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Abstract
motivation: Advances in molecular biological, analytical
and computational technologies are enabling us to sys-
tematically investigate the complex molecular processes
underlying biological systems. In particular, using high-
throughput gene expression assays, we are able to measure
the output of the gene regulatory network. We aim here to
review datamining and modeling approaches for concep-
tualizing and unraveling the functional relationships im-
plicit in these datasets. Clustering of co-expression pro-
files allows us to infer shared regulatory inputs and func-
tional pathways. We discuss various aspects of clustering,
ranging from distance measures to clustering algorithms
and multiple-cluster memberships. More advanced anal-
ysis aims to infer causal connections between genes di-
rectly, i.e. who is regulating whom and how. We discuss
several approaches to the problem of reverse engineer-
ing of genetic networks, from discrete Boolean networks,
to continuous linear and non-linear models. We conclude
that the combination of predictive modeling with system-
atic experimental verification will be required to gain a
deeper insight into living organisms, therapeutic targeting
and bioengineering.
Contact: patrik@cs.unm.edu; sliang@mail.arc.nasa.gov;
rsomogyi@incyte.com

Introduction
Novel, high-throughput technologies are opening global
perspectives of living organisms on the molecular level.
Together with a vast experimental literature on biomolec-
ular processes, these data are now providing us with the
challenge of multifunctionality, implying regulatory net-
works as opposed to isolated, linear pathways of causality
(Szallasi, 1999). Questions which have traditionally been
posed in the singular are now being addressed in the plu-
ral.

• What are the functions of this gene?

• Which genes regulate this gene?

• Which genes are responsible for this disease?

• Which drugs will treat this disease?

Beginning with gene sequencing, we are identifying the
structure of thousands of genes, and a variety of structural
and regulatory features that provide functional clues.
However, only the molecular machinery of the cell is
able to consistently interpret the sequence information
into the functions which determine the complex genetic
and biochemical networks that define the behavior of an
organism. Since we ultimately seek understanding of the
regulatory skeleton of these networks, we are also taking
steps to monitor the molecular activities on a global level
to reflect the effective functional state of a biological
system. Several technologies, ranging from hybridization
microarrays, automated RTPCR, to two-dimensional gel
electrophoresis and antibody arrays, allow us to assay
RNA and protein expression profiles with differing levels
of precision and depth.

But how should we organize this process of activity-
data acquisition? How should we interpret these results
to enhance our understanding of living organisms, and
identify therapeutic targets and critical processes for
bioengineering? Here it is crucial to find the proper
abstractions around which to build modeling frameworks
and data analysis tools. These abstractions must be
centered on two important principles:

1. Genetic information flow: Defining the mapping
from sequence space to functional space.
The genome contains the information for constructing the
complex molecular features of an organism, as reflected
in the process of development. In information terms, the
complexity of the fully developed organism is contained
in that of the genome. But which processes link these two
types of information, in other words, what are the codes
that translate sequence into structure and function? We
need to represent these codes in a form understandable
to us, so that we may apply them to model building and
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prediction. We therefore seek methods that allow us to
extract these codes from gene sequence and activity data.

2. Complex dynamic systems: From states to
trajectories to attractors.
When addressing biological function, we usually refer
to functions in time, i.e. causality and dynamics. On a
molecular level, function is manifested in the behavior
of complex networks. The dynamics of these networks
resemble trajectories of state transitions—this is what we
are monitoring when conducting temporal gene expression
surveys. The concept of attractors is what really lends
meaning to these trajectories, i.e. the attractors are the
high-dimensional dynamic molecular representations of
stable phenotypic structures such as differentiated cells
and tissues, either healthy or diseased (Kauffman, 1993;
Somogyi and Sniegoski, 1996). Our goal is to understand
the dynamics to the point where we can predict the
attractor of a molecular network, and know enough about
the network architecture to direct these networks to
attractors of choice, e.g. from a cancerous cell type to a
benign cell type, from degeneration to regeneration etc.

The goal of this review is to discuss principles of genetic
network organization, and computational methods for ex-
tracting network architectures from experimental data. In
Section A conceptual approach to complex network dy-
namics we will present a brief introduction to Boolean
Networks, as a useful conceptual framework to think about
the dynamic behavior of large, interacting regulatory net-
works. Section Inference of regulation through cluster-
ing of gene expression data describes methods and ap-
plications for the clustering of genes based on their ex-
pression patterns. In Section Modeling methodologies,
we give an overview of the different modeling method-
ologies that may be used to model regulatory networks.
Finally, Section Gene network inference: reverse engi-
neering shows how genetic regulatory networks may be
inferred directly from large-scale gene expression data, in-
cluding estimates of how much data is needed to do so.

A conceptual approach to complex network
dynamics
In higher metazoa, each gene or protein is estimated on
average to interact with four to eight other genes (Arnone
and Davidson, 1997), and to be involved in 10 biological
functions (Miklos and Rubin, 1996). The global gene
expression pattern is, therefore, the result of the collective
behavior of individual regulatory pathways. In such highly
interconnected cellular signaling networks, gene function
depends on its cellular context; thus understanding the
network as a whole is essential. However, dynamic
systems with large numbers of variables present a difficult
mathematical problem.

One way to make progress in understanding the princi-
ples of network behavior is to radically simplify the indi-
vidual molecular interactions, and focus on the collective
outcome. Boolean networks (Kauffman, 1969) represent
such a simplification: each gene is considered as a binary
variable—either ON or OFF—regulated by other genes
through logical or Boolean functions (as can be found in
the biochemical literature: see e.g. Yuh et al., 1998). Even
with this simplification, the network behavior is already
extremely rich (Kauffman, 1993). Many useful concepts
naturally emerge from such a simple mathematical model.
For example, cell differentiation corresponds to transitions
from one global gene expression pattern to another. Stabil-
ity of global gene expression patterns can be understood as
a consequence of the dynamic properties of the network,
namely that all networks fall into one or more attractors,
representing stable states of cell differentiation, adaptation
or disease.

For a Boolean network with N genes, the total number
of global gene expression patterns can be very large
even for moderate N (2N : each gene can be either on
or off independently). We assume that each gene is
controlled by up to K other genes in the network. The
connectivity K is a very important parameter for network
dynamics (with large K , the dynamics tends to be more
chaotic). In Random Boolean Network models, these K
inputs, and a K -input Boolean function, are chosen at
random for each gene (for a justification of this choice,
see Kauffman, 1993). The Boolean variables (ON/OFF
states of the genes) at time t + 1 are determined by the
state of the network at time t through the K inputs as
well as the logical function assigned to each gene. An
excellent tool for calculating and visualizing the dynamics
of these networks is the DDLAB software (Wuensche,
1993, 1998).

Because the total number of expression patterns is finite,
the system will eventually return to an expression pattern
it has visited earlier. Since the system is deterministic, it
will from then on keep following the exact same cycle
of expression patterns. This periodic state cycle is called
the attractor of the network. For example, in Figure 1 we
show the repeating 6-state cycle attractor pattern within
the trajectory of a 12-element network (right panel). This
trajectory is only one of many alternative trajectories also
leading to the same attractor, as shown in the ‘basin of
attraction’ graph (lower panel). If a state within the basin
of attraction is perturbed to any other state within it, the
dynamics inexorably converge to the same attractor. This
feature helps explain why cell types or cellular adaptations
to particular environments are stable with respect to small
perturbations from a variety of internal or external noise
sources.

The long-term dynamics are determined by the attrac-
tors. In the non-chaotic case, which is the only case of
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Fig. 1. Dynamics of the Boolean model of a genetic network illustrated using the DDLAB software (Wuensche, 1993, 1999). Wiring,
trajectory and basin of attraction. Top panel, wiring diagram of binary gene interactions. The network consists of hypothetical regulatory
gene modules (�1, �3, �6) and dependent modules of structural genes (S, U, T—share identical wiring and rules). Right inset, trajectory.
As determined by the wiring and rules, the network passes through a series of states from a given starting state, finally arriving at a repeating
attractor pattern, a six-state cycle in this case (dark grey = ON, light grey = OFF; time points numbered at left; modules S, U and T have
been collapsed into a single element for simplicity). Bottom panel, basin of attraction. The states of the trajectory shown in the inset are
displayed as a series of connected points (labeled by time points) arriving in a cyclic graph resembling the attractor. The additional nodes in
the graph resemble other states which also lead to the same attractor, therefore the term ‘basin of attraction’—all states in this graph merge
into a single attractor (Somogyi and Sniegoski, 1996).

practical interest, the number of states in the attractor is
typically only a very small fraction of the total number of
states, growing as a square root of N (Kauffman, 1993;

Bhattacharjya and Liang, 1996), rather than exponentially
with N . The notion that gene expression patterns are
constrained is in general agreement with the experimental
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findings of large-scale gene expression data. For example,
genes from the same sequence or functional family do
not act independently, but tend to fluctuate in parallel,
reducing effective N (Wen et al., 1998). In terms of
attractor cycles, it is rare for a gene to oscillate more
than once during the cell cycle in the yeast (Chu et al.,
1998). Also, the change in gene expression pattern during
diauxic shift—when yeast metabolism switches from
glucose to ethanol (DeRisi et al., 1997)—has been found
to be very similar to the change in expression pattern
during adaptive evolution to growth in a low glucose
medium (Ferea et al., 1999).

The number of distinct attractors of a Random Boolean
Network also tends to grow as a square root of the number
of genes (Kauffman, 1993). If we equate the attractors
of the network with individual cell types, as Kauffman
suggests, this explains why a large genome of a few billion
base pairs is capable of a few hundred stable cell types.
This convergent behavior implies immense complexity
reduction, convergence and stabilization in networks of
constrained architecture.

Boolean networks provide a useful conceptual tool for
investigating the principles of network organization and
dynamics (Wuensche, 1999). We can study the role of
various constraints on global behavior in terms of network
complexity, stability and evolvability. From experimental
studies we are learning about constraints in the number
of inputs and outputs per gene, input and output sharing
among genes evolved within a gene family or pathway,
and restrictions on rule types (thresholding, no ‘exclusive
or’ rules etc.). Investigations into abstract models will
help us understand the cybernetic significance of network
features, and provide meaningful questions for targeted
experimental exploration.

Inference of regulation through clustering of gene
expression data
Introduction
Large-scale gene screening technologies such as mRNA
hybridization micro-arrays have dramatically increased
our ability to explore the living organism at the genomic
level (Zweiger, 1999). Large amounts of data can be
routinely generated. In order to identify genes of interest,
we need software tools capable of selecting and screening
candidate genes for further investigation (Somogyi, 1999).
At the simplest level, we can determine which genes
show significant expression changes compared with a
control group in a pair-wise comparison. As data sets
become more complex, covering a variety of biological
conditions or time series, one may consider several scoring
methods for selecting the most interesting genes; e.g.
according to (a) whether there has been a significant
change at any one condition, (b) whether there has

been a significant aggregate change over all conditions,
(c) or whether the fluctuation pattern shows high diversity
according to Shannon entropy (Fuhrman et al., 2000).
A comparison of these criteria in the analysis for toxic
response genes has shown that the Shannon entropy allows
the clearest distinction of drug-specific expression patterns
(Cunningham et al., 2000).

Beyond straightforward scoring methods, we would like
to classify gene expression patterns to explore shared
functions and regulation. This can be accomplished using
clustering methods. The simplest approach to clustering,
sometimes referred to as GBA (Guilt By Association), is
to select a gene and determine its nearest neighbors in
expression space within a certain user-defined distance
cut-off (Walker et al., 1999). Genes sharing the same
expression pattern are likely to be involved in the same
regulatory process. Clustering allows us to extract groups
of genes that are tightly co-expressed over a range of
different experiments. If the promoter regions of the genes
are known—as is the case for yeast—it is possible to
identify the cis-regulatory control elements shared by
the co-expressed genes. Several algorithms to extract
common regulatory motifs from gene clusters have been
developed (Brazma et al., 1998; Roth et al., 1998;
van Helden et al., 1998; Wolfsberg et al., 1999). For
example, Tavazoie et al. (1999) identified 18 biologically
significant DNA-motifs in the promoter region of gene
clusters based on cell-cycle expression patterns. Most
motifs were highly selective for the cluster in which
they were found, and seven were known regulatory
motifs for the genes in their respective clusters. In an
example from brain development (Figure 2), correlations
between cis elements and expression profiles can be
established, but are sensitive to the clustering method
used.

We will briefly review important issues involved in
clustering and some of the main clustering methods
used, as well as a few classical clustering methods which
have not yet been adopted in gene expression analysis.
We should caution the reader that different clustering
methods can have very different results (see for example
Figure 2), and—at this point—it is not yet clear which
clustering methods are most useful for gene expression
analysis. Claverie (1999) provides a preliminary review
of gene expression analysis techniques with a focus on
coexpression clustering. Niehrs and Pollet (1999) provide
an overview of very tightly coexpressed groups of genes
(which they call ‘synexpression groups’) that have been
identified based on large-scale gene expression data.
For further reading, some useful textbooks on cluster-
ing include Massart and Kaufman (1983), Aldenderfer
and Blashfield (1984) and Kaufman and Rousseeuw
(1990).
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(B)

Fig. 2. Comparison of clustering methods on hippocampal development gene expression data. Genes were grouped into eight clusters with
both methods. Note the relative positions of the genes sharing a Krox-24 transcriptional regulatory element among the clusters. (A) Gene
expression patterns were normalized to their respective minima and maxima, and clustered using an agglomerative algorithm. The cluster
bifurcation pattern is shown on the left; cluster boundaries were drawn at the depth shaded in grey (left), based on the 20-level cluster
identifier that captures the branching pattern for each gene within the dendrogram (right). (B) Gene expression patterns were normalized to
their respective maxima, and clustered using a numerical K -means algorithm (Fuhrman et al., 2000).
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Distance measures and preprocessing
Most clustering algorithms take a matrix of pairwise
distances between genes as input. The choice of distance
measure—used to quantify the difference in expression
profiles between two genes—may be as important as
the choice of clustering algorithm. Distance measures
can be divided into at least three classes, emphasizing
different regularities present within the data: (a) similarity
according to positive correlations, which may identify
similar or identical regulation; (b) similarity according to
positive and negative correlations, which may also help
identify control processes that antagonistically regulate
downstream pathways; (c) similarity according to mutual
information, which may detect even more complex
relationships.

So far, most clustering studies in the gene expression
literature use either Euclidean distance or Pearson cor-
relation between expression profiles as a distance mea-
sure. Other measures used include Euclidean distance be-
tween expression profiles and slopes (for time series Wen
et al., 1998), squared Pearson correlation (D’haeseleer et
al., 1997), Euclidean distance between pairwise correla-
tions to all other genes (Ewing et al., 1999), Spearman
rank correlation (D’haeseleer et al., 1997), and mutual in-
formation (D’haeseleer et al., 1997; Michaels et al., 1998;
Butte and Kohane, 2000).

Conspicuously absent so far are distance measures
that can deal with the large numbers of highly related
measurements in the data sets. For example, clustering
yeast genes based on all publicly available data will
be highly biased towards the large cell-cycle data sets:
73 data points in four time series, containing almost eight
complete cell cycles (Spellman et al., 1998), whereas
only a single data point may be present for various
stress conditions, mutations, etc. Correlation between the
experiments will also lead to highly elliptical clusters,
which form a problem for clustering methods that are
biased towards compact, round clusters (such as K -
means). A distance measure that can deal with the
covariance between experiments in a principled way (e.g.
Mahalanobis distance Mahalanobis, 1936) may be more
appropriate here. For even longer time series, distance
measures based on Fourier or wavelet transforms may be
considered.

A related issue is normalization and other preprocessing
of the data. Distance measures that are sensitive to scaling
and/or offsets (such as Euclidean distance) may require
normalization of the data. Normalization can be done with
respect to the maximum expression level for each gene,
with respect to both minimum and maximum expression
levels or with respect to the mean and standard deviation
of each expression profile. From a statistical point of
view, we recommend using the latter, unless there is a
good reason to preserve the mean expression values. See

Figure 2 for an example of a single data set clustered using
different normalizations and clustering methods. When
using relative expression levels (for example, microarray
data), the data will tend to be log-normally distributed,
so the logarithm of the relative expression values should
be used. Califano et al. (2000) suggest using a nonlinear
transformation into a uniform distribution for each gene
instead, which will tend to spread out the clusters more
effectively.

Clustering algorithms
All clustering algorithms assume the pre-existence of
groupings of the objects to be clustered. Random noise and
other uncertainties have obscured these groupings. The
objectives of the clustering algorithm are to recover the
original grouping among the data.

Clustering algorithms can be divided into hierarchical
and non-hierarchical methods. Non-hierarchical methods
typically cluster N objects into K groups in an iterative
process until certain goodness criteria are optimized.
Examples of non-hierarchical methods include K -means,
expectation-maximization (EM) and Autoclass. Hierar-
chical methods return an hierarchy of nested clusters,
where each cluster typically consists of the union of two
or more smaller clusters. The hierarchical methods can
be further distinguished into agglomerative and divisive
methods, depending on whether they start with single-
object clusters and recursively merge them into larger
clusters, or start with the cluster containing all objects and
recursively divide it into smaller clusters. In this section,
we review several clustering methods for gene expression
(see also Figure 2 for comparison of agglomerative and
K -means clustering).

The K -means algorithm (MacQueen, 1967) can be
used to partition N genes into K clusters, where K is
pre-determined by the user (see Tavazoie et al., 1999)
for an application to yeast gene expression). K initial
cluster ‘centroids’ are chosen—either by the user, to
reflect representative expression patterns, or at random—
and each gene is assigned to the cluster with the nearest
centroid. Next, the centroid for each cluster is recalculated
as the average expression pattern of all genes belonging
to the cluster, and genes are reassigned to the closest
centroid. Membership in the clusters and cluster centroids
are updated iteratively until no more changes occur, or
the amount of change falls below a pre-defined threshold.
K -means clustering minimizes the sum of the squared
distance to the centroids, which tends to result in round
clusters. Different random initial seeds can be tried to
assess the robustness of the clustering results.

The Self-Organized Map (SOM) method is closely re-
lated to K -means and has been applied to mRNA expres-
sion data of yeast-cell cycles as well as hematopoietic dif-
ferentiation of four well-studied model cell lines (Tamayo
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et al., 1999). The method is more structured than K -means
in that the cluster centers are located on a grid. At each
iteration, a randomly selected gene expression pattern at-
tracts the nearest cluster center, plus some of its neighbors
in the grid. Over time, fewer cluster centers are updated
at each iteration, until finally only the nearest cluster is
drawn towards each gene, placing the cluster centers in the
center of gravity of the surrounding expression patterns.
Drawbacks of this method are that the user has to specify
a priori the number of clusters (as for K -means), as well
as the grid topology, including the dimensions of the grid
(typically one, two or three dimensional) and the number
of clusters in each dimension (e.g. eight clusters could be
mapped to a 2×4 two-dimensional grid or a 2×2×2 three-
dimensional cube). The artificial grid structure makes it
very easy to visualize the results, but may have residual
effects on the final clustering. Optimization techniques for
selecting the number of clusters developed for K -means
can presumably be used here too.

The Expectation-Maximization (EM) algorithm (Demp-
ster et al., 1977) for fitting a mixture of Gaussians (also
known as Fuzzy K -Means Bezdek, 1981) is very similar to
K -means, and has been used by Mjolsness et al. (1999b)
to cluster yeast data. Rather than classifying each gene into
one specific cluster, we can assign membership functions
(typically Gaussians, or any other parametric probability
distribution) to each cluster, allowing each gene to be part
of several clusters. As in K -means, we alternately update
the membership for each expression pattern, and then the
parameters associated with each cluster: centroid, covari-
ance and mixture weight. Cluster boundaries are sharp and
linear in K -means, smooth and rounded in EM.

Autoclass is also related to EM, in that it finds a mixture
of probability distributions. In addition, it uses Bayesian
methods to derive the maximum posterior probability clas-
sification, and the optimum number of clusters (Cheese-
man and Stutz, 1996).

Wen et al. (1998) used the FITCH hierarchical cluster-
ing algorithm (Felsenstein, 1993) to group the expression
patterns of 112 genes in spinal-cord development, pro-
ducing a graph similar to the phylogenetic trees famil-
iar to most biologists Sokal and Michener (1958). The
expression clusters captured the main waves of gene ex-
pression in development. While the algorithm used in this
study minimizes the overall distance in the tree, the com-
putational requirement grows with the fourth power of the
number of elements, making it impractical for much larger
data sets.

Eisen et al. (1998) applied a standard agglomerative
hierarchical clustering algorithm, average-linkage anal-
ysis, to large-scale gene expression data. Starting with
N clusters containing a single gene each, at each step
in the iteration the two closest clusters are merged into
a larger cluster. Distance between clusters is defined as

the distance between their average expression pattern.
After N − 1 steps, all the genes are merged together
into an hierarchical tree. Other hierarchical methods may
calculate the distance between clusters differently. In
(unweighted pair-group method using arithmetic aver-
ages (UPGMA) Sneath and Sokal, 1973) for example, the
distance between two clusters is defined as the average
distance between genes in the two clusters.

Ben-Doret al. (1999) have developed a clustering algo-
rithm based on random graph theory. Their method shares
features with both agglomerative hierarchical clustering
and K -means. Clusters are constructed one at a time. The
gene with the largest ‘affinity’ (smallest average distance
to all other genes in the cluster) is added to the cluster,
if the affinity is larger than a cut-off. A gene can also be
removed from the cluster if its affinity drops below the cut-
off. A finite number of clusters are constructed depending
on the cut-off. The ability to remove ill-fitting genes from
the cluster is an attractive feature of this algorithm. Zhu
and Zhang (2000) used a similar algorithm to cluster yeast
sporulation data.

Alon et al. (1999) used a divisive hierarchical algorithm
to cluster gene expression data of colon cancer. The
method relies on the maximum entropy principle and
attempts to find the most likely partition of data into
clusters at a given ‘cost’ (sum of squared within-cluster
distances). Starting from a single cluster with large cost,
as the allowed cost is lowered, the cluster breaks up
spontaneously into multiple clusters in order to maximize
the entropy for the configuration, within the constraint of
fixed total cost.

Califano et al. (2000) have developed a clustering al-
gorithm to identify groups of genes which can be used
for phenotype classification of cell types, by searching for
clusters of microarray samples that are highly correlated
over a subset of genes. Only the most significant clusters
are returned. The same technique could be used to find
clusters of genes that are highly coexpressed over a sub-
set of their expression profiles. Han et al. (1997) used a
similar, partial matching approach to group objects into a
hypergraph based on correlations over subsets of the data.
In a hypergraph, each hyperedge (corresponding to a sin-
gle cluster) connects several nodes (genes), so each node
(gene) can be part of several hyperedges (clusters). Mjol-
sness et al. (1999a) developed a hierarchical algorithm that
places objects into a directed, acyclic graph, where each
cluster can be part of several parent clusters. The algo-
rithm optimizes the number of clusters, cluster positions
and partial cluster memberships of objects, such as to pro-
vide the most compact graph structure. All three clustering
methods allow genes to be part of several clusters, possi-
bly coinciding with multiple regulatory motifs or multi-
ple functional classifications for each gene. This makes
them especially appropriate for eukaryotic gene expres-
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sion where genes are controlled by complex inputs from
multiple transcription factors and enhancers.

Other applications of co-expression clusters
Gene expression clustering is potentially useful in at
least three areas: (i) extraction of regulatory motifs (co-
regulation from co-expression); (ii) inference of functional
annotation; (iii) as a molecular signature in distinguishing
cell or tissue types.

Genes in the same expression cluster will tend to
share biological functions. In a system as complex as
the developing rat spinal cord, expression clustering
clearly led to a segregation according to functional gene
families (Wen et al., 1998). Moreover, cluster–function
relationships exist over several methods of classification;
for example, neurotransmitter receptor ligand classes
and sequence/pathway groups each selectively map to
expression waves (Figure 3). Tavazoie et al. (1999),
used K -means to partition yeast genes during the cell
cycle into 30 distinct clusters, and found the members
of each cluster to be significantly enriched for genes
with similar functions. Functions of unknown genes may
be hypothesized from genes with known function within
the same cluster. Yeast genes with previously unknown
functions have been identified from their temporal pattern
of expression during spore morphogenesis and their
functional role in sporulation has been confirmed in
deletion experiments (Chu et al., 1998).

mRNA expression can be regarded as a molecular signa-
ture of a cell’s phenotype. Clustering of gene expression
patterns helps differentiate different cell types, which is
useful, for example, in recognizing subclasses of cancers
(Alon et al., 1999; Golub et al., 1999; Perou et al., 1999;
Alizadeh et al., 2000). Two-way clustering of both the
genes and experiments allows for easy visualization (Eisen
et al., 1998; Alon et al., 1999; Alizadeh et al., 2000; Wein-
stein et al., 1997). Because activities of genes are often re-
lated to each other, gene expression is highly constrained,
and gene expression patterns under different conditions
can be very similar. Clustering is necessary for identify-
ing the coherent patterns.

Which clustering method to use?
We have discussed several different distance measures
and clustering algorithms. Each combination of distance
measure and clustering algorithm will tend to emphasize
different types of regularities in the data. Some may be
useless for what we want to do. Others may give us
complementary pieces of information. Jain and Dubes
(1988) state:

There is no single best criterion for obtaining
a partition because no precise and workable
definition of ‘cluster’ exists. Clusters can be

Fig. 3. Gene expression clusters reflect gene families and pathways.
Neurotransmitter receptors follow particular expression waveforms
according to ligand and functional class. Waves 1–4 correspond
to major expression clusters found in rat spinal-cord development
(Wen et al., 1998). Note that the early expression waves 1 and 2
are dominated by ACh and GABA receptors, and by receptor ion-
channels in general. Each line represents a gene, and can be traced
by following its reflection at each node (Agnew, 1998).

of any arbitrary shapes and sizes in a multidi-
mensional pattern space. Each clustering cri-
terion imposes a certain structure on the data,
and if the data happens to conform to the re-
quirements of a particular criterion, the true
clusters are recovered.

It is impossible to objectively evaluate how ‘good’ a spe-
cific clustering is without referring to what the clustering
will be used for. However, once an application has been
identified, it may be possible to evaluate objectively the
quality of the clustering for that particular application.
For example, if we want to extract regulatory motifs
from clusters, we can compare clustering methods based
on the P-values of the resulting motifs. Similarly, for
functional classification, we can compare P-values asso-
ciated with enrichment of clusters in certain functional
categories. It is unlikely that there would be a single
best-clustering method for all applications. Considering
the overwhelming number of combinations of distance
measures and clustering algorithms—far too many to
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try them all each time—the field is in dire need of a
comparison study of the main combinations for some of
the standard applications, such as functional classification
or extraction of regulatory motifs. If we want to use gene
clusters to infer regulatory interactions, synthetic data
generated from small but detailed models of regulatory
networks could provide a useful touchstone for comparing
clustering methods. Preliminary results comparing SOM,
K -means, FITCH and Autoclass—all using Euclidean
distance—showed very poor performance of all clus-
tering methods in identifying a metabolic pathway with
associated regulation of the enzymes by the metabolites
(Mendes, 1999).

The greatest challenge in cluster analysis lies in faith-
fully capturing complex relationships in biological net-
works. As stated above, a gene may participate in mul-
tiple functions, and is controlled by the activities of many
other genes through a variety of cis-regulatory elements.
Therefore, for complex datasets spanning a variety of bio-
logical responses, a gene should by definition be a mem-
ber of several clusters, each reflecting a particular aspect
of its function and control. As more data becomes avail-
able to accurately delineate expression behavior under dif-
ferent conditions, we should consider using some of the
clustering methods that partition genes into non-exclusive
clusters. Alternatively, several clustering methods could
be used simultaneously, allocating each gene to several
clusters based on the different regularities emphasized by
each method.

Modeling methodologies
Cluster analysis can help elucidate the regulation (or co-
regulation) of individual genes, but eventually we will
have to consider the integrated behavior of networks of
regulatory interactions. Various types of gene regulation
network models have been proposed, and the model of
choice is often determined by the question one is trying
to answer. In this section we will briefly address some of
the decisions that need to be made when constructing a
network model, and the trade-offs associated with each.

Level of biochemical detail
Gene-regulation models can vary from the very abstract—
such as Kauffman’s random Boolean networks (Kauff-
man, 1993)—to the very concrete—such as the full
biochemical interaction models with stochastic kinetics
in Arkin et al. (1998). The former approach is the most
mathematically tractable, and its simplicity allows ex-
amination of very large systems (thousands of genes).
The latter fits the biochemical reality better and may
carry more weight with the experimental biologists,
but its complexity necessarily restricts it to very small
systems. For example, the detailed biochemical model
of the five-gene lysis–lysogeny switch in Lambda phage

(Arkin et al., 1998) included a total of 67 parameters, and
required supercomputers for its stochastic simulation.

In-depth biochemical modeling is very important in un-
derstanding the precise interactions in common regulatory
mechanisms, but clearly we cannot expect to construct
such a detailed molecular model of, say, an entire yeast
cell with some 6000 genes by analysing each gene
and determining all the binding and reaction constants
one-by-one. Likewise, from the perspective of drug target
identification for human disease, we cannot realistically
hope to characterize all the relevant molecular interactions
one-by-one as a requirement for building a predictive
disease model. There is a need for methods that can
handle large-scale data in a global fashion, and that can
analyse these large systems at some intermediate level,
without going all the way down to the exact biochemical
reactions.

Boolean or continuous
The Boolean approximation assumes highly cooperative
binding (very ‘sharp’ activation response curves) and/or
positive feedback loops to make the variables saturate
in ON or OFF positions. However, examining real gene
expression data, it seems clear that genes spend a lot of
their time at intermediate values: gene expression levels
tend to be continuous rather than binary. Furthermore,
important concepts in control theory that seem indis-
pensable for gene regulation systems either cannot be
implemented with Boolean variables, or lead to a radically
different dynamical behavior: amplification, subtraction
and addition of signals; smoothly varying an internal
parameter to compensate for a continuously varying
environmental parameter; smoothly varying the period of
a periodic phenomenon like the cell cycle, etc. Feedback
control (see e.g. Franklin et al., 1994) is one of the most
important tools used in control theory to regulate system
variables to a desired level, and reduce sensitivity to both
external disturbances and variation of system parameters.
Negative feedback with a moderate feedback gain has a
stabilizing effect on the output of the system. However,
negative feedback in Boolean circuits will always cause
oscillations, rather than increased stability, because the
Boolean transfer function effectively has an infinite slope
(saturating at 0 and 1). Moreover, Savageau (1998) iden-
tified several rules for gene circuitry (bacterial operons)
that can only be captured by continuous analysis methods.
In this study, positive and negative modes of regulation
were respectively linked to high and low demand for
expression, and a relationship was established between
the coupling of regulator and effector genes and circuit
capacity and demand.

Some of these problems can be alleviated by hybrid
Boolean systems. In particular, Glass (1975, 1978) has
proposed sets of piecewise linear differential equations,
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where each gene has a continuous-valued internal state,
and a Boolean external state. Researchers at the Free
University of Brussels (Thomas, 1991; Thieffry and
Thomas, 1998) have proposed an asynchronously updated
logic with intermediate threshold values. These systems
allow for easy analysis of certain properties of networks,
and have been used for qualitative models of small gene
networks, but still do not seem appropriate for quantitative
modeling of real, large-scale gene expression data.

Deterministic or stochastic
One implicit assumption in continuous-valued models is
that fluctuations in the range of single molecules can
be ignored. Differential equations are already widely
used to model biochemical systems, and a continuous
approach may be sufficient for a large variety of interesting
mechanisms. However, molecules present at only a few
copies per cell do play an important role in some
biological phenomena, such as the lysis–lysogeny switch
in Lambda phage (Ptashne, 1992). In that case, it may be
impossible to model the behavior of the system exactly
with a purely deterministic model.

These stochastic effects—which have mainly been
observed in prokaryotes—may not play as much of a
role in the larger eukaryotic cells. In yeast, most mRNA
species seem to occur at close to one mRNA copy per cell
(Velculescu et al., 1997; Holstege et al., 1998a), down to
0.1 mRNA/cell or less (i.e. the mRNA is only present 10%
of the time or less in any one cell). Low copy numbers like
these could be due to leaky transcription and not have any
regulatory role. Also, if the half-life of the corresponding
protein (typically measured in hours or days) is much
larger than the half-life of the mRNA (averaging around
20 min in yeast (Holstege et al., 1998b)), the protein
level may not be affected by stochastic fluctuations in
mRNA. Analysis of mRNA and protein decay rates and
abundances may allow us to identify those few genes for
which stochastic modeling may prove necessary.

Particle-based models can keep track of individual
molecule counts, and often include much biochemical
detail and/or spatial structure. Of course, keeping track
of all this detail is computationally expensive, so they are
typically only used for small systems. A related modeling
technique is Stochastic Petri Nets (SPNs), which can be
considered a subset of Markov processes, and can be
used to model molecular interactions (Goss and Peccoud,
1998). Whereas fitting the parameters of a general particle
model to real data can be quite difficult, optimization
algorithms exist for SPNs. Hybrid Petri Nets (Mounts
and Liebman, 1997; Matsuno et al., 2000) include both
discrete and continuous variables, allowing them to model
both small-copy number and mass action interactions.

Additional sources of unpredictability can include ex-
ternal noise, or errors on measured data. The Bayesian ap-

proach to unpredictability is to construct models that can
manipulate entire probability distributions rather than just
single values. Stochastic differential equations could be
used for example. Of course, this does add a whole new
level of complexity to the models. Alternatively, a deter-
ministic model can sometimes be extended by a simplified
analysis of the variance on the expected behavior.

Spatial or non-spatial
Spatiality can play an important role, both at the level of
intercellular interactions, and at the level of cell compart-
ments (e.g. nucleus versus cytoplasm versus membrane).
Most processes in multicellular organisms, especially
during development, involve interactions between dif-
ferent cells types, or even between cells of the same
type. Some useful information may be extracted using
a nonspatial model (see for example D’haeseleer et al.
(1999); D’haeseleer and Fuhrman (2000) for a non-spatial
model of CNS development and injury), but eventually a
spatial model will be needed.

Spatiality adds a whole extra dimension of complex-
ity to the models: spatial development, cell-type interac-
tions, reservoirs, diffusion constants, etc. In some cases,
the abundance of data—spatial patterns—can more than
make up for the extra complexity of the model. For ex-
ample, Mjolsness et al. (1991) used a time series of one-
dimensional spatial patterns to fit a simple model of eve
stripe formation in Drosophila. Models like the ones pro-
posed by Marnellos and Mjolsness (1998) for the role of
lateral interactions in early Drosophila neurogenesis pro-
vide experimentally testable predictions about potentially
important interactions.

Data availability
In general, we must also realize that molecular activity
measurements are limited and are carried out over popula-
tion averages of cells, not on individual cell circuits. Mod-
eling methodologies must, therefore, be designed around
the level of organization for which data is actually accessi-
ble. An exhaustive model must take into account RNA and
protein concentrations, phosphorylation states, molecular
localization and so forth, since each molecular variable
carries unique information. However, due to present lim-
itations in measuring technology, these data are not rou-
tinely accessible. Modeling is then challenged with pro-
viding as much predictive power as possible given limited
data on molecular states. The constraints and redundan-
cies in biological networks suggest that much may still be
gained even though not all parameters involved in the pro-
cess may be modeled.

Forward and inverse modeling
Some of the more detailed modeling methodologies listed
above have been used to construct computer models of
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small, well-described regulatory networks. Of course,
this requires an extensive knowledge of the system in
question, often resulting from decades of research. In
this review, we will not focus on this forward modeling
approach, but rather on the inverse modeling, or reverse
engineering problem: given an amount of data, what
can we deduce about the unknown underlying regulatory
network? Reverse engineering typically requires the use
of a parametric model, the parameters of which are then
fit to the real-world data. If the connection structure of
the regulatory network (i.e. which genes have a regulatory
effect on each other) is unknown, the parametric model
will necessarily have to be very general and simplistic.
The results of this sort of model only relate to the
overall network structure. While this will imply little
about the actual molecular mechanisms involved, much
helpful information will be gained on genes critical for a
biological process, sufficient for the identification of drug
targets for example. Once the network structure is well
known, a more detailed model may be used to estimate
individual mechanism-related parameters, such as binding
and decay constants.

Gene network inference: reverse engineering
Clustering is a relatively easy way to extract useful
information out of large-scale gene expression data sets,
however, it typically only tells us which genes are
co-regulated, not what is regulating what. In network
inference, the goal is to construct a coarse-scale model of
the network of regulatory interactions between the genes.
This requires inference of the causal relationships among
genes, i.e. reverse engineering the network architecture
from its activity profiles. As the molecular dynamics data
we acquire becomes more copious and complex, we may
need to routinely consult reverse engineering methods to
provide the guiding hypotheses for experimental design.

One may wonder whether it is at all possible to reverse
engineer a network from its activity profiles. A straight-
forward answer to this question should be obtainable from
model networks, e.g. Boolean networks, for which we un-
derstand the network architectures and can easily gener-
ate activity profiles. In a first attempt, a simple method
was introduced that showed that reverse engineering is
possible in principle (Somogyi et al., 1997). A more sys-
tematic and general algorithm was developed by Liang et
al. (1998), using Mutual Information to identify a mini-
mal set of inputs that uniquely define the output for each
gene at the next time step. Akutsu et al. (1999) proposed
a simplified reverse engineering algorithm and rigorously
examined the input data requirements. For more realis-
tic applications, a further modification was introduced by
Akutsu et al. (2000) that allows the inference of Boolean
networks given noisy input data. Ideker et al. (2000) de-
veloped an alternative algorithm in which the minimal set-

covering problem is solved using the branch and bound
technique. They devise a perturbation strategy that may be
used by laboratory scientists for systematic experimental
design. It should be pointed out that the problem of design-
ing a Boolean circuit that corresponds to certain input–
output mappings is well studied in electrical engineering,
and several efficient algorithms exist (e.g. Espresso Bray-
ton et al., 1984) that could provide inspiration for reverse
engineering of Boolean regulatory networks.

Data requirements
To correctly infer the regulation of a single gene, we need
to observe the expression of that gene under many dif-
ferent combinations of expression levels of its regulatory
inputs. This implies sampling a wide variety of different
environmental conditions and perturbations. Gene expres-
sion time series yield a lot of data, but all the data points
tend to be about a single dynamical process in the cell, and
will be related to the surrounding time points. A 10-point
time series generally contains less information than a data
set of 10 expression measurements under dissimilar envi-
ronmental conditions, or with mutations in different path-
ways. The advantage of the time series is that it can pro-
vide insight into the dynamics of the process. On the other
hand, data sets consisting of individual measurements pro-
vide an efficient way to map the attractors of the network.
Both types of data, and multiple data sets of each, will be
needed to unravel the regulatory interactions of the genes.

Successful modeling efforts will probably have to use
data from different sources, and will have to be able to deal
with different data types such as time series and steady-
state data, different error levels, incomplete data, etc.
Whereas clustering methods can use data from different
strains, in different growth media etc., combining data sets
for reverse engineering of regulatory networks requires
that differences between the experimental conditions be
quantified much more precisely. Likewise, data will have
to be calibrated properly to allow comparison with other
data sets. In this respect, there is a growing need for
a reliable reference in relative expression measurements.
An obvious approach could be to agree on a standard
strain and carefully controlled growth conditions to use
in all data collection efforts on the same organism.
Alternatively, a reference mRNA population could be
derived directly from the DNA itself.

Estimates for various network models
The ambitious goal of network reverse engineering comes
at the price of requiring more data points. The space of
models to be searched increases exponentially with the
number of parameters of the model, and therefore with
the number of variables. Narrowing the range of models
by adding extra constraints can simplify the search for the
best model considerably. Including such information into
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Table 1. Fully connected: each gene can receive regulatory inputs from all
other genes

Model Data needed

Boolean, fully connected 2N

Boolean, connectivity K 2K (K + log(N ))

Boolean, connectivity K , linearly separable K log(N/K )

Continuous, fully connected, additive N + 1
Continuous, connectivity K , additive K log(N/K ) (∗)

Pairwise correlation comparisons (clustering) log(N )

Connectivity K : at most K regulatory inputs per gene. Additive, linearly
separable: regulation can be modeled using a weighted sum. Pairwise
correlation: significance level for pairwise comparisons based on
correlation must decrease inversely proportional to number of variables.
(∗): conjecture.

the inference process is the true art of modeling.
How many data points are needed to infer a gene

network of N genes depends on the complexity of
the model used to do the inference. Constraining the
connectivity of the network (number of regulatory inputs
per gene) and the nature of the regulatory interactions can
dramatically reduce the amount of data needed. Table 1
provides an overview of some of the models considered,
and estimates of the amount of data needed for each. These
estimates hold for independently chosen data points,
and only indicate asymptotic growth rates, ignoring any
constant factors.

To completely specify a fully connected Boolean net-
work model, where the output of each gene is modeled
as a Boolean function of the expression levels of all N
genes, we need to measure all possible 2N input–output
pairs. This is clearly inconceivable for realistic numbers
of genes. If we reduce the connectivity of the Boolean
network to an average of K regulatory inputs per gene,
the data requirements decrease significantly. For a slightly
simpler model, we can derive a lower bound of �(2K (K +
log(N ))) (see Appendix Data requirements for sparse
Boolean networks), which agrees well with preliminary
experimental results by Liang et al. (1998) and Akutsu et
al. (1999) (see Figure 4). Further constraining the Boolean
model to use only linearly separable Boolean functions
(those that can be implemented using a weighted sum of
the inputs, followed by a threshold function) reduces the
data requirements to �(K log(N/K )) (Hertz, 1998).

For models with continuous expression levels, the
data requirements are less clear. In the case of linear
(D’haeseleer et al., 1999) or quasi-linear (Weaver et al.,
1999) additive models, fitting the model is equivalent
to performing a multiple regression, so at least N + 1
data points are needed for a fully connected model of N
genes. Data requirements for sparse additive regulation
models are as yet unknown, but based on the similarity
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Fig. 4. Dependence of Boolean network reverse engineering algo-
rithm on depth of training data. The probability of finding an incor-
rect solution is graphed versus the number of state transition pairs
used as input for the algorithm for a N = 50 element network. More
training data is required for networks of k = 3 inputs per gene than
for networks of lower connectivity to minimize incorrect solutions.
However, only a small fraction e.g. 80 state transition pairs from
a total of 250 = 1.13 × 1015 is required to obtain reliable results
(Liang et al., 1998).

with the equivalent Boolean model, we speculate it to
be of the form �(K log(N/K )). A promising avenue of
further research in this area may be the results on sample
complexity for recurrent neural networks, which have a
very similar structure to the models presented here (Koiran
and Sontag, 1998; Sontag, 1997).

Finally, to allow for comparison with gene clustering
methods, we examined data requirements for clustering
based on pairwise correlation comparisons (see Ap-
pendix Data requirements for pairwise correlation
comparisons). As the number of genes being compared
increases, the number of data points will have to in-
crease proportional to log(N ), in order to maintain a
constant, low level of false positives. Claverie (1999)
arrived at a similar logarithmic scaling for binary data
(absent/detected).

Note that, for reasonably constrained models, the num-
ber of data points needed will scale with log(N ) rather
than N , and that the data requirements for network in-
ference are at least a factor K larger than for clustering.
In practice, the amount of data may need to be orders of
magnitude higher because of non-independence and large
measurement errors (see also Szallasi, 1999). Higher ac-
curacy methods such as RT-PCR yield more bits of infor-
mation per data point than cDNA microarrays or oligonu-
cleotide chips, so fewer data points may be required to
achieve the same accuracy in the model. Modeling real
data with Boolean networks discards a lot of information
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in the data sets, because the expression levels need to be
discretized to one bit per measurement. Continuous mod-
els will tend to use the available information in the data set
better.

Correlation metric construction
Adam Arkin and John Ross have been working on a
method called Correlation Metric Construction (Arkin and
Ross, 1995; Arkin et al., 1997), to reconstruct reaction
networks from measured time series of the component
chemical species. This approach is based in part on
electronic circuit theory, general systems theory and
multivariate statistics. Although aimed more towards cell
signaling or metabolic networks, the same methodology
could be applied to regulatory networks.

The system (a reactor vessel with chemicals im-
plementing glycolysis) is driven using random (and
independent) inputs for some of the chemical species,
while the concentration of all the species is monitored
over time. A distance matrix is constructed based on
the maximum time-lagged correlation between any two
chemical species. This distance matrix is then fed into
a simple clustering algorithm to generate a tree of con-
nections between the species, and the results are mapped
into a two-dimensional graph for visualization. It is also
possible to use the information regarding the time lag
between species at which the highest correlation was
found, which could be useful to infer causal relationships.
More sophisticated methods from general systems theory,
based on mutual information, could be used to infer
dependency.

Systems of differential equations
Simple systems of differential equations have already
proven their worth in modeling simple gene regulation
systems. For example, the seminal work of Mjolsness
et al. (1991) used a spatial ‘gene circuit’ approach to
model a small number of genes involved in pattern
formation during the blastoderm stage of development
in Drosophila. The change in expression levels at each
point in time depended on a weighted sum of inputs
from other genes, and diffusion from neighboring ‘cells’.
Synchronized cell divisions along a longitudinal axis
(under the control of a maternal clock) were alternated
with updating the gene expression levels. The model was
able to successfully replicate the pattern of eve stripes in
Drosophila, as well as some mutant patterns on which the
model was not explicitly trained.

Additive regulation models
The differential equation systems described above model
gene networks using an update rule based on a weighted
sum of inputs. Several variants of such models have
been proposed, with each group coining a different name:

connectionist model (Mjolsness et al., 1991), linear model
(D’haeseleer et al., 1999), linear transcription model
(Chen et al., 1999), weight matrix model (Weaver et
al., 1999). The core of these seems to be the additive
interaction between the regulatory inputs to each gene,
so we suggest calling these models collectively additive
regulation models.

In the simplest case, we can think of these models as
being similar to multiple regression:

xi ≈
∑

i

w j i x j + bi

or
xi (t + 
t) =

∑
j

w j i x j (t) + bi

where xi is the expression level of gene i at time t , bi
is a bias term indicating whether gene i is expressed or
not in the absence of regulatory inputs, and weight w j i
indicates the influence of gene j on the regulation of
gene i . This can be written equivalently as a difference
or differential equation. Given an equidistant time series
of expression levels (or an equidistant interpolation of a
non-equidistant time series), we can use linear algebra
to find the least-squares fit to the data. Weaver et al.
(1999) showed how a non-linear transfer function can be
incorporated into the model as well, and demonstrated
that some randomly generated networks can be accurately
reconstructed using this modeling technique. D’haeseleer
et al. (1999); D’haeseleer and Fuhrman (2000) showed
that even a simple linear model can be used to infer
biologically relevant regulatory relationships from real
data sets (Figure 5).

Chen et al. (1999) presented a number of linear differen-
tial equation models which included both mRNA and pro-
tein levels. They showed how such models can be solved
using linear algebra and Fourier transforms. Interestingly,
they found that mRNA concentrations alone were not suf-
ficient to solve their model, without at least the initial pro-
tein levels. Conversely, the model can be solved given only
a time series of protein concentrations.

Models that are more complex may require more general
methods for fitting the parameters to the expression
data. Mjolsness et al. (1991) used Simulated Annealing
to fit their hybrid model—incorporating both reaction-
diffusion kinetics and cell divisions—to spatial data.
Mjolsness et al. (1999b) used a similar approach to fit
a recurrent neural network with weight decay to clusters
of yeast genes. Genetic algorithms (GAs) have been
used to model the interaction between four ‘waves’ of
coordinately regulated genes (Wahde and Hertz, 1999)
previously identified in rat CNS development (Wen et
al., 1998). Similarly, Tominaga et al. (1999) used a GA
to fit a power-law model (Savageau, 1995; Tominaga
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Fig. 5. Continuous-valued reverse engineering of a CNS genetic network using a linear additive method. (A) Experimental gene expression
data (circles; development and injury), and simulation using a linear model (lines). The model faithfully reproduces the time series of
the training data sets. Dotted line: spinal cord, starting 11 days before birth. Solid line: hippocampus development, starting seven days
before birth. Dashed line: hippocampus kainate injury, starting at postnatal day 25. (B) Hypothetical gene interaction diagram for the
GABA signaling family inferred from developmental gene expression data (spinal cord and hippocampus data). While individual proposed
interactions have not yet been experimentally verified, the high predicted connectivity within this gene family appears biologically plausible.
The positive feedback interaction of the GAD species has been proposed independently in another study (Somogyi et al., 1995). Solid lines
correspond to positive interactions, broken lines suggest inhibitory relationships (D’haeseleer et al., 1999).
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and Okamoto, 1998) of a small gene network. Networks
with larger numbers of genes will likely require stronger
optimization algorithms. Akutsu et al. (2000) proposes
using Linear Programming for both power-law models
and qualitative hybrid Boolean-like networks. Efficient
gradient descent algorithms developed for continuous-
time recurrent neural networks (Pearlmutter, 1995) may
be useful for even larger networks (D’haeseleer et al.,
1999). Alternatively, the size of the problem can be
drastically reduced by combining gene clustering with
network inference, deriving a regulation model only for
the cluster centers (Wahde and Hertz, 1999; Mjolsness et
al., 1999b).

Conclusions and outlook
We are participating in the transition of biology into an
information-driven science. However, this transition can
be meaningful only if we focus on generating models
that allow us to systematically derive predictions about
important biological processes in disease, development
and metabolic control. These will find important applica-
tions in pharmaceutical development and bioengineering
(Zweiger, 1999). We have reviewed conceptual founda-
tions for understanding complex biological networks, and
several practical methods for data analysis. There are still
major challenges ahead, which may be divided into five
areas:

1. Measurement quantity, depth and quality. Any at-
tempt at predictive data analysis and model building
critically depends on the scope and quality of the in-
put data. Ideally, we would like to gain access to the
activities of all important molecular species in a bio-
logical process (ranging from mRNA to metabolites
and second messengers), with adequate quantitative,
anatomical and temporal resolution. However, even
though our analytical measurement technologies
are undergoing transformations in precision and
throughput, there will always be limitations to the
amount of data and resolution we can acquire and
process. Computational data analysis must therefore
identify the most essential molecular parameters to
guide experimental measurements, and critically
evaluate measurement precision and reproducibility
with appropriate statistical measures.

2. Clustering and functional categorization. One
priority in this area is to compare the large variety
of existing clustering methods (including different
normalizations and distance measures), and identify
those that give the most biologically relevant results.
Just as a gene can play multiple functional roles in
various pathways and is subject to different regula-
tory inputs, co-expression patterns vary according
to the cellular and experimental context. Methods

for clustering according to co-expression profiles
should select the appropriate experimental sets for
analysis, and provide flexible solutions with multi-
ple cluster memberships that more accurately reflect
the biological reality. Well-designed cluster analysis
promises to identify new pathway relationships
and gene functions that may be critical to cellular
control in health and disease.

3. Reverse engineering. Since it is the ultimate goal
to identify the causative relationships between
gene products that determine important phenotypic
parameters, top priority should be given to develop
reverse engineering methods that provide significant
predictions. Alternative computational approaches
should be applied to given data sets, and their pre-
dictions tested in targeted experiments to identify
the most reliable methods.

4. Integrated modeling. While the current focus is on
the analysis of large-scale gene expression data,
there are other established sources of information
on gene function, ranging from sequence homology
and cis-regulatory sequences, to disease association
and a wide variety of functional knowledge from
targeted experiments. Ideally, all of these categories
of information should be included in model build-
ing. A major challenge here lies in the reliability
and compatibility of these data sets.

5. Coupling of modeling with systematic experimental
design. Discovery of a novel gene function through
expression profiling and computational inference
depends on the optimal coordination of experimen-
tal technology with data-analysis methods. While
data-analysis methods must be centered around
data that are realistically accessible, critical pre-
dictions from the models must guide experimental
design. The hope is that progressive iteration of
predictions, experimental measurements and model
updates will result in increased fidelity and depth of
computational models of biological networks.
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Appendix A: Data requirements for sparse Boolean
networks
To fully specify a Boolean network with limited connec-
tivity, we need to specify the connection pattern and the
rule table for a function of K inputs at each. A lower bound
of �(2K + K log(N )) can be derived using information
theory. For a slightly simpler model, where we assume the
pattern of connectivity is given, we can calculate how the
number of independently chosen data points should scale
with K and N . Since this is a simpler model, its data re-
quirements should be a lower bound to the requirements
for the model with unknown connections.

Every data point (i.e. every input–output pair, specifying
the state of the entire Boolean network at time t and t +1),
specifies exactly one of 2K entries in each rule table. Given
this particular combination of the K inputs to each gene at
time t , the output of the gene is given by its state at time
t + 1. We will estimate the probability P that all N rule
tables are fully specified by n data points, and calculate
how the number of data points n needs to scale with P ,
the number of genes N , and connectivity K . For P ≈ 1
(i.e. we have enough data to have a good chance at a fully
specified model), the probability for a single rule table to
be fully specified by n data points is approximately:

1 − 2K (1 − 2−K )n.

The probability that all N rule tables are fully specified by
n data points then becomes:

P ≈ (1 − 2K (1 − 2−K )n)N .

Taking base-2 logarithms, and further simplifying using
log2(1 − z) ≈ −z log2(e) for z 	 1, we find:

C1 = − log(P)

≈ −N log(1 − 2K (1 − 2−K )n)

≈ N2K (1 − 2−K )n log(e)

C2 = − log(C1/ log(e))

≈ − log(N ) − K − n log(1 − 2−K )

≈ − log(N ) − K + n2−K log(e).

If P ≈ 1, C1 will be a small, and C2 a large positive
constant. We can now express n, the number of data points
needed, in terms of N , K and C2:

n ≈ 2K (K + log(N ) + C2)/ log(e)

which is O(2K (K + log(N ))).

Appendix B: Data requirements for pairwise
correlation comparisons
Let us examine a very simple form of clustering as a
representative example of the wide variety of clustering

algorithms: we say that two genes cluster together if their
correlation is significantly greater (with a significance
level α) than a certain cut-off value ρc. We test whether
we can exclude the null hypothesis ρ < ρc based on
the measured correlation coefficient r over the available
data points. Because of the large number of comparisons
being made, we need to reduce the significance level for
the correlation test, proportional to the number of tests
each gene is involved in: α = α′/N (this will keep
the expected number of false positives for each gene
constant). In order to be able to use the same cut-off value
for the measured correlation rα to decide whether two
genes cluster together, the number of data points will have
to increase as the significance level for each test grows
smaller.

If the real correlation coefficient ρ is close to 1.0,
the distribution of the measured correlation coefficient
r is very asymmetrical. The following z-transformation,
developed by Fisher et al. (1969), is approximately
normally distributed with mean z(ρ) and variance 1/(n −
3) (with n the number of data points):

z(r) = 1

2
ln

(
1 + r

1 − r

)
.

We can now devise a single-sided test on z(r) to answer
the following question. If z(r) > z(rα), what is the
significance level with which we can reject the hypothesis
z(ρ) < z(ρc) (and thus ρ < ρc)? At the tail of the normal
distribution, the area under the normal curve to the right
of z(rα) can be approximated by:

α =
∫ ∞

z=z(rα)

1

σ
√

2π
e
− (z−z(ρc))2

2σ2 dz

≈ σ√
2π(z(rα) − z(ρc))

e
− (z(rα)−z(ρc))2

2σ2

with σ = 1/
√

n − 3, and taking natural logs:

ln(α) ≈ ln(α′) − ln(N )

≈ − 1
2 ln(n − 3) − ln(

√
2π(z(rα) − z(ρc)))

−(n − 3)(z(rα) − z(ρc))
2/2

n ≈ 3 + 2

(z(rα) − z(ρc))2
(ln(N ) + ln(1/α′)

− ln(n − 3)/2 − ln(
√

2π(z(rα) − z(ρc))))

= O(log(N )).

In other words, if we want to use the same cut-off value
rα to decide whether ρ > ρc, we need to scale the number
of data points logarithmically with the number of genes.
Strictly speaking, this analysis only holds for correlation
tests, but we can expect similar effects to play a role in
other clustering algorithms.
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