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ABSTRACT

Network heterogeneity has become a major issue and multimedia applications have to cope with

interconnected networks consisting of many subnetworks of unevenly distributed resources. Real-

time traffic caused by video sources is bursty by nature, resulting in buffer overflow at the switch

and unavoidable packet loss. Therefore it is desirable for information to be compressed and prior-

itized in a way that the application degrades gracefully under adverse network conditions.

Priority Encoding Transmission (PET) is a new approach to the transmission of prioritized infor-

mation over lossy packet-switched networks. The basic idea is that the source assigns different

priorities to different segments of data, and then PET encodes the data using multi-level redun-

dancy and disperses the encoding into the packets to be transmitted. The property of PET is that

the destination is able to recover the data in priority order based on the number of packets received

per message.

This work addresses the hierarchical encoding of MPEG video streams in a PET scenario. Its

focus is more on the recovery aspect, rather than on computational issues. The basic idea is that

inter-frames are less redundantly encoded than intra-frames. It introduces a scenario which should

prove the feasibility of our design considerations and describes simulation results with different

MPEG sequences.
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1 Introduction

Multimedia computing enables new applications such as Video-on-demand, multimedia email,

documents and spreadsheets and desktop video conferencing. Being a powerful tool it will have a

dramatic impact on social, educational and business communications:

“The transition to distributed multimedia

applications will be more significant than the

transition to graphical user interfaces because

it will have a greater impact on business

productivity and our personal lives” [Row94]

By introducing optical fiber to transmit data a tremendous increase in network bandwidth has been

achieved, allowing widespread use of multimedia applications. Wide area networks of global

dimensions offer ubiquitous access to users not only in the research community but increasingly to

businesses. Therefore network heterogeneity has become a major issue and applications have to

cope with interconnected networks consisting of many subnetworks. Computational power, band-

width, storage and congestion control policies may unevenly vary from network to network result-

ing in unavoidable congestions, delays and losses [AlFe94,Part94].
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Figure 1 shows the packet loss per 100 measured at one receiving host during a network video

(nv) multicast session over the Multicast Backbone testbed (MBone) from Palo Alto to Berkeley.

Note that the peak loss is ten times greater than the average loss of 4.5%.

The transmission of images, moving or still, requires an enormous amount of bandwidth. Efficient

compression algorithms have been developed but still network traffic will easily be dominated by

video. Contrary to computer data traffic, a set of mechanisms is required in order to provide good

quality of service (QOS) guarantees. Strong delay constraints challenge the design and engineer-

ing of communication systems. Circuit switching technology imposes constant bit-rate (CBR) uti-

lization of the assigned channels. Thus video encoders are forced to generate a CBR stream,

paying the price of varying picture quality and dissatisfying bandwidth exploitation[Part94,Ga93].

Packet-switched networks such as the Internet and wide area ATM networks provide a basis for

variable bit-rate (VBR) video transmission and constant picture quality. In ATM networks VBR

coding schemes may be implemented without sacrificing bandwidth utilization efficiency, since

bandwidth can be allocated on demand [Ga93,PaZa93]. However, VBR coding and transport

introduces other potential obstacles.

0

10

20

30

40

50

130,000 packets total

45/100 peak loss

Figure 1: Packet loss per 100 observed during a multicast ses-
sion over the MBone
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Video traffic is bursty by nature. Thus when many sources are transmitting at their peak rate the

available network bandwidth may be exceeded, causing buffer overflow at the switch and packet

loss. Thus, packet loss is more likely to occur in bursts, rather than be evenly distributed.

Although some loss of less important visual information may be acceptable, the introduction of

compression algorithms using source coding techniques and motion compensation may lead to

severe degradation in terms of picture quality when losses occur. Encoded bitstreams using vari-

able length codes (VLC) are very sensitive to losses, since the loss of a single bit forces the

decoder to discard information until the following synchronization sequence.

In order to guarantee a minimum quality of service to be maintained, priority mechanisms are

desirable. A widely used standard for video compression has been developed by the Moving Pic-

tures Expert Group (MPEG) [ISO11172]. Although MPEG-1 does not provide scalability, it may

also be viewed as hierarchically structured. Reference frames (intra frames) carry the complete set

of parameters needed for frame reconstruction at the decoder, whereas other frames (inter frames)

contain only information about changes from these reference frames [Sha92]. However, some

efforts have been made adding scalability in terms of resolution to the MPEG-1 bitstream. A two

layered scheme over ATM has been proposed, prioritizing packets in two levels: Base layer and

enhancement layer. The base layer contains only low frequency DCT (Discrete Cosine Transform)

coefficients and can be decoded independently, whereas the enhancement layer carries high reso-

lution data that is only usable when added back to the base layer. By separating the bitstream the

bit rate per frame is increased by approximately 20%. The network has to make sure that the base

layer is transmitted over a more reliable channel [Pa92,PaZa94].

Several other approaches introduce network support in order to cope with packet loss. One idea is

based on retransmission of discarded packets. Techniques such as Automatic Repeat Request

(ARQ) have significant drawbacks, since they introduce additional roundtrip latency and in a mul-

ticast scenario cause enormous complexity [Sha92].

Alternatively, codes based on Forward Error Correction (FEC) traditionally focus both on detec-

tion/correction of errors and recovery of lost information. In a packet-based network, error detec-
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tion/correction can be dealt with on a packet by packet basis. Thus, the primary use of FEC by the

application would be to recover lost packets [LaEf93,Sha92].

Traditional FEC permits encoding only on a single priority level. An Adaptable Forward Error

Correction (AdFEC) scheme has been proposed [LaEf93], capable of assigning different priority

levels to different groups of packets. The more important the group of packets, the more redun-

dancy is devoted.

Priority Encoding Transmission (PET) [AlLu94] is a new approach regarding the prioritized trans-

mission of scalable messages over lossy packet-switched networks. It allows a user to specify pri-

orities for different segments of data. Based on this hierarchical structure the sender uses the

system to encode the data into packets for transmission. The idea is that the information is distrib-

uted over all the packets sent per message. However, each packet contains relatively more infor-

mation about the higher priority segments of the data. Hence the receiver is able to recover the

information in priority order, based on the number of packets received per message.

This work addresses the hierarchical encoding of MPEG-1 video streams in a PET scenario. In

Chapter 2 we describe a PET system using erasure coding techniques based on properties of poly-

nomials over a finite field. Chapter 3 is aimed at providing basic information about the MPEG-1

standard. Due to the intention of our work, the focus is more on the bitstream hierarchy, rather

than on coding techniques. Using the proposed PET scheme, Chapter 4 merges PET and MPEG.

We describe a way of packetizing MPEG-1 bitstreams. The basic idea is that inter-frames are less

redundantly encoded than reference frames. We introduce a PET-MPEG-1 simulation and describe

observed results with different MPEG sequences.
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2 Priority Encoding Transmission (PET)

Priority Encoding Transmission (PET) [AlLu94] is a new approach introducing a method for

sending messages over a lossy packet-switched network according to a user specified prioritiza-

tion scheme. It focuses on fault tolerant transmission, especially suitable in case of unpredictable

packet losses. Its design is independent from any specific scalable application. The basic idea is

that the source assigns different priorities to different segments of data resulting in a multilevel

redundancy distribution. The information is distributed over all the packets sent per message.

However, each packet contains relatively more information about high priority data. Hence the

destination is able to recover the information in priority order based on the amount of packets

received per message. In this chapter we describe a PET system using erasure coding techniques

based on polynomials over a finite field.

In the first subsection we briefly introduce the notion of erasure codes. The second part describes

basic properties of polynomials over finite fields, whereas the third section introduces a possible

implementation of a PET system.

2.1 Erasure Codes

Let us assume a message M consists of b words of length w each. Consequently the message

length m adds up to m = wb. Message M is redundantly encoded into code E(m) with length e =

nw, where . E is called an erasure code if the original b words can be reconstructed from any

b words of the encoded message E(m) (together with the indices of the b words of encoding).

n b≥
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Figure 2 displays a message M and the corresponding code E. The b words can be recovered from

any subset of b words of the total encoding. Two examples depicted by the continuous/dashed line

respectively, are shown in Figure 2.

A possible implementation of erasure codes consists in viewing the b words as the coefficients of a

polynomial of degree b-1 over a finite field. This method is described in the following sections.

2.2 Polynomials over a Finite Field

2.2.1 Fundamentals

There are two different types of finite fields or Galois fields (GF): Prime fields GF[p] and exten-

sion fields GF[ ] where “p” denotes a prime number and “ ” a positive integer. Respec-

tively they consist of  or  elements, which in the latter case can be considered as

polynomials of degree m-1 with coefficients :

In Galois field GF[p] operations are calculated modulo p, whereas in Galois field GF[] an irre-

ducible polynomial p(x) is needed, so calculation is done modulo p(x) [Ha93]. The arithmetic in

extension fields is more complicated than in prime fields. Therefore an erasure code implemented

Message M

Code E

w

b

n

w

n b≥

Figure 2: Erasure codes

p
m

m 2≥

q p= q p
m

=

ai GF p[ ]∈

a0 a1x a2x
2 … am 1– x

m 1–
+ + + +

p
m
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in a prime field was considered to be more suitable for our purposes.

One way to realize erasure codes consists in viewing the b words of message M as the coefficients

of a polynomial of degree b-1 over a suitable chosen field. Code E then is built up by n polynomial

values evaluated at different field elements. Hence, from any subset of b polynomial values (and

the corresponding field elements at which they are evaluated) the original message can be deter-

mined by interpolation.

As an example let us assume that three integer values (2,6,3) should be transmitted:

Since all three values are less than 7, we can consider them as elements of Galois field GF[7].

Now the triplet (2,6,3) denotes the coefficients of the polynomial P(x) mod 7. It is obvious that

from any three values P(i) evaluated at different field elements i the original polynomial P(x) can

be reconstructed by interpolation. The redundancy is set by transmitting more than three pairs

(i,P(i)). Consequently in Galois field GF[7] a maximum of seven different pairs might be created.

Note that all calculations are done modulo 7.

GF[7] mod 7

2 6 3

P x( ) 2 6x 3x
2

+ +=

P 4( ) 2 6 4( ) 3 4( ) 2
+ + 4= =

P 1( ) 2 6 1( ) 3 1( ) 2
+ + 4= =

P 2( ) 2 6 2( ) 3 2( ) 2
+ + 5= =

P 3( ) 2 6 3( ) 3 3( ) 2
+ + 5= =

P 5( ) 2 6 5( ) 3 5( ) 2
+ + 2= =

Figure 3: Polynomials over Galois field GF[7]
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2.2.2 A possible Galois Field for a PET System

Assuming the system uses words of length w = 16 bit or 2 bytes each, they might be considered as

coefficients of a polynomial over the extension field GF[]. However, from a computational

point of view it is preferable to use a prime field. The Galois field GF[ ] is a prime field

covering the range that can be represented by 16 bit words. Multiplications within this field can be

reduced to a constant number of integer arithmetic operations, shifts and comparisons. However,

the value  is not representable by 16 bits, but obviously may be one of the polynomial values

evaluated at different field elements. Therefore in order to avoid overflow a PET system has to

provide an additional feature.

In case the list of transmitted polynomials contains the element, an offsetε has to be defined

which makes sure that the range representable by two bytes is not exceeded. The offset per packet

is determined by browsing the transmission data for a value which is not a member of the data

within the same packet. Then all values smaller than the offset x < ε are mapped onto themselves x

= x and all values x >ε are mapped onto x = x-1. Consequently within each packet, 16 bits have to

be reserved for the offset.

2
16

2
16

1+

2
16

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8

.

.

.

offsetε

Figure 4: Representation of Galois field GF[ ]2
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0 0

2
16

2
16

1–

2
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2.3 Basic Design Considerations

2.3.1 Data Partitioning

The first step in constructing a PET system is partitioning the transmission data. These portions

are the basic units, called messages which are encoded one at a time. A message then is split into

user specified priority segments. A segment is divided into blocks. Each block represents a poly-

nomial of degree (block length) - 1. Within each segment all blocks have to have the same length

in order to meet the given priority. Then each block is encoded separately by using erasure codes.

The n polynomial values of the erasure code E(m) are dispersed into n packets. Each packet there-

fore contains only one polynomial value represented by a single word. The field element varies

from packet to packet, but within a single packet all polynomials are evaluated at the same field

element.

Segment S1               S2                S3

Block B11     B12  B21      B22      B31    B32

offset 1 G11 1( ) G12 1( ) G21 1( ) G22 1( ) G31 1( ) G32 1( )

offset 2 G11 2( ) G12 2( ) G21 2( ) G22 2( ) G31 2( ) G32 2( )

offset 3 G11 3( ) G12 3( ) G21 3( ) G22 3( ) G31 3( ) G32 3( )

offset n G11 n( ) G12 n( ) G21 n( ) G22 n( ) G31 n( ) G32 n( )

.

.

.

{ { {

Packets

Message

Figure 5: Message striping process

Field element
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Figure 5 shows an example message partitioned into three priority segments and striped into pack-

ets of equal length. Note that the maximum number of packets sent is , the size of the

Galois field GF[ ].

The smallest entity is a word w of two bytes. The priority of a segment is expressed by the length

of its blocks. Hence the smaller the blocks, the higher the priority. Obviously in our sample mes-

sage segment S1 has the highest priority, followed by S2 and S3. Consequently blocks B11-B12

consist of two, B21-B22 of three and B31-B32 of four words.  denotes the value of the cor-

responding polynomial of degree equal to (block size) - 1, evaluated at the field element i (indices

s and b identifiy the segment and block respectively). Within each packet all polynomials are eval-

uated at the same field element. Hence B11-B12 can be reconstructed from any two packets, B21-

B22 from any three and B31-B32 from any four packets. By sending n=6 packets B21 now would

be encoded with 50% redundancy, that is it can be recovered from any 50% of the transmitted

packets. Each packet additionally carries at the beginning the offset discussed above and the field

element i.

2.3.2 The Priority Table

One of PET’s basic design principles is that the priority function is specified by the user or appli-

cation. Based on this distribution the message is divided into segments. This process is described

in detail in Chapter 4. A simple and flexible realization consists in specifying priorities in fraction

of packets needed to recover the segment.

Regarding the previously discussed example (Figure 5), a possible user defined table may look as

follows:

Table 1:Priority table information

Segment Size (in words)
Fraction of Packets
Needed to Recover

S1 = 4 0.333

S2 = 6 0.500

S3 = 8 0.666

2
16

1+

2
16

1+

Gsb i( )



Priority Encoding Transmission (PET)

- 11 -

With respect to Figure 4 the number of transmitted packets n is set to 6. Consequently even though

segment S1 encompasses only 22.22% of the total message it covers a third of the encoding. Since

any pair of packets is already sufficient to recover S1, an overall overhead of 200% for S1 is sent.

The corresponding values for the other segments are listed below in priority order:

The total encoding length adds up to two times the length of the original message, not included the

overhead for the offset, field element and the priority table.

Table 2:Information distribution

Segment Size
Fraction of
Message Size

Transmitted
Redundancy

S1 = 4 22.22% 200%

S2 = 6 33.33% 100%

S3 =  8 44.44% 50%
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3 MPEG-1 Video Compression

In 1988 a group called Motion Picture Expert Group (MPEG) was formed to produce a standard

for video and audio encoding for VHS-quality compression at bit-rates less than 1.856 Mbits/sec.

However the standard is not limited to this benchmark and may be used at higher data rates

[ISO11172]. Intentionally it was designed for storage on digital storage media such as CD-ROM

and DAT which are perfectly suited for bit-rates of 1 to 1.5 Mbits/sec. Its development therefore

addressed the following features [Gall91]:

● Random Access

● Fast Forward/Reverse Searches

● Reverse Playback

● Audio-Visual Synchronization

● Editability

● Format Flexibility

Image compression usually is achieved by applying several techniques such as subsampling of

chrominance components, quantization, frequency transformation by cosine transform (DCT) and

variable length coding (VLC)[PeMi93]. MPEG additionally introduces motion compensation

(MC) to exploit temporal redundancy, predictive coding and picture interpolation.

This chapter is aimed at providing a quick overview of the MPEG standard and its features.
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3.1 Coding Layers

As illustrated below an MPEG bitstream is built up of four major components [GoRo94,PaZa92].

Pictures are the equivalent of a single movie frame and represent the basic unit of display. There

are three different kinds of pictures, which are discussed later in more detail. A frame is divided

into slices. They are the basic processing unit and provide fault tolerant access within a single pic-

ture. Since they are independent, they may be coded in groups. A slice may be a single line of the

image or consists of any number of macroblocks. Each of them contains a header and six compo-

nent blocks [ISO11172]:

Due to the characteristics of sensitiveness of the human eye, color information is subsampled

[PaSm93,PeMi93]. That is, a macroblock of 16x16 pixels represents four blocks of luminance Y,

but only one block of chrominance blue Cb and one of chrominance red Cr. Squares of 8x8 pixels

each are called blocks, the smallest coding entity in the MPEG algorithm.

Picture Picture Picture

Slice Slice Slice

Macroblock Macroblock Macroblock

Block Block Block

Figure 6: MPEG coding layers

Luminance Y Chrominance

Cr Cb

Figure 7: Subsampling of  Y/Cr/Cb information
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3.2 Coding Techniques

MPEG uses three different types of pictures: Intra-frames (I), coded as a still image, Predicted

frames (P), predicted from the most recently decoded I- or P-frame and Bidirectional-frames (B)

interpolated from the closest two I- or P-frames.

An I-frame is encoded independently from any other image, applying techniques similar to JPEG

compression: Blocks are first transformed from spatial domain into the frequency domain using

Discrete Cosine Transform (DCT). The corresponding coefficients then are quantized in frequency

order, that is low frequency components are encoded more accurately than high frequency ones.

Additional compression is achieved by variable-length coding of the resulting data in a zig-zag

ordering.

P-frames generally refer to the most recent reference frame, which is either an I- or a P-frame.

They use motion compensation on a macroblock basis.

Encoded are motion vectors and error terms. The vector specifies the relative location of the mac-

roblock within the reference frame, which matches the one to be coded best. The difference is

expressed by an error term or in case of total compliance is skipped. In the latter case the reference

macroblock is simply duplicated. The range for motion vectors may be limited, since searching for

the closest pattern is very time consuming. Macroblocks may also be coded as I-macroblocks.

�����
�����
�����

�����
�����
�����

macroblock

16x16

motion vector

Backward Reference Image to be coded Forward Reference

Figure 8: Motion compensation (MC) in P- and B-frames

motion vector
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Additionally to backward compensation,B-frames may be interpolated from past and future pic-

tures. So B-macroblocks may either use backward motion compensation (MC), forward MC or

both, in which case the 16x16 area is averaged (Figure 8). Bidirectional frames therefore provide

the highest amount of compression, but may not be suitable for all applications, since they require

out of sequence transmission which leads to latency [ISO11172].

Figure 9 shows the complete coding loop for the MPEG algorithm [PaSm93,PaZa94]. Note that

the feedback loop is only needed for P- and B-frames.
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Figure 9: Main MPEG coding loop



MPEG-1 Video Compression

- 16 -

3.3 Bitstream Hierarchy

An MPEG video is represented by a layered bitstream. The top layer is called sequence. A movie

is encapsulated by sequence delimiters. It always starts with a sequence header which contains

essential information such as picture size, picture rate and bit rate. Eventually it ends with a 32bit

sequence end code.

The header is followed by any number ofGroup of Pictures (GOP). A GOP provides random

access, since it is the smallest coding unit which under certain circumstances can be independently

decoded. Due to the variety of picture types, the design of a GOP is constrained by the following

properties [ISO11172]:

● Property 1. A group of pictures, in bitstream order must start with an I-frame and may be

followed by any number of I-,P- or B-frames in any order.

● Property 2. It must begin, in display order, with an I- or B-frame and must end with an I- or

P- frame. The smallest GOP might consist of only a single I- picture, whereas the upper

bound is unlimited.

● Property 3. It always begins with a GOP-header and either ends at the next GOP-header or

at the end of sequence.

Note that in case a GOP starts with a B-frame in display order, it cannot be decoded indepen-

dently, since it requires a reference frame of the previous GOP.

In general, a GOP visualizes the dependencies between the several types of frames within a GOP

or even across their borders. As mentioned before, there are two different picture orderings: Dis-

play order and bitstream order. The latter has to be different, since for interpolation the decoder

first has to know about the two reference frames, before he might evaluate the macroblocks within

a B-frame slice. A simple GOP example is displayed in Figure 10:
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Note that in bitstream order frames can only refer to past reference frames. In case the first block

of B-frames is interpolated, it depends on the P-frame of the previous GOP. The MPEG standard

provides a closed GOP flag. It denotes whether the GOP is open or closed. In the latter case a GOP

can be decoded without any references to previous groups [ISO11172]. With respect to the trans-

mission of MPEG sequences over packet-switched networks, the closed GOP flag could slightly

increase the fault tolerance of the bitstream.

Figure 11 shows the difference between bitstream order and display order. Frames usually carry

temporal references which denote the display order. In general bidirectional frames change places

with reference frames. The very first GOP varies from the subsequent, since two references are

needed in order to decode the first block of B-frames. However, the I-frameI-frameP-frame at the

beginning is kind of an initialization and therefore usually is not displayed at all.
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Figure 10: MPEG Group of Pictures (GOP) in bitstream order
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I P B B P B B I B B P B B I B B P B B

I B B P B B P B B I B B P B B I B B P

Bitstream Order

Display Order

Figure 11: Bitstream order vs. display order
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4 Prioritized Encoding of MPEG Sequences

4.1 Motivation

Priority Encoding Transmission (PET) [AlLu94] is designed to be an independent interface

between a packet-switched network and any scalable application. The latter has to provide a prior-

ity scheme according to which PET is able to assign redundancy. In this chapter we introduce a

scenario which should demonstrate the feasibility of our design considerations and describe simu-

lation results with MPEG sequences. The focus of this work is on the recovery of information sent

over a lossy medium. It has to be pointed out once again that PET does not stick to this proposed

application and is aimed at coping with any scalable data.

From an information-theoretic point of view MPEG video compression represents a source coding

scheme. Even though PET does not provide error correction, it can be considered as a kind of

channel encoding. Compared to systems based on Forward Error Correction (FEC) codes, PET

uses less redundancy overall, since the redundancy is unevenly distributed. Concerning the net-

work, a single channel reservation is proposed. In case the data is already layered, it should be

multiplexed onto a single channel.
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Due to the rapid development of multimedia applications, there is an increasing need for video

compression techniques. So far, most applications use Motion JPEG, which is considered to be

more fault tolerant. Only by introducing P and B-frames, MPEG provides higher compression

rates than JPEG, but at the same time makes the bitstream even more vulnerable to losses:

Figure 13 displays a MPEG-1 bitstream affected by lost packets. Note how the image is mixed up

from several frames. Macroblocks are not correctly replaced or use the error term in combination

with an affected reference frame. Usually affected macroblocks might only vary slightly from the

original, but their blocky character distorts the image.

base layer
enhancement layers

MUX
Packets

Figure 12: Multiplexing of layered data onto a single channel

Figure 13: Losses affecting MPEG
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The MPEG video compression standard is considered not to be suited for transmission over packet

networks, since it was designed for storage of video. However, protected by a PET system require-

ments for transmission over a packet-switched networks could be met by increasing the bitstreams

fault tolerance.

Video traffic is bursty by nature and therefore affects the stability of packet networks. In order to

cope with losses there is an increasing demand for scalable video. Scalable extensions have been

added to the succeeding MPEG-2 standard [ISO13818,ChA94], but do not promise to be very

effective. MPEG-1 recently has become very popular and many software as well as hardware cod-

ers are emerging. It does not provide scalability on a picture quality basis, but the dependencies

between different types of frames provide a priority scheme for PET. Since our goal was a feasi-

bility proof of PET as an independent interface, we did not intend to change any coding tech-

niques, such as customizing MPEG encoders. Even though the granularity in this case might be

limited to a frame basis, MPEG-1 provides a good basis for a preliminary PET simulation.

4.2 Segmentation of MPEG Sequences

A MPEG video sequence is composed of sequence headers and groups of pictures (GOP). Header

information usually has to be especially protected. It might be transmitted only once at the very

beginning and end of a sequence. It not only identifies a bitstream as a MPEG movie, but also con-

tains the following essential parameters set by the encoder:

● Horizontal/Vertical Picture Size

● Pel Aspect Ratio

● Picture Rate

● Bit Rate

● Constrained Parameter Flag.

As shown in Figure 10 losses within an I-frame at least affect a whole GOP and in most cases as

well the first block of B-frames of the succeeding GOP. Therefore it is obvious that within a GOP

an I-frame has to have highest priority. This segment should also encompass GOP header informa-
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tion, since without the corresponding I-frame it is of no use either. B-frames require an additional

reference frame in order to be correctly decoded. This reference usually is a P-frame which itself

is dependent on the previous I-frame. Consequently P-frames have to have higher priority than B-

frames.

A possible way to encode MPEG is now to prioritize over a whole GOP and map it onto a PET-

message. At the very beginning the message might also contain sequence header data. This solu-

tion has a certain drawback, since several frames have to be buffered first and therefore latency is

added to the system. Hence in this version it might not be suited for interactive video conferencing

applications, but several other scenarios such as broadcasting of conferences and Video-on-

demand systems should be taken into consideration. Nevertheless in case of a small number of

frames in a GOP, it might also be applicable for interactive usage.

4.2.1 Redundancy distribution

Let us consider a typical MPEG-GOP frame pattern:

 I B B P B B

Regarding a picture size of 320x240 pixels, Table3 shows representative frame sizes:

Priorities are expressed by fraction of packets needed to recover the original information. Accord-

ing to the above considerations, the I-frame might be encoded in a way that it can be recovered

from any 60% of the total number of packets sent, the P-frame from any 80% and the two blocks

of B-frames from any 95% of the packets. The very first message includes a fourth priority seg-

ment, which contains important header data. It might be encoded highly redundantly, so it can be

Table 3:Typical frame sizes

Frame Type Size in Bytes
Occurences
 in GOP

Total Size
Fraction
Needed

Encoding

I-frame 12,000 1 12,000 60% 20,000

P-frame 4,800 1 4,800 80% 6,000

B-frame 2,850 4 11,400 95% 12,000

Total 6 28,200 38,000



Prioritized Encoding of MPEG Sequences

- 23 -

reconstructed from any 10% of the packets.

Figure 14 displays this multilevel encoding idea. Note how the total overhead is unevenly distrib-

uted over the data. Although the original message is 74.21% the length of the total encoding, 60%,

80% and 95% of the encoding is sufficient to recover the I-, P- and B-frames respectively.

4.2.2 Priority Table Setup

The priority table is to be set up by the application. It should be structured as simple as possible in

order to simplify the communication process with the PET interface.

There are three major features, the interface has to know about:

● Number of priority segments

x 1.67

x 1.25

x 1.05

x 1.35

GOP pattern: IBBPBB

Figure 14: Multilevel redundancy distribution
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● Length of each segment

● Priority of each segment

A fixed number of 10 segments per message was considered to be enough for most MPEG groups

of pictures. Each segment consists of either only header information, a single frame or a block of

frames.

Priorities are inserted by fraction of packets needed to recover, multiplied by 1000. Consequently

750 corresponds to 75%. Returning to our example pattern, the priority table looks as follows:

Note that the groups of two consecutive B-frames form one priority segment. In total 20 values are

passed in a zig-zag ordering (arrow) to the interface, even though in this case only eight are

needed.

With respect to mapping the group of pictures onto packets according to the priority table, we con-

sider the following artificial scenario:

- Packet size 190 words (380 bytes)

- Total number of packets sent: 100

Packets might be considered to be UDP packets on top of an IP protocol. The total amount of

packets sent is determined by the quotient of the total encoding of 38,000 bytes (Table3) and the

packet size. In order to meet the priorities specified in Table4, the I-frame segment has to be

encoded such that it can be reconstructed by any 60 packets (60% of the total amount of packets

sent). Therefore the segments have to be divided into blocks of size 60 (polynomials of degree 59)

for the I-frame, 80, and 95 for the other segments respectively. Figure 15 shows the striping proce-

dure for the given example and the partitioning of. Note that this works exactly only for the given

Table 4:Priority table format

Segment
 Size

12,000 5,700 4,800 5,700 Not
used

Not
used

Not
used

Not
used

Not
used

Not
used

Priority 600 950 800 950 / / / / / /
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values in this example. In Section 4.5.1 we introduce a packetization algorithm that will work for

any given values. For the time being we do not pay attention to the fact, how the destination

knows about the table.

4.3 Software Architecture

Since Priority Encoding Transmission is designed to be compatible with any scalable application

or type of network, it should be implemented as an easily exchangeable interface. We introduce an

architecture in which the interface consists of two modules: An application module handles the

video data and passes a whole message at a time together with the priority table to a PET coding

module. The latter creates the corresponding amount of packets needed and maps the message. On

the decoding side, it collects the transmitted packets, recovers the information and passes the

video data to the application module (Figure 16).

60 words ... ... ... ...

...

100 blocks 30 blocks 30 blocks 30 blocks

I B B P B B

...

1 1 1 11

... ...... 1 1 11

... ... ...

100 words 30 words 30 words 30 words

100 Packets

... ... ...... 1 1 11

95 words 80 words 95 words

Figure 15: Mapping of group of pictures onto packets
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Figure 16: Software architecture
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The application module consists of the following routines:

- MPEG_driver()

- Parse_mpeg()

- Pet_calc()

MPEG_driver() identifies the bitstream as an MPEG sequence and provides the user interface.

The user might initialize the priority settings for the different frame types and header information.

The size of the priority table could also be customized. According to the picture size and GOP

length it allocates memory space for the message buffer. All other routines are invoked by

MPEG_driver().

Parse_mpeg() parses the hierarchical bitstream, while reading a GOP into the message buffer. It

decodes the different priority types and allocates a linked list that stores relevant data such as size,

position in the buffer and number of frames about each segment.

After a message is buffered MPEG_driver() callsPet_calc(). According to the user specified pri-

orities it fills in the priority table as shown earlier in Table4. It also has to make sure that the mes-

sage is word aligned, since this is the basic processing unit of the coding routines. Therefore in

case a segment boundary is not word aligned it performs a zero byte stuffing.

The message and table are then passed to the PET coding module that encompasses the following

routines:

- Prio_calc()

- M_encode()

- M_create()/M_delete()

- M_packet()

- M_retrieve()

With respect to Figure 15 a kind of “internal priority table” has to be determined by Prio_calc().

Its input is the user-specified priority table, packet size and message size. The “internal table” has
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to have the size of a packet. Returning to the previous example its first value then would be 60, the

size of the first message block and degree of the corresponding polynomial. How to fit in these

values exactly into a packet and how many packets to send for a message will be discussed later

on.

M_encode() then performs the actual encoding according to the internal table over the Galois field

GF[ ]. It evaluates the polynomials and determines the offset. Up to now we are assuming

packet sizes of a couple of a hundred bytes, so we transmit the priority table uncoded with each

packet. Additionally the Galois field element and offset contribute to the total overhead (Figure 5).

These are all the routines needed on the encoding side. From the destination point of view the

focus is on the recovery aspect:

M_create() allocates memory for the message to be reconstructed and initializes the interpolation

routines. This space later will be erased by invokingM_delete().

Each arriving packet is passed toM_packet(). Depending on the fraction of packets received it

tries to regain the original information by interpolating the polynomials. In the current version the

granularity of recovering is limited to priority segments, that is at least 60% of all packets are

needed to recover some useful data.

Finally M_retrieve() compares the amount of received packets with the priority table and accord-

ingly erases undecodable data. For simulation reasons it also calls another routine,

create_dummy_b(), which replaces lost frames with dummy B-frames in order to keep the same

number of images in the bitstream.

4.4 Simulation Layout

In the public domain software area currently two MPEG players are available:

2
16

1+
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● MPEG-1 player (University of California at Berkeley)

● MPEG-2 player (MPEG Software Simulation Group)

The Berkeley player probably is the better known, since it has become the default tool for Mosaic.

Despite its popularity it has certain drawbacks. The current version does not provide variable

frame rate control. Therefore the display speed is not controllable, a feature that may be of signifi-

cance in case the software decoding routines can not catch up with the ideal frame rate specified in

the standard. Even more striking is that its decoding routines are not fault tolerant. Usually a seg-

mentation fault occurs after the first error in the bitstream.

In June 1994 the MPEG Software Simulation Group has released version 1.1 of its MPEG-2

encoding and decoding routines. MPEG-2 by definition is forward compatible with MPEG-1.

Consequently the player could also be used for decoding MPEG-1 bitstreams. In our simulation

we decided to use this player to decode MPEG-1 sequences. The development focussed on an

implementation close to the standard [MP2/94]. Therefore the performance of its decoding rou-

tines might be slightly worse than in the case of the Berkeley player, but it turned out to be much

more fault tolerant. Additionally it provides frame rate control. We have customized its options in

order to provide easy modification of geometry parameters and of user specified titles. At the

moment it might not totally comply with the MPEG-2 standard, since a couple of features are still

missing, but it definitely meets our requirements as a PET-MPEG simulation tool.

The simulation displays three MPEG movies simultaneously together with a small animation

using the GNUPLOT plotting program. On the upper left side the original MPEG sequence is dis-

played. To the right the window titled “PET DEMO” shows the same movie. It has been pack-

etized according to the PET scheme and packets were randomly thrown away in bursts in order to

simulate a lossy medium. The packet size was set to 2000 bytes plus the priority header of 40

bytes (20 short integers). A third player simulates transmission of packets of the same size without

protection. Although the simulated losses for the PET protected movie are much higher than in the

MPEG sequence without protection, its performance is much better. There is absolutely no varia-

tion as far as picture resolution is concerned, whereas in the other case the picture is displayed

fragmented, sometimes for up to 30 to 40 frames in a row. Especially in case reference frames are

affected, sometimes a couple of rows of macroblocks are replaced by macroblocks of a picture
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displayed 20 frames ago. In case the MPEG + PET sequence has to sustain extremely high losses,

the PET system decreases the frame rate. The effects of dropping frames depend on the GOP pat-

tern. In case of a large number of consecutive B-frames in a row, the picture becomes jerky,

whereas for example two dropped B-frames between to reference frames can hardly be realized

when displayed at 20 to 30 frames per second.

Figure 17: Simulation layout
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In the statistics window there are two boxes labeled “bytes sent”. Their value is updated with

every group of pictures, since packets are coded on a GOP basis. The lower, red box shows the

current message size in bytes, whereas the upper, blue box represents the total amount of encod-

ing. Consequently the gap between these boxes is a measurement for the redundancy spent per

message. The two boxes to the right refer to the destination side. We distinguish between bytes

received and bytes recovered. The latter corresponds to the lower, red box. In case no frames were

lost, both red boxes should have the same level. The difference between the blue boxes then repre-

sents the simulated losses.

In our simulation, an exemplary MPEG video stream is used consisting of 1210 images of the ani-

mation Red’s Nightmare. The uncompressed image size was 320x240x24 which adds up to 265

Mbytes for the whole animation. The compressed MPEG equivalent encompasses 3.65 Mbytes

which results in an overall compression ratio of 1:76 or a compression rate of 1.3%. Frame spe-

cific information is given in Table5:

Note that in the worst case P-frames and B-frames might be even bigger than intra coded pictures

(I-frames).

The sequence is partitioned into groups of pictures (GOP) of length 30 frames each. The MPEG

standard aims at a frame rate of 30 frames per second, thus a GOP would correspond to a second

in the movie. Its frame pattern in the two different orderings is shown in Figure 18. Note that a lost

I-frame affects at least 38 other frames, 29 of which are within the same GOP, whereas the first

segment of 9 B-frames from the succeeding GOP can not be correctly decoded as well (Figure 10).

Table 5:Red’s Nightmare: Frame specific information

Type Occurences
compression
rate

average
size (bytes)

max. size min. size

I-frames 41 5.54% 12,546 26,460 7,733

P-frames 81 3.52% 8,086 27,813 495

B-frames 1,088 0.98% 2,252 17,875 290
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Transmitting groups of pictures of this size definitely requires some kind of protection. On the

other hand in the current version we loose 27 B-frames whenever more than 10% of the packets

per message are lost (Table6). In a future version which is currently under development, the

amount of B-frames recovered gradually increases with the amount of received data.

The difference between the orderings becomes very visible in the simulation, since in case all

frames but the I-frame are lost the dummy B-frames are displayed first. This gives the impression

that the two sequences are not synchronized anymore which is obviously not the case.

Encoding one GOP at a time Red’s Nightmare is split into 41 messages. Due to the variation in

frames sizes, GOPs range from 20,150 bytes up to 239,436 bytes. Assuming a frame rate of 30

frames per second the latter value provides the peak transmission rate of 1.82 Mbits/sec, which is

still under the proposed MPEG-1 upper bound of 1.85 Mbits/sec. The very first and last message

additionally contain some header information. However, they encompass less frames. Accordingly

a frame buffer of 250,000 bytes has been allocated.

With respect to the GOP pattern, a message usually is divided into six priority segments:

For sequence header information an additional segment might be added. Therefore the earlier pro-

IBBBBBBBBBPBBBBBBBBBPBBBBBBBBB

BBBBBBBBBIBBBBBBBBBPBBBBBBBBBP

bitstream order

display order

Figure 18: Red’s Nightmare GOP pattern

I 9xB P 9xB P 9xB
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posed priority header consisting of 20 short integer values meets our requirements. However, the

values of the priority table were slightly adjusted (Table6).

4.5 Implementation Details

This subsection provides an basic overview over some details implemented in the simulation. It

addresses the problem of coping with varying messages sizes for a given packet size and describes

a simulation specific function that inserts dummy B-frames in the recovered bitstream. The latter

feature is essential in order to display the original MPEG movie and the MPEG + PET sequence

simultaneously.

4.5.1  Packetization Algorithm

Earlier in this chapter (Figure 15) we described the mapping of a group of pictures (GOP) onto

packets of size 380 bytes each. This example did work exactly with the given values, but it is clear

that for a varying GOP length and different priority distributions the segments not automatically fit

into a given packet size. We solve this problem by introducing a simple packetization algorithm.

The following values are specified by the user:

- LM: Length of message

- PS: Packet size

- : Length of priority segment i

- %i: Priority of segment i

Table 6:Red’s Nightmare: Priority distribution

Segment Type Priority

Sequence delimiters 100

GOP header & I-frame 600

P-frames 750

Block of B-frames 900

LMi
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Then we can calculate a preliminary approximation for the total length of encoding as follows:

Since it is only a preliminary value, the length of encoding is represented as a floating-point num-

ber. Knowing LE and the packet size PS we calculate the total number of packets needed:

Now for each segment i we determine the number of blocks with the corresponding priority:

Note that  is truncated to the floor value since otherwise the priority of the segment could not

be guaranteed. In case the block length  is smaller than one, it has to be set equal to

one.

The quotient of the segment length and  denotes the size of each block:

It is very unlikely that for the first approximation the segment size could exactly be partitioned

into chunks of the block size. Therefore PET usually has to align block sizes (Figure 19).
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Considering a sample segment consisting of 11 words (Figure 19) the number of blocks was calcu-

lated to three with block size three each. Consequently there are two words left which are added to

the other blocks by increasing their size by one.

In general the number of expanded blocks NB2 is calculated as follows:

NB2 denotes the number of blocks with block size block+1 and NB1 refers to the original block

size respectively.

By increasing the block length (degree of the polynomial) the segment does not match its priority

anymore. Accordingly the first try for the total number of packets needed has to be updated:

Now we check whether we can reduce the redundancy by increasing the number of blocks within

Priority Segment with 3 Blocks

Block

Block + 1

Figure 19: Block size alignment

NB2i LMi blocki NBi×( )–=

NB1i NBi NB2i–=

NPmax max NPi max
blocki 1+( )

%i
--------------------------------= =
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a segment. This is only possible in case there are some unused words in the packet left:

Then we take the segment i which causes the highest amount of packets and increase the number

of blocks by one. Thereby we decrease the size of at least some blocks. In case we manage to

reduce all block sizes within a single segment, the number of required packets is consequently

reduced as well. If the block size is already equal to one, we cannot lower the number of packets

sent, but we recalculate the succeeding segments in order to exploit the total packet length by

reentering in a previous processing step:

This loop is executed unless the size of the packet is exceeded. Thereby we do not reduce redun-

dancy anymore, but the fault tolerance will be slightly increased. That is the effective priority of

each segment is equal or higher than specified by the user.

4.5.2 Creating “Dummy” Bidir ectional Frames

In order to keep the number of frames in the simulated bitstream the same as in the original MPEG

file, a so called “dummy” frame replaces each lost frame. It is necessary to copy the last correctly

decoded frame, which in this case could either be an intra or a predictive coded frame. Bidirec-

tional frames consume the least amount of data and therefore were chosen as default frame type.

With respect to the software architecture, M_retrieve() detects losses in the recovered data and

then calls a function create_dummy_b() that builds up the frame.

In a MPEG-1 bitstream the sequence header contains pictures size information.

Create_dummy_b() needs the horizontal and vertical number of pixels in order to allocate memory

and to produce the corresponding amount of macroblocks. We also assume that a slice corre-

sponds to a complete line in the image. Since a macroblock consists of 16x16 pixels, the above

NBi
i

∑ PS<

NB2i LMi blocki ++NBi( )×( )–=

NB1i NBi NB2i–=
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values can easily be calculated:

Initially the frame has to be marked as a bidirectional type on the picture layer, by inserting the

picture_start_code, temporal_reference, picture_coding_type and frame buffer delay. They are fol-

lowed on the slice layer by an increasing 32 bit slice_start_code, the quantizer_scale and an

extra_bit_slice:

number of slices in frame vertical picture size (in pixels)
16

-------------------------------------------------------------------------=

number of macroblocks in slice horizontal picture size (in pixels)
16

-------------------------------------------------------------------------------=

picture_start_code
temporal_reference
picture_coding_type
vbv_delay

slice_start_code       0000 0101
quantizer_scale               01000
extra_bit_slice                        0

macroblock_address_increment      1
macroblock_type                         010
motion_horizontal_backward_code 1
motion_vertical_backward_code     1

Picture Layer

Slice Layer

Macroblock Layer

macroblock_address_increment      1
macroblock_type                         010
motion_horizontal_backward_code 1
motion_vertical_backward_code     1

Macroblock Layer

Slice Layer

Macroblock Layer

slice_start_code       0000 0102

V
L

C
V

L
C

Figure 20: Design of dummy B-frames
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Note that on the macroblock layer values are variable length coded and therefore have to be

looked up in special tables defined in the standard [ISO11172]. As macroblock_type the

macroblock_motion_backward pattern was selected, since the goal was to copy the previous refer-

ence frame. Accordingly the motion codes are set to zero, since no motion vectors appear in the

bitstream. These bit patterns are then byte aligned and repeatingly inserted until the whole image

is created.

Note that “frame stuffing” does not work simply by duplicating predictive frames. They always

refer to the previous reference frame which could be the P-frame itself. Consequently it would dis-

play the difference to itself which obviously does not lead to the desired results.

4.6 Statistical Analysis

We conducted a series of experiments in order to investigate the performance of our coding

scheme. The simulation was tested on a SPARC 10 Quad (4 processors). We were able to run the

three concurrent images at a speed of six frames per second. Consequently a message was updated

every five seconds. In the previous chapter we introduced a MPEG sequence according to which

we allocated resources. Statistics about a sequence with a different GOP pattern are presented

later. From a network point of view we investigated the simulated loss patterns and discussed

redundancy aspects.

4.6.1 Redundancy

Assuming a packet size of 2000 bytes plus 40 bytes priority header, we randomly select a message

of the Red’s Nightmare simulation. Function Prio_calc() after four iterations returned the follow-

ing values:
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Note that the effective priorities match pretty well the values specified earlier in Table6. Block

specific values were calculated according to the packetization algorithm. The maximum degree of

all polynomials in the sample message is 41, the length of the block. From a computational point

of view this is an acceptable value. In general the computational effort depends linearly on the

message to packet size ratio. However, in the sample sequence PET has to cope with polynomial

degrees of up to 126. With respect to a coding/decoding software implementation this may add

unacceptable latency. A new PET system based on Cauchy matrices promises to reduce signifi-

cantly the computing time.

For the current message a total of 47 packets were encoded resulting in a total encoding length of

95,880 bytes. Regarding the original GOP size of 73,868 bytes this causes a redundancy of 29.8%.

Combining all 41 messages the movie is encoded into 2,280 packets. Table8 compares the total

encoding with other relevant figures:

Table 7:Statistical analysis of sample message

Priority Segment I 9xB P 9xB P 9xB

Number of blocks 206 170 121 194 122 187

Block length 27 41 34 41 34 41

Number of blocks
with block length
block +1

69 103 71 92 86 100

Number of blocks
with block length
block

137 67 50 102 36 87

Number of packets 47 47 47 47 47 47

Effective priority
(x1000)

596 894 745 894 745 894

Table 8:Comparison of overall redundancy

MPEG sequence Encoding MJPEG equivalent

3,619,896 bytes 4,651,200 bytes 15,180,660 bytes
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The quotient of the total encoding and the original MPEG sequence determines the overall redun-

dancy of 28.49%. Taking into account that it enables the I-frame to sustain losses of up to 40%, the

P-frames of up to 25% and the B-frames of up to 10% of the packets, this should represent an

acceptable overhead. The Motion JPEG equivalent still would be 3.26 times higher. It was calcu-

lated using the average I-frame size of Table 5.

The redundancy obviously is also dependent on the packet size. In the current version the priority

header is transmitted with each and every packet. Hence it contributes more overhead in the case

of small packets. On the other hand, if the packet size is too big, the priority distribution can not

exactly be mapped onto the packets. For example the PET interface on the decoding side has to be

able to recover sequence header information from any 10% of the received packets (Table 6).

Therefore at least ten packets have to be sent which may result in an enormous overhead (the max-

imum protection is achieved by transmitting the total sequence header with each packet). As

shown in Figure 21 our choice of packets is close to the minimum.

With respect to smaller packet sizes a different scenario proposes an encoded transmission of the

Figure 21: Redundancy vs. packet size

28.45%
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priority table. An additional byte might be added representing the amount of packets needed in

order to reconstruct the priority table. It is obvious that this extra priority has to be higher than the

highest priority defined in the table.

4.6.2 Simulated Losses

As mentioned above we randomly threw away packets on a message basis in order to simulate a

lossy medium. The algorithm was designed to simulate both uniformly distributed and burst

errors. A peak loss of 41% packets lost per message has been detected. However, the average loss

was 14%.

The presented loss pattern matches our design goals. It covers the total range from no disturbance

(<10%) up to the loss of a total group of pictures (>40%). In the latter case the system has to make

sure that the first B block of the succeeding GOP is replaced by dummy B-frames.

From the total amount of 2,280 packets sent we received 1,961. Figure 22 shows which frames

average loss

peak loss: 40.82%

Figure 22: Red’s Nightmare: Packet loss per message
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have been affected by these losses. According to our redundancy distribution almost no reference

pictures (I & P) have been lost, which was the main goal of the encoding process. The big gap of

B-frames is a GOP pattern specific problem. In GOPs with less frames we would observe less

frames missing. This is also the reason why the recovered movie tends to be a little jerky. Better

results were obtained with a different motion picture.

The redundancy spent per message together with the simulated losses is shown in Figure 24. The

figure displays three graphs versus the messages: The original MPEG file, the encoded bitstream

and the received amount of data. Figure 25 displays the same data in terms of packets. It takes 142

packets to encode the biggest message. This corresponds to a total of 289,680 bytes or 2.21 Mbps.

Note that since a GOP consists of 30 frames each the values directly correspond to the bandwidth

consumed by the transmission. The difference between the MPEG and the encoding line repre-

sents the added redundancy.

You may observe that the line representing the received data crosses only three times the MPEG

original. It would be the wrong conclusion to assume that consequently the original unencoded

41 40

1088

369

81 76

Figure 23: Losses affecting different frame types
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MPEG bitstream would have been affected only three times by these losses. As shown in Figure 1,

in the introduction, a bitstream without redundant protection would have been affected as well.

Encoding
Received data

MPEG

Figure 24: Red’s Nightmare: Comparison of MPEG, encoding and received data

Figure 25: Red’s Nightmare: Packets sent/received

Packets sent

Packets received



Prioritized Encoding of MPEG Sequences

- 44 -

For comparison, the manipulated sequence without PET protection shows MPEGs susceptibility

to errors in the bitstream. Red’s Nightmare is split into packets of size 2,000 bytes each. They

were then randomly eliminated in the same way as in the PET demonstration. However, the packet

loss probability was much less. Since we did not packetize them on a GOP basis we selected a

window size of 50 packets. This value approximately corresponds to the average amount of pack-

ets sent per message in the PET case.

In total, the sequence was partitioned into 1,810 packets of which 1,663 stayed in the remaining

bitstream.

Even though the errors were small compared to the values of the PET encoded scenario, the pic-

ture quality is much worse. The Berkeley player even crashes completely after 38 frames. Whole

lines of macroblocks are missing or display the difference to a disrupted reference frame. It has to

be pointed out that a different loss pattern with the same average losses might disrupt the sequence

even more depending on the amount of affected reference frames, while this would have no effect

on the PET protected sequence.

Peak loss: 16%

Average loss: ~8%

Figure 26: Simulated losses in Red’s Nightmare without PET
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4.6.3 A Different GOP Pattern

The choice of Red’s Nightmare for the current PET scheme has a certain drawback, since a low

priority segment consists of 9 consecutive B-frames (Figure 18). As mentioned in chapter 4.4 27

frames have to be substituted whenever the losses per message exceed 10%.

We introduce a different sequence containing 750 frames of an ice hockey match. Its GOP pattern

suits our purposes pretty well:

IBBPBBPBBPBBPBB

In this case even with losses of up to 25% at least every third frame is updated. The picture

becomes less jerky and the amount of recovered information is significantly increased.

The Appendix contains related statistics about the hockey sequence. It also shows a comparison of

both motion pictures.
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5 Conclusion

We have presented a hierarchical encoding scheme based on Priority Encoding Transmission

(PET). The feasibility of this scheme has been proven by introducing prioritized MPEG-1 bit-

streams. Low quality video is achieved by receiving only reference frames, whereas quality is

improved by the reception of more inter frames, representing the less critical data. Due to multi-

level redundancy assignment they were primarily affected by simulated packet loss. It has been

shown that no matter which subset of packets is extracted, the information can be recovered in pri-

ority order (Figure 23). Packetization according to a priority table has been described, causing a

modest amount of redundancy compared to scenarios based on traditional Forward Error Correc-

tion (FEC).

Future research will be devoted to the enhancement of the current PET scheme. Apart from the

idea described in chapter 2, faster software algorithms based on Cauchy matrices already exist

which show promising results. On a SPARC 10, throughput rates of 3 Mbps and more have been

achieved. In addition to speed aspects, the focus is on graceful degradation and latency. Unlike in

the version used in our simulation, losses slightly higher than the redundancy specified by the

application do not lead to the discarding of a whole segment. Consequently parts of the segment

can still be recovered. A continuous PET version is also under development, which aims at reduc-

ing latency due to frame buffering. Smaller messages could also reduce computational complexity

depending on the message to packet size ratio. This effort supports compatibility for ATM net-

works.

The search is open for the integration of other scalable applications. A video codec recently has
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been released by Taubman/Zakhor [TaZa93]. It possesses multi-resolution and multi-rate proper-

ties which could nicely be integrated in a PET scenario. Consequently, granularity would be

shifted from a frame basis onto a picture quality layer.

While protocol suits improve channel allocation strategies and network performance, PET, inte-

grated in gigabit testbeds, could enhance existing multimedia applications. Alternative ways of

realizing the approach and a generic prototype are currently under development.
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APPENDIX

Table 9:Comparison of Red’s Nightmare and Ice Hockey sequence

Red’s Nightmare Ice Hockey

GOP pattern IBBBBBBBBBPBBBBBBBBBPBBBBBBBBB IBBPBBPBBPBBPBB

Sequence Size 3,619,896 5,015,093

picture size 320x240 352x240

packet size 2,000 + 40 for PET header 2,000 + 40 for PET header

total number of frames 1,210 750

avg. I frame size 12,546 12,543

avg. P frame size 8,086 10,411

avg. B frame size 2,252 4,593

total compression rate 1.30% of uncompressed 24 bit image 2.64% of uncompressed 24 bit image

messages sent 41 51

total encoding 4,651,200 6,803,400

transmitted redundancy 28.49% 35.66%

packets sent/received 2,280/1,961 3,335/2,963

I frames sent/recovered 41/40 51/50

P frames sent/recovered 81/76 200/192

B frames sent/recovered 1,088/369 499/230

Motion JPEG eqivalent ~15,180,660 ~9,407,250
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Figure 27: Ice Hockey: Comparison of MPEG,
encoding and received data

MPEG
Received data

Encoding

Figure 28: Ice Hockey: Packets sent/received

Packets sent

Packets received
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Figure 29: Ice Hockey: Packet loss per message

Average loss: 11.15%

Peak loss: 41.79%

Figure 30: Simulated losses in Ice Hockey without PET

Peak loss: 16%

Average loss: 7.68%


