
Handling Planning Failures with Virtual Actions 
 

 

Jicheng Fu, Sijie Tian 

Computer Science Department 

University of Central Oklahoma 

Edmond, OK, USA 

jfu@uco.edu, stain@uco.edu 

Vincent Ng, Farokh B. Bastani, and I-Ling Yen 

Computer Science Department 

University of Texas at Dallas 

Richardson, TX, USA 

vince@hlt.utdallas.edu, {bastani, ilyen}@utdallas.edu

 

 
Abstract— Artificial intelligence (AI) planners have been 

widely used in many fields, such as intelligent agents, 

autonomous robots, web service compositions, etc. However, 

existing AI planners share a common problem: When given a 

problem to solve, they either return a solution if one exists or 

report that no solution is found. However, simply reporting 

failure leaves no clues for people to trace the causes of the 

planning failure. In this paper, we present a novel approach 

that can propose virtual actions in the event of planning 

failure. Virtual actions enable traditional planners to succeed 

and hence return an incomplete plan instead of merely an 

error message. More importantly, the specifications of the 

virtual actions suggest what the missing parts may contain, 

thus providing important clues to users as to the nature of the 

failure. Experimental results show that our approach 

constantly returns useful and comprehensible information for 

humans, thus making AI planning more practical when solving 

real-world problems. 

Keywords-Artificial intelligence planning; Graphplan; Level 

off; Genetic algorithm 

I.  INTRODUCTION  

Artificial Intelligence (AI) planners, which seek to 
generate a plan of actions that lead us from an initial state to 
a goal condition, have been widely used in software 
engineering fields to help automate various software 
development tasks, such as test case generation [1], program 
synthesis [2], automated web service composition [3], etc. AI 
planning is declarative and goal-oriented, which enable users 
to focus on high-level specifications (i.e., what to do) and let 
AI planner automatically determine the low-level details 
(i.e., how to get things done).  

Although AI planning strives to solve real world 
problems, its practicality depends heavily on the 
completeness of the planning domains. However, in the real 
world development processes, it is frequently noticed that not 
all planning domains are complete, i.e., actions in the 
planning domains may not be readily available for the 
desired system goal. For example, web services are usually 
modeled as planning actions and hence AI planning can be 
applied to web service composition [4]. It is unrealistic, 
however, to assume that all the necessary web services are 
available in the Internet. Such an incomplete domain tends to 
result in planning failures. In case that some web services are 

missing, the planner will simply return an error message of 
failing to find a plan. Since the planning failure does not 
provide any useful information, the common practice is to 
manually identify the usable as well as missing services. The 
missing ones will be developed from scratch or adapted from 
some existing services.  

To our knowledge, when given a problem to solve, 
existing AI planners either return a plan if one exists or 
report that no solution is found. In the latter case, all the 
efforts in the planning process are wasted. For example, 
consider the popular travel reservation case study system [5]. 
Many actions (i.e., services), such as booking airline, hotel, 
shuttle, processing credit card, etc., can be composed to 
complete the desired trip. However, there is no guarantee that 
all of these services are available on the Internet. If some 
service is missing (e.g., the shuttle service can only be found 
through the traditional yellow page book), the planner will 
fail and no information will be provided regarding what is 
missing. However, if the planner is “intelligent” enough to 
generate an incomplete plan suggesting what the missing 
actions might be, the user may still be able to obtain useful 
information and can proceed to obtain the missing services 
via alternative means. 

In this paper, we propose a novel approach to the task of 
generating incomplete plans when traditional planning 
processes fail. Two challenges need to be addressed. First, 
due to the missing information, a planner can neither reach 
the goal from the initial state nor vice versa. In particular, 
when employing bi-directional planning to generate plans 
from both ends, the two planning processes will never meet 
in the middle. We address this challenge by finding the gap 
for the bi-directional planning and proposing a virtual action 
to bridge this gap so that an incomplete plan can be returned. 
However, proposing the virtual action is a challenging task. 
The reason is that a large amount of information is usually 
present in the bi-directional planning process and this makes 
it impossible to enumerate all the possible virtual actions and 
identify the best one. We address this second challenge by 
using a genetic algorithm (GA) approach to mine useful 
information. 

As discussed above, an incomplete plan includes two 
types of actions: real actions, which are actions defined in 
the planning domain; and a virtual action, which does not 



exist in the domain but is treated in the same way as real 
actions as far as establishing an incomplete plan is 
concerned. The virtual action serves as a bridge to link other 
real actions together in an incomplete plan and identify 
information that is potentially missing. In the travel 
reservation example, a traditional planner can be used to 
generate a plan for attending a conference: book air ticket => 
book hotel => rent car. However, it will fail if, for instance, 
the booking hotel service is not available. In contrast, in this 
situation our planner can generate an incomplete plan 
consisting of real and virtual actions: book air ticket => 
virtual action => rent car. Therefore, our approach has 
broader impacts: it stands to benefit both domain experts and 
regular users. Specifically, it makes it easier for domain 
experts to tune the planning domain, and it suggests to a 
regular user not only what is available (i.e., the real actions in 
the plan) but also what could be missing (i.e., the virtual 
action). 

In this feasibility study, we focus exclusively on 
deterministic planning, in which each action produces a 
single (i.e., deterministic) outcome, owing to the significant 
role they play in AI planning, i.e., not only is deterministic 
planning still an active research area in AI planning, it is still 
widely used in state-of-the-art software engineering fields, 
e.g., web service composition research [6, 7]. Moreover, the 
proposed approach can be extended to nondeterministic 
planning via techniques that enable the application of 
deterministic planners to nondeterministic planning problems 
[8]. To our knowledge, we are the first to provide a workable 
approach that can propose virtual actions in the event of 
planning failure, as well as metrics for evaluating the 
proposed approach. We believe that this lays the groundwork 
for researchers interested in exploring this new direction. 

In the rest of the paper, we introduce the relevant 
background concepts in Section II, describe our method for 
returning incomplete plans in Section III, present 
experimental results in Section IV, and conclude the paper 
by identifying future research directions in Section V. 

II. BACKGROUND 

We first introduce the notations and definitions about 
deterministic planning that we will rely on in the rest of the 
paper. Then, we present two important AI concepts: planning 
graphs [9] and genetic algorithms [10], based on which our 
approach is built. 

A. Deterministic Planning 

Definition 1. A deterministic planning domain is a 4-tuple Σ 

= 〈P, S, A, γ〉, where: 

• P is a finite set of propositions; 

• S ⊆ 2
P
 is a finite set of states in the system; 

• A is a finite set of actions; and 

• γ : S × A → S is the state-transition function. 

An action a in Σ consists of a precondition, pre(a), and an 
effect, eff(a). eff(a) is composed of two parts: the add effect 
and the delete effect. The add effect will be added to the state 

to which a is applied and the delete effect will be removed 
from the state. For example, the action “move” can move a 
robot from one place to another. Suppose that in the current 
state the robot is at location A. Then, the action “move(A, B)” 
will generate the add effect of the robot being at B and the 
delete effect is the robot being at A. 

Definition 2. A planning problem is a triple 〈s0, g, Σ〉, where 

s0 is the initial state, g is the goal condition, and Σ is the 
planning domain. 

B. Planning Graph 

A planning graph is a data structure that provides a 
search space employed by many deterministic planners to 
generate a plan. More specifically, a planning graph is a 
directed and layered graph interleaved with proposition 
levels and action levels. The first proposition level contains 
the initial state and the first action level consists of actions 
that are applicable to the first proposition level. The effects 
of the actions in the action level together with the 
propositions in the previous proposition level form the next 
proposition level. This definition enables the planning graph 
to be extended in the forward direction until it has achieved a 
necessary (but perhaps insufficient) condition for plan 
existence. This corresponds to the graph expansion phase 
[9]. 

Due to the way of graph expansion, if a proposition 
appears in the current proposition level, it will appear in the 
rest of the proposition levels. In other words, every 
proposition level contains all the propositions that appear in 
the previous proposition levels. Thanks to this attribute, a 
planning graph has a special feature, level-off, which we will 
exploit in our approach. Level-off occurs when two adjacent 
proposition levels are identical but the goal condition has not 
been reached. Hence, level-off implies planning failure, since 
a fixed point is reached before any path to the goal is 
established. When level-off happens, the last proposition 
level contains all the propositions reachable from the initial 
proposition level (i.e., the initial state), thus representing the 
farthest level from the initial state. 

C. Genetic Algorithms 

A genetic algorithm (GA) is a population-based 
stochastic optimization search approach that has been widely 
applied in various research areas to solve problems that may 
not have polynomial time solutions [11]. Each state in its 
search space is known as a chromosome. The algorithm 
starts with an initial population of chromosomes. The aim is 
to iteratively create better and better populations by applying 
operators to “evolve” the chromosomes in a population so 
that eventually it finds one that is good enough to be used as 
a solution to the search problem. 

 Figure 1 illustrates the major steps of a GA. As 
mentioned, a population consists of a certain number of 
chromosomes, each of which is represented as a string that 
encodes a candidate solution to the given search problem. 
GA begins with a randomly generated population (line 1). To 
generate a new population, chromosomes are first selected 
from the current population based on their fitness values 
computed by a fitness function (line 2). Pairs of these 
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selected chromosomes are then randomly combined via the 
crossover operation to create new “child” chromosomes. 
Finally, each “child” chromosome is randomly “mutated” via 
the mutation operation (line 3). The GA algorithm terminates 
either when the maximum number of iterations has been 
reached (line 4) or a satisfactory solution (chromosome) has 
been found (lines 5 and 6). Otherwise, the new population is 
used in the next iteration (line 7). 

1. Create an initial population of randomly generated 

chromosomes 

2. Perform selection on the population based on the fitness 

values evaluated by a fitness function 

3. Perform crossover and mutation on the selected 

chromosomes to produce the child population 

4. If the max number of generations is exceeded, return the 

fittest chromosome 

5. If any chromosome has a fitness value greater than or equal 

to the fitness threshold  

6.   return the chromosome 

7. Otherwise, return to step 2 

 
Figure 1. Outline of a Genetic Algorithm 

III. METHOD 

To help convey the proposed approach, we use a largely 
simplified travel reservation example as our running 
example. The three actions (services) in this domain are 
listed in TABLE I. Assuming that the user knows the travel 
dates and has the flight number provided by the travel agent, 
he wants to book a flight, a hotel, and a shuttle bus to the 
hotel, i.e., s0 = {has_flt_num, has_dates} and goal g 
={flt_booked, ht_booked, st_booked}. 

TABLE I ACTIONS 

Action Precondition Effect 

Book_Flight has_flt_num, has_dates 
flt_booked, 

has_flt_info 

Book_Hotel has_flt_info, has_dates 
ht_booked, 

has_ht_info 

Book_Shuttle 
has_flt_info, has_ht_info, 

has_dates 
st_booked 

 

It should not be difficult to see that a traditional planner 
can generate a plan “Book_Flight, Book_Hotel, 
Book_Shuttle”. Assuming that the action “Book_Hotel” is 
missing from the domain, the traditional planning process 
will fail. We illustrate the planning failure in Figure 2. The 
missing action divides the correct plan into two halves. The 
reason why existing planners cannot provide useful 
information in case of planning failure is that they start from 
either s0 or g, and plan toward the other end, but due to the 
missing action, the planning process will never reach the 
other end. 

To overcome the above issue, in [12] we outlined a bi-
directional search algorithm. However, no solutions were 
provided to implement the algorithm and no evaluations 
were conducted to investigate its feasibility. In this study, we 
intend to implement the algorithm and conduct experiments 

to evaluate the feasibility of the proposed approach. 
Specifically, the algorithm takes three major steps to return 
an incomplete plan when the traditional planning fails on a 

planning problem 〈s0, g, ∑〉. 

(1) A forward planning process starts from the initial 

state s0 and proceeds as far as possible toward the 

goal condition g until it reaches the farthest place pf.  

(2) The second step starts a backward planning process 

from goal g to the initial state s0 until it reaches the 

farthest place pb.  

(3) Finally, the third step suggests a virtual action av 

linking pf and pb together so that we can generate an 

incomplete plan composed of both av and real actions 

using a traditional planner. 

 

 

 

 
Figure 2: Illustration of Planning Failure 

Two questions naturally arise. First, how can we 
determine the farthest places pf and pb? Second, how can we 
create a virtual action to link pf and pb together? 

A. Determining pf and pb 

To address the first question, we use the planning graph’s 
intrinsic feature, level-off, to determine the farthest levels pf 
and pb. Recall that level-off occurs when all the possible 
actions have been applied to the planning graph but the goal 
condition still cannot be reached. Therefore, the proposition 
level at which level-off occurs represents the farthest level 

from the initial state. Given a planning problem 〈s0, g, ∑〉, pf 
is simply the last proposition level when level-off happens. 
To determine pb, the farthest level in the backward planning 
process, we construct the planning graph based on the 

reversed planning problem 〈g, s0, ∑
-1〉, in which g serves as 

the initial state and s0 serves as the goal, and the 

preconditions and effects of actions in ∑-1
 are the effects and 

preconditions of the corresponding actions in ∑. In the rest of 
the paper, we use pf and pb to denote the two proposition 
levels in which the forward and backward planning processes 
level off respectively. 

In the travel reservation example, the forward planning 
graph levels off after applying the action “Book_Flight” to 
the initial state s0, and pf = {has_flt_num, has_dates, 
flt_booked, has_flt_info}. Note that “Book_Shuttle” cannot 
be applied because its precondition is not satisfied. Similarly, 
the backward planning graph levels off after applying the 
action Book_Shuttle

-1
, and pb = {flt_booked, ht_booked, 

st_booked, has_ht_info, has_dates}. Here, the original goal g 
becomes the initial state in the backward planning and the 
only applicable action is Book_Shuttle

-1
, which is obtained 

by switching the original precondition and effect of the 
action Book_Shuttle. 



B. Proposing a Virtual Action 

We propose a virtual action av to link the two farthest 
levels pf and pb. Proposing av amounts to specifying its 
precondition, pre(av), and its effect, eff(av). We determine 
pre(av) from pf, and eff(av) from pb. At first glance, it seems 
that we can simply set pre(av) to pf, and eff(av) to pb. 
However, this will not work. pf and pb normally contain a 
large number of propositions. For example, it is not 
uncommon for pf or pb to contain more than 100 
propositions, most of which are irrelevant to the missing part, 
and some of which are even mutually exclusive (e.g., a 
proposition and its negation). Including irrelevant 
propositions will make it difficult for a user to identify from 
pre(av) and eff(av) what the missing information in the 
domain is and understand why planning fails; and including 
mutually exclusive propositions does not even result in a 
valid action. Hence, we want to include only the relevant 
subset of propositions that are not mutually exclusive. 
However, for 100 propositions, there are 2

100
 ways to derive 

the possible precondition or effect for action av. It is 
therefore impractical to exhaustively enumerate them to find 
the best fit. 

To deal with the huge number of candidate solutions, we 
first focus on propositions that are only available in the 
forward planning or the backward planning but not both. 

Specifically, let Ppre = pf − pb and Peff = pb − pf, where Ppre is 
the set of propositions that can only be obtained in the 
forward planning process and Peff is the set of propositions 
that can only be obtained in the backward planning process. 
The goal is to find pre(av) from Ppre and eff(av) from Peff. 
Hence, av will contain the essential information that is 
absolutely necessary to bridge the gap between pf and pb. 

In our running example,  

Ppre = pf − pb = {has_flt_num, has_dates, flt_booked, 
fhas_flt_info} – {flt_booked, ht_booked, st_booked , 
has_ht_info, has_dates} = {has_flt_num}, and  

Peff = pb − pf = {ht_booked, st_booked, has_ht_info}.  

Let pre(av) = Ppre and eff(av) = Peff, then the virtual action has 
recovered the missing information. 

Since the running example is largely simplified, we also 
used challenging and complex benchmark problems from 
International Planning Competitions (IPCs) 

1
 to evaluate the 

above approach. Our results show that the size of Ppre is 
about 10, which is reasonable for humans to comprehend. 
However, the size of Peff may be still large (usually > 70), so 
it is still impractical to exhaustively enumerate all subsets of 
Peff to compute eff(av). Consequently, we propose to compute 
eff(av) by using GA. 

C. Using GA to Determine the Effect of the Virtual Action 

As discussed in Figure 1, to use GA, we need to encode 
the chromosomes, design the fitness function, and define 
operators for selection, crossover, and mutation. 

                                                           
1  All the domains can be found from http://www.icaps-
conference.org/index.php/Main/Competitions. 
 

1) Encoding a chromosome. We encode a chromosome 

as a binary string. Each bit in the chromosome corresponds 

to a proposition in Peff. Specifically, the propositions in Peff 

are indexed such that the first proposition corresponds to the 

first bit of the binary string, the second proposition 

corresponds to the second bit, etc. If a proposition is 

selected to be included in the effect of the virtual action av, 

the corresponding bit of the binary string is set to 1; 

otherwise, the bit is 0. To ensure that a chromosome does 

not contain mutually exclusive propositions, we ensure that 

a proposition and its negation cannot be both 1 in the binary 

string. In our running example, assuming that Peff is indexed 

as {ht_booked, has_ht_info, st_booked}, the chromosome 

“110” denotes the subset {ht_booked, has_ht_info} because 

the bit corresponding to “st_booked” is 0 and therefore is 

excluded from the subset. 

Given this encoding scheme, we can create an initial 
population of chromosomes, where each chromosome 
corresponds to a random subset of propositions in Peff. To 
generate the next population, we need to compute fitness 
value of each chromosome. 

2) Designing a fitness function. We compute the fitness 

value of a chromosome as follows. For each chromosome c, 

we create a virtual action av(c), where pre(av(c)) is simply 

Ppre, and eff(av(c)) is the subset of the propositions that c 

contains. Using av(c) together with the real actions in the 

given domain, we attempt to generate an incomplete plan 

using a traditional planner. If the planner finds a plan, then 

we compute the fitness value of c as the size of this plan. 

Otherwise, we set its fitness value to -1. In essence, we 

consider a chromosome fitter if it results in a longer plan. 

Why does it make sense to consider a chromosome fitter 
if it yields a longer plan? Note that a longer plan implies that 
more real actions are used, and that the role played by the 
virtual action is smaller. This is a greedy strategy, which 
hopes to make small the gap bridged by the virtual action and 
make easier for a human to pinpoint exactly what 
information is missing from the domain. In other words, 
chromosomes that yield longer plans correspond to virtual 
actions that are potentially more informative for a human. 
Note that we can conceive counter examples, in which 
virtual actions leading to shorter plans are more informative 
than those leading to longer plans. Nevertheless, our 
experimental results showed that this strategy worked well in 
most of the cases. 

However, another issue arises: it may be time consuming 
or even impractical to run a traditional planner to obtain a 
plan for each chromosome, especially when the population 
size or the number of GA iterations is large. To address this 
issue, we use relaxed plans [13] to improve efficiency. 
Relaxed actions and relaxed plans are widely used in 
heuristic search. Relaxed actions ignore their delete effects. 
Therefore, no two actions are mutually exclusive with each 
other. As a result, a single forward planning graph expansion 
process is enough to efficiently obtain a relaxed plan, if any. 
Correspondingly, we redefine the size of a relaxed plan as 



the number of relaxed actions minus the number of 
occurrences of the virtual action. In other words, we compute 
the fitness value of a chromosome as the number of real 
actions in the relaxed plan. Note that we may still find cases 
where a smaller sized relaxed plan contains more useful 
information than the larger ones. However, our experimental 
results show that this fitness function is very efficient and 
works well in practice. 

3) Specifying the GA operators. The operators we 

employ for selection, crossover, and mutation are standard. 

As the selection operator, we use roulette-wheel, which 

probabilistically selects chromosomes according to their 

fitness values. Specifically, each chromosome ci is selected 

with probability pi, where pi is computed by dividing the 

fitness value of ci by the sum of the fitness values of all the 

chromosomes in the current population. As a result, the 

diversity of the population can be maintained since the weak 

chromosomes still have chances of being selected. 

As the crossover operator, we employ one-point 
crossover (see Goldberg 1989 [10]), where the crossover 
point is created randomly. Finally, the mutation operator, 
which is applied to the newly generated population to 
maintain the genetic diversity, operates by flipping the values 
of arbitrary bits according to a predefined mutation 
probability.

2
 

Below we describe two improvements to our approach, 
with the goal of enabling it to be effectively applied in 
practice. 

D. Improvement 1: Relaxing Precondition Matching in the 

First Action Level of the Backward Planning 

To motivate this improvement, let us make an 
observation. If an action a can contribute to the goal 

condition g (i.e., if eff(a) ∧ g ≠ φ) in the forward planning 

process 〈s0, g, ∑〉, then it is natural for us to expect its 
reversed action a

-1
 to be included in the plan for the 

backward planning problem 〈g, s0, ∑
-1〉. However, as 

discussed in the next paragraph, this is not guaranteed in 
reality. What this implies is that some useful information 
may be lost in the backward planning process.  

The question, then, is: why is it not necessarily the case 
that a

-1
 is included in the backward plan if a appears in the 

forward plan? The reason is that the precondition matching 
scheme leads to the information loss. More specifically, to 
apply an action a to the initial state s0, we require that pre(a) 

⊆ s0, where pre(a) denotes the precondition of action a. 
However, such a precondition matching scheme is too strict 
for backward planning. The following example illustrates 
why this is the case. Assume that the goal condition is to 
“hold a container”, i.e., (holding hand container), and that 
there is an action, grasp-container, whose effect is “(holding 

hand container) ∧ (not (handempty hand))”. Hence, action 
grasp-container can be used to contribute to the goal. 
However, in the backward planning problem, the original 

                                                           
2 Since we focus on demonstrating the feasibility of our approach, we do 
not fine-tune the parameters to achieve optimal results. This means that our 
approach could be improved with more sophisticated operators. 

goal condition (holding hand container) becomes the initial 
state. The effect of action grasp-container becomes the 
precondition of its reversed action, i.e., grasp-container

-1
. 

However, the state g cannot satisfy the precondition of grasp-
container

-1
 because it has an additional proposition, i.e., (not 

(handempty hand)). Therefore, grasp-container
-1

 will not be 
picked in the backward planning. 

To prevent such information loss, we relax the 
precondition matching condition in the first action level in 
the backward planning process. Formally, given a backward 

planning problem 〈g, s0, ∑
-1〉, an action a

-1
 can be selected in 

the first action level if pre(a
-1

) ∧ g ≠ φ. Then, from the 
second level, we resume the regular precondition matching 
scheme. 

E. Improvement 2: Recursive Use of GA  

There are two issues involved in the proposed approach 

that we have eluded so far. First, Peff is obtained by pb − pf. 

We find that it is not unusual that some useful information is 

removed by this deduction operation. Since we run GA 

based on Peff, all the removed useful information will be 

permanently lost. Second, GA can return a subset of 

propositions, whose size is usually in the range of one third 

to one half of the original proposition set. However, the 

resulting subset can be still large. For example, if the size of 

the proposition set is 120, then the size of the resulting 

subset is still about 40 to 60.  

To address the first issue, we employ two steps. First, we 

run GA on Peff and obtain a subset Peff′ of propositions, 

whose size is about half of the size of Peff. Second, we put 

the removed propositions back in Peff′ , i.e., Peff′ = Peff′ ∪ (pb 

∩ pf). Here, the first step makes room for the second step 

because the planner we used (i.e., FF [13]) has a size 

limitation on the number of propositions that an action can 

have. Nevertheless, the problem with these two steps is that 

the size of Peff′ can be large, which is the second issue listed 

above. 

To address the second issue, we recursively apply GA to 

the resulting subset of propositions to return a sub-subset of 

propositions. Specifically, the propositions in the resulting 

subset are ordered. The chromosome encoding scheme 

remains the same, i.e., if a bit is “1”, the corresponding 

proposition is included in the sub subset. Otherwise, it is 

excluded. Meanwhile, the selection, crossover, and mutation 

operators remain the same as before. 

The question, then, is: how many levels of recursive calls 
of GA should we make? In our implementation, we limit the 
depth of the recursive calls of GA to 3. The reasons are two-
fold. First, an excessive number of calls of GA may result in 
loss of useful information because the probability of 
selecting the right subset of propositions from a large set is 
small. Each call of GA will result in the loss of useful 
information. Second, the execution of GA is time 
consuming. Hence, the excessive calls of GA may 



significantly prolong running time, which may reduce the 
practicality of our approach. 

IV. EVALUATION 

Next, we evaluate our approach. All the experiments 
were conducted on a desktop computer with an Intel 
Pentium-4 3GHz processor and 1 GB of memory. The 
operating system is Linux. 

A. Problem Domains 

The problem domains, Barman [BM], PSR, ebookstore 
[EB], and Openstacks [OS], are obtained from the 
deterministic tracks of the international planning 
competitions (IPCs). These domains were chosen because (1) 
they are meaningful in the real-world; and (2) they do not 
contain quantifiers, e.g., forall, exists, etc., since our system 
does not support quantifiers at the moment. Specifically, in 
Barman, a robot barman is responsible for manipulating 
drink dispensers, glasses, and a shaker. The goal is to find a 
plan of the robot's actions that serves a desired set of drinks. 
PSR specifies an electricity network that may be faulty. 
Depending on the states of the switches and electricity 
supply devices, the flow of electricity through the network is 
given by a transitive closure over the network connections at 
any point in time. Openstacks describes an NP-hard problem. 
A manufacturer may have many orders. Each order consists 
of different products, which can only be made one at a time. 
The goal is to have all the orders shipped with a minimum 
number of stacks, which are the temporary space to hold 
products. Ebookstore is even closer to reality. It depicts the 
OWL [14] Web services for an ebookstore. The ebookstore 
scenario includes the electronic purchase of a book. The user 
provides a book title and author, credit card information and 
the address that the book will be shipped to, and requires a 
charge to credit card for the purchase, as well as information 
about the shipping dates and the customs cost for the specific 
item. 

B. Evaluation of the Proposed Virtual Actions 

To evaluate our approach, we removed one or two 
action(s) at a time from the benchmark domains. The 
removed actions were involved in the plans to the planning 
problems. In other words, the removal of these actions will 
result in planning failures. Although we can experiment with 
removing even more actions, we do not know exactly how 
many actions are missing in reality when a planning process 
fails. In addition, assume that the solution to a planning 
problem is a1, a2, …, am, am+1, …, an-1, an, an+1, …. If we 
remove the actions am and an, then the actions in between am 
and an are also indirectly removed. Hence, removing two 
actions should be sufficient for us to mimic a realistic 
planning failure situation. 

TABLE II shows the number of actions we tested for 
each domain. For example, for BM, 11 of the experiments 
involve removing a single action, and 7 experiments involve 
removing a randomly selected pair of actions. For PSR, there 
are 50 domain-problem sets, each of which consists of a 
domain and a problem. We used the first set, in which five 
actions were used to solve the problem. Each of the 5 actions 
was tested in the experiments for removing a single action 

and 6 experiments involved removing randomly selected 
action pairs. For openstacks, there are more than 100 actions, 
which can be classified into 5 categories, namely, make 
product, open new stacks, start order, set up machine to make 
product, and ship the order. If we remove one action, the 
planning will not fail because the planner can find an 
alternative plan by using other actions in the same category. 
Therefore, we removed the whole category each time to 
perform our study and treated the whole category as a single 
composite action. For ebookstore, 6 experiments were for 
evaluating the removal of a single action and 4 experiments 
were for removing two actions. 

TABLE II NUMBER OF ACTIONS TESTED FOR EACH DOMAIN 

 BM EB OS PSR 

1 action 11  6  5  5  

2 actions 7 4 3 6 

 

As noted above, in each experiment we remove one or 
two actions, and then run our algorithm to propose a virtual 
action. Since our algorithm focused on determining the effect 
eff(av) of a virtual action av, one way to evaluate av is to 
determine how many propositions in the effects of the 
action(s) being removed appear in eff(av). Note, however, 
that some propositions in the effect of an action are more 
important than the others. For example, the grasp container 
action in barman aims to pick up the container from the 
table. Hence, the proposition (holding hand container) is 
important, whereas other propositions, such as (not 
(handempty hand)), are less important because without 
“holding the container” the rest of the propositions are 
meaningless. We identify for each action the important 
propositions and refer to them as key propositions. Since key 
propositions are important, we first focus on evaluating for 
each removed action (or action pair) whether eff(av) contains 
all, some, or none of the key propositions appearing in its 
effect. 

The results are shown in TABLE III. The column 
“Completely” shows the number of actions for which the key 
propositions are completely recovered by the virtual actions; 
“Partially” shows the number of actions where only some of 
the key propositions are recovered; “missed” shows the 
number of actions for which none of the key propositions are 
found. For 57% of the cases, the virtual actions recovered all 
of the key propositions; and for 21% of the actions, the 
virtual actions recovered some of the key propositions. 

TABLE III EXPERIMENTS WITH RECOVERING KEY PROPOSITIONS 

Completely Partially Missed Total 
Domain 

1 act 2act 1act 2act 1act 2act 1act 2act 

BM 7 2 2 3 2 2 11 7 

EB 6 4 0 0 0 0 6 4 

OS 3 1 0 2 2 0 5 3 

PSR 3 1 0 3 2 2 5 6 

 

While the non-key propositions are comparatively less 
important, they may still help domain experts gain a better 



understanding of the domain and should ideally be recovered 
as well. As a result, we evaluate how well pre(av) and eff(av) 
match the precondition and effect of the removed action (or 
action pair), pre(ar) and eff(ar). We employ two evaluation 
metrics, precision and recall. Taking eff(av) as an example, 
the precision of eff(av) is the percentage of the propositions 
in eff(av) that appears in eff(ar); and its recall is the 
percentage of propositions in eff(ar) that appears in eff(av). In 
other words, a low precision implies that av contains many 
irrelevant propositions, and a low recall implies that av 
misses many correct propositions. Hence, it is desirable that 
both precision and recall are high. The precision/recall of 
pre(av) can be computed similarly. For example, assume that 
the action of picking up container is missing in the BM 
domain. The effect of the corresponding virtual action 
includes (holding hand container) and (clean shot). 
Therefore, the virtual action recovers the key proposition 
(holding hand container), but misses the other two 
propositions, namely, (not (ontable container)) and (not 
(handempty hand)). In addition, the virtual action contains an 
irrelevant proposition, namely, (clean shot). Hence, the 
precision is 1/2 = 0.5 and the recall is 1/3 = 0.3.  

TABLE IV PRECISION AND RECALL  

Precision  Recall 

Precond effect precond effect  

1act 2act 1act 2act 1act 2act 1act 2act 

BM 0.28 0.50 0.12 0.22 0.14 0.29 0.45 0.35 

EB 0.67 0.50 0.58 0.67 0.67 0.67 1.00 1.00 

OS 0.31 0.42 0.23 0.15 0.46 0.41 0.45 0.21 

PSR 0 0.25 0.22 0.40 0 0.25 0.35 0.31 

Avg 0.32 0.41 0.27 0.34 0.30 0.37 0.56 0.45 

 

TABLE IV shows the precision and recall averaged over 

the virtual actions. On average, the actions recalled ≥ 30% of 

the preconditions and ≥ 45% of the effects, and have a 

precision of ≥ 32% (preconditions) and ≥ 27% (effects). 

C. Human Evaluations 

While the values shown in TABLE IV are useful for 
other researchers to compare against our results, it may not 
be easy to tell whether these values can be considered good 
or not. A more direct way to evaluate the usefulness of 
virtual actions is to employ humans, since ultimately virtual 
actions are meant to provide useful information for humans. 
Here is the setup of our human experiment. First, we 
educated 17 human participants consisting of 12 
undergraduate students and 5 graduate students. All the 
participants had few or no knowledge about AI planning 
prior to enrolling in this study. For each domain, we prepared 
an instruction document for them to read, including the 
domain description, how to read the actions on the domain, 
and the list of actions defined on the domain. Second, we 
handed out 52 virtual actions to different human participants, 
and for each virtual action av, we asked them to identify all 
the real actions in the domain that they thought similar to av. 
We did not tell the participants whether the virtual actions 
were related to the removal of a single real action or two real 

actions. If they considered more than one real action as 
relevant to a virtual action, they were allowed to choose all 
of them, but they needed to rank the real actions in terms of 
relevance.  

We score the human output as follows. If the evaluation 
is for one action, the response has a score of 1/n with n being 
the rank of the correct action. For example, the participant 
identifies two actions, ar1 and ar2, that they think relevant to 
the virtual action av. He or she ranks ar1 to be more relevant 
than ar2. Assume that the true action being removed is ar2. 
Then, the score of the response is 1/2 since the rank of the 
correct action is 2 in the response. If the evaluation is for two 
actions, the response has a score of 1 (i.e., completely 
correct) if the first two actions are the right actions. 
Otherwise, the score is 1/m + 1/n, where m and n are ranks of 
the right actions. If the response only includes 1 right action, 
the score is 1/2n, where n is the rank of the right action. 

TABLE V shows the human evaluation results.  As we 
can see, the participants could easily locate the right actions 
on ebookstore because the precision and recall on this 
domain is the highest among the four domains (see TABLE 
IV). In contrast, they did a poor job on PSR because they 
lacked the knowledge of electricity network despite our 
instruction document. As a result, they could only guess the 
results. For BM and OS, they demonstrated good 
understandings of the domains, but some of them were 
overwhelmed by the large amount of information provided 
by the virtual actions on BM (note from TABLE IV that BM 
has a low precision). OS seemed to be a domain manageable 
by humans given its reasonable precision and recall.  

TABLE V HUMAN EVALUATION RESULTS 

One Action Two Actions 

Domain # of 

judgments 
avg. score 

# of 

judgments 
avg. score 

BM 6 0.25 6 0.23 

EB 8 1 7 0.51 

OS 8 0.73 7 0.43 

PSR 6 0.31 4 0.19 

Avg  --- 0.61 --- 0.36 

 

Although the average score for evaluations of two actions 
seem low, it is partly due to our rigorous scoring scheme. For 
example, some participants simply provided a single action 
as the answer. Even if the action is one of the right actions 
(i.e., precision is 1), the score will only be 0.5 according to 
our scoring scheme. We made a statistics on responses for 
two actions as shown in TABLE VI. The precision of the 
answers was 0.53 and 17 out of 24 answers (i.e., 71%) 
included at least one of the right actions. In summary, these 
encouraging results show the promise of our approach. 

TABLE VI FURTHER ANALYSIS FOR EVALUATIONS OF TWO ACTIONS 

Precision Percentage of identifying at 

least one correct action 

0.53  71%  



D. Discussion  

To evaluate the feasibility of our work, we proposed 
three different evaluation methods, namely, key propositions 
recovery, metrics of precision and recall, and human 
evaluation.  

The use of key proposition recovery is easy to 
implement, but can be subjective since different people may 
identify different key propositions for the same action. In 
contrast, the metrics of precision and recall are objective. 
These metrics evaluate precisely how much useful 
information is recovered (i.e., recall) and the percentage of 
the useful information (i.e., precision) against the entire 
information including both relevant and irrelevant 
information. The issue with precision and recall metrics is 
that they did not tell us how well our approach did on the 
benchmark domains (see TABLE IV) since there is no 
related work to compare with. Our third evaluation method, 
human evaluations, compensates for this issue. The 
evaluation results directly showed how well humans could 
comprehend the virtual actions. 

If we compare the results of the three evaluation methods 
(see TABLEs III, IV, and V), we can see that these results 
are consistent. For example, human participants performed 
well on the ebookstore (EB) domain, but did poorly on PSR. 
The virtual actions on EB completely (i.e., 100%) recovered 
the key propositions as shown in TABLE III, had the highest 
precision and recall as shown in TABLE IV, and received 
the highest evaluation scores as shown in TABLE V. In 
comparison, virtual actions on PSR constantly missed key 
propositions, suffered from low precision and recall, and 
received low human evaluation scores. Interestingly, as 
shown in TABLE IV, even though the precision and recall 
are 0 for the preconditions of virtual actions (i.e., 1 act) on 
PSR, human participants could still correctly figure out some 
of the virtual actions through their effects (as shown in 
TABLE V). This result can be explained by the fact that 
humans tend to put their primary focus on what the action 
can do rather than when the action can be applied. 

V. CONCLUSION AND FUTURE DIRECTION 

We have investigated a new task that can significantly 
broaden the applicability of AI planning: generating an 
incomplete plan when missing information is present in a 
domain. We proposed the concept of virtual action, which 
serves as the bridge to link real actions. Preliminary results 
based on the IPC benchmark problems show that our 
approach holds promise. The generated virtual actions are 
human comprehensible. On average, 73% of the answers 
from the 17 research participants are partially or completely 
correct. In the next step, we intend to improve the fitness 
function of GA so that the fitness value can better reflect the 
useful information possessed by the virtual actions. We will 
continue to improve the precision and recall of the virtual 
actions to make our approach more practical to use. 

ACKNOWLEDGMENT 

This work was supported in part by Oklahoma Center for 
the Advancement of Science & Technology (OCAST) under 
grant HR12-036. 

REFERENCES 

[1] A. M. Memon, M. E. Pollack, and M. L. Soffa, "Hierarchical GUI 

Test Case Generation Using Automated Planning," IEEE Trans. 

Softw. Eng., vol. 27, pp. 144-155, 2001. 

[2] J. Fu, F. Bastani, and I. Yen, Semantic-Driven Component-Based 

Automated Code Synthesis, Semantic Computing: IEEE, Press/Wiley, 

2010. 

[3] L. A. Digiampietri, J. J. Pérez-Alcázar, and C. B. Medeiros, "AI 

Planning in Web Services Composition: a review of current 

approaches and a new solution," in SBC 2007, Rio de Janeiro, 2007, 

pp. 983-992. 

[4] J. Rao and X. Su, "A Survey of Automated Web Service Composition 

Methods," in SWSWPC, ed, 2004, pp. 43-54. 

[5] W3C. (2002). Web service use case: Travel reservation. Available: 

http://www.w3.org/2002/06/ws-example 

[6] A. Sirbu, A. Marconi, M. Pistore, H. Eberle, F. Leymann, and T. 

Unger, "Dynamic Composition of Pervasive Process Fragments," in 

Web Services (ICWS), 2011 IEEE International Conference on, 2011, 

pp. 73-80. 

[7] X. Song, W. Dou, and J. Chen, "A workflow framework for 

intelligent service composition," Future Generation Computer 

Systems, vol. 27, pp. 627-636, 2011. 

[8] U. Kuter, D. Nau, E. Reisner, and R. P. Goldman, "Using classical 

planners to solve nondeterministic planning problems," in 18th 

International Conference on Automated Planning and Scheduling 

(ICAPS), 2008. 

[9] A. L. Blum and M. L. Furst, "Fast planning through planning graph 

analysis," Artif. Intell., vol. 90, pp. 281-300, 1997. 

[10] D. E. Goldberg, Genetic Algorithms in Search, Optimization and 

Machine Learning. Mass.: Addison-Wesley, 1989. 

[11] F. Pezzella, G. Morganti, and G. Ciaschetti, "A genetic algorithm for 

the Flexible Job-shop Scheduling Problem," Computers & Operations 

Research, vol. 35, pp. 3202-3212, 2008. 

[12] J. Fu, W. Hao, M. Tu, B. Ma, J. Baldwin, and F. B. Bastani, "Virtual 

Services in Cloud Computing," in IEEE 6th World Congress on 

Services (SERVICES 2010), Mimai, FL, 2010, pp. 467- 472. 

[13] J. Hoffmann and B. Nebel, "The FF Planning System: Fast Plan 

Generation Through Heuristic Search," vol. 14, pp. 253-302, 2001. 

[14] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. 

McIlraith, S. Narayanan, M. Paolucci, B. Parsia, and T. Payne, 

"OWL-S: Semantic markup for web services," 2004. 

 


