bandwidth needed. In addition, it also was a way of enabling secure voice communication.
One of the first vocoders was the ”US Federal Standard 1015”, developed by the U.S. Army
in 1976. This vocoder is also known as the LPC-10.

During the same time, the international standardisation organ Comite Consultatif Inter-
national Telegraphique et Telephonique (CCITT) developed the G.711 standard for digital
telephony systems. CCITT was later replaced by ITU-T which has ever since continued
developing speech coding standards [14].

Today speech coding is widely used in digital communications. One example of an
application that uses advanced speech coding is the cell-phone.

In order to understand the techniques used in speech coding, basic knowledge of the
human speech production system is helpful.

2.2 Speech Signal Properties

2.2.1 Human Speech Production

Acoustically, speech is a fluctuation of air pressure. In the human speech production sys-
tem the lungs provide the air flow which is then transformed into speech by the vocal
tract. The air flow is forced through the glottis which is the space between the vocal cords,
through the larynx to the cavities of the vocal tract. Leaving the oral and nasal cavities, the
air flow exits through the mouth and nose. The main vocal organs are depicted in Figure 2
[2].

The lung pressure in the larynx pushes the air flow through the vocal cords, which in
turn start vibrating, through which a periodic pressure wave is produced. The fundamen-
tal frequency, f0, is an essential characteristic of periodic signals. It is controlled by the
variation of the tension in the vocal cords. For men the average fundamental frequency
is about 110Hz, and for women and children it is 200 and 300Hz respectively. Pitch is
defined as the perceived frequency of sound. It is not a quantity that can be measured
directly. Although pitch and fundamental frequency represent different concepts, the two
are often referred to as being the same.

Sounds which are generated through the vibration of the vocal cords are known as
voiced sounds. Examples of voiced sounds are /u/,/d/,/w/,/i/ and /e/. By pressing one’s
fingers on both sides of the upper throat, one can feel the vibrations of the vocal cords
when pronouncing voiced sounds. On the contrary, unvoiced sounds are generated when
the vocal cords are completely open. Unvoiced sounds are, for instance, /s/ and /f/.

Open
MASTER THESIS

16 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Figure 2: Human speech production.

2.2.2 Speech Sounds

One way of analyzing speech is to use phonetics, which is the study of speech sounds and
their production. Every language has limited linguistic units called phonemes. A phoneme
is a sound and several consecutive phonemes create words. For example, the word dog
consists of the three phonemes d /ao/g. Most languages have 20-50 phonemes, each
phoneme representing a sound. The 42 phonemes in the English language are listed in
Table 2 [15].

A phone is an acoustic realization of a phoneme. If the realization of a phoneme is
context dependent, it is called an Allophone. In most languages, the phonemes can be
divided into two groups: vowels and consonants. The set of vowels and consonants is
language specific. The hierarchy of the English phonemes is depicted in Figure 3 [25].

2.2.3 Speech-Signal Waveform Characteristics

The range of frequencies that humans are able to hear is called the audio spectrum. The
bandwidth in the audio spectrum ranges hereby from 20 Hz to 20 kHz, although most
humans have a much narrower bandwidth for hearing, especially with increasing age. Fre-
quencies above the human hearing limit are called ultrasonic, while sounds below the limit
are called infrasonic.

Speech-signal waveform characteristics are constant for short time-periods. A speech
signal is commonly assumed to be wide sense stationary and ergodic in the autocorrelation
for segments of 10-30 ms of speech. In speech analysis, it is therefore common to extract
short-time segments of speech, called frames to enable simple speech modeling. For
smoother transaction between analysis frames, the latter are extracted with overlap, which

Open
MASTER THESIS

17 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Table 2: English phonemes

Phonemes Word Examples Description
iy feel,eve,me front close unrounded
ih fill,hit,lid front close unrounded
ae at,carry,gas front close unrounded
aa father,ah,car back open unrounded
ah cut,bud,up open-mid back unrounded
ao dog,lawn,caught open mid-back round
ay tie,ice,bite diphtong with quality: aa + ih
ax ago,comply central close mid
ey ate,day,tape front close-mid unrounded
eh pet,berry,ten front open-mid unrounded
er turn,fur ,meter central open-mid unrounded
ow go,own,tone back close-mid rounded
aw fou l,how ,our diphtong with quality: aa + uh
oy toy,coin,oi l diphtong with quality: ao + ih
uh book,pull,good back close-mid unrounded
uw too l,crew,moo back close round
b big,able,tab voiced bilavial plosive
p put,open,tap voiceless bilavial plosive
d dig,idea,wad voiced alveolar plosive
t talk,sat voiceless alveolar plosive
t meter alveolar flap
g gut,angle,tag voiced velar plosive
k cut,ken,take voiceless velar plosive
f fork,after,if voiceless labiodental fricative
v vat,over,have voiced labiodental fricative
s sit,cast,toss voiceless alveolar fricative
z zap,lazy,haze voiced alveolar fricative
th th in,noth ing,truth voiceless dental fricative
dh then,father,scythe voiced dental fricative
sh she,cush ion,wash voiceless postalveolar fricative
zh genre,azure voiced postalveolar fricative
l lid alveolar lateral approximant
l elbow,sail velar lateral approximant
r red,part,far retroflex approximant
y yacht,yard palatal sonorant glide
w with,away labiovelar sonorant glide
hh help,ahead,hotel voiceless glottal fricative
m mat,amid,aim bilabial nasal
n no,end,pan alveolar nasal
ng sing ,anger velar nasal
ch ch in,archer,marche voiceless alveolar affricate: t + sh
jh joy,agile,edge voiced alveolar affricative: d + zh

Open
MASTER THESIS

18 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Figure 3: Phoneme hierarchy

is illustrated in Figure 4 [25]. The extracted frames are usually windowed with a rectangular,
Hanning or Hamming window before further analysis is conducted.

Figure 4: Overlapping frames illustration

Figure 5 shows the waveform and spectogram of the word ”Ericsson” articulated by this
thesis’ author. The spectogram is a classical tool for speech analysis. It consists of DFTs of
overlapping and windowed frames, and shows the distribution of energy in frequency and
time. In the spectogram of Figure 5, interesting characteristics of voiced sounds can be
observed. The maxima of the voiced segments, seen as white stripes, are due to resonant
frequencies of the vocal tract, and are called formants. The formant frequencies depend
on the shape and dimensions of the vocal tract; each shape is characterized by a set of
formant frequencies. Different sounds are produced through varying shapes of the vocal
tract. Thus, the spectral properties of the speech signal vary over time with the variation
of the shape of the vocal tract [24]. The unvoiced regions in the spectogram are more
solidly filled because the energy of unvoiced sound is spread more evenly over the audio
spectrum.

The periodicity of voiced sounds can also be seen from the power spectrum, taken from
a short speech segment. Figure 6 depicts the voiced sound /ih/ and the unvoiced sound /s/,
with both, waveform and spectrum plots [25]. The time-domain periodicity of the phoneme
/ih/, for instance, can be observed in the spectrum plot as spectral peaks. The spectral
peaks are harmonics of the fundamental frequency. The spectrum plots also contain the
14th-order Linear Prediction (LP) spectral envelope displayed with a (red) dashed line.
Linear prediction in speech coding is discussed in more detail later in this section.

Open
MASTER THESIS

19 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Figure 5: The word ”Ericsson” with waveform in the upper plot and spectogram in
the lower

Open
MASTER THESIS

20 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

In the spectral envelope for voiced speech, the formants can be identified as peaks.
The phoneme /ih/ has formants at approximately 300, 2300 and 3000 Hz. The formant’s
bandwidth describes the width of the formants peaks. Formants and their bandwidths
are the most important spectral features. They characterize the sounds of a speaker. In

Figure 6: Waveforms and spectrums, for the voiced sound /ih/ and the unvoiced /s/.
The dashed line in the spectrum shows the LPC envelope.

statistical terms, a speech signal may be classified as a non-stationary random process.
It is commonly assumed that a speech signal is wide sense stationary and ergodic in
autocorrelation for short-time periods from 10 to 30 ms.

The autocorrelation for a discrete-time deterministic signal is given by

Rxx =
∞∑

m=−∞
x[m]x[m + k] (1)

The Discrete Fourier Transform (DFT) of the autocorrelation function yields the power spec-
trum of the signal, according to the equation

Sxx
∆=

∞∑
n=−∞

Rxx(n)e−jωn (2)

This shows that the short-term autocorrelation for a frame is a function of the power spec-
tral envelope, which in turn is directly related to the shape of the vocal tract. Thus, the
short-term autocorrelation is a function of the shape of the vocal tract.

Open
MASTER THESIS

21 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

2.3 Speech Analysis

The speech-analysis techniques reviewed at this point, play an important role in many
speech coders, including the G.729.

2.3.1 Pitch Estimation

The single, most important characteristic of voiced speech is the pitch. The goal of pitch
estimation is to retrieve the pitch, the perceived fundamental frequency, from a voiced seg-
ment of speech. There are two main approaches for pitch estimation. The first approach is
the autocorrelation method which makes use of the voiced-speech periodicity in the time
domain. The second approach is to analyze the fundamental frequency’s harmonics in
frequency domain. Pitch estimation is a difficult task and to reduce errors, pre-processing
of the signal is essential. The pre-processing intends to remove noise through filtering,
thereby simplifying the signal for pitch analysis.

Autocorrelation Method

With the autocorrelation method the pitch is estimated by detecting the maximum value of
the autocorrelation function in the region of interest [15]. The statistical autocorrelation of
a sinusoidal random process

x[n] = cos (ω0n + φ) (3)

is given by

R[m] = E[x[n]x[n + m]] =
1
2

cos (ω0m) (4)

This has maxima for m = lT0, the pitch period and its harmonics. Thus, the pitch period can
be estimated by finding the maximum value of the autocorrelation. A wide-sense stationary
periodic process, which voiced speech is assumed to be, has an autocorrelation which
also has its maxima at m = lT0. Figure 7 depicts the Auto Correlation Function (ACF) for
the voiced phoneme /ih/, which is extracted from the speech-signal ”Ericsson”, articulated
earlier. The maximum amplitude of the ACF is at 208 samples and with sampling frequency
of 22,050 Hz, this gives a pitch of 110 Hz (pitch = fs/samples). When finding the maximum
of the ACF, the first peak with the absolute maximum at m = 0 is excluded.

Pitch estimation is a difficult task and involves several error factors.

Figure 7: ACF for the voiced phoneme /ih/

Open
MASTER THESIS

22 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

The main error factors in pitch estimation are:

• Sub-Harmonic Errors
Sub-harmonics of the fundamental period T0 appear at 2T0,3T0..., and can wrongly
be identified as the fundamental period.

• Noisy Conditions
For noisy conditions, with low SNR, pitch estimation is unreliable.

• Vocal Fry
For some speakers the pitch is not continuous and it may change drastically, even
halve [15].

2.3.2 Source-Filter Model

The source-filter model is based on the human speech production system and is the most
commonly used model for speech synthesis. With the information of the pitch period and
vocal tract parameters, speech can be synthesized to replicate naturally spoken speech.
In the source-filter model, depicted in Figure 8 (according to [24]), a speech signal is sep-

Figure 8: Source-filter model of speech production

arated into two components: the excitation and the vocal tract parameters. For voiced
speech, the excitation is an impulse train with periods corresponding to the fundamental
frequency (or pitch). For unvoiced speech, the excitation consists of white noise. For cer-
tain sounds, a mixture of voiced and unvoiced excitation is required. This is achieved by
scaling and adding the pulse train to the white-noise excitation. Typically, this is required
for segments which contain a transition between voiced and unvoiced speech. Also, some
phonemes are both, voiced and unvoiced. The voiced/unvoiced switch in Figure 8, re-
quires information about whether the current speech is voiced or unvoiced. Designing a
voiced/unvoiced detector algorithm can be even more difficult than designing the pitch es-
timator. Two possible approaches for designing voiced/unvoiced detector are listed below:

Open
MASTER THESIS

23 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

• Zero-Crossing Count
The zero-crossing count is an indicator of the frequency at which the energy is con-
centrated in the signal spectrum. Voiced speech is periodic and usually shows a low
zero-crossing count. Unvoiced speech on the contrary shows a high zero-crossing
count. The zero-crossing count of silence is expected to be lower than for unvoiced
speech, but comparable to that of voiced speech.

• Signal Energy Comparison
For voiced data the energy is much higher than for silence. The energy of unvoiced
data is usually lower than for voiced sounds but higher than for silence.

The vocal tract model of Figure 8 is a filter representing the vocal tract and the shape of
the lips. The filter parameters can be estimated by linear prediction which is discussed
in the following section. The source-filter model assumes that speech can linearly be
separated into the excitation signal and vocal tract response. With the z-transform of the
excitation signal denoted as E(z) and the vocal tract model as H(z), the z-transform of the
synthesized signals is given by

S(z) = E(z)H(z) (5)

The source-filter model is useful in speech coding since it can synthesize speech with
the knowledge of only a handful of parameters.

2.3.3 Linear Predictive Coding

Linear Predictive Coding (LPC) is a well-suited perceptual match between a mathemati-
cal expression and the human speech characteristics [13]. LPC has proven to be a fast
and simple way to estimate the main parameters of speech signals and thereby found
widespread use in speech signal-processing applications.

A linear predictor, with the order M, that predicts the next sample of a stochastic process
x(n) is give by

x̂(n) =
M∑

k=1

akx(n− k) (6)

This is called a one-step predictor. ak are called the predictor coefficients. The prediction
error is then defined by

e(n) = x(n)− x̂(n) (7)

e(n) = x(n)−
∑

akx(n− k) (8)

Since this is an auto-regressive (AR) process, LPC analysis is also called auto-regressive
modeling and the predictor coefficients are called AR-parameters. The z-transform of the
prediction error is given below.

E(z) = X(z)(1−
∑

akz
k) (9)

E(z) = X(z)A(z) (10)

A(z) is called a whitening filter. The reason for this is that by filtering the speech signal x(n)
through A(z) the error signal e(n), which is close to white noise is derived. The inverse

Open
MASTER THESIS

24 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

of A(z) is called the production filter. Filtering the error signal through the production filter
yields the original signal. This is illustrated in Figure 9.

Figure 9: Production and whitening filter

In order to find the optimal predictor coefficients, the variance of the error signal has to
be minimized. This is achieved by differentiating Equation 11 with respect to the predictor
coefficients and setting this equal to zero.

α(m) = E[e2(n)] (11)

This yields Equation 12, which is known as the Yule-Walker equation.

∂α(m)

∂aj
= 0 ⇔

M∑
k=1

akRk(j − k) = RX(j), j = 1, ..,M (12)

If M = 3, the Yule-Walker in matrix form is given by R(0) R(1) R(2)
R(1) R(0) R(1)
R(2) R(1) R(0)

  a1

a2

a3

 =

 R(1)
R(2)
R(3)

 (13)

There exist two efficient algorithms for solving the Yule-Walker equations and finding the
optimal predictor coefficients: the autocorrelation method and the covariance method. In
practice, the autocorrelation method is the most favored since it returns poles with values
inside the unit circle. Thus, it guarantees that the production filter is stable. The auto-
correlation method uses the computationally fast Levinson-Durbin Algorithm. For detailed
information on the autocorrelation- and covariance method, the interested reader may con-
sult [13] or [15].

LPC Spectral Analysis

The production filter, H(z), with a gain G is defined by

H(z) =
G

A(z)
(14)

H(z) is used as the vocal tract model in the source-filter model, discussed in the previous
section. By plotting the spectrum for H(z), peaks can be observed that correspond to roots
of the denominator. The 14th-order LPC spectrum of the phoneme /ih/, plotted in red, is
depicted in Figure 6. From the figure, it can be seen how well the envelope matches the
original signal. This is the key to success in LPC.

The choice of prediction order is a balance between spectral detail and estimation
error. Also, the prediction order depends on the sampling frequency, fs. On average, there

Open
MASTER THESIS

25 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

is one formant per kHz of bandwidth which needs to be modeled by corresponding poles.
The poles are conjugated pairs, thus two predictor coefficients per kHz of bandwidth are
required. For improving flexibility of the LPC, two to four extra coefficients are added.

In speech coding it is popular to use Line Spectral Frequencies (LSF), which is an
equivalent representation of the predictor coefficients. The latter can be seen as a transfor-
mation of the predictor coefficients. The LSFs have sensitivity advantages in quantization.

2.4 Speech Coding Performance Attributes

The goal of a speech coder is to represent a speech signal in digital form with as few bits as
possible and with as high speech quality as possible. Since these attributes are however
conflicting, a speech coder is chosen by application requirements. The main attributes
concerning a speech coder are:

• High Speech Quality
Naturally, achieving high speech quality is essential for a speech coder. Measur-
ing speech quality is difficult since hearing perception differs between people. High
speech quality in the ears of one person, might be perceived as low quality for an-
other. The most widely used subjective test for speech quality is the Mean Opinion
Score (MOS). The MOS has a rating scale from one to five: (5) excellent, (4) good,
(3) fair, (2) poor, (1) bad. An MOS-rating of four is defined as toll quality, in which case
the reconstructed speech cannot be distinguished from the original speech. There
also exist objective speech quality performance measurement techniques like, for in-
stance, the Diagnostic Rhyme Test (DRT) and Diagnostic Acceptability Measure, see
[13]. The DRT is the most popular of these two. A good speech coder has a DRT
rating in the range 85-90.

• Low Bit Rate
As mentioned, the primary objective of a speech coder is to reduce the bit-rate
needed for speech representation. Today, bit-rates of speech coders range from
the 64-kbit/s G.711 to 2.4 kbit/s for the state of the art New low-rate U.S. Federal
Standard. Most commonly, speech coders operate at a fixed bit-rate although some
coders use variable rates such as the 3G AMR speech coder.

• Small Delay
The delay of a speech coder consists of four parts. The first one is the algorithm
delay which is the accumulation of a frame plus possible look ahead. Second is the
transmission delay. The third delay occurs in multiplexing, in the case of a multiple
user channel. The fourth and final delay is the computational delay required by the
DSP to run the coding and decoding algorithms.

The acceptable limit of delay is application dependent. In a system without an echo-
canceler, the delay threshold can be as low as 10 ms. It is irritating and difficult to
speak when hearing one’s own voice. With echo cancelation the acceptable limit of
delay depends on the interaction level of the conversation. For a normal conversation,
a delay of 500 ms may be tolerable, while for a highly interactive conversation the
delay threshold may be 150 ms [28].

Open
MASTER THESIS

26 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

• Robustness Against Channel Errors
There are two types of channel errors. The first one is random errors which occur
as a consequence of channel noise. This is specified as Bit Error Rate (BER). The
counter-measure against random errors is channel coding. In channel coding, re-
dundancies are added to the signal to make it more robust against channel errors.
The second type of channel errors are called burst errors. These errors are common
in radio channels and occur due to causes like, for instance, fading. In order to fight
burst errors, detection schemes are implemented.

2.5 Speech Coding Techniques

Figure 10 demonstrates one way of classifying speech coders according to coding method
and domain [13]. In the figure, the bit-rate increases to the right, i.e. vocoders have the
lowest bit-rate and waveform coders the highest. The downward pointing arrow on the
left corresponds to coding in time-domain while the arrow on the right points to coding
techniques in frequency domain.

In the following text the four different speech coder types are explained. Last in this
section, a table of speech-coding standards and their characteristics is provided.

Figure 10: Speech coding techniques

2.5.1 Waveform Coders

The world’s first speech coding standard, the G.711 64kbit/s PCM, is a waveform coder.
Waveform coders faithfully attempt to preserve the time domain waveform. Thus, waveform
coders performs as well on non-speech signals.

The waveform coders are the best coders with regard to speech quality, however, with
the downside of a high bit-rate. The simplest waveform coding technique is PCM. More
advanced techniques are used in Adaptive Delta Modulation (ADM), Adaptive Differential
Pulse Code Modulation (ADPCDM), Pitch-Predictive Differential Pulse Code Modulation
(PPDPCM) and Adaptive Predictive Coding (APC). For further information on waveform
coders the reader may, for example, consult [13].

Open
MASTER THESIS

27 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

2.5.2 Voice Coders

Voice coders, or vocoders, were the first speech coders to allow significant compression to
low bit-rates. These coders imitate, or model, the human speech production system with
emphasis on the vocal tract.

Vocoders are based on the source-filter model and LPC analysis discussed earlier. In
the encoder, analysis is conducted to extract the vocal tract parameters and the period
of the excitation signal. These data are then quantized and sent over the transmission
channel. With the received parameters of the vocal tract filter and the excitation signal
period; the decoder performs synthesis of the speech by filtering an excitation signal, with
the specified period, through the vocal tract filter. The speech produced by simple vocoders
has a tendency to sound unnatural and robotic.

2.5.3 Hybrid Coders

Hybrid coders are a combination of waveform coders and vocoders. The speech produc-
tion model is similar to the one used by vocoders but the excitation signal differs. Hybrid
coders use a mid-range bit-rate and produce well-sounding synthesized speech.

2.5.4 Analysis-by-Synthesis Coders

Analysis-by-Synthesis coders can be seen as an improved form of vocoders. In the en-
coder, analysis-by-synthesis coders synthesize all possibilities with a given codebook struc-
ture, and find the best perceptual match to the original speech by comparing each synthe-
sized signal to the original one with a perceptually weighted least mean square compari-
son. The parameters representing the best excitation signal and corresponding production
filters, are then send over to the decoder. An analysis-by-synthesis encoder can essen-
tially be seen as an encoder with a built-in decoder, where all possible signals are synthe-
sized and the parameters of the synthesized signal which sounds the most like the original
speech, is then transmitted to the decoder.

The reason why analysis-by-synthesis coders are so successful, and in many cases
better than other coders, is because of the perceptual distortion measure used to find the
best excitation signal. The design of the perceptual weighting filter, which is supposed
to resemble human hearing, is critical for the success of the analysis-by-synthesis coder.
[13].

2.5.5 Code Excited Linear Predictive Coding

CELP-coding, which is used in the G.729, is one of the most popular coding techniques for
low bit-rate speech coders (for bit-rates below 10 kbit/s). The CELP-algorithm is a version
of the analysis-by-synthesis technique described earlier. The new concept of CELP is that
the excitation signal is taken from a codebook with stored excitation vectors. Therefore,
the name code-excited linear prediction. Also, another major difference between a CELP-
coder and the LPC-coder, discussed earlier, is that the CELP-coder does not need to
classify voiced or unvoiced speech.

In CELP-coding, a speech signal is synthesized by a long- and a short-term predictor.
The long-term predictor accounts for fine structures in the spectrum, i.e. the pitch. In

Open
MASTER THESIS

28 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

CELP-coding, the long-term predictor is also called an adaptive codebook. The adaptive-
codebook entries are segments of the recently synthesized signal [15]. The short-term
predictor accounts for the spectral envelope, i.e. the formants, and is the same type of
production filter used in vocoders. Figure 11 depicts how speech is synthesized in a CELP-
encoder [27]. Thus, the fixed innovation comes from the fixed codebook which is then
filtered through the long-term production filter followed by the short-term production filter.
Another way to see this is that the excitation vectors from the adaptive and fixed codebook
are added to construct the excitation signal which is then filtered through the short-term
production filter.

Figure 11: Long-term prediction / Adaptive codebook

By subtracting the long-term and short-term predictions of the speech signal, the redun-
dancy of the signal is removed. The remaining signal is called the innovation or excitation
signal. A set of signals which approximates the possible excitation sequences forms the
codebook. Thus, a CELP- encoder algorithm consist of three stages:

1. Finding the best long-term and short-term linear predictors.

2. Filtering the predictor filters with all possible excitations and finding the sequence in
the codebook that minimizes the perceptually-weighted mean squared error. This
is an analysis-by-synthesis procedure. The perceptual weighting takes into account
how humans perceive sound or speech and is absolutely essential to the success of
CELP-coding.

3. Send information to the decoder about the long- and short-term predictor coefficients
and the binary codebook word corresponding to the sequence chosen from the code-
book.

The decoder then looks up the excitation sequence from the codebook with the received
codebook word and drives the excitation sequence through the long- and short-time pro-
duction filters [13]. The CELP-coding principle is depicted in Figure 12 [8].

CELP Complexity

A CELP-coding algorithm is complex and therefore computationally demanding. Assuming
a CELP-coder that uses a 10-bit word as an index to the codebook, would give a codebook
consisting of 210 = 1024 excitation sequences. Applying each of these 1024 excitation

Open
MASTER THESIS

29 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

sequences to the long- and short-term production filters and comparing each synthesized
signal with the original is the core of the encoder. Since this process needs to be per-
formed for each speech frame it is computationally very complex. In the G.729 algorithm,
this is done twice for every 10-ms frame.

A-CELP

Algebraic-CELP (A-CELP), is a special case of CELP with an efficient search of the code-
book. The term algebraic means the use of algebra or mathematic rules to create the
excitation codevectors. These rules are addition and shifting. With ACELP there is no
need to store the entire codebook, which leads to significant memory saving [4].

In Algebraic Structure-CELP (AS-CELP), the excitation pulse amplitudes are limited
to the fixed values of +1 and -1. In AS-CELP, the possible positions for each pulse are
restricted, which is controlled by a track table for each pulse [27].

Figure 12: CELP encoder

2.5.6 Speech Coding Standards

Table 3 lists the most-commonly used speech coders and their characteristics starting from
the first standard, G.711, until today’s state of the art 3G-AMR speech coder.

Open
MASTER THESIS

30 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Ta
bl

e
3:

S
pe

ec
h

co
di

ng
st

an
da

rd
s

Ye
ar

S
ta

nd
ar

d
Ty

pe
B

it
R

at
e

a
C

om
pl

ex
ity

Q
ua

lit
y

c
A

pp
lic

at
io

ns
F

in
al

iz
ed

a
(k

bi
t/s

)
(M

IP
S

)
(M

O
S

)
19

72
IT

U
-T

G
.7

11
P

C
M

64
0.

01
c

4.
3

fo
r

P
S

T
N

19
84

D
oD

F
S

10
15

LP
C

-1
0

2.
4

7c
2.

3
S

ec
ur

e
co

m
m

un
ic

at
io

n
19

87
E

T
S

IG
S

M
F

R
6.

10
R

P
E

-L
T

P
13

5-
6c

3.
5-

3.
9

D
ig

ita
lm

ob
ile

ra
di

o
19

90
IT

U
-T

G
.7

26
V

B
R

-A
D

P
C

M
16

,2
4,

32
,4

0
2c

4.
1

G
en

er
al

pu
rp

os
e

19
90

T
IA

IS
-5

4
V

S
E

LP
7.

95
14

c
3.

5
N

A
T

D
M

A
di

gi
ta

lc
el

lu
la

r
te

le
ph

on
y

19
90

E
T

S
IG

S
M

H
R

6.
20

V
S

E
LP

5.
6

14
c

3.
4

G
S

M
ce

llu
la

r
sy

st
em

19
90

R
C

R
S

T
D

-2
7B

V
S

E
LP

6.
7

Ja
pa

ne
se

ce
llu

la
r

sy
st

em
19

91
F

S
10

16
C

E
LP

4.
8

16
c

3.
2

S
ec

ur
e

co
m

m
un

ic
at

io
n

19
92

IT
U

-T
G

.7
28

LD
-C

E
LP

16
30

b
4.

0
G

en
er

al
P

ur
po

se
19

93
T

IA
IS

-9
6

V
B

R
-C

E
LP

8.
5,

4,
2,

0.
8

15
c

2.
3

N
A

C
D

M
A

di
gi

ta
lc

el
lu

la
r

te
le

ph
on

y
19

95
IT

U
-T

G
.7

23
.1

M
P

-M
LQ

/
5.

3/
6.

3,
11

c
4.

0/
3.

7
M

ul
tim

ed
ia

co
m

m
un

ic
at

io
ns

A
C

E
LP

vi
de

op
ho

ne
s

19
95

IT
U

-T
G

.7
29

/A
C

S
-A

C
E

LP
8

20
c
/1

0.
8b

4.
0/

3.
8

G
en

er
al

pu
rp

os
e

19
96

E
T

S
IG

S
M

E
F

R
A

C
E

LP
12

.2
-

-
G

en
er

al
pu

rp
os

e
19

96
T

IA
IS

-6
41

A
S

E
LP

7.
4

-
-

N
A

T
D

M
A

di
gi

ta
lc

el
lu

la
r

te
le

ph
on

y
19

97
D

oD
F

S
M

E
LP

M
E

LP
2.

4
40

c
3.

2
S

ec
ur

e
co

m
m

un
ic

at
io

n
19

99
E

T
S

IA
M

R
A

M
R

-A
C

E
LP

12
.2

,1
0.

2,
7.

95
,

-
-

G
en

er
al

pu
rp

os
e

7.
40

,6
.7

0,
5.

90
,

5.
15

,4
.7

5
a
B

as
ed

on
da

ta
fr

om
[4

]
b

B
as

ed
on

da
ta

fr
om

V
oc

al
Te

ch
no

lo
gi

es
LT

D
(w

w
w

.v
oc

al
.c

om
);

A
lg

or
ith

m
s

im
pl

em
en

te
d

on
A

D
S

P
-2

1x
x

c
B

as
ed

on
da

ta
fr

om
[1

8]
.

F
or

M
IP

S
va

lu
es

,t
he

D
S

P
is

no
tp

ro
vi

de
d.

A
lth

ou
gh

va
lu

es
co

rr
es

po
nd

w
el

lw
ith

th
e

on
es

pr
ov

id
ed

by
b
.

file:www.vocal.com

Open
MASTER THESIS

31 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

3 Description of the G.729/A Speech-Coding Algorithm

3.1 Introduction

In this thesis’ work, the ITU-T G.729A speech coder standard was implemented. The
G.729A coder is a low complexity version of the G.729 coder. The differences between
the two algorithms are relatively small, therefore in this section the G.729 coder will be
described first and at the end of this section the differences between the G.729 and the
G.729A will be stated.

The following description of the G.729 coder is mainly based on the documentation of
the standard [16]. The goal is to describe the coder in a simple and understandable way.
A reader seeking detailed specifics may refer to the standard document [16].

3.2 General Description of the Coder

The G.729 uses a 16-bit Pulse Code Modulation (PCM) signal as input which is achieved
by the following means. The analog speech signal is telephone-bandwidth filtered through
a 300-3400 Hz filter and sampled at 8 kHz. This signal is then quantized to a 16-bit PCM-
signal which then serves as input to the G.729 speech coder. The G.729 operates at 8
kbit/s and on 10-ms frames, corresponding to 80 samples. The characteristics of the coder
were previously displayed in Table 3.

The G.729 speech coding algorithm uses Conjugate-Structure Algebraic-Code-Excited
Linear-Prediction (CS-ACELP). For each frame of 10 ms, the input speech signal is an-
alyzed and the CELP parameters are extracted, encoded and transmitted. The CELP
parameters include LPC-filter coefficients, indexes of the adaptive and fixed codebook and
their respective gains.

The decoder takes the received parameters, extracts the excitation signal from the fixed
and adaptive (long-term synthesis filter) codebook and forms the short-term synthesis filter.
The excitation signal is then filtered through the short-term synthesis filter to form the re-
constructed speech. The last step in the decoding process is to enhance the reconstructed
speech through a post-filter which emphasizes the formant structure of the signal.

3.3 Encoder

The block diagram of the G.729 encoder is shown in Figure 13 and the signal of the en-
coder is depicted in Figure 14 [16]. At first, the input speech signal is passed through
the pre-processing block where the signal is filtered through a 140-Hz high-pass filter and
scaled. On the pre-processed signal, a 10th-order LP analysis is conducted once per ev-
ery frame of 10 ms. The ten LP-coefficients are then converted into Line Spectrum Pairs
(LSP), which is the same as LSF, discussed in section 2.3.3, and then quantized with a
two-stage vector quantizer with 18 bits.

Every frame of 10 ms is divided into two subframes of 5 ms (40 samples) each, with the
purpose of reducing the complexity of the codebook searches and optimizing the tracking
of pitch and gain parameters. For the first subframe interpolated LP-coefficients are used
in the synthesis filter. For the second subframe the synthesis filter consists of original and
quantized LP-coefficients.

Open
MASTER THESIS

32 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Then, for each subframe analysis-by-synthesis is performed to retrieve the CELP-
parameters for the best synthesized signal.

In Figure 13, the excitation signal consists of contributions from both, the adaptive and
fixed codebook. The adaptive codebook then simulates the pitch, and therefore voiced
sounds. The fixed codebook simulates unvoiced sounds. In reality, the adaptive codebook
is an adaptive filter through which the fixed excitation signal is filtered. The following two
sections deal with the fixed and adaptive codebook in detail.

3.3.1 Fixed Codebook

The fixed codebook has an algebraic structure and is called interleaved single-pulse per-
mutation (ISPP) design [13]. Each 40-sample fixed codebook excitation vector has only
four pulses, denoted i0, i1, i2 and i3, with, as previously mentioned, two possible ampli-
tudes: +1 and -1. The fixed codebook is displayed in Table 4. Each excitation codevector
is a sum of four pulses, given by

c(n) = s0δ(n−m0) + s1δ(n−m1) + s2δ(n−m2) + s3δ(n−m3) n = 0, ..., 39 (15)

where δ(n) is the unit impulse at time instant n.

Table 4: G.729 fixed codebook

Pulse Sign Positions

i0 s0 :
+
− 1 m0:0, 5, 10, 15, 20, 25, 30, 36

i1 s1 :
+
− 1 m1:1, 6, 11, 16, 21, 26, 31, 36

i2 s2 :
+
− 1 m2:2, 7, 12, 17, 22, 27, 32, 37

i3 s3 :
+
− 1 m3:3, 8, 13, 18, 23, 28, 33, 38

4, 9, 14, 19, 24, 29, 34, 39

The fixed codebook is searched in four nested loops, one for every pulse. However, to
reduce complexity, the fourth loop is not entirely searched since a full search in the fourth
loop would produce slightly higher speech quality, but also require high computational ef-
fort. Since the four excitation pulses are unable to have the same position, the search is
named conjugate-structured.

As can be seen in Table 4, the index to the fixed codebook consists of two parts: sign
and position. Each pulse requires one bit per sign, thus, a total of 4 bits is needed to
encode the signs. For the first three pulses, i0, i1, i2, 3 bits are needed to encode the pulse
positions. For the fourth pulse, i3, 4 bits are required. This yields a total of 13 bits to index
the pulse positions. Thus, altogether 4 + 13 = 17 bits are needed to transmit the fixed
codebook index (without gain), which in fact is done once every subframe.

3.3.2 Adaptive Codebook

The adaptive codebook, which in fact is an adaptive pitch filter is given by

P (z) =
1

1− βz−T
(16)

Open
MASTER THESIS

33 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

where T is the pitch delay in the current subframe and β is the adaptive gain. In order
to achieve high speech quality a fractional pitch delay with 1/3 sample time resolution is
used. The first step in the adaptive codebook search is an open loop pitch estimation,
based on the perceptually weighted speech signal, which is done once per frame. Then,
to find the gain and delay for the adaptive codebook, closed-loop pitch analysis is done
for each subframe by searching around the pitch estimate. The pitch delay found in the
search is encoded with 8 bits for the first subframe and 5 bits from the second subframe.

3.3.3 Gain Quantization

The gains of the fixed and adaptive codebook are vector quantized with 7 bits. The VQ con-
sists of two stages, a 3-bit two-dimensional first stage followed by a 4-bit two-dimensional
second stage. The VQ also uses a conjugate structured codebook.

3.4 Bit Allocation

Table 5 shows the bit allocation for one 10-ms, 80 sample frame. An interesting note is that
62 bits out of 80 bits in the bitstream are located to the excitation signal. This yields 6.2
kbit/s out of 8 kbit/s.

Table 5: G.729 bit allocation

Parameter Codeword Subframe 1 Subframe 2 Total per frame
Line Spectrum pairs L0, L1, L2, L3 18
Adaptive-codebook delay P1, P2 8 5 13
Pitch-delay parity P0 1 1
Fixed-codebook index C1, C2 13 13 26
Fixed-codebook sign S1, S2 4 4 8
Codebook gains (stage 1) GA1, GA2 3 3 6
Codebook gains (stage 2) GB1, GB2 4 4 8
Total 80

3.5 Decoder

Figure 15 depicts the block diagram of the G.729 decoder [16]. The first step in the decod-
ing process is to extract the parameter indices from the received bitstream. These indices
are then used to look up the values of the parameters corresponding to a 10-ms frame.
These parameters are

• LSP coefficients

• Two fractional pitch delays

• Two fixed codebook vectors

• Two sets of adaptiveand fixed-codebook gains

Open
MASTER THESIS

34 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Figure 13: Encoding principle of the G.729

Open
MASTER THESIS

35 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Figure 14: Signal flow of the G.729 encoder

Open
MASTER THESIS

36 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

For each subframe the LSP-coefficients are interpolated and converted to LPC-filter coeffi-
cients. Then, for each subframe, the excitation signal is constructed by adding the adaptive
and fixed-codebook vectors multiplied with their respective gain. The excitation is then fil-
tered through the LPC- (or short-term) filter. Finally the reconstructed speech is further
enhanced by a post-filter.

The signal flow of the decoder is displayed in Figure 16 [16].

Figure 15: Decoding principle of the G.729

3.6 G.729A

The G.729A is a reduced complexity version of the G.729, i.e it requires much less pro-
cessing power. The G.729A is bitstream compatible with the G.729. Thus, the speech can
be encoded with an G.729 encoder and decoded with a G.729A decoder, or vice versa.

One important note though, the synthesized speech of the G.729A is not as good as
from the G.729 in some cases. The G.729A has a MOS of 3.7, which is not toll-quality,
compared to the G.729 which has a toll MOS of 4.1. Therefore, one might question the
suitability of using the G.729A in a ToIP system which is intended to provide a high quality
service. However, according to [1] the G.729A only suffers in performance during multiple
tandem encoding (encoding and decoding the signal repeatedly) and is not a reason for
anyone to not use the G.729A compared to the G.729.

The G.729A has only some small differences compared to the G.729. The differences
in the encoder and decoder are stated in the following two sections. The reader interested
in detailed changes in the C source code should refer to document [17] and [31].

3.6.1 Encoder Differences Between G.729 and G.729A

The modules which have been simplified are:

• Perceptual weighting filter

• LP to LSP transformation

• Search for adaptive-codebook delay

Open
MASTER THESIS

37 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Figure 16: Signal flow of the G.729 decoder

Open
MASTER THESIS

38 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

• Fixed codebook search

• Memory updates between frames

3.6.2 Decoder Differences Between G.729 and G.729A

The decoder is almost the same for G.729 and G.729A. The differences and simplifications
lay in the post-processing block, depicted in Figure 15. In the post-processing block, the
following parts are simplified:

• Long-term post filter

• Short-term post filter

• Compensation filter

• Adaptive gain control

Open
MASTER THESIS

39 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

4 Voice over IP Overview

4.1 Introduction

This section shall give an overview of the concept Voice over Internet Protocol (VoIP),
which is essential for understanding the broader background of this thesis project. Hereby,
elements of possible VoIP solutions are examined and some of the parts considered for
Ericsson’s ToIP solution are pointed out.

VoIP or IP Telephony enables the transmission of voice and fax through data networks
by making use of the Internet Protocol (IP). VoIP combines hereby the efficiency of a
packet-switched network with the voice quality of a circuit-switched network. By transmit-
ting voice over IP, an initial analog voice is converted into a digital data stream which is
composed of data packets. After the data packets are routed through the data network
between the different users, a backward conversion into voice occurs.

4.1.1 VoIP Advantages

There are a number of advantages attached to the transmission of voice over IP. Firstly,
this kind of transmission enables cost savings, in that already existing networks can be
used, which may especially benefit companies with a large amount of international voice
traffic. Also private individuals may profit from lower rates for international VoIP calls in
comparison to making calls over POTS (Plain Old Telephone Service).

The IP protocol enables the transformation of a wide range of data. In contrast to POTS,
IP packets are routed from one user to another via different routes and with different delays.
Voice is hereby converted into data streams in different ways, depending on the different
products. While only standardized protocols should be employed, voice conversion can
take place with or without compression.

4.1.2 VoIP Advantages

As will be discussed later in this chapter, voice transmission via IP is however especially
perceptive to lengthy delays, packet losses and out-of-order packets, all of which may result
in a substantial quality decrease of the transmitted voice. The Internet is still characterized
by a high level of network instability and interrupted connections and breaking links are a
frequent occurrence. While delays, which rapidly increase with increasing network traffic,
have less effect on the usage of email or the transfer of files, in telephony, delays in excess
of 400 ms have a substantial effect on the quality. While the use of Internet Telephony still
remains impossible for most business applications, Intranet Telephony mostly overcomes
the previously mentioned problems and is increasingly applied in many business environ-
ments. In general, Intranets exhibit higher transmission rates and also enable better user
management [29].

4.1.3 VoIP Routing Possibilities

There are several ways to implement VoIP.

• Partly over PSTN
A call can be routed partly over Public Switched Telephone Network (PSTN)-based

Open
MASTER THESIS

40 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

and partly over internet. A VoIP application can hereby communicate with a PSTN-
base telephone, and vice versa. In the ToIP experimental system currently under de-
velopment at Ericsson, a call is intended to go between two PSTN based telephones
although the call is transmitted over a I.P. network in local station. As depicted in
Figure 1.

• Solely over the internet
Also a direct communication between two VoIP applications is possible.

While IP Telephony should offer the same standard of services provided by the commonly
used PSTN and ISDN telephones, it may also be able to offer a wide range of new services.
Examples may include universal messaging, an integrated web browser or an FTP client
[29].

4.2 VoIP Components

Regarding the technology requirements of an IP Telephony solution, four stages can be
identified: signaling, encoding, transport and gateway control.

4.2.1 Signal System 7

When a user dials a number, signaling is required to establish the call by firstly determining
the recipient’s call status - busy or available. The PSTN uses hereby the Signaling System
7 (SS7), a particular set of protocols, for call setup, teardown and maintenance. SS7
operates as a packet-switched network.

An example of an VoIP network which uses an SS7-to-IP gateway is given in Figure 17.
In this case, SS7 is responsible for the call control on both sides of the PSTN and H.323 or
Session Initial Protocol (SIP) controls calls in the IP network. Circuit-to-voice conversion is
guaranteed through the media gateway [21].

Figure 17: VoIP network with SS-7 to-IP gateway

Open
MASTER THESIS

41 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

4.3 Gateway Control

A telephony gateway is a network element that converts packet-based audio formats into
protocols which are understandable to PSTN systems. Media Gateway Control Protocol
(MGCP) is used for the control of telephony gateways from external call control elements
known as media gateway controllers or call agents. MGCP provides a call control system
where the call control intelligence is outside the gateways and handled by external call
control elements. The MGCP operates under the assumption that these call control ele-
ments, call agents, synchronize with each other so that coherent commands are sent to
the gateways under their control. MGCP can therefore be seen as a master/slave protocol,
where the gateways execute commands sent by the call agents. The implementation of
the media gateway control interface with MGCP is based on a set of transactions which is
composed of a command and a subsequent mandatory response.

The Megaco protocol (H.248) is similar to the MGCP from an architectural point of view
and the controller-to-gateway relationship. However, Megaco/H.248 supports a broader
range of networks, such as Asynchronous Transfer Mode (ATM). In contrast to MGCP,
Megaco/H.248 enables the transport of multiple commands in one single packet [21] [7].

4.3.1 H.323

Nowadays, the H.323 protocol suite, which is ratified by the International Telecommuni-
cation Union-Telecommunication (ITU-T), represents the basis of the majority of products.
Figure 18 depicts an H.323 protocol including its functional parts [5]. The H.323 terminal,
also known as H.323 client, is an end-user device which enables voice, video and data
communication with another H.323 terminal. Examples of clients include multimedia PCs
or IP phones. Also a terminal adapter, which establishes a connection between the H.323
network and an analog phone or fax machine can be a client. Address translation as well
as call control services are provided by the gatekeeper. The gatekeeper is also respon-
sible for bandwidth control, authentication, authorization as well as accounting. Switched
and data networks are connected by a gateway. The connection is hereby established
by converting signaling protocols and media transmission formats between the respective
terminals. The gateway can also operate with other ITU-networks, including PSTN, ISDN,
BISDN and ATM. In addition, the gateway can operate in form of a Multipoint Control Unit
(MCU), a conference server which provides centralized signaling [29].

4.3.2 Session Initiation Protocol (SIP)

In contrast to H.323, Session Initiation Protocol (SIP), developed by the Internet Engineer-
ing Task Force (IETF), is a signaling protocol particularly designed for the Internet. In the
same way as other VoIP protocols, SIP, an application-layer control protocol, is based on a
packet telephony network system. SIP enables the initiation, modification and termination
of interactive communication sessions between end-points. Such sessions may involve
two or more users. Through mapping and redirection services, SIP provides a high degree
of user mobility since telecommunication services may now be accessed from different
terminals and places. Other attributes of SIP include the ability to determine the media
parameters of the targeted end point as well as the latter’s availability. After determining

Open
MASTER THESIS

42 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Figure 18: VoIP solution

the end point’s willingness to enter into a conversation, SIP initiates a session which it later
also terminates.

4.3.3 A Comparison Between H.323 and SIP

H.323 and SIP are fierce competitors in the market for IP telephony signaling. Both, SIP
and H.323, have been developed to address session control and signaling functions in
a distributed call control environment. Like H.323, SIP works most efficiently with intelli-
gent end-points. However, whereas in the case of SIP network intelligence and services
are provided by servers, H.323 employs gatekeepers. Also, in contrast to H.323, which
operates on a binary code basis, SIP is ASCII-based.

Figure 19: IP header

4.4 RTP and RTCP

Real-Time Transport Protocol (RTP) and Real-Time Control Protocol (RTCP) enable the
transport of voice packets, following the voice signaling and encoding. RTP is an end-to-
end delivery device providing services for data with real-time attributes, examples of which
are interactive audio and video. Payload type identification, sequence numbering, time-
stamping and delivery monitoring are some of the services provided. While the majority

Open
MASTER THESIS

43 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

of applications runs RTP on top of UDP to use the advantages of its multiplexing and
checksum services, RTP can also be used with a number of other underlying network or
transport protocols. Multicast distribution, provided by the respective underlying network,
enables RTP to support the transfer of data to multiple destinations. Lower-layer service
guarantees timely delivery and the quality of service. RTP does neither give a guarantee for
delivery nor does it rely on the underlying network to deliver the packets in sequence. The
sequence numbers included in RTP enable to determine the location of a packet, which
can take place without the decoding of packets in sequence, as well as the reconstruction
of the packet sequence of the sender.

RTP has primarily been developed for multimedia conferences with multiple partici-
pants. Other applications of RTP include the storage of continuous data, interactive dis-
tributed simulation, active badge, and control and measurement.

RTP contains two parts. While the Real-Time Transport Protocol (RTP) ensures the
transport of data with real-time attributes, the RTP Control Protocol (RTCP) assumes re-
sponsibility for the monitoring of the service quality as well as for the provision of infor-
mation about the session’s participants. The basis of the RTCP is hereby the periodic
transmission of control packets to all participants, which requires the multiplexing of the
data and control packets by the underlying protocol, for instance, by using separate port
numbers with UDP. RTCP performs four functions:

• RTCP provides feedback on the quality of the data distribution, which is closely re-
lated to the flow and congestion control functions of other transport protocols.

• RTCP carries a persistent transport-layer identifier for an RTP source called the
canonical name or CNAME. Due to the possibility that the SSRC identifier may
change in case a conflict is discovered or in case of the restart of a program, re-
ceivers require the CNAME to keep track of each participant. CNAME may also be
required by receivers to associate multiple data streams from a given participant in a
set of related RTP sessions, such as in the case of an audio-video synchronization

• Since the first two functions require that all participants send RTCP packets, there
must be a control for the rate in order for RTP to scale up to a large number of
participants. Through the process of having each participant send its control packets
to all of the others, the number of participants can be determined. On the basis of
this number, the rate at which the packets are sent, is calculated.

• RTCP conveys minimal session control information, which is mostly used in sessions
with no membership control or parameter negotiation.

4.5 Quality of Service

The ability of networks to deliver good, predictable service over a variety of underlying
technologies, such as IP-routed networks, is defined as Quality of Service (QoS).

Due to the real-time attribute of voice applications the latter are not only extremely
intolerant to delivery delays of packets, but also to jitter, echo, congestion, packet loss, and
miss-ordered packets arrival. Methods to overcome the hostile environment of the IP net
and to achieve an acceptable Quality of Service, are therefore essential.

Open
MASTER THESIS

44 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Several methods and sophisticated algorithms have been developed for the evaluation
of the QoS. PSQM (ITU P.861), PAMS (BT) and PESQ are some examples [23].

The Resource Reservation Protocol (RSVP) is a protocol which allows the Internet to
support QoS. RSVP, which is part of the Internet Integrated Service (IIS) model, contains
the ability to reserve resources along a path from the source to the destination, which
then in turn allows routers, enabled by RSVP, to schedule and prioritize packets, which
guarantees the QoS.

IP-IPv6, which succeeded IPv4, inherently supports QoS. However, in contrast to IPv4,
whose packet header requires a mere 20 bytes, the packet header of IPv6 necessitates
40 bytes, which doubles the overhead and may thus result in a greater latency which is
especially troubling for vocoders with diminutive packets. However, header compression
schemes are existent which are able to, at least partially, offset the extended header over-
head.

4.5.1 Packet Loss and Jitters

If a router receives too many packets due to network congestions, some of the packets
may be dropped out, known as packet loss. In general, packet loss has a substantial ef-
fect on the quality of the received audio/video and packet losses in excess of 10 percent
are regarded as intolerable. Since voice transmissions are extremely time sensitive, reg-
ular retransmission instruments which are based on TCP appear inappropriate. Speech
interpolation is one approach commonly used for packet-loss compensation. With interpo-
lation, losses which incur during unvoiced speech segments are corrected through packet
repetition, while losses during voiced speech are repaired through the use of pitch-cycle
waveform repetition.

Even in the case that packets are transmitted at even intervals, they may reach the re-
cipient with uneven intervals. Such a gap of arrival time is known as jitter. Jitters are gen-
erally the result of network congestions, because routers have to handle a great number
of packets transmitted from many other hosts. Since jitters affect the timing of audio/video
playback, also the quality of received audio and video is decreased. The removal of jitters
requires the collection of packets, which subsequently have to be stored long enough so
that the slowest packet will arrive and be played in the correct sequence. A jitter buffer
temporarily stores arriving packets thereby minimizing delay variations. Packets that arrive
too late are discarded [21].

4.5.2 Latency

Latency is an essential factor in IP performance, and reducing or mitigating the effects
of latency is an important aspect of network performance engineering. Latency, which is
defined as the time delay incurred in speech by the IP Telephony system, is generally mea-
sured in milliseconds from the moment that the speaker utters a sound until the listener
actually hears the sound. This is known as one-way latency, while round-trip latency is the
sum of the two one-way latency figures which make up a telephone call. The round-trip
latency for domestic calls over the PSTN within the continental United States, is, for in-
stance, virtually always under 150 milliseconds. At these levels, users are unable to notice
the latency. By contrast, international calls, particularly the ones carried via satellite, may

Open
MASTER THESIS

45 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

have round-trip latency figures in excess of one second. According to the 1996 ITU Rec-
ommendation G.114, one-way transmission of under 150 ms are tolerable for the majority
of applications, while transmissions of 150 to 400 ms are only acceptable if administra-
tors are aware of the transmission time impact on the quality of the applications. One-way
transmissions of over 400 ms, are regarded as unacceptable. Echo and talker overlap are
some of the difficulties which may occur as a result of excessive delays in voice networks.
While echo, where the voice of a speaker is reflected back, generally starts to be disturbing
with round-trip delays in excess of 50 ms, talker overlap, where the talkers’ voices overlap
each other, worsens with one-way delays greater than 250 ms. Echo control, for instance,
is implemented through echo cancelation [21].

4.5.3 The trade-off between bit-rate and voice quality

The majority of VoIP applications are based on an Internet connectivity where most of the
users have a connection of at least 28.8 kbp/s.

There is extensive research in developing new speech coders. In particular much re-
search effort is put into designing speech coders with extremely low bandwidths. How-
ever, some developers prioritize high-quality speech instead of achieving very low bit-rates.
Thus, when designing a speech coder, a trade-off between bit-rate and voice quality is un-
avoidable. The G.729 speech coder studied in this thesis may be seen as an excellent
example of a speech coder which has both, high-speech quality (MOS 4.1) and low bit-
rate (8 kbit/s).

With the exception of low bit-rate and high speech quality, a speech coder should also
have the ability to tolerate packet loss as well as miss-ordered packets. The restriction of
one-way latency to one-quarter of one second and the maintenance of a buffer which
restrains jitters, echo and talker overlap are also essential characteristics of a speech
vocoder [21].

4.6 Frames per packet

Packet-switched technology requires an efficient mechanism for voice encoding and de-
coding. A voice coder converts analog speech waveforms into digital data. The coding
and decoding process results in an algorithmic delay which equals frame length plus look-
ahead size. However, whereas voice coders with small frame length are characterized by
shorter delays and vice versa, shorter delays result in turn in a larger overhead. However,
since most implementations consist of multiple frames per packet, the real frame length is
determined by adding up all the frames contained in an IP packet. This means, the smaller
a single frame, the greater the number of frames in a single IP packet and therefore also
the smaller the resulting latency. Figure 19 depicts an IP package divided into overhead
and useful data [22]. For the smallest packets, well over half of the bandwidth used, is
taken up by the packet headers which is clearly an undesirable case.

If the G.729 speech coder will be a part of Ericsson’s experimental ToIP system, there
will be large overhead since a G.729A frame only consists of 80 bits. In a multi-channel
environment, several speech frames could be put into one packet. However, then the
packets should also have the same destination.

Open
MASTER THESIS

46 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

5 Overview of the Flexible ASIC Concept

5.1 Introduction

Flexible ASIC, a System-on-Chip architecture, enables the implementation of digital signal
processing functions and is a concept developed for the design of small, cost efficient and
high performance solutions whose essential characteristic is a high degree of reprogram-
ming flexibility. The integration of DSP cores on a single ASIC chip forms hereby the basis
of the flexible ASIC.

In order to guarantee an even higher degree of flexibility, a library of processor core
building blocks, from which a customized processor core can be assembled, exists. A set
of DSP software development tools, which enable the programming of the processor, are
supported by the Flexible ASIC concept. The concept, which is promoted by the Ericsson
Technology Board, has been used in real projects since 1996 [9].

5.2 Background

Modern digital communication systems place high demands on digital signal processing.
Today, a system’s manufacturing cost and power dissipation largely stem from different
Digital Signal Processors (DSPs), which explains why optimizing both, the software and
hardware implementation of digital signal processing, has become increasingly important.
Additional aspects which have to be considered in the decision of a suitable DSP are, for
instance, the DSP instruction set, clock frequency, chip size, the memory capacity of data
and program memories, the respective software development tools as well as the efficiency
of the C-compiler, in the case algorithms are intended to be written in C.

However, even if a DSP is clocked at a high frequency, it does not necessarily perform
a particular algorithm faster compared to a DSP with a lower clock frequency. In some
cases, the instruction set in the slower DSP might suit the algorithm, which is to be im-
plemented, better. Since an increase in the performance is related with increases in the
number of instructions which can be executed within a clock cycle, the parallelism of the
DSP represents an essential aspect as well.

The most essential algorithms require the direct implementation in dedicated logic, as
a consequence of speed requirements, in a Field Programmable Gate Array (FPGA) or
an Application Specific Integrated Circuit (ASIC). Since the FPGA offers the possibility of
being reprogrammed in case the functionality of the algorithm has to be changed, it guaran-
tees a high degree of flexibility. However, the large costs and size, essentially eliminate the
use of FPGAs. In contrast to the FPGA, ASIC delivers generally very good performance
as well as a small circuit area. An ASIC offers however no flexibility since its functionality
cannot be changed once it is manufactured [19].

5.3 ASIC and DSP

Today, the majority of projects requires the possibility to change and update the function-
ality of a signal processing system. However, if DSPs would be used only, performance
requirements could not be met. One solution would be to combine the advantages of an
ASIC with the flexibility of the DSP. Figure 20 depicts a comparison of different technolo-

Open
MASTER THESIS

47 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

gies regarding Flexibility versus Cost, Printed Circuit Board (PCB) area as well as Power
[20].

Figure 20: ASIC versus DSP

However, simply combining a DSP with an ASIC gives rise to a number of disadvan-
tages. Firstly, there is the difficulty of building interfaces between the two units which have
the width and speed required to benefit from the full potential of the ASIC as well as the
DSP. Secondly, in comparison to the integrated configuration, the two unit configuration is
characterized by a greater power dissipation. In some cases a greater efficiency can be
achieved by using several DSPs, with only modest performance levels, in parallel instead
of using only a single high performance DSP.

The Flexible ASIC concept involves the combination of a small number of DSP cores
with application specific hardware on a single chip, thereby combining the speed and size
of an ASIC implementation with the flexibility and programmability of a DSP. The layout of
a Flexible ASIC chip is depicted in Figure 21 [19].

5.4 DSP cores

The adaptation of DSP cores for their respective applications results in a greater suitability
of the interfaces and gives the implementation more computational power by stripping away
unused logic. Also routing overhead can be minimized since a number of DSPs find place
on the same chip. Higher efficiency with regard to the silicon area and a more economic

Open
MASTER THESIS

48 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Figure 21: Flexible ASIC layout

ASIC are guaranteed through the use of a small internal Random Access Memory (RAM)
in each DSP core as well as a common external RAM for several DSP cores as a group.
Interfaces of the specific applications are custom made and implemented with the other
ASIC architecture.

A common external memory utilizes the issue that programs often consist of split loops.
A higher level of efficiency regarding memory usage as well as a minimized silicon area
used for memory, is achieved if the common program memory contains the main program
and the internal program memory of an assigned DSP code, contains a copy of a loop
code.

For the case that every DSP core contains a copy of the program, a larger internal
memory would be required and therefore a larger total memory. In addition, since memory
generally requires a large amount of silicon area compared to other logic contained in a
DSP core, the silicon area would increase as well.

As part of the Flexible ASIC project, different DSP-cores have been developed. Fig-
ure 22 depicts the general layout of a Flexible ASIC DSP core [19]. The PCU (Program
Control Unit), the basic block, dispatches program instructions, received from the LPM
(Local Program Memory), to the appropriate CU (Computational Unit). The LDM (Local
Data Memory) is connected through the DAAU (Data Address Arithmetic Unit) and pro-
vides an address interface to the LDM which in turn is divided into memory banks of equal
size (1024x16 bit). Also, the architecture enables simultaneous access from two different
memory banks. The CDMIF (Common Data Memory Interface) provides a communication
interface to the CDM (Common Data Memory) which is shared between several cores. Ad-
ditionally, the cores are characterized by IRQ (Interrupt Requests) and timer functionality.

Open
MASTER THESIS

49 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Figure 22: DSP core layout

5.5 Instruction Set

The DSP-cores allow the parallel execution of a maximum of four 16 bits of instructions
in each clock cycle. Physical limitations, such as the number of CU:s or the number of
busses, of the hardware, establish rules for how the instructions can be placed in parallel.
Since there exist, for instance, two separate data and address busses in the DSP cores, a
parallel performance of two memory move instructions is possible.

Open
MASTER THESIS

50 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

6 The Capella ASIC

6.1 Introduction

This section specifies the main characteristics of the Capella ASIC, the hardware platform
on which the G.729 speech coding algorithm will be implemented.

The Capella ASIC consists of multiple DSPs and is designed specifically for speech-
coding and echo-canceling applications. In Capella efficient memory usage is achieved
since many DSPs share common memories. However, each DSP separately gets instruc-
tions from the CPM.

6.2 Block Diagram

Figure 23: Block diagram of the Capella ASIC

Figure 23 depicts the block diagram for the Capella ASIC. As can be seen from the
figure, Capella consists of eight DSPs. The blocks in the figure are:

• Pam
Pam is a DSP core which is optimized for speech-coding and echo-cancelation algo-

Open
MASTER THESIS

51 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

rithms. Each Pam consists of two Computation Units (CU), one Accumulator register
File and a Local Data Memory.

In normal operation, one instruction is fetched from program memory and one operand
from data memory every instruction cycle.

• CPM
CPM is the Common Program Memory. The CPM contains programs which can be
run simultaneously in Capella.

• CTM
CTM is the common table memory. In CTM ingoing and outgoing speech samples
are saved and data shared between Pams.

• LDM
LDM stands for Local Data Memory, which is the memory that each Pam uses for
calculations. The memory block can hold 32768 words of 16 bits each.

6.3 Performance Specifics

• 120 MHz

• Four parallel instructions per clockcycle

• 16-bit fixed point

Open
MASTER THESIS

52 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

7 Flexible ASIC Development Tools

The Flexible ASIC tools represent a set of software tools and programs, particularly devel-
oped for the Flexible ASIC concept, which are used to support the development of DSP
application programs for different core architectures. Through these tools a development
environment for application software is established even before the hardware is available.
This high degree of portability guarantees that following the production of a new hardware
ASIC or DSP, in order to support the new hardware, the development tools can be altered
without much effort. The software application is hereby constructed through the use of
assembly or C language or a combination of both.

An availability of all the tools necessary for accurate software simulation of processors
and external units as well as benchmarking and profiling is hereby guaranteed, as is also
the case for multi DSP simulation and debugging. The following section focuses on the
Flexible ASIC tools used in the G.729A implementation process.

7.1 The Flexible ASIC Assembler (Flasm)

Flasm is the general assembler in the set of FlexASIC development tools, which uses
Instruction Set Descriptions (ISD) as well as run-time link libraries for the configuration of
a specific target architecture (instruction set). A list of statements forms the basis of an
assembler source file, whereby each statement can be an instruction row, a label definition
or an assembler directive. Directives and labels are hereby characterized by the same
syntax for all instruction sets. Although each instruction is individually described by an
instruction set definition, the basic syntax rules apply to all instructions. An instruction
row is defined as a pipe character separated list consisting of individual instructions which
require parallel execution. The following basic syntax is used by all instructions:

<mnemonic><operand>,<operand>,...
Flasm uses a rule checker to identify illegal relations between instructions in the code

and issues error and warning messages. The rule checker performs checks on the par-
allel execution of instructions, the access to computational units, repeat and block repeat
instructions, stack manipulation as well as on read/write sequences of memories.

In this project, flasm was used to assemble the files written to check the overflow, see
Implementation Process section.

7.2 ANSI-C Compiler with DSP-C Extension

Essentially, a compiler represents a program which translates a high-level programming
language, such as, for instance, Ada, Pascal, Fortran or C, to the lowest code level known
by the computer, machine code. While some compilers first translate the high-level code
to assembly code and then pass this to a separate assembler or linker program, other
compilers perform the entire process.

The Flexible ASIC C compiler, also known as flacc, represents an ANSI-C compiler
with the DSP-C extension to the ISO C standard to provide support for the specific hard-
ware features of DSPs. Several optimization engines are provided by flacc, which enables
the performance of constant evaluation and expression simplification. In addition, flacc
performs:

Open
MASTER THESIS

53 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

• expression canonization and the merger of basic blocks - optimization at the basic
block or statement level, such as the elimination of tail recursion and jump-to-jump
optimization

• loop analysis, optimization and hardware loops generation

• the propagation of copies of local variables and constants as well as the removal or
change of useless code

• invariant code motion on the inner loops, which is optimized by rearranging address
calculations in such a way that the invariant part is maximized - read-only data opti-
mization, which sets all globals with static linkage to read-only if they have no direct
assignments; this enables a constant evaluation to inline the initialized values

The DSP-C extension provides support for the specific hardware features of Digital Signal
Processors. The most essential language elements, which are added, are hereby the fixed
point data types, memory spaces, all of which allows for several memory qualifiers and
circular buffer support.

Flacc represents the interface to the Flexible ASIC C compilation system which com-
prises an ANSI-C/DSP-C compiler with code generator, an assembler (flasm) and a link
editor (flink). The supplied options will be processed by flacc which will then execute the
different components with the respective arguments, whereby several types of files are ac-
cepted as arguments. While files with .c suffix are taken to be C source files, an object
file with .obj suffix is produced in the case when the compilation process runs through the
assembler. Assembly source files are files with .s or .asm suffix and may be assembled
and link edited. Files with .o or .obj suffix are passed to the link editor which then produces
an executable with an .out suffix.

As will be seen in the Implementation Process section, a series of problems with the
compiler, flacc, occurred during this project.

7.3 Flexible ASIC Link Editor (Flink)

The Flexible ASIC Link Editor, also known as flink, represents the linker for the Flexible
ASIC concept which creates executable modules through the combination of the object
files created by the assembler (flasm).

The necessary information on the building of an executable system is derived by the
linker through the use of a link control file which consists of two elements, the load blocks
and the run blocks. The latter elements include the code description as well as initialized
data in CPM, the description of uninitialized data, the description of run blocks and of
data loaded in LDM. The linker which can be invoked with a set of switches controlling the
resulting output, is responsible for the following tasks:

1. The relocation of symbols

2. To resolve references between input files

3. The combination of object file sections to load blocks

4. The allocation of load blocks into specific areas of common program memory (CPM)

Open
MASTER THESIS

54 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

5. The combination of load blocks to run blocks

6. The relocation of run blocks into specific areas of program memory

7. The provision of support for data load from the common data memory into the local
data memory (LDM)

One important note about the linker is that a library file needs to be included in the linking
process. This will be explained later in this report.

7.4 Fladb/flunk

The output derived from flasm is an object file which can be loaded into fladb/flunk. Whereas
fladb is the simulator/debugger for FlexASIC, flunk is the graphical user interface version.
Fladb is an instruction set simulator with debugging attributes which is used for the simu-
lation and debugging of a Flexible ASIC DSP core program. The debugger kernel and the
DSP model are the two elements of the debugger. The DSP model, in turn, comprises a
number of DSP core block models which are loaded by the debugger under the control of
a configuration file, which enables the configuration of the debugger to any Flexible ASIC
DSP architecture without using a separate debugger for each.

Fladb enables the user to place breakpoints in the code and to observe CPU registers
and LDM. In addition, fladb offers the possibility of a connection between a CPU register
and a file on disk, which can be used for reading input data into fladb as well as writing
results back to the disk.

Figure 24 shows the working environment with flunk. The upper left window is the
source window, in the figure assembly mode is on. In the source window it is also possible
to display the source code in C-mode. The upper right window is the register monitor and
the lower right window displays the LDM. The lower left window is the command window.

7.5 Flism

Flism provides support to the development of Flexible ASIC programs, including application
and verification programs. Hereby a high-level language, C, is used for simulations to load,
run and debug programs written in flexible ASIC assembly language. It is possible to
initialize fladb, the command line simulator, or flunk, both described above, and run them
from a start to an end address through the call of a set of functions, the flism functions.
Almost all of the registers and the entire memory can be read and written from the C
program.

Open
MASTER THESIS

55 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Figure 24: Working environment with flunk

Open
MASTER THESIS

56 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

8 Implementation Process

8.1 Introduction

This section documents the actual work done in implementing the G.729 to the Capella
ASIC. The original plan was to significantly optimize the given C-source code for the Pam
DSPs. The thought was that an optimized code would give the opportunity to run multiple
codecs on the Capella ASIC. Unfortunately, due to a series of problems with the Flexible
ASIC tools, the original optimization plan had to be modified and the ambitions be lowered.
Most of the work efforts were put into error-seeking. However, with time, the error factors
were found and eliminated, resulting in a working algorithm.

One limiting factor during this project has been the lack of information about previous
speech-coder implementations with the Flexible ASIC tools. Apparently, the GSM speech
coder has previously been implemented with the Flexible tools on an precursor of the
Capella ASIC. This work was however performed at an Ericsson unit in Germany which
does no longer exist.

8.1.1 Computers Used for Simulation

The Flexible ASIC tools are designed to operate in UNIX. Therefore, at first, a Sun Ultra
10 computer was used as workstation. To shorten simulation run-times the Ultra 10 was,
later on, replaced by a SunBlade 150. Microsoft Visual C was run on an HP PC.

8.2 ITU-T G.729A Source Code

The source code from ITU-T consists of 32 C-source code files, five header files and a
makefile, each for the coder and encoder. All the files are listed in Table 6. ITU-T also
provides a set of testvectors which are listed in Table 7. When implementing the G.729A,
these vectors can be used to verify bit-compatibility with the standard.

8.3 Test Run in Microsoft Visual C

As a first step in this thesis work, the G.729A speech source code was test-run in Microsoft
Visual C. All test vectors were coded/encoded with success. Knowing that the code worked
accurately in Visual C, Visual C could then be used to test and verify bit-accuracy after
algorithmic changes.

8.4 Initial Modifications

8.4.1 Flextools Installation

At first, the flextools were installed on the workstation. The tools included:

• flacc, version 4 40, C-compiler for PAM.

• flink linker

• fladb simulator debugger

Open
MASTER THESIS

57 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Table 6: G.729A source-code files
Encoder specific Decoder specific Common files
acelp ca.c decoder.c basic op.c
cod ld8a.c de acelp.c bits.c
coder.c dec gain.c dspfunc.c
cor func.c dec lag3.c filter.c
lpc.c dec ld8a.c gainpred.c
oper 32b.c lspdec.c lpcfunc.c
pitch a.c oper 32b.c lspgetq.c
pre proc.c post pro.c pred lt3.c
qua gain.c postfilt.c p parity.c
qua lsp.c tab ld8a.c util.c
tab ld8a.c basic op.h
taming.c ld8.h

oper 32b.h
tab ld8a.h
typedef.h

Table 7: G.729A test-vector files
Encoder Inputs Encoder Outputs and Decoder outputs

Decoder Inputs
algthm.in algthm.bit algthm.pst
fixed.in fixed.bit fixed.pst
lsp.in lsp.bit lsp.pst
pitch.in pitch.bit pitch.pst
speech.in speech.bit speech.pst
tame.in tame.bit tame.pst

erasure.bit erasure.pst
overflow.bit overflow.pst
parity.bit parity.pst

Open
MASTER THESIS

58 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

• flunk graphical simulator debugger

• flism linkable simulator.

• flasm assembler

In the installation, care was taken of a common setup problem with the Command Pre-
Processor (CPP) according to [12] section 5.1 solution 1.

8.4.2 Makefile Modifications

The makefile provided with the G.729A package was modified to comply with the flacc
C-compiler. The ending of the object files were changed from ”.obj” to ”.o”. For flacc the
following flags were chosen:

- g for generating debug information and enabling simulation in C-mode in the graphi-
cal simulator.

- c to suppress the link editing face and creating an object file for each source file. The
linking was performed with flink.

- 00 for no optimization for the initial test run.

- wall for displaying most warnings.

In the makefile all of the source files were referred to in small letters, whereas the actual
source files were named with capital letters. Because UNIX is case sensitive all source
files were renamed with small letters to correspond with the makefile.

In the linking phase, using flink, the necessary library file ”rtlib.obj” was included. The
way the file was included turned out to be slightly incorrect, see Error-Seeking Section.

8.4.3 File Reading

The main file for the encoder, ”encoder.c”, and the main decoder file, ”decoder.c”, reads in
the speech samples from a file and also the output is written to file. This is not possible
in a DSP. At this initial trial stage, all fread and fwrite instructions were removed from the
two main files. Instead, input speech samples for one frame were saved in a vector in
the encoder file. Later on, the temporary trial fix was replaced with a C-program which
conducts input reading and output writing from file and linking into the simulator via flism.

8.5 Initial Simulation Problem

With modifications the G.729A code went through the compilation and linking stage. How-
ever, when the executable encoder file was loaded into flunk, flunk crashed. After corre-
spondence with the Flexible ASIC support, it was verified that the crash was due to a bug
in the Flex tools and an error report was filed.

In order to avoid flunk crashing, a temporary work-around was to compile without the
-g flag which generates debug info for flunk. Then, is was possible to load the encoder
executable program file into flunk. However, now C-mode could not be shown in flunk,
thus, the debugging had to be done in assembler-mode.

Open
MASTER THESIS

59 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

During the time of the -g flag problem a new C-compiler (version 4.40) for Pam was
released. Unfortunately, flunk crashed also after using this new compiler.

After some weeks, as a response to the filed error report, a beta version of flacc v.4.42
was released. In the beta version of the compiler the bug concerning the -g flag had been
removed. The reason for the crash was that the register-mapping for the Pam core was
wrong in the generation of stabs information for the registers. The G.729A code happened
to utilize a rare kind of register optimization which lead to the mapping to a register that did
not exist and therefore flunk crashed.

8.6 Flism Simulation Program

To enable simulation of the G.729A codec, with input data read from a file and output
data written to a file, a C-program utilizing flism was developed. With flism, memories
and registers can be read or written to and the simulator, either fladb or flunk, can be
ran through this program. With all links set according to [12], this simulation program is
compiled with gcc including a flism library file

gcc <c-files> -o <output> -I$(FLISA TOOLS)/compat/include -I$(FLISA TOOLS)/include
-lflismx

When compiling the simulation program one has to choose if the graphical simulator, flunk,
shall be used or the non-graphical, fladb. For flunk, -lflismx should be chosen, while for
fladb only -lflism [11].

Two simulation programs were written, one for simulating the encoder and one for sim-
ulating the decoder. In the encoder simulation program, 80 speech samples corresponding
to one frame, at a time are read from file and written into CTM starting from address 0x8000
and forward. These input samples are then coded by the encoder and the output bitstream
is written into CTM, where the simulation program reads the samples and writes them to
the output bitstream file. This is repeated until the end of the input data file.

The decoder uses the same principle. As input to the decoder then, of course, the
output bitstream file from the encoder is used.

The simulation program for the encoder is named ”Sim G729A Enc.out” and the de-
coder simulation program is named ”Sim G729A Dec.out”. To run an encoder simulation

Sim G729A Enc.out < speech input file> <output bitstream file>

and likewise for the decoder

Sim G729A Dec.out < input bitstream file> <synthesized speech file>

8.7 Coder and Decoder Main Files Modification

In order to comply with the simulation programs, the main files of the encoder and decoder
needed to be changed. As mentioned, the input speech samples are placed into CTM by
the simulation program. The encoder file was rewritten to copy the input data from CTM to
LDM. Then, these samples are processed and the output bitstream is first put into LDM,
then copied to CTM from where the simulation program reads the output samples. This
principle is the same for encoder and decoder.

Open
MASTER THESIS

60 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Originally, both, the main files of the encoder and decoder, ran initialization functions
before starting the actual coding frame by frame. In the initialization functions, pointers are
set which are used in precursive calculations. However, the simulation program is designed
so it reads one frame at a time, runs the coder and reads the output data. Thus, without
modifications, the simulation of the encoder and decoder ran the initialization process for
each frame and pointers were misplaced.

To deal with this, the simulation program was designed to set a certain bit in the CTM
indicating the first frame. This bit is checked by the encoder main file, which then runs the
initialization functions only for the first frame when the control bit is set. In the simulations,
the control bit was chosen to the address 0x9000 in CTM.

8.8 Error-Seeking and Algorithmic Changes

Once it was possible to simulate the encoder with the flism program and the given testvec-
tors, the correct functioning of the coder could easily be checked. Unfortunately, the coder
did not function correctly. The output bitstream from the encoder for a given input testvector
did not match the corresponding bitstream testvector.

8.8.1 Big and Little Endian

The first natural step in finding the error in the encoding was to check if the input samples
in DSP’s LDM were correct. When looking at the LDM in flunk, it was obvious that the 80
input speech samples were there, although, the values were not the same as in the input
codevector. The flism simulation program was then checked and rewritten several times
but the fault was not found. However, when looking closer at the values in the LDM and
comparing them to the original testvector a pattern emerged. For example:

Original values 8, 16, -16
Values in simulation 2048, 4096, -3841

With an experienced eye, Tore André noted that the problem was due to the fact that the
input bytes were read in wrong order. Each input speech sample consists of 16 bits, which
yields 2 bytes. Table 8 depicts the byte-swapping for the decimal numbers 8/2048. The
reason for the byte-swapping is that the Sun Sparc processor stores the most significant
byte first. This is called Big Endian. Whereas, Intel processors use Little Endian where the
least significant byte is stored first. Thus, the testvectors were stored in little endian but
read in big endian so the two bytes for each speech sample were reversed and the number
did not make sense.

Table 8: Big and little Endian llustration

Decimal 8 in Little Endian
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

yields decimal 2048 with Big Endian
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Open
MASTER THESIS

61 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

To deal with the endianess a program was written to reverse the bytes in the testvectors.
The executable program file is called ”EndianConv.out”

8.8.2 Known limitations to the C-compiler

With the endianess figured out and with correct input samples the encoder still did not give
a correct output bitstream. Even though the flacc C-compiler is said to be ANSI-C compati-
ble, certain aspects were not implemented according to the standard specifications. These
limitations are documented in [10]. From the document, two stated limitations that possibly
could be part of the G.729A code were identified. These limitations were:

1. Relation expression for loops
In a relation expression, for for and while statements, comparing the loop control
variable to a long data type (32-bits representation) is not implemented.

int long loop(int *a, long b)
{
int i;
for (i=0; i<b; i++)
{
*a+=1;
}}

or

int long loop(int *a)
{
int i;
for (i=0; i<0x1ffff; i++)
{
*a+=1;
}}

2. Function pointers as parameter
Passing function pointers as parameter is not implemented. An illustration of the
case is given in the following code.

int perform(int a, int b, int (*f) ())
{
return (*f) (a,b);
}

These two cases will not be compiled or a wrong code will be generated [10]. The
G.729A source code was searched for occurrences of code resembling to the one given in
the examples above.

Open
MASTER THESIS

62 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

8.8.3 Rewriting 32bit Comparison Loops

To search the G.729A source code for the limitation given in case 1, all for and while loops
in the code had to be controlled. This was done by

grep -i ”while” *.c
or
grep -i ”for” *.c

and then manually looking at the declaration of the comparison variables for each loop.
One occurrence matching the search criteria was found in the file ”basic op.c” in the

function Word16 norm l(Word32 L var1)

for(var out = 0;L var1 < (Word32)0x40000000L;var out++)
{ L var1 <<= 1;
}

which was then rewritten to

int a=0; int b=0;
...
if(L var1 < (Word32)0x40000000) {a=1;}
for(var out = 0;a!=b;var out++)
{
L var1 <<= 1;
if(L var1 >= (Word32)0x40000000) a=b;

However, after the change, the encoder did still not function correctly so the next step was
to look for function pointers.

8.8.4 Rewriting Function Pointer

To search for code that resembled the second known limitation, as previously stated, was
a more difficult task than the 32-bit comparison loop. With no ingenious idea, function
pointers were searched with

grep ”(” *.c

which then gave all occurrences of left parantheses in the entire code.
One function pointer was found in the file ”lpc.c” in the Levinson function. It was de-

clared as

Word16 (*pChebps)(Word16 x, Word16 f[], Word n)

and the function pointer was used at two times within the function. However, it was possible
to remove this function pointer and instead rewrite the code, were the function pointer was
used, with extra if and else statements.

Even with the function pointer removed, and the G.729A source code carefully searched
for other occurrences of code matching the compiler known limitations, the encoder still had
some bits wrong in the output bitstream.

Open
MASTER THESIS

63 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

8.8.5 Debug Method

Knowing that the encoder did not function correctly, and that there was a problem some-
where in the complex code, a good debugging method had to be used to find the code
causing an error.

The graphical simulator/debugger flunk has a command cprint with which it is possible
to print the value of a varible in C-mode. Initially, the debugging was performed by inserting
breakpoints and looking at variables with cprint and comparing them to variable values
taken from the original codec ran in Microsoft Visual C. This soon turned out to be a
hopeless method. Many times, the cprint command printed a variable value as zero even
if in fact it had a value that differed from zero. This could be confirmed by looking at the
DSPs memory. Thus, using the cprint command was not reliable.

Fortunately, flacc allows the printf command. It is also possible to use printf in flunk,
then the printables are displayed in the shell window. Thus variable values could be
checked with printf. To simplify the control of the values displayed with printf, the origi-
nal G.729A C source code was also compiled with gcc. Thus, printf commands could be
added to the code and then compiled with both, flacc and gcc. The output displayed in
the shell window could be saved in a file for both the original code and for the flunk sim-
ulated code. These two files could then be compared. With this debugging method many
printf commands could be placed in the code and the values of several variables could be
checked at once.

8.8.6 Wrong Type Definitions

In the debugging process, an error was found in the function L mult in the file ”basic op.h”,
which was, at first, thought to be due to a compilation error. However, the fault was not in
the compiler. Instead, the wrong type definitions had been used in the file ”typedef.h” in the
initial modifications of the code. In flex an int is 16 bits and long is 32 bits. A silly mistake.

With the right type-definitions the function L mult worked correctly. The encoder, how-
ever, did still give errors in the output bitstream.

8.8.7 Increment Problem

The last cause of error required a substantial amount of work to find. To track down the
cause of error the output bitstream was analyzed for incorrect bits. In the ”read.me” file, in-
cluded with the source code, each position in the bitstream is matched with its correspond-
ing coded parameter, according to Table 9. Thus, the debugging method now included:
encoding a frame and then analyzing the output bitstream, identifying which positions in
the bitstream were incorrect and then finding where in the encoder these parameters are
coded.

One source of error was tracked down to the main encoder file ”cod ld8a.c” and the
function cod ld8a. When looking at the addresses of pointers, it was obvious that some-
thing was incorrect.

In the DSPs memory, the right parameter values were stored, but the pointers could
point at a memory address to the left or right of the address with the wanted value.

The first identified line of code that caused an error was

Open
MASTER THESIS

64 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

*p0=mult(*p0++,psign[i1]);

Where mult is a function, p0 a pointer and psign a vector. The error in this line laid in the
increment of the pointer p0.

If this code was rewritten as

*p0=mult(*p0,psign[i1]);*p0++;

it functioned desirably.
In this thesis work, the same code had previously been compiled with three different

compilers (Visul C, gcc, TI) without this problem occurring. Now, certain that a compiler
error was found the FlexASIC support was contacted again . The following states their
response.

In the first case, with the original code:

The function call is a sequence point (section 3.3.2.2 in the C-standard), the
increment must be done before the function call is done (defined from section
2.1.2.3 in the standard).

It is undefined whether the left hand side or the right hand side of an assign-
ment is evaluated first, so ’p0’ may be read before the argument to the function
is evaluated. It may also be read after its evaluation, but before the function
call, or after the function call (supposed ’p0’ is a global object, ’mult’ may again
change its value).

Second case:

The function call and the first assignment are both done (end of statement is
a sequence point), the increment must be done after the first assignment is
completed.

Whether it is a bug:

No, it is in the area of undefined and unspecified issues in the C-standard. I
think all these compilers are OK. The programmer should not use such con-
structions.

Interesting to note is that the ITU-T G.729A C source code is written with a code that is not
defined in the ANSI-C standard.

Since this was not the only line in the code using this kind of increment by pointers, all
similar occurrences had to be found and rewritten according to case 2. Naturally, the same
issue concerned decrement of pointers in the same context.

Thus, the next step was to replace all faulty lines of code which was done by searching
for ++ and – in all .c files. The search resulted in an extensive response . These type of
function calls, with pointer increment or decrement were used in several files which were
all changed.

Open
MASTER THESIS

65 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

The changed files using this kind of function calls are: ”acelp ca.c”, ”cod ld8a.c”, ”dec ld8a.c”,
”postfilt.c”, ”bits.c” and ”filter.c”.

With these changes both, the encoder and decoder, were successfully tested with
the testvectors speech.(in/bit/pst) and algorithm.(in/bit/pst) with success. Also some self-
created shorter testvectors, were tested with success. The reason why all provided testvec-
tors have not yet been tested is due to the long simulation time, which is handled in the
next section.

Table 9: Bitstream bit allocation

Word Parmeter Description
01 LPC1- MA predictor switch
02 LPC1- 1st codebook 7 bit
03 LPC1-
04 LPC1-
05 LPC1-
06 LPC1-
07 LPC1-
08 LPC1-
09 LPC2- 2nd codebook low 5 bit
10 LPC2-
11 LPC2-
12 LPC2-
13 LPC2-
14 LPC2- 2nd codebook high 5 bit
15 LPC2-
16 LPC2-
17 LPC2-
18 LPC2-
19 M 1 pitch period 8 bit
20 M 1
21 M 1
22 M 1
23 M 1
24 M 1
25 M 1
26 M 1
27 parity check on 1st period 1 bit
28 CB 1 codebook pulse positions 13 bit
29 CB 1
30 CB 1
31 CB 1
32 CB 1
33 CB 1
34 CB 1
35 CB 1

Continued on next page

Open
MASTER THESIS

66 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Table 9: continued

Word Parmeter Description
36 CB 1
37 CB 1
38 CB 1
39 CB 1
40 CB 1
41 S 1 codebook pulse signs 4 bit
42 S 1
43 S 1
44 S 1
45 G 1 pitch and codebook gains 3 bit stage 1
46 G 1
47 G 1
48 G 1 pitch and codebook gains 4 bit stage 2
49 G 1
50 G 1
51 G 1
52 M 2 pitch period (relative) 5 bit
53 M 2
54 M 2
55 M 2
56 M 2
57 CB 2 codebook pulse positions 13 bit
58 CB 2
59 CB 2
60 CB 2
61 CB 2
62 CB 2
63 CB 2
64 CB 2
65 CB 2
66 CB 2
67 CB 2
68 CB 2
69 CB 2
70 S 2 codebook pulse signs 4 bit
71 S 2
72 S 2
73 S 2
74 G 2 pitch and codebook gains 3 bit stage 1
75 G 2
76 G 2
77 G 2 pitch and codebook gains 4 bit stage 2
78 G 2

Continued on next page

Open
MASTER THESIS

67 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Table 9: continued

Word Parmeter Description
79 G 2
80 G 2

8.9 Simulation Results and Aspects

8.9.1 Simulation Results

Table 10: G.729A encoder simulation results

Cycles Instructions MIPS Approx.
Frame 1 2,652,804 1,295,785 130
Preceding frames 2,614,383 1,266,476 130

Table 11: G.729A decoder simulation results

Cycles Instructions MIPS Approx.
Frame 1 545,340 268,474 27
Preceding frames 534,557 261,024 26

8.9.2 Simulation Time

Simulation times proved to be an important, and negative factor, when simulating the
G.729A codec in flunk. To simulate the fully-optimized encoder takes approximately 45
seconds per frame of 10 ms. For the decoder it takes approximately 10 seconds per
frame. For example, the testvector ”speech.in” consists of 3750 10 ms frames. To com-
pletely simulate the encoder and decoder for this file then takes about 60 hours.

Therefore it is strongly recommended to use shortened testvectors when testing the
codec after minor changes.

8.10 Future Optimization

For the intended ToIP application, a further optimization of the G.729A codec is desirable.
However, due to limited time, further optimization of the codec is not possible as part of
this thesis work, although some efforts were put into using the Compiler Known Functions,
discussed below.

Open
MASTER THESIS

68 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

8.10.1 Compiler Known Functions

The Compiler-Known functions (CKF) are compiler-recognized functions which are directly
mapped into a set of assembly instructions by the compiler. The instructions generated
by CKFs are scheduled with other instructions and all arguments and return values are
allocated to registers, which results in a very efficient code.

The CKF include a ETSI library of functions. These CKF functions functions correspond
to functions in the ETSI GSM-HS and ETSI GSM-EFR codecs.

All of the functions in the files ”basic op.c” and ”oper 32b.c” in the G.729A codec can be
found in the CKF library. However, even if the functions provided by the CKF correspond to
the ones in the G.729A ”basic op.c” in the definitions, there is one crucial difference. The
functions in the G.729A ”basic op.c” return an overflow flag. This flag is set if a variable
value is out of range for a 32-bit signed integer.

Thus, it is possible to use the CKFs, but then there is the dilemma of how to check the
occurrence of an overflow. One possible solution to this is to check the status register of
the DSP. The solution which seems to be used in the AMR speech coder, also implemented
on Capella, is to clear the the overflow register with

mv #0, custat1

and test for overflow with

brr #AmrDec Decoder amr core dec amr.L250,.cu0:lov32
brr #AmrDec Decoder amr core dec amr.L250,.cu1:lov32

Where custat0 and custat1 are the computational unit status registers and LOV32 is the
control bit for Latched Overflow at bit 32 flag. This solution was proposed by Francesco
Agnoni (RM/ERI).

The G.729A codec was implemented with the CKFs and assembly code was written
to check the overflow according to the proposed solution. This did not function desirably.
However, with more working effort, a solution to check for overflow when using the CKFs
should be found relatively easy.

8.10.2 Complexity Profile

To simplify future optimization of the G.729A codec, a complexity analysis was performed.
This analysis yields a complexity profile which is displayed in Appendix A. In the profile, one
can see how much of the encoders or decoders execution time is allocated to each func-
tion. Thus, from the complexity profile one can see which functions should be prioritized
when optimizing the G.729A encoder and decoder.

8.10.3 Optimizing Techniques

To further optimize the G.729A codec, several techniques may be applied. To mention a
few:

• Multichannel Modifications
In the ToIP application, the G.729A codec should work in a multi-channel environ-
ment. Therefore, global variables and constants do not need to be saved separately
for each coder. Instead, these data may be shared by several codecs.

Open
MASTER THESIS

69 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

• C Level Optimization
With a high performance C-compiler, a high level of optimization may be achieved
solely with optimizing in C.

• Assembly level implementation
Rewriting C functions directly in assembly often increases speed and decreases code
size. Optimizing in assembly has the advantage that efficient code can be written
even by an not-so experienced programmer, whereas for writing code in C the pro-
grammer’s skill is a more crucial factor.

Since the G.729 and G.729A codecs have previously been implemented on several DSPs,
many good documents exist, which may be consulted for guidance on further optimization.
The reader may, for instance, consult [6], [31], [3], [28] and [30]

8.10.4 Estimation of Optimization Workload

When using the CKF, the encoder execution takes only 800,000 cycles per frame (80
MCPS) and the decoder 500,000 cycles per frame. (50 MCPS). These values are taken
from a simulation when there is no overflow.

Although, even if the overflow flag is set during the encoding of a frame it does not
affect execution time noticeable. This was confirmed by modifying the original code not
using CKF, to disregard the overflow check. Then, the execution time could be compared
between the version using overflow check and the one not checking for overflow.

Assuming that the coder with CKF corresponds to the porting phase of document [31],
which is a qualified assumption since in the document the porting phase includes ”intrinsic”
functions which correspond to the Flexible ASIC CKF, one could give an estimation of the
expected workload of further optimization.

In document [31] the encoder was optimized from the starting point of 15.07 MCPS to
4.7 MCPS in approximately seven man-months. Using this as a basis for an estimation,
and with our porting phase for the encoder and decoder summarized to 130 MCPS, a
rough estimate could be to have the encoder and decoder optimized to a sum of about
40 MCPS in seven man-months. This would then enable three channels per Pam DSP
core and a total of 24 channels. However, it should be possible with even more channels
if extensive effort is dedicated to the optimization. The limiting factor for maximum number
of channels is, however, not only the processing power available, memory usage might in
fact be the issue that sets the upper limit.

Note, this is a very vague estimation and can be at most seen as a qualified guess.
Notable is also that the decoder execution time is hardly affected at all by using the CKF.
Therefore, one can assume that it will be more difficult to lower the execution time for the
decoder than the encoder.

Open
MASTER THESIS

70 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

9 Conclusion

VoIP is an expanding field in which high levels of research and development are invested.
The benefits of VoIP are cost-savings and the possibilities of innovative services. Erics-
son’s ToIP solution is particulary interesting since it aims to provide an exceptionally high-
quality service. If this ToIP system is able to overcome to the many deficiencies of other
existing VoIP solutions, it could indeed be a very successful product.

In the process of implementing the G.729A speech coder on the Capella ASIC, several
problems were encountered and eliminated in the course of this thesis work. Since the
coder is now functioning correctly, this work can serve as a solid basis for further optimiza-
tion. The Capella ASIC, with its eight DSPs, is a powerful platform for implementing the
G.729A. If substantial efforts are put into optimizing the coder, it is certainly possible to
run numerous G.729A codecs on one Capella. Thus, the Capella could process multiple
channels.

Open
MASTER THESIS

71 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

10 References

[1] The g.729 speech coding standard. a description of g. 729, and its low
complexity and silence suppression annexes. Technical brief, nortelnetworks.
http://www.nortelnetworks.com. Accessed on September 7, 2004.

[2] Speech production. http://ispl.korea.ac.kr/ wikim/research/speech.html. Accessed on
August 15, 2004.

[3] Chiouguey Chen and Xiangdong Fu. G.729/a multichannel tms320c62x implementa-
tion. Application report, Texas Instruments, February 2000.

[4] W.C. Chu. Speech Coding Algorithms: Foundation and Evolution of Standardized
Coders. Wiley-Interscience, 1st edition, March 2003.

[5] Intel Corporation. Intel internet video phone trial applet 2.2.
http://www.chebucto.ns.ca/r̃akerman/articles/ig-h323 firewalls.html, 1997. Accessed
on August 15, 2004.

[6] B. Costinescu, R. Ungureanu, M. Stoica, E. Medve, R. Preda, M. Alexiu, and C. Illas.
Itu-t g.729 implementation on starcore sc140. Application note, Motorolla, February
2001.

[7] Protocol Dictionary. Voice over ip and voip protocols.
http://www.javvin.com/protocolVOIP.html. Accessed on August 15, 2004.

[8] M. Engström and H. Olsson. A study of speech codec implementations with the flex-
ible asic concept. Master’s thesis, Chalmers University of Technology and Ericsson
Microwave Systems AB, November 1996. Ericsson Document No. SR/HX-96:047.

[9] Flexasic. Flexasic homepage. http://flexasic.ericsson.se. Ericsson internal.

[10] Flexasic. Known limitations in the flexible asic c compiler. http://flexasic.ericsson.se,
March 2000. Ericsson Document No. ERA/X/F-99:059 Uen.

[11] Flexasic. Flexasic flism - programmers guide. http://flexasic.ericsson.se, September
2002. Ericsson Document No. ERA/X/F-99:085 Uen.

[12] Flexasic. Flexasic getting started guide. http://flexasic.ericsson.se, July 2002. Erics-
son Document No. RLG/T 02:.

[13] J.D. Gibson, T. Berger, T. Lookabaugh, D. Lindberg, and R.L. Baker. Digital Compres-
sion for Multimedia: Principles and Standards. Morgan Kaufmann Publishers, Inc.,
San Fransisco, CA, 1998.

[14] J. Häggström. Puheenkodaus tietoliikenteessä.
http://keskus.hut.fi/opetus/s38116/1996/esitelmat/40457h/. Accessed on August
15, 2004.

[15] X. Huang, A. Acero, and H.-W. Hon. Spoken Language Processing: A Guide to
Theory, Algorithm, and System Development. Prentice Hall PTR, Upper Saddle River,
NJ 07458, 2001.

http://www.nortelnetworks.com
http://ispl.korea.ac.kr/~wikim/research/speech.html
http://www.chebucto.ns.ca/~rakerman/articles/ig-h323_firewalls.html
http://www.javvin.com/protocolVOIP.html
http://flexasic.ericsson.se
http://flexasic.ericsson.se
http://flexasic.ericsson.se
http://flexasic.ericsson.se
http://keskus.hut.fi/opetus/s38116/1996/esitelmat/40457h/

Open
MASTER THESIS

72 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

[16] ITU-T. Coding of speech at 8 kbit/s using conjugate-structure algebraic-code-excited-
linear-prediction (cs-acelp), March 1996. Recommendation G.729.

[17] ITU-T. Coding of speech at 8 kbit/s using conjugate-structure algebraic-code-excited-
linear-prediction (cs-acelp), November 1996. Recommendation G.729, Annex A.

[18] A. Kiviluoto. Speech coding standards. http://mia.ece.uic.edu/ pa-
pers/WWW/MultimediaStandards/chapter3.pdf . Presentation.

[19] J. Kjellsson and M. Wallberg. Evalutaion of the flexible asic c compiler for wcdma algo-
rithms. Master’s thesis, Lulea University of Technology and Ericsson Radio Systems
AB, February 2000. Ericsson Document No. ERA/X/F-00:024 Uen.

[20] M. Liljeblad and D. Sandberg. Evalutaion of the flexible asic concept for wideband
cdma implementation. Master’s thesis, Lulea University of Technology and Ericsson
Radio Systems AB, March 1999. Ericsson Document No. ERA/X/F-99:025 Uen.

[21] P. Mehta and S. Udani. Voice over ip: Sounding good on the internet. IEEE Potentials,
20, October-November 2001.

[22] Newport Networks. Voip bandwidth calculation. http://www.newport-
networks.com/whitepapers/voip-bandwidth2.html. Accessed on August 23, 2004.

[23] Protocols.com. Voice over ip. http://www.protocols.com/pbook/VoIPFamily.htm. Ac-
cessed on August 15, 2004.

[24] L.R. Rabiner and R.W. Schafer. Digital Processing of Speech Signals. Prentice-
Hall,Inc., Englewood Cliffs, NJ 07632, 1978.

[25] J. Samuelsson. 2e1400 speech signal processing. Lecture Notes.
http://www.s3.kth.se/speech/courses/2E1400/. Accessed on August 15, 2004.

[26] P. Senesi, P. Ferrabone, G. Gritella, R. Rinaldi, and M. Siviero. Telephony over ip:
theoretical modelling and lab experiments. Universal Multiservice Networks, 2000.
ECUMN 2000. 1st European Conference on , 2-4 Oct. 2000, pages 262 – 271, Octo-
ber 2000. IEEE.

[27] J. Svedberg. Speech coding an overview. EAB/TVP,Multimedia Technologies, Erics-
son Research, August 2004. AL/EAB-presentation.

[28] Lim Hong Swee. Implementation of g.729 on the tms320c54x. Application report,
Texas Instruments, March 2000.

[29] S .Tomazic, A. Vugrinec, and P. Skraba. Wireless communication employing high
altitude long endurance aeronautical platforms. Electrotechnical Conference, 2000.
MELECON 2000. 10th Mediterranean, 1(29-31):361–364, May 2000.

[30] A. Tripathi, S. Verma, and D.D. Gajski. G.729e algorithm optimization for arm926ej-s
processor. Technical report, Center for Embedded Computer Systems, University of
California, Irvine, March 2003.

[31] R. Ungureanu, B. Costinescu, and C. Illas. Itu-t g.729a implementation on starcore
sc140. Application note, Motorola, July 2001.

http://mia.ece.uic.edu/~papers/WWW/MultimediaStandards/chapter3.pdf
http://mia.ece.uic.edu/~papers/WWW/MultimediaStandards/chapter3.pdf
http://www.newport-networks.com/whitepapers/voip-bandwidth2.html
http://www.newport-networks.com/whitepapers/voip-bandwidth2.html
http://www.protocols.com/pbook/VoIPFamily.htm
http://www.s3.kth.se/speech/courses/2E1400/

Open
MASTER THESIS

73 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

11 Appendix A

The complexity profiles of the ITU-T G.729A encoder and decoder are displayed in Table
12 and Table 13, respectively. These complexity profiles were created when encoding and
decoding the testvectors speech.in/bit.

Self seconds: the number of seconds accounted for by this function alone. This provides
the basis for how the lists are sorted.
Calls: the number of times this function was invoked, if this function is profiled, otherwise
blank.

Table 12: G.729A encoder complexity profile

Self seconds Calls Function name
7.48 122070032 L mult
5.65 101962120 L add
4.72 94023896 L mac
2.46 36883675 sature
1.35 40978205 extract l
1.11 22052914 L sub
1.09 14753230 mult
0.96 18093661 L msu
0.96 15000 Cor h X
0.91 30000 Syn filt
0.90 21368 Pred lt 3
0.90 3750 Pitch ol fast
0.89 7500 Lsp pre select
0.85 7500 D4i40 17 fast
0.82 4395127 L shl
0.77 15943124 sub
0.71 13822969 extract h
0.67 3750 Autocorr
0.36 5287321 add
0.34 85118 Dot Product
0.33 3552428 L shr
0.33 7500 Cor h
0.31 5812220 round
0.26 3144170 Mpy 32 16
0.24 2139170 L Extract
0.21 7500 Residu
0.20 273149 Chebps 11
0.20 7500 Lsp select 1
0.19 7500 Lsp select 2
0.12 3750 Pre Process
0.10 7500 Qua gain

contiuned on next page

Open
MASTER THESIS

74 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Table 12: continued

Self seconds Calls Function name
0.10 3750 Coder ld8a
0.09 900000 mult r
0.09 47615 Copy
0.09 3750 Levinson
0.08 1194250 shr
0.08 7500 Corr xy2
0.07 89539 div s
0.06 498750 Mpy 32
0.05 675000 L abs
0.05 150000 norm l
0.05 7500 G pitch
0.04 830534 shl
0.04 15000 Lsp expand 1 2
0.04 7500 Lsp Az
0.04 7500 Pitch fr3 fast
0.04 3750 Lsf lsp2
0.04 3750 Relspwed
0.03 816578 L deposit l
0.03 3750 Az lsp
0.03 3750 Lsp lsf2
0.03 3750 Lsp prev compose
0.02 397500 L deposit h
0.02 37500 Div 32
0.02 7500 Lsp get tdist
0.02 7500 Lsp prev extract
0.01 299887 negate
0.01 15000 Get lsp pol
0.01 15000 Log2
0.01 11387 memcpy
0.01 7507 Set zero
0.01 7500 ACELP Code A
0.01 7500 Gain predict
0.01 7500 Gbk presel
0.01 7500 update exc err
0.01 3750 Get wegt
0.01 3750 Lag window
0.01 3750 Lsp get quant
0.01 3750 Lsp qua cs
0.01 3750 Lsp stability
0.01 3750 Parity Pitch
0.01 1 main
0.00 251250 L Comp
0.00 86250 abs s

contiuned on next page

Open
MASTER THESIS

75 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Table 12: continued

Self seconds Calls Function name
0.00 82500 L shr r
0.00 41250 int2bin
0.00 41250 norm s
0.00 14634 L negate
0.00 11250 Inv sqrt
0.00 7518 ferror unlocked
0.00 7500 Enc lag3
0.00 7500 Gain update
0.00 7500 Lsp expand 1
0.00 7500 Lsp expand 2
0.00 7500 Pow2
0.00 7500 Weight Az
0.00 7500 test err
0.00 3759 memchr
0.00 3750 Int qlpc
0.00 3750 Lsp last select
0.00 3750 Lsp prev update
0.00 3750 Qua lsp
0.00 3750 prm2bits ld8k
0.00 1080 Chebps 10
0.00 19 mutex lock
0.00 19 mutex unlock
0.00 9 getiop
0.00 4 sbrk
0.00 3 atexit
0.00 3 get mem
0.00 3 ioctl
0.00 3 isatty
0.00 2 cleanfree
0.00 2 free mem
0.00 2 fstat64
0.00 2 lseek64
0.00 2 malloc
0.00 2 memset
0.00 2 realfree
0.00 2 strlen
0.00 1 Init Coder ld8a
0.00 1 Init Pre Process
0.00 1 Init exc err
0.00 1 Lsp encw reset
0.00 1 check nlspath env
0.00 1 exit
0.00 1 fflush

contiuned on next page

Open
MASTER THESIS

76 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Table 12: continued

Self seconds Calls Function name
0.00 1 getegid
0.00 1 geteuid
0.00 1 getgid
0.00 1 getuid
0.00 1 mem init
0.00 1 profil

Table 13: G.729A decoder complexity profile

Self seconds Calls Function name
1.45 26089523 L mult
1.09 17869979 L add
0.85 15043720 L mac
0.73 22500 Syn filt
0.60 2500931 L shl
0.50 8708606 L sub
0.47 8212083 L msu
0.32 7500 Pred lt 3
0.21 3589711 sature
0.18 3154562 extract h
0.18 7500 Residu
0.17 4241794 extract l
0.17 63755 Copy
0.16 7500 pit pst filt
0.15 1758821 mult
0.13 7500 agc
0.10 2293759 round
0.09 3750 Post Process
0.08 898283 sub
0.07 1177745 shr
0.06 7500 Gain predict
0.05 932607 add
0.04 757500 Mpy 32 16
0.04 679600 L shr
0.04 41250 bin2int
0.04 3750 Decod ld8a
0.04 3750 Post Filter
0.03 457500 L Extract
0.03 16418 div s
0.03 3750 Lsp prev compose
0.02 82500 L shr r

contiuned on next page

Open
MASTER THESIS

77 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Table 13: continued

Self seconds Calls Function name
0.02 7500 Lsp Az
0.01 189785 L deposit l
0.01 37500 shl
0.01 7505 Set zero
0.01 7500 Decod ACELP
0.01 7500 preemphasis
0.01 3750 Lsp get quant
0.01 3750 bits2prm ld8k
0.01 1 main
0.00 43759 norm l
0.00 37083 L deposit h
0.00 15000 Get lsp pol
0.00 15000 Log2
0.00 15000 Weight Az
0.00 15000 negate
0.00 11386 memcpy
0.00 7520 ferror unlocked
0.00 7500 Dec gain
0.00 7500 Dec lag3
0.00 7500 Gain update
0.00 7500 L Comp
0.00 7500 Lsp expand 1 2
0.00 7500 Pow2
0.00 7083 Inv sqrt
0.00 3760 memchr
0.00 3750 Check Parity Pitch
0.00 3750 D lsp
0.00 3750 Int qlpc
0.00 3750 Lsf lsp2
0.00 3750 Lsp iqua cs
0.00 3750 Lsp prev update
0.00 3750 Lsp stability
0.00 19 mutex lock
0.00 19 mutex unlock
0.00 9 getiop
0.00 7 thr main
0.00 4 sbrk
0.00 3 atexit
0.00 3 get mem
0.00 3 ioctl
0.00 3 isatty
0.00 2 cleanfree
0.00 2 free mem

contiuned on next page

Open
MASTER THESIS

78 (78)

Datum - Date Rev Dokumentnr - Document no.

04-09-28 PA1

Table 13: continued

Self seconds Calls Function name
0.00 2 fstat64
0.00 2 lseek64
0.00 2 malloc
0.00 2 memset
0.00 2 realfree
0.00 2 strlen
0.00 1 Init Decod ld8a
0.00 1 Init Post Filter
0.00 1 Init Post Process
0.00 1 Lsp decw reset
0.00 1 check nlspath env
0.00 1 exit
0.00 1 fflush
0.00 1 getegid
0.00 1 geteuid
0.00 1 getgid
0.00 1 getuid
0.00 1 mem init
0.00 1 profil

	Titlepage
	Contents
	Introduction
	Thesis Background
	Thesis Goal
	Thesis Outline
	List of Abbreviations

	Abbreviations
	Speech Coding Overview
	Introduction
	Speech Signal Properties
	Human Speech Production
	Speech Sounds
	Speech-Signal Waveform Characteristics

	Speech Analysis
	Pitch Estimation
	Source-Filter Model
	Linear Predictive Coding

	Speech Coding Performance Attributes
	Speech Coding Techniques
	Waveform Coders
	Voice Coders
	Hybrid Coders
	Analysis-by-Synthesis Coders
	Code Excited Linear Predictive Coding
	Speech Coding Standards

	Description of the G.729/A Speech-Coding Algorithm
	Introduction
	General Description of the Coder
	Encoder
	Fixed Codebook
	Adaptive Codebook
	Gain Quantization

	Bit Allocation
	Decoder
	G.729A
	Encoder Differences Between G.729 and G.729A
	Decoder Differences Between G.729 and G.729A

	Voice over IP Overview
	Introduction
	VoIP Advantages
	VoIP Advantages
	VoIP Routing Possibilities

	VoIP Components
	Signal System 7

	Gateway Control
	H.323
	Session Initiation Protocol (SIP)
	A Comparison Between H.323 and SIP

	RTP and RTCP
	Quality of Service
	Packet Loss and Jitters
	Latency
	The trade-off between bit-rate and voice quality

	Frames per packet

	Overview of the Flexible ASIC Concept
	Introduction
	Background
	 ASIC and DSP
	DSP cores
	Instruction Set

	The Capella ASIC
	Introduction
	Block Diagram
	Performance Specifics

	Flexible ASIC Development Tools
	The Flexible ASIC Assembler (Flasm)
	ANSI-C Compiler with DSP-C Extension
	Flexible ASIC Link Editor (Flink)
	Fladb/flunk
	Flism

	Implementation Process
	Introduction
	Computers Used for Simulation

	ITU-T G.729A Source Code
	Test Run in Microsoft Visual C
	Initial Modifications
	Flextools Installation
	Makefile Modifications
	File Reading

	Initial Simulation Problem
	Flism Simulation Program
	Coder and Decoder Main Files Modification
	Error-Seeking and Algorithmic Changes
	Big and Little Endian
	Known limitations to the C-compiler
	Rewriting 32bit Comparison Loops
	Rewriting Function Pointer
	Debug Method
	Wrong Type Definitions
	Increment Problem

	Simulation Results and Aspects
	Simulation Results

	Simulation Results
	Simulation Time
	Future Optimization
	Compiler Known Functions
	Complexity Profile
	Optimizing Techniques
	Estimation of Optimization Workload

	Conclusion
	References
	Appendix A

