
272 ACM ECHT CONFERENCE

Hyperdocuments as Automata:

Trace-based Browsing Property Verification

P. David Stotts
Computer Science Dept., University of North Carolina

Chapel Hill, NC 27599-3175, USA

Richard Furuta
Computer Science Dept., University of Maryland

College Park, MD 20742, USA
J. Cyrano Ruiz

Reliability Engineering Dept., University of Maryland
College Park, MD 20742, USA

Abstract

In many hypertext systems, meaningfully traversing
a document depends on capabilities, features, and
navigational aids that are part of the browser imple
mentation. For example, if a reader browses to a node
that has no out links, then backing up, or "warping" to
the table of contents can allow the browsing session to
continue.

If hyperdocuments are to become interchangeable
among hypertext systems, rather than being readable
only on the systems from which they are authored,
one obvious but complex approach is to try and stan
dardize on (most likely, very many) browsing features
and behaviors, forming some standard union of the
capabilities of current major implementations. This
approach molds (or perhaps restricts) future systems,
since new browsing "features" must then be worked
into such a standard. An alternate approach, used in
this paper, is to de-emphasized browser features and
emphasize inherent document structure with browsing
semantics. An author should be able to create docu
ment structure so that the desired meaningful access
patterns are inherently allowed by links rather than by
browser capabilities.

We present a method of analyzing the browsing prop
erties of a hypertext document by examining the links
alone. This method is not specific to any particular

This work is based upon work supported by the National Science
Foundation under grant numbers IRI-9007746 and IRI-9015439.

Pennission to copy without fee all or part of this material
is granted provided that copies are not made or distributed
for direct conunercia.l advantage, the ACM copyright no
tice and the title of the publication and its date appear,
and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise,
or to republish, requires a fee and/ or specific permission.
©1992 ACM 0-89791-547-X/92/0011/0272/ $1.50

hypertext system or document authoring. format. With
it, an author can be certain that a document will allow
particular access patterns when read on any browser
implementation that has a single navigation operation:
direct link following. The method requires a mental
shift in how a hyperdocument is conceived abstractly.
Instead of treating the links of a document as defining
a static directed graph, they are thought of as defining
an abstract program, termed the links-automaton of
the document. A branching temporal logic notation,
termed HTL *, is introduced for specifying properties
a document should exhibit during browsing. An au
tomated program verification technique called model
checking is then used to verify that these specifications
are met by the behavior of the links-automaton. We
illustrate the generality of our technique by applying
it first to a Trellis document, and then to a Hyperties
document.

Key words: hypertext, place/transition nets, Petri
nets, browsing semantics, synchronization, security,
temporal logic, verification, access control, versions,
model checking.

1 Problem and approach

Halasz, among others, has noted the need for struc
tural search and query mechanisms for increasing the
utility of hypertext nets. He identifies two major sub
tasks [16]: " ... to design a query language geared
toward describing hypermedia network structures,"
and " ... implementation of a search engine capable
of satisfying the queries expressible in the new lan
guage." This report describes an approach to both
of tbese subtasks. We concentrate on a mechanism
for answering queries concerning dynamic properties
a document has, that is, what sequences of links a
reader may be allowed to follow during browsing, but

MILANO, NOVEMBER 30- DECEMBER 4, 1992

the basic technique, that of model checking (borrowed
from concurrent system verification), can be easily
adapted to locating readers within the structure under
examination.

The work described deals with hypertexts that are
best thought of as cohesive, consistently structured,
non-linear documents rather than as accumulated col
lections of information. We see a current and future
need for hypertextual documents that "tell a story":
training scripts, tutorials, interactive writing/fiction,
descriptive/persuasive texts ... these are a few exam
ples of the Class of hypertext under discussion in this
paper. Many uses also exist for hypertexts that are
not "writing" per se, but nonetheless are structured
documents that have an identifiable author (one person
or a tightly-coupled collaboration) and in which some
constraints, prescriptions, and proscriptions need to
apply to the linkages among elements.

In this view, a hypertext is an intentional interactive
document, providing a non-linear, dynamic analogue
to the traditional notion of structured document. In an
interactive setting, the notion of a document's structure
must extend beyond the normal static concept of its
graph (trees, typically, for paper-based documents) of
components into the dynamic domain of browsing.
A formal, analyzable description must be available
of how those components might be presented to a
reader-the possible sequences and parallel threads of
activity within the document. We refer to this as the
dynamic structure of an interactive document [14], as
contrasted with the notion of static structure provided
by a collection of links.

This-report presents an approach to expressing dy
namic properties an author may want in a document,
and provides a method for verifying in an automated
fashion whether a document's linked structure satisfies
the required property specifications. The emphasis is
on behavior that is allowed by links alone, independent
of any navigation aids that a browser or navigation pro
gram might provide. Such knowledge allows an author
to build a structure to offer the desired linkages no mat
ter what system is used to access the document. This
approach is a start on meaningful system-independent
data for hypertext and hypermedia.

In this report, we first explain our idea of browsing
properties, and present a temporal-logic-based speci
fication language for expressing such properties. We
introduce a checking method for this language based on
existing automated methods for verification of concur
rent programs. We illustrate this verification method
first on Trellis documents, and then on a Hyperties
document, to emphasize the system-independence of
the idea.

273

2 Links-only document behavior

Trellis is a general man/machine interaction model
that has been used previously as the basis for various
hypertext systems and experiments [32, 33, 34].

Though we will first explain our general verification
techniques in the context of Trellis, we emphasize that
the approach is applicable to any hypertext system's
documents. What is required is a particular way of
thinking about a document, that is, one must view a
document as an abstract automaton that specifies the
process of browsing within it. This view is easily
obtained for the hypertext systems in use today. In
fact, for systems other than Trellis, the linked structure
of a document can usually be thought of as a finite state
machine's state transition diagram. We will refer to this
automaton as the hyperdocument's links-automaton.

This conceptual framework is illustrated in Figure 1.
Other research efforts to formalize some aspects of
browsing, such as the HAM [7], have focused on
removing the arbitrary nature of the Turing machine
that provides browsing services for a directed graph.
In Trellis, we have extended the fundamental power of
the links-only structure itself. The core functionality
of a Trellis system is limited to a strict implementation
of the transition rule for that automaton. We have
obtained more power, more expressibility, by using a
more general class of automaton, the place/transition
net (Petri net),1 rather than a finite state machine as
the basic document structure. A place/transition net
inherently allows parallel threads of activity (obtained
with multi-head/multi-taillinks), and also is not limited
to expressing a finite number of states.

To illustrate more clearly the meaning of a links
automaton, consider the abstract document shown in
Figure 1. In this structure, it is clear that there exists
a browsing path from the starting node A, continuing
through the nodes E and D, and ending with node C.
The links-only behavior of the document does not allow
any further browsing from this point, because there is
no transition out of node C. In order for browsing to
continue, the author of this structure must be relying
on some feature of the browser Turing machine (such
as backup, general history, restart, or bookmark at the
table-of-contents, for example) to "warp" the reader
to another location within the document. In order
to guarantee behavior that does not require browser
features, an author of a document may wish to ensure
that there is some path from each node back to the start
node, for instance.

1 We assume some familiarity with general net theory. Interested
readers can get details in previous Trellis papers [32], or in summary
texts by Murata [24], Reisig [29], and Peterson [26].

274 ACM ECHT CONFERENCE

document
(directed graph)

browsing

document alone
(automaton, finite state machine)

links-only browsing

execution of the transition function for the state machine

defines possible node sequences, possible button sequences

without relying on the features of a browser program

o (E,linkl)=F

o (E,link2)=1

o (E,link3)=D, etc ...

Figure 1: Traditional view of hypertext document, and automaton view.

3 Formalizing browsing properties

Suppose we are given a hypertext containing among
other things content elements X and Y and buttons B
and C (link anchors). We would like to formalize state
ments like: "all (sufficiently long) browsing sessions
must encounter X, but only sometime after seeing Y,"
or "there is at least one browsing session encountering
Y," or "there is a browsing session in which at some
point buttons B and Care each selectable." More gen
eral specifications include "there must be some path
from any node X back to the index," and "every node
y must nave some out links."

The links-automaton of a hyperdocument is an ab
stract program, and it can be thought of as generating
a tree of possible event sequences (either sequences

of button clicks, or sequences of content displays, de
pending on the properties to be studied). Figure 2
illustrates event sequences for the links-automaton in
Figure 1; in each tree shown, an underlined node has
no children. The tree on the left shows the possible
sequences of content displays whereas the tree on the
right shows possible sequences of button selections.
Consider the left tree in Figure 2. One possible (finite)
sequence of content displays is nodes A, B, C; another
possible sequence is A, B, H, J, ... and on, perhaps not
terminating.

We will formalize the browsing behavior allowed in
a hyperdocument as the collection of possible event
traces produced by the links-automaton of the docu
ment. We will specify properties we want the traces to

MILANO, NOVEMBER 30- DECEMBER 4, 1992 275

/A~
start

a/~b
/i\

E

/1""' /~ /\""-.
D IF\ X y w linkl link2 link3

H D c 1\ \ /\ \ \ !\ I E A
h m k r c k

J c 1\
p f

possible node sequences possible link sequences

Figure 2: Branching event trees for links-automaton in Figure 1

exhibit with a branching temporallogic.2 Finally, we
will analyze the document for the presence or absence
of properties with a program verification technique
called model checking.

In a branching temporal logic, formulae are inter
preted as assertions about tree-like event spaces in
which each event may have numerous distinct possible
next events. Operators in such a logic allow statements
about the structure of an event sequence, and also al
low quantification over collections of possible event
sequences in the tree. Branching temporal logic, then,
is a natural way to express properties that hold for the
browsing traces allowed by a hyperdocument.

3.1 Background on temporal logic

Work in temporal logic was first conducted under the
name of tense logic by symbolic logicians and philoso
phers for reasoning about ordering of events in time
without mentioning time explicitly. In the last decade,
temporal logic has become a convenient formalism
used, among other things, in program verification [6,
28], in artificial intelligence and cognitive science [18,
17, 20], in specification and verification of concurrent
computations [2, 21] and in verification of network
protocols and sequential circuits [23]. A complete
survey of classical works in temporal logic as well as
its current applications is found in [1].

In a branching temporal logic one introduces special
logic symbols which allow formulation of assertions
involving relative ordering as well as quantification
over paths in the tree-like model of time. Various
authors have proposed distinct syntaxes and semantics
for branching time logics [19, 4], which differ in

2The concept of time implied by the term "temporal" is not
duration but rather the relative ordering of events in a sequence.

expressive power. However, C1L *, developed by
Emerson and Halpern [13], is one of the most general
languages for branching time logics, since it properly
contains most of the others.

Very little other work has been done applying tem
poral logic to hypertext problems. In one project,
temporal logic has been used for structural queries of
hypertexts based on directed graphs [3]. In this work,
a formula describes a static property desired (as op
posed to the trace-based, dynamic properties studied
in our work), and a satisfaction algorithm is applied to
locate a subgraph of the hypertext links that matches
the formula.

4 HTL * and HTL

We give a brief introduction to the syntax and seman
tics of the specification language we have developed
for expressing hypertext browsing properties. The· no
tation is based on the previously mentioned temporal
logic C1L *, and the efficiently verifiable subset C1L.
We produce a new notation called H1L • and a corre
sponding subset called H1L, by adding operators that
help express properties we feel are natural in a brows
ing context. Since C1L * is a complete notation, we
deal with H1L * and H1L formulae by translating into
appropriate C1L • formulae. H1L *will be introduced
here primarily by example; a full syntax and semantics
definition, and a description of the translation to C1L *,
is reserved for a more detailed report.

C1L • has the well-known temporal operators o,
<>. o, U meaning respectively "always", "eventually",
"next time", and "until". There are also the path
quantifiers "forall" and "exists". H1L *adds direction
to the C1L * notion of path quantifiers (like P01L)
by placing an arrow above the respective quantifier

276

symbols. Thus in HTL * one may express "for all

forward paths" (v) or "there exists a backward path"

(3) for example. Such operators help in expressing
properties like "when node X is seen, node Y must
have been seen no more than 5 links previously;" the
"links previously" part expresses a backward path.

Combinations of forward and backward path op
erators that commonly occur are abbreviated as p<>
("at some time in the past"), :F0 ("at all times in the
future''), :F0 ("immediately after"), etc.

4.1 Example hypertext queries

Wegivealistofformulaeinthecontextofhypertext. In
all of these formulae we assume that we are referring
to the initial state of the hypertext. Strings like
"c.warning" and "b.option" are atomic predicates in
the HTL * notation, and form part of the annotation
of the model with basic information about what is
"going on" in the hyperdocument at specific points
of execution. For example, "b.option" asserts that a
button named "option" is selectable in the current state;
"c.warning" asserts similarly that a content element
called "warning" is displayed in the current state.

• V(Oc.menu 1\ c.menu p<> c.identification) is in
terpreted as "in all (forward) browsing sessions,
content element menu is eventually visible, but only
sometime after content element identification is vis
ible." Notice that the second conjunct only states
"for all browsing sessions if menu is visible, then
sometirfie in the past identification was visible."

• 3 Oc.warning which means "there is a browsing
session encountering warning."

• 3 <>(b.option 1 1\ b.option5) is interpreted as "there
is a browsing session in which at some point buttons
option] and optionS are both selectable."

• v (c.no-help-mode :F0 -.b.help) signifies "for all
browsing sessions, if content element no-help-mode
is visible then button help will never be selectable".

• v o (c.error +-+ c.description) reads "for all browsing
sessions, it is always the case that content element
error is visible if and only if description is visible."

• V (O<p V 0-.<p) is a trivial tautology which states
that in all browsing sessions either <p happens at
least once or it never happens at all.

• V <> =n <p means "At this point of the browsing ses
sion, <p must have occurred exactly n times." -

• '1:/ o 3 Ob.help means "wherever you happen to be,
you could have gotten there having the button 'help'

ACM ECHT CONFERENCE

always selectable."

• V o 3 <>c.menu means "wherever you happen to be,
it is possible to eventually get back to the menu." -• 3 0-.b.confidential means "there is a way to browse
the hypertext such that the button 'confidential' is
never selectable".

• 3 <> V O(-.b.info) means "it is possible for button
'info' to eventually die, that is, to never again be
selectable."

• V o 3 <>(b.info) means exactly the opposite of the
previous statement, that is " button 'info' never
dies". This does not mean that it is always se
lectable, but rather that, in all situations, button
'info' can eventuall!)' become selectable. This is
similar to level 3 of liveness for a transition defined
in [25].

• 3<>vo-.(b.Bt, ... ,b.Bk)whereBt, ... ,Bkare
all the buttons, means that it is possible to fall into
a 'deadlock.'

• V o 3 oc.end means "wherever you are, you can
immediately leave the hypertext" (assuming that
this is the interpretation of content 'end'). -• '1:/ c.hello means "At the beginning of every browsing
session, you must encm;mter the 'hello' content
element."

5 Verifying the validity of HTL * Formulae

We now discuss how to determine if a hypertext docu
ment has browsing properties that have been specified
as HTL * formulae. Broadly, we accomplish this by
applying an algorithm developed by Clarke for verify
ing CTL formulae on finite state machines. There are
several steps in the approach. We first must express
properties in the language HTL, a restriction of HTL *;
we then must translate HTL formulae into equiva
lent CTL formulae. We must also determine how
to produce an appropriate finite state machine from a
hyperdocument. After this, Clarke's model checker
can be successfully employed for browsing property
verification.

Since the HTL is translated into CTL for verification,
we give subsequent results in terms of CTL only to
simplify the presentation.

5.1 The model checking approach

In model checking, a state machine (the model) is
annotated with atomic properties that hold at each state
in the model (such as "content is visible" or "button
is selectable"), and then search algorithms are applied

MILANO, NOVEMBER 30- DECEMBER 4, 1992 277

Change 1 abe 1 s on nodes.

-
~-H+----~---t'-

englnas '\..
return in eng1nes provide the e~tra thrust

launch, as well as provide the thrust for
after jettison of the boosters at the end of '@I'

f1rst stage. ~

~([9]

Figure 3: Small a Trellis document.

to see if the subformulae of a formulae hold at each
of the states. By composing the truth values of the
subformulae, one may obtain a truth value for the entire
formula.

For Trellis, we obtain a useful state machine from
the coverability graph explained in an earlier Trellis
paper [32]. (We should note that generating this state
machine can require time and space that is exponential
in the size of the Petri net.) For other hypertext
systems, the links-automaton directly is an appropriate
finite state machine.

In the general case (and especially with very long
formulae) checking of C1L * formulae, while possible,
may have exponential complexity. The restricted lan
guage C1L allows a very efficient checking algorithm
to be developed, however. Clarke et al. have exten
sively studied the model checking problem for C1L
[10, 11, 5].

The simplifying characteristic of C1L is that certain
of the temporal operators must always be paired, reduc
ing the number of combinations that must be searched
in the model. For example, each path quantifier must
be immediately followed by exactly one of the opera
torso, U, o, or 0. Since this pairing is not required in

C1L *, the possible C1L formulae form a subset of the
possible C1L * formulae. Thus there are some brows
ing properties that cannot be efficiently checked with
this approach. In general, however, C1L is sufficient
to express a wide variety of useful properties.

5.2 Examples of property verification

In this section we demonstrate how we have applied
a model checker for C1L developed at Carnegie Mel
lon by Clarke to verification of browsing properties.
We first illustrate the method for Trellis, and then
demonstrate its generality by analyzing a well-known
Hyperties document. We should note that though the
examples were all direct output of the model checking
software, we have not represented the notation directly,
as the model checker requires an ascii representation
for the temporal logic symbols.

Sample Trellis document and queries

The Trellis document shown in Figure 3 is a small net
that expresses the browsing behavior found in some
hypertext systems, namely that when a link is followed
out of a node, the source content stays visible and the

278

target content is added to the screen. The source must
later be explicitly disposed of by clicking a "remove"
button.

In our terms, the Petri net is the links-automaton
of this hyperdocument. It is not, however, in a form
that is normally thought of as a finite state machine.
In order to obtain a finite state machine for model
checking, we compute the coverability graph of the
net and use that. The Petri net shown gives rise to a
coverability graph of 11 states. From this, we generate
an 8-node finite state machine, the links-automaton for
this document. 3 This model can then be queried for the
desired browsing properties with the model checker.
We illustrate several such queries here.

• Is there some browsing path such that at some
point both the "orbiter" and "propulsion" buttons
are selectable on one screen?
3 <>(B_orbiter A B..propulsion)
The formula is TRUE.

• Does there exist a browsing path such that at some
point both the "shuttle" text and the "engines" text
are concurrently visible?

3 <>(C..shuttle A C..engines)
The formula is FALSE.

• Is there some browsing path that reaches a point at
which no buttons are selectable?
3 <>(·B..begin A •BJemove A •B..propulsion A
•B...orbiter A •B_begin2 A •BJeturn)
The formula is FALSE.

• Is there some browsing path that will eventually
simultaneously show the "overview" panel and the
"engines" panel?

3 <>(C_overview A C..engines)
The formula is TRUE.

An alternate way to express this query is to reverse
the sense: On all paths is it always the case that
either "overview" or "engines" is not showing?
V D(...,c_overviewV•C..engines)
The formula is FALSE.

• Is it possible during browsing to see both the "wel
come" and "engines" panels on the same screen?

3o(c_welcome A c_engines)
The formula is FALSE.

• Can both the "allow" access control and the "inhibit"
access control ever be in force at the same time?
3 <>(Cjnhibit A C..allow)
The formula is FALSE.
3The state count drops because construction of the coverability

graph produces a structure with repeated nodes in it. These nodes
are removed when converting to the FSM input format for the model
checker.

ACM ECHT CONFERENCE

• Is it possible to select the "orbiter" button twice on
some browsing path without selecting the "remove"
button in between?
3 <>(B...orbiter A Yo(V [BJemove U B_orbiter]))
The formula is FALSE.

This last query is a bit more complex. The informal
expression of it does not parallel closely the actual
operators employed to check the property.

A larger Trellis document

The model checker has also been tested on the larger
Trellis document shown in· Figure 4. The state ma
chine derived from this net contains nearly a thousand
states. Using a DECstation 5000/25, the performance
of the verification software on formulae like those dis
cussed previously was mostly on the order of a few
seconds, with the most complicated query we tried
requiring about 25 seconds. We suspect that authors
of interactive documents will find such timing not at
all unreasonable for establishing the presence or ab
sence of critical browsing properties, and we hope that
future, less primitive systems, might exhibit improved
performance as well.

A Hyperties document

To illustrate that these browsing verification concepts
are not specific to Trellis-based systems, but are in
deed general, we have applied the approach to a Hyper
ties [30, 22] document. Specifically, we have extracted
the link structure from the Hyperties version of ACM's
Hypertext On Hypertext, and use ·the resulting directed
graph as the links-automaton and as the finite state
machine for the model checker. The extraction of links
from the Hyperties storage format, and the conver
sion of those links into the state machine input format
required by the model checker, were both automated
procedures. The model contains 298 states (content
nodes), and over 700 links. Here are the results of
some sample queries, each of which was answered by
the model checker in less than two seconds on the
DECstation 5000/25.

• On all paths from the initial node, is it always the
case (at all nodes) that some future path contains the
Table of Contents (TOC) node?

yo(3 <>(C_tableofc))
The formula is FALSE.
Since this property does not hold, this says the
document contains at least one node from which
it is impossible to reach the TOC. Note that these
properties are being tested for the link structure of

MILANO, NOVEMBER 30- DECEMBER 4, 1992 279

Net saved 1n f11o Net, mappings saved 1n Net.mapp1ngs

0 -
east

ne)(t

Figure 4: CSP program as browsable Trellis document

the document alone, and do not account for any
system-supplied browsing aids, such as backup or
full history.

• On all paths from the initial node, will the TOC
eventually be seen?
On all paths from the initial node, will the I ntroduc
tion eventually be seen?

~O(C.tableofc)
The formula is FALSE.
~ 0(C.tableofc)
The formula is TRUE.
The previous property asked if TOC could be
reached from any node; this property is different
in that it asks if TOC will eventually be reached
(at least once) when browsing from the initial node.
Such a property could be satisfied if, for example,
TOC were the first or second node on all paths,
whether or ·not it could then be returned to after
browsing past it. The second formula above illus
trates this with the Introduction node. Since the
Introduction is the initial node of the document, the
property trivially holds, but it says nothing about
whether the Introduction can be revisited once it is
passed.

• Is there at least one path such that once the Intro
duction is reached, it can be later revisited?

3 0(Cjntroduc 1\ 3 o(3 0(Cjntroduc)))
The formula is FALSE.
Since the Introduction is the first node on all paths,
the failure of this property implies that can be read
only once during any traversal of the document
(again, considering only the link structure proper).
In Hyperties, this means the special browser fea
tures, like history, must be relied on.

• On all paths from the initial node, is it always the
case (at all nodes) that the TOC is exactly one link
away? ·
Is there some path from the initial node on which
it is always the case (at all nodes) that the TOC is
exactly one link away?

~o(3 o(C.tableofc))
The formula is FALSE.
3 o(3 o(C.tableofc))
The formula is TRUE.
This first property might well be one an author
wants a document to have, though it is strong.
Interestingly enough, though the "one hop away"
property for TOC does not hold for all paths, it

280

does hold for at least one path in this document.
The falsity of the first property does not necessarily
imply the truth of the second.

• On all paths from the initial node, is it always the
case (at all nodes) that when the Bibliography is
displayed some path eventually leads from it to the
TOC?
V o (·C-bibliogrV 3 <>(C_tableofc))
The formula is FALSE.
This query attempts to further refine the finding that
the TOC cannot be reached from some nodes. Here
we see that the Bibliography node is one such node.

6 Conclusions

In summary, we have presented a method by which an
author may specify properties that should exist in the
sequences of events that occur during browsing, and
a method by which an author may verify that a hy
perdocument does, or does not, have these properties.
We have explained the links-automaton view of a hy
perdocument that makes our techniques possible, and
showed that this concept is a general one, making the
techniques applicable to all hypertext systems. We also
showed how to apply the technique to links-automata
for documents in two existing systems, Hyperties and
Trellis.

Clearly, practical application of the verification tech
niques reported here requires an interface that allows
an author to express properties without having to be
an expert in temporal logic syntax and semantics. We
have not yet produced such an application, and we
view the design of such an interface as an important
research problem. Another interesting research prob
lem is how to use HTL * formulae a priori, as a guide
during document development rather than simply as
an a posteriori check after authoring.

References

[1] Galton Antony, editor. Temporal Logics and their
applications. Academic Press, Harcourt Brace
Jovanovich, Publishers. 1987.

[2] H. Barringer, R. Kuiper, and A. Pnueli. Now you
may compose temporal logic specifications. In In
Proc. of the Sixteenth ACM Symp. on Theory of
Computing, pages 51-63,1984.

[3] C. Beeri and Y. Kornatzky. A logical query
language for hypertext systems. In A. Rizk,
N. Streitz, and J. Andre, editors, Hypertext: Con
cepts, Systems, and Applications, pages 67-80.
Cambridge University Press, November 1990.

ACM ECHT CONFERENCE

Proceedings of the European Conference on Hy
pertext.

[4] M. Ben-Ari, A. Pnueli, and Z. Manna. The
temporal logic of branching time. In In Proc.
eighthACM Symp. on Principles of Programming
Languages, pages 164-176,1981.

[5] J. R. Bursh, E. M. Clark, and K. L. McMillan.
Symbolic model checking: 10 to the 20 states
and beyond. Carnegie Mellon and Stanford Uni
versities, 1989.

[6] R. M. Burstall. Program proving as hand simula
tion with a little induction. Information Process
ing, 74:308-312, 1974.

[7] Brad Campbell and Joseph M. Goodman. HAM:
A general purpose hypertext abstract machine.
Communications of the ACM, 31(7):856_:.861,
July 1988.

[8] S. Christodoulakis, F. Ho, and M. Theodoridou.
The multimedia object presentation manager of
MINOS: A symmetric approach. In Proceedings
of ACM SIGMOD '86, pages 295-310, May
1986. Washington, DC.

[9] S. Christodoulakis, M. Theodoridou, F. Ho, and
M. Papa. Multimedia document presentation, in
formation extraction, and document formation in
MINOS: A model and a system. ACM Transac
tions on Office Information Systems, 4(4):345-
383, October 1986.

[10] E. M. Clarke, E. A. Emerson, and A. P. Sistla.
Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM
Transactions on Programming Languages and
Systems, 8:244-263, 1986.

[11] E. M. Clarke and Grumberg. Research on auto
matic verification of finite-state concurrent sys
tems. Ann. Rev. Comput. Sci., 2:269-290,1987.

[12] Emerson and Srinivasan. Branching time tempo
ral logic. InlnProc. oftheREX School/Workshop
1988 on Linear Time, Branching Time and Par
tial Order in Logics andMoq.elsfor Concurrency.
Springer-Verlag, 1989.

[13] E. A. Emerson and J. Y. Halpern. "sometimes"
and "not never" revisited: on branching vs.linear
time. In In Proc. Tenth ACM Symp. on Princi
ples of Programming Languages,pages 127-140,
1983.

[14] R. Furuta and P. D. Stotts. Structured dynamic
behavior in hypertext. Technical Report CS-TR-
2597 (UMIACS-TR-91-14), University of Mary
land Department of Computer Science and In-

MILANO, NOVEMBER 30 - DECEMBER 4, 1992

stitute for Advanced Computer Studies, January
1991.

[15] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On
the temporal analysis of fairness. In InProc. sev
enth ACM Symp. on Principles of Programming
Languages, pages 163-173, 1980.

[16] Frank G. Halasz. Reflections on NoteCards:
Seven issues for the next generation of hyper
media systems. Communications of the ACM,
31(7):836-852,July 1988.

[17] K. Kahn and G. A. Gorry. Mechanizing tempo
ral knowledge. Artificial Intelligence, 9:67-95,
1977.

[18] R. A. Kowalski and M. J. Sergot. A logic-based
calculus of events. New Generation Computing,
4:67-95, 1983.

[19] L. Lamport. "sometime" is sometimes "not
never": on the temporal logic of programs. In
In Proc. seventh ACM Symp. on Programming
Languages,pages 174-185,1980.

[20] R. M. Lee, H. Coelho, and J. C. Cotta. Temporal
inferencing on administrative databases. Infor
mation Systems, 10:197-206, 1985.

[21] Z. Manna and A. Pnueli. Verification of concur
rent programs: the temporal framework. In R. S.
Boyer and J. S. Moore, editors, The Correctness
Problem in Computer Science, pages 215-273.
Academic Press, 1981.

[22] Gary Marchionini and Ben Shneiderman. Find
ing facts vs. browsing knowledge in hypertext
systems. Computer, 21(1):7~0,January 1988.

[23] B. Moszkowski. Reasoning about digital cir
cuits. Ph.D. dissertation, Standford University,
CA, 1983.

[24] Tadao Murata. Petri nets: Properties, analy
sis and applications. Proceedings of the IEEE,
77(4):541-580,April1989.

[25] J. L. Peterson. Petri Net Theory and the Modeling
of Systems. Prentice-Hall, Inc., 1981.

[26] James L. Peterson. Petri Net Theory and the
Modeling of Systems. Prentice-Hall, Inc., 1981.

[27] Pinter and Wolper. A temporal logic for reason
ing about partially ordered computations. In In
Proc. of the third ACM Symp. on Principles of
Distributed Computing, 1984.

[28] A. Pnueli. The temporal logic of programs. In In
Proc. Eighteenth IEEE Symp. on Foundations of
Computer Science, pages 46-67, 1977.

[29] Wolfgang Reisig. Petri Nets: An Introduction.
Springer-Verlag, 1985.

281

[30] Ben Shneiderman. User interface design for the
Hyperties electronic encyclopedia. In Proceed
ings of Hypertext' 87, pages 189-194, November
1987. Published by the Association for Comput
ing Machinery, 1989.

[31] A. Sinachopoulos. Logics for petri-nets: Partial
order logics, branching time logics and how to
distinguish between them. Petri Net Newsletter,
pages 9-14,8 1989.

[32] P. David Stotts and Richard Furuta. Petri-net
based hypertext: Document structure with brows
ing semantics. ACM Transactions on Information
Systems, 7(1):3-29, January 1989.

[33] P. David Stotts and Richard Furuta. Temporal
hyperprogramming. Journal ofVisual Languages
and Computing, 1(3):2~7-253, 1990.

[34] P. David Stotts and Richard Furuta. Browsing
parallel process networks. Journal of Parallel
and Distributed Computing, 9:224-235, 1990.

[35] I. Suzuki and H. Lu. Temporal petri nets and
their application to modeling and analysis of
a handshake daisy chain arbiter. IEEE Trans.
Comput., 38(5):696-704, 1989.

[36] Z. Wolper. Temporal logic can be more expres
sive. In In Proc. of the twentysecond IEEE Symp.
onFoundationsofComputerScience, pages 340-
348, 1981.

[37] PolleT. Zellweger. Directed paths through col
lections of multi-media documents. In Hypertext
'87, November 1987. Position paper.

[38] Polle T. Zellweger. Active paths through mul
timedia documents. In J. C. van Vliet, editor,
Document Manipulation and Typography, pages
19-34. Cambridge University Press, April1988.
Proceedings of the International Conference on
Electronic Publishing, Document Manipulation,
and Typography, Nice (France), April 20-22,
1988.

