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Abstract

Providers of dynamic Web applications are cur-
rently unable to accommodate heavy usage
without significant investment in infrastructure
and in-house management capability. Our goal
is to develop technology to enable a third party
to offer scalability as a subscription service with
“per-click” pricing to application providers. To
this end we have developed a prototype proxy
caching system able to scale delivery of dy-
namic Web content to a large number of users.
In this paper we report initial positive results
obtained from our prototype that point to the
feasibility of our goal. We also report the short-
comings of our current prototype, the chief one
being the lack of a scalable method of manag-
ing data consistency. We then present our ini-
tial work on a novel approach to scalable con-
sistency management. Our approach is based
on a fully distributed mechanism that does not
require content providers to assist in managing
the consistency of remotely cached data. Fi-
nally, we describe our ongoing efforts to char-
acterize the inherent tradeoff between scalabil-
ity and data secrecy, a crucial issue in environ-
ments shared by multiple organizations.

1 Introduction
Applications deployed on the Internet are immediately
accessible to a vast population of potential users. As a
result, they tend to experience unpredictable and widely
fluctuating degrees of load, especially due to events
such as breaking news (e.g., 9/11), sudden popularity
spikes (e.g., the “slashdot effect”), or denial-of-service
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(DoS) attacks. Administrators currently face a dilemma:
whether to (a) waste money by heavily overprovision-
ing systems, or (b) risk loss of availability during crit-
ical times. This problem is largely addressed for static
content by Content Distribution Network (CDN) tech-
nology [9], which offers dynamic scalability as a plug-in
service. CDN’s make use of a large, shared infrastruc-
ture to absorb load spikes that may occur for any indi-
vidual content provider. Hence, they can offer seemingly
unlimited scalability and charge content providers on a
per-usage basis.

CDN technology does not meet all of the needs of
richly interactive applications such as online classrooms,
bulletin boards, civic emergency management, and e-
commerce, which are representative of the future land-
scape of the Internet and naturally implemented as “dy-
namic” Web applications. At Carnegie Mellon we are
developing the foundations for offering scalability as a
plug-in subscription service to dynamic Web applica-
tions. Such a service would enable cost-effective deploy-
ment of richly interactive online applications.

1.1 Example Scenarios

We illustrate the potential benefits of subscription-
oriented scalability services for dynamic Web applica-
tions with two example scenarios.

1.1.1 E-Commerce

Consider a relatively small-scale Web-based e-
commerce operation whose customer base is expanding.
New customers bring more revenue, but may also lead
to major management difficulties behind the scenes.
Suppose the relatively low-cost equipment on which
the e-commerce site was originally built (with the
company’s meager start-up funds) is becoming saturated
with load, and will soon be unable to service all the
customers. Standard solutions include upgrading to
faster equipment on which to run the web, application,
and/or database servers, or moving to a parallel cluster-
based architecture as used by big e-commerce vendors.
Unfortunately, these solutions require a large investment
in equipment, and, perhaps more significantly, funding



for staff with the expertise necessary to manage the more
complex infrastructure. Moreover, transitioning to a new
architecture will undoubtedly create new bugs and may
lead to costly application errors or system downtime.

A much more palatable option would be to subscribe
to a scalability service on a pay-by-usage basis. A cost
curve proportional to usage could potentially save the
company large sums of money, especially if demand flat-
tens out or drops. In this scenario, the equipment and
management costs are shifted to the scalability service
provider, where they can be amortized across many sub-
scribers. Of course, in a shared environment privacy and
security are central requirements.

1.1.2 Civic Emergency Management

Suppose the local government of a large city, such as
Chicago, is ordered to prepare a response plan in case
of a natural disaster. The government would like to have
the capability of providing each citizen, even after the
event has occurred, with both general and individualized
instructions on how to protect themselves. In particu-
lar, the city would like to be able to provide maps and
directions for each citizen explaining where to find med-
ical treatment, shelter, uncontaminated food and water,
etc. In addition, the city would like to be able to collect
requests for immediate medical treatment from citizens
who are immobile, and to collect reports from citizens
and professionals about the effects of the incident in var-
ious sections of the city.

This application lends itself naturally to a Web-based
implementation, but there are several inherent difficul-
ties. First, demand for the application is likely never to
occur, but if it should occur, it will come very quickly
and in a very large dose. It would be costly for the city to
invest in enough permanent infrastructure to satisfy the
demand, and not cost-effective to keep this infrastructure
idle. Second, it is critical to give all end users prompt
and reliable access to information (recall the frustration
of end users who were unable to retrieve even general
news from http://www.cnn.com on September 11, 2001,
because CNN was not utilizing the services of a CDN
that morning [26]). It is even more important that data
collected from end users requiring immediate assistance
be recorded reliably. Third, the delivery of information
customized to each end user, such as the generation of
maps and directions, requires significant computational
resources. This information cannot easily be conveyed
through a telephone conversation, and in any case, the
scale of the demand would make a call-center solution
impractical.

The ability to tap into a secure scalability service
would alleviate these difficulties. The city would have
to prepare software in advance and maintain a modest
amount of permanent infrastructure, but could rely on the
scalability service when demand suddenly arrived. The
scalability service would then shoulder the network and

computational load, even while potentially serving other,
also critical, applications.

1.2 Creating a Scalability Service for Dynamic Web
Applications

The above example scenarios illustrate the potential ben-
efits of a secure plug-in scalability service for current and
future dynamic Web applications on the Internet. Con-
structing such a service for dynamic applications is much
more challenging than doing so for traditional static con-
tent.

1.2.1 Challenges

Dynamic Web applications are characterized by capabil-
ities for personalization and distributed updating of data.
These features, coupled with the often sensitive nature
of the associated data, create new systems and security
challenges in building an effective scalability service for
dynamically-generated Web content. Web applications
are typically deployed on a three-tiered server-side ar-
chitecture consisting of one or more instances each of: a
web server, an application server, and a database server.
Most advanced Web applications rely on the database
server(s) for the bulk of the data management tasks, and
indeed the database servers often become the bottleneck
in terms of maximum supportable load. Consequently,
an effective scalability service would have to offload at
least some of the database work from the home organi-
zation. However, that task is encumbered by two major
difficulties inherent in dynamic Web applications:

1. Most advanced Web applications require strong
consistency for their most important data. For ex-
ample, in our civic emergency management sce-
nario (Section 1.1.2), inventory data for emer-
gency supplies must be managed precisely—
inconsistencies could cost lives. It is well-known
that maintaining strong consistency among replicas
in a distributed setting presents significant scalabil-
ity challenges [12].

2. Administrators are typically reluctant to cede own-
ership of data and permit data updating to take
place outside the home organization. This re-
luctance arises with good reason, due to the se-
curity concerns, data corruption risks, and cross-
organizational management difficulties entailed.

Difficulty 1 precludes caching techniques based en-
tirely on timed data expiration, i.e., time-to-live (TTL)
protocols [8], which are the norm in current approaches
to scaling the delivery of static Web content. The grow-
ing number of dynamic Web applications with sensitive
and mission-critical data require a high degree of data fi-
delity and rely on systems that adhere to the transactional
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Figure 1: Envisioned high-level scalability service architecture.

model of consistency. Transactional consistency is sup-
ported by a plethora of distributed data replication algo-
rithms (e.g., [14]), but these are not a good fit because of
Difficulty 2. In many cases, capabilities for data updating
simply must remain within the boundaries of the home
organization, and decentralized data updating is simply
unacceptable. Our project explores a middle ground be-
tween TTL-based caching and fully distributed replica
management, to achieve good scalability while retaining
strong consistency and centralized ownership of data.

1.2.2 Our Approach

Our approach exploits two properties shared by many
Web applications: the underlying data workloads tend to
(1) be dominated by reads, and (2) consist of a small,
fixed set of query and update templates (typically 10-
100). The first property makes it feasible to handle all
data updates at servers within each application’s home
organization. That way, no data updating is performed
outside of the home organization, and tight control over
authentication of updates and overall data integrity is re-
tained. By exploiting the second property, i.e., prede-
fined query and update templates, we believe we can cre-
ate a fully distributed mechanism for enforcing strong
cache consistency that does not burden home organiza-
tions with this responsibility.

The architecture we envision for our scalability ser-
vice is illustrated in Figure 1. At the bottom we see
home servers, which host code and data for individual
applications within the boundaries of their home organi-
zations. Scalability is provided by a collection of coop-
erating proxy servers that cache data on behalf of home
servers. Users access applications indirectly, by connect-
ing to proxies within the scalability service network. At
the proxy servers, application data is cached on a strictly
read-only basis, ensuring that server failures do not affect

data integrity or require expensive quorum protocols. All
data update requests are forwarded directly to application
home servers for local processing. Cache consistency is
managed entirely by the proxy servers themselves, which
notify each other of updates via a fully distributed multi-
cast network.

Distributed Consistency Management
Our distributed consistency mechanism combines two
technologies: query/update independence analysis [17]
and distributed multicast [7, 28, 34]. Query/update inde-
pendence analysis is concerned with deciding whether
a given update affects the result of a particular query.
Distributed multicast environments offer efficient dis-
tributed routing of messages to multiple recipients based
on application-level concepts rather than network ad-
dresses.

In our approach, application code is first analyzed
statically to identify pairs of embedded query and update
templates that are in potential conflict, meaning that an
instantiation of the update template might affect the re-
sult of an instantiation of the query template. At runtime,
when an update template is invoked at a proxy server, the
precomputed set of potentially conflicting queries is nar-
rowed based on the parameter bindings supplied with the
update. At that point it must be ensured that any cached
results of conflicting queries are either updated or inval-
idated. Hence, all proxy servers caching conflicting data
must be notified of the update.

To limit dissemination of updates to just the servers
that cache potentially conflicting data, our approach
leverages distributed multicast technology. Proxy servers
organize themselves into an overlay network, and trans-
mission of updates is handled via a group multicast en-
vironment built into the overlay. Multicast groups are
established in correspondence with query templates em-
bedded in the application, and servers caching data for



a particular query template subscribe to the correspond-
ing multicast group(s). When an update occurs, notifi-
cation of that update is routed by the multicast proto-
col to any and all servers caching data that may be af-
fected. Our project will assess the feasibility of using
multicast as a substrate upon which to construct a large-
scale distributed data consistency mechanism, which to
our knowledge has not been attempted before.

Cache Invalidation
When a proxy server receives notification of an update
that may conflict with locally-cached data, some action
must be taken to ensure consistency with the master copy
maintained by the home server(s). Since one of our de-
sign principles is to avoid distributed updating of data,
we plan to rely on invalidation, in which potentially in-
consistent data is evicted from caches. In our design
(Figure 1), each proxy server is equipped with a local
invalidator module, which decides what data to evict in
response to notification of an update. Cached data is
never updated locally, so home organizations can more
readily monitor and control the security and integrity of
their data. Authentication of update requests need take
place only at home servers. (While unauthenticated up-
dates may induce spurious invalidation of cached data,
the impact is only on performance, not correctness.)

There is an important tradeoff to be considered in the
design of invalidator modules. Clearly, to achieve the
best scalability, a minimal number of data invalidations
should be performed by proxy servers. The most se-
lective invalidation strategies require inspection of the
content of cached data. However, the presence of data
originating from databases managed by different DBMS
products severely complicates this process, and it is well-
known that increased implementation complexity tends
to degrade reliability. In addition, allowing proxy servers
to inspect the content of cached data precludes the use
of certain cryptographic approaches for ensuring privacy
and security. We are working toward formally character-
izing the tradeoff between scalability, on the one hand,
and the combination of low implementation complexity
and secrecy of data on the other hand.

1.3 Outline

The remainder of this paper is structured as follows.
First, we discuss related work in Section 2. Then, in
Section 3, we describe our working prototype and re-
port some preliminary results obtained via experiments
on benchmark dynamic Web applications. Our cur-
rent prototype employs a TTL-based approach to con-
sistency management, and strong consistency can only
be achieved by setting TTL’s to zero, which negates the
benefits of caching. In Section 4 we describe some of our
ongoing work on developing a fully distributed mecha-
nism to achieve strong (transactional) consistency in a
scalable manner. Then, in Section 5 we present our ini-

tial work on local invalidation, in which we seek to for-
mally characterize the tradeoff between scalability and
the combination of data secrecy and low implementation
complexity. Our plans for future work are outlined in
Section 6, and we summarize the paper in Section 7.

2 Related Work

Remote caching of database objects first received sig-
nificant attention during a flurry of research activity on
client-server object-oriented databases that began in the
late 1980’s. A prominent research question in that con-
text was whether the central server should maintain con-
sistency by invalidating data cached at remote clients, or
by propagating changed data to clients (e.g., [11]). To
our knowledge the work in that area did not consider
fully distributed data invalidation or update propagation
methods.

More recently, database caching has been investi-
gated as a means to scale the delivery of dynamically-
generated Web content. Ongoing efforts in this area in-
clude the DBCache [1, 19] and DBProxy [3] projects at
IBM Research, and the CachePortal project [18] at NEC
Laboratories. To ensure consistency, these approaches
rely on propagation of data updates from the home orga-
nization’s local database to exterior cache nodes. While
there has been some recent work devoted to develop-
ing more efficient means of handling consistency main-
tenance at a centralized server [4], to our knowledge
researchers in this area have not considered distributed
consistency management mechanisms.

Distributed consistency management has been stud-
ied extensively in the context of distributed and federated
databases, which have received a great deal of attention
from the database research community over the past two
decades. The work in this area most closely related to
our own is on consistency management for widely repli-
cated data. Most approaches permit distributed updating
of data replicas, and rely on propagation (rather than in-
validation) of updated data to all nodes to ensure consis-
tency; see, e.g., [14]. Furthermore, most work in the data
replication area aims to support general-purpose, ad-hoc
querying and updating, in which arbitrary SQL state-
ments can be executed over the data. In contrast, our ap-
proach specifically leverages the fact that in our context,
querying and updating is mainly restricted to templates
specified in advance.

There has been some prior work pertaining to inval-
idation of cached materialized views. Candan et al. [6]
introduced techniques for deciding whether to invalidate
cached views in response to database updates. These
techniques leverage “polling queries” to inspect portions
of the database not available in the materialized view.
The need to invalidate a view in response to a particular
update can in some cases be ruled out by analysis of the
view definition and update statements alone, without in-
specting any data. Levy and Sagiv [17] provide methods
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Figure 2: Traditional versus distributed architecture.

of ruling query statements (and hence view definitions)
independent of updates in many practical cases, although
the general query/update independence problem is unde-
cidable. With our work, the focus is not on developing
new strategies for deciding whether to invalidate cached
views. Rather, we develop a formal characterization of
view invalidation strategies in terms of what data they
access, as a basis for studying the tradeoff between scal-
ability and data secrecy.

2.1 Akamai EdgeJava Product

Akamai Technologies, a leading CDN, has recently re-
leased its “EdgeJava” product, which allows Web con-
tent providers to execute Java servlets on Akamai’s proxy
servers. The largest significant use of EdgeJava to date
was a widely advertised promotion staged by Logitech
Corporation, in which peak demand exceeded 60,000
user requests per second. For each request, a Java servlet
dynamically generated an HTML document, indicating
whether the end user was a winner, which was then
served to the end user’s browser. Other Akamai cus-
tomers have used EdgeJava to perform server-side trans-
formations of XML to HTML. Akamai provides weak
consistency for cached data via TTL-based protocols,
with the option of associating “do-not-cache” directives
with objects that require strong consistency. Akamai has
not, as yet, explored the possibility of applying database
query/update independence analysis or distributed inval-
idation mechanisms to enforce strong data consistency.

3 Initial Prototype

As a proof-of-concept demonstration and to expose fruit-
ful avenues for research, we have built a prototype scala-
bility service for dynamic Web applications. Our proto-
type enables application providers to offload the dynamic
generation of Web content to a distributed network in-
frastructure. From our preliminary experimental results,
we have identified key shortcomings in the current im-
plementation that motivate our ongoing work described
in Section 4. Before presenting these results, we first

describe our prototype implementation and benchmark
applications.

In contrast with previous work on distributed gen-
eration of dynamic Web content, we explore an ap-
proach that replicates all three tiers (web server, appli-
cation server, back-end database) of the traditional cen-
tralized Web architecture. The traditional architecture is
illustrated in Figure 2a (here all three tiers are depicted
as executing on a single home server; in general they
may be spread across multiple physical servers). As in
the centralized architecture, our distributed architecture
(Figure 2b) includes a home server for each application
provider, located within the provider’s home organiza-
tion. In the distributed architecture, the home server
primarily houses code and data, while a set of proxy
servers processes client requests and executes programs.
A client request is sent to a proxy server which then gen-
erates the appropriate response by a running a program,
accessing locally cached code and data when possible,
and obtaining additional code and data from the home
server as necessary.

In the following subsections we describe the design
choices we made while building our prototype. We first
present the design of the three distinct types of nodes in
our system: home servers, proxy servers, and clients.

3.1 Home Servers

Each home server embodies the traditional three-tiered
architecture, which enables it to generate Web content
dynamically. While we aim to offload the generation of
dynamic content to the proxy servers, our prototype is
compatible with this well-established home server archi-
tecture and hence also allows the application provider to
serve directly as much dynamic content as it chooses.
The top tier is a standard web server, which manages
HTTP interactions with clients. The web server is aug-
mented with a second tier, the application server, which
can execute a program to generate a response to a client’s
request based on the client profile, the request header,
and the information contained in the request body. Fi-
nally, the third tier consists of a database server that the



application provider uses to manage all of its data.
In our prototype each home server is implemented as

follows. We use Tomcat [16] in its stand-alone mode as
both a web server and a servlet container, enabling it to
process client requests and invoke and run Java Servlets.
We use MySql4 [22] as our back-end database manage-
ment system and mm.mysql [20], a type IV JDBC driver,
as our database driver.

3.2 Proxy Servers

The novelty of our prototype lies in the architecture and
implementation of the proxy servers. A traditional proxy
server such as Squid [31] is sufficient to serve static con-
tent on behalf of application providers. To generate dy-
namic content we have added a servlet container to Gem-
ini [21], a Squid proxy cache [31] augmented with IBM’s
Java virtual machine [15]. The proxy server also contains
a simple database cache designed to reduce CPU utiliza-
tion and bandwidth consumption of the home server, as
well as the impact of database queries on the execution
time of a servlet.

3.2.1 Caching Granularity

Our proxy server caches the results of database queries
(i.e., materialized views) rather than the tables of the
database itself, or arbitrary subtables. The primary ratio-
nale for this design choice is to make the proxy indepen-
dent of the back-end database implementation. This flex-
ibility is required since different application providers
may choose different back-end databases. This approach
also has the advantage that complex queries need not be
re-executed, and the proxy server does not have to im-
plement full database functionality (e.g., it does not need
a query optimizer or query plan evaluator). In our pro-
totype, database query results are cached at the JDBC
level. All updates are forwarded directly to the back-end
database at the home server.

3.3 Clients and Benchmarks

To drive load against our prototype we use Java im-
plementations of three publicly available benchmarks:
TPC-W [30], a transactional e-Commerce benchmark
that captures the behavior of clients accessing an online
book store, RUBiS [23], an auction system modeled after
e-Bay [10], and RUBBoS [24], a simple bulletin-board-
like system inspired by Slashdot [25]. We will hence-
forth refer to these benchmarks as BOOKSTORE, AUC-
TION and BBOARD, respectively. Each benchmark con-
tains between 11 and 16 distinct update templates, and
between 28 and 37 distinct query templates.

We made one significant modification to the BOOK-
STORE benchmark. In the original benchmark all books
are uniformly popular. In our version we use a more real-
istic distribution of book popularity based on the work by
Brynjolfsson et al. [5], who empirically verified that for

the well-known online bookstore Amazon [2], the popu-
larity of books follows a Zipf distribution. In particular,
log Q = 10.526− 0.871 logR, where R is the sales rank
of a book and Q is the number of copies of the book sold
within a short period of time.

Each of the three applications conform to the TPC-
W client specification, called Emulated Browsers (EB’s).
The run-time behavior of an EB models a single user
session. Starting from the home page of the site, each
EB uses a Customer Behavior Graph Model (a Markov
chain with various servlets in the Web site as nodes and
transition probabilities as edges) to navigate among Web
pages, performing a sequence of Web interactions. The
behavior model also incorporates a think time parameter
that controls the amount of time an EB waits between re-
ceiving a response and making the next request. This pa-
rameter emulates the behavior of human users who typi-
cally spend some time looking at a page after it has been
received before clicking on the next link.

3.4 Data Consistency

In our preliminary prototype we adopted a simple
and conservative consistency model. In particular, all
query templates are classified as either uncacheable,
or cacheable with a fixed time-to-live (TTL) threshold.
Marking a query template uncacheable ensures strong
consistency for all instantiations of that template. Ex-
amples of uncacheable data include the latest bid on
an item in the auction benchmark and the number of
copies of an item in stock in the bookstore. Examples
of cacheable data include the ten best sellers in the book-
store and the latest posting in the bulletin board. This
model has proven successful for managing collections of
documents and images in Web caches and CDN’s, and
fits the three benchmarks naturally. However, marking
data as uncacheable increases the load on the back-end
database at the home server and hence limits the scala-
bility of the prototype architecture.

Our ultimate goal is to mark all data as cacheable,
and rely on a fully distributed consistency enforcement
scheme to ensure strong consistency of the previously
uncacheable data. Before describing our ongoing work
on this aspect in Section 4, we first present some ini-
tial performance results obtained using our current pro-
totype.

3.5 Preliminary Results

In our implementation, we carefully optimized the
performance of the centralized solution by enabling
the query caching feature of MySQL4, the back-end
database, and by adding the indices necessary to make
queries execute as quickly as possible. We also elimi-
nated most static content from our workload by ensur-
ing that the emulated browsers did not request any im-
ages. This modification makes our results conservative



Benchmark DB size Details
AUCTION 990 MB 33,667 items

100,000 registered users
BBOARD 1.4 GB 213,292 comments

500,000 registered users
BOOKSTORE 217 MB 10,000 items

86,400 registered users

Figure 3: Configuration parameters for each benchmark.

since the static content of a normal workload can easily
be cached by our system.

We performed our experiments with a simple two-
node configuration (one home server and one proxy
server), running on Emulab [32]. All machines had an
Intel P-III 850 MHz processor with 512 MB of memory.
In all experiments the home server and proxy server were
connected by a high latency, low bandwidth duplex link
(100 ms latency, 2 Mbps). Each client was connected to
the proxy server by a low latency, high bandwidth du-
plex link (5 ms latency, 20 Mbps). These network set-
tings model a deployment in which the proxy servers are
located on the same local area networks as the clients,
which may be far from the home servers. Since the over-
head for emulating the clients is very low, we used a sin-
gle client machine to emulate multiple clients. Figure 3
gives the benchmark configuration parameters we used
in our experiments. We ran each experiment for 10-15
minutes, starting the proxy server each time with a cold
cache.

3.5.1 Cache Hit Rates

Figure 4 gives cache hit rates measured for each of
the three benchmarks, under three levels of client load
(load levels are characterized by the number of simulated
clients, or EB’s). The BBOARD benchmark achieves high
hit rates, implying that proxy servers should be able to
offload much of the database work from home servers
hosting similar applications. The hit rates for the AUC-
TION and BOOKSTORE benchmarks are less impressive.
With the BOOKSTORE benchmark, hit rates improve with
increased client load but still remain fairly small due to
the relatively low degree of commonality among client
access patterns in that benchmark. With this application,
the scalability of our approach has fundamental limits
unless a large portion of the database can be cached. We
plan to study collaborative caching techniques [33] as a
means to circumvent this limitation (see Section 6 for
brief discussion). As for the AUCTION benchmark, only
52% of retrieved query results are marked as cacheable,
which explains the modest hit rates. We expect that the
distributed consistency management scheme we are de-
veloping (Section 4) will improve this situation consid-
erably by enabling all query results to be cached until a
conflicting update occurs.

Benchmark Low Medium High
Load Load Load

AUCTION 39.4 41.2 41.4
BBOARD 86.8 87.6 89.8
BOOKSTORE 18.4 24.7 36.6

Figure 4: Cache hit rates under different client load con-
ditions, in %.

3.5.2 Server Load

Figure 5 shows the average latencies, per HTTP request,
observed from various vantage points in the system at
three different load levels. The bar C represents the tradi-
tional centralized architecture, whereas the bar D shows
results for our distributed prototype. The bar C consists
of three components: the network latency (i.e., the time
spent by an average request in going from the client to
the home server), the processing time spent in the web
and application servers, and the time spent in servicing
database requests. As the number of clients (EB’s) in-
creases, time spent in the back-end database increases,
reflecting growing load on the database server. For the
AUCTION and BOOKSTORE benchmarks, the database is
clearly the bottleneck. The BBOARD benchmark, how-
ever, is presentation heavy and stresses the web and ap-
plication server more than the database.

The D bar consists of five components for the AUC-
TION and BBOARD benchmarks and one additional com-
ponent for BOOKSTORE. The BOOKSTORE benchmark
implementation includes an independent shopping cart
database on the proxy, which maintains, for each user,
a list of items that the user intends to buy. The shop-
ping cart sees frequent additions, deletions and modi-
fications. As an example of a high-level optimization
that the application developer can suggest, we moved
the task of maintaining the shopping cart from the home
server to the proxy server. While this optimization al-
lows many queries to be answered at the proxy server,
some queries that perform a join of one shopping cart
table with one of the other tables in the database must
obtain relevant data from the home server. The addi-
tional component measures the time spent in the shop-
ping cart code at the proxy server. The other five compo-
nents are the times spent in going from the client to the
proxy server, processing at the proxy server, processing
in the database caching module at the proxy server, going
from the database module at the proxy server to the back-
end database at the home server, and processing at the
back-end database. An artifact of our current implemen-
tation is that there is limited multi-threading available at
the proxy server (i.e., it is unable to handle a large num-
ber of threads efficiently). Hence, at higher loads many
requests become enqueued at the proxy server, and the
time spent there increases substantially. We are working
to address this problem.
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Figure 5: Latency breakdown, and how it varies with increasing load. The C bar shows the observed latency as
a request passes through the different components of a traditional centralized architecture. The D bar shows the
corresponding numbers for our distributed architecture.

Comparing the C and D bars, we see that our dis-
tributed architecture successfully eliminates all web and
application server load from the home server. Plus, the
database load on the home server is substantially reduced
in the presence of a large number of clients (EB’s), for
the AUCTION and BOOKSTORE benchmarks (reflected in
the lower average latency to service back-end database
requests). In our distributed architecture the back-end
database load does not rise dramatically with increasing
client population, which is the case in the centralized ar-
chitecture. This observation provides some evidence that
in our distributed architecture the proxy server is able
to shield home servers from increasing load. On the
other hand, our hit rate measurements (Figure 4) indicate
that substantial numbers of queries are still being sent to
the back-end database, and hence the degree of scalabil-
ity achievable by our current prototype is limited. Ulti-
mately, the scalability of our approach rests on whether
it can be improved to become more effective at shielding
back-end databases from queries.

4 Distributed Management of Cache Con-
sistency

To shield back-end databases from as many queries as
possible, all data should be marked as cacheable, and
only evicted from caches when a conflicting update oc-
curs at some node in the system. When an update oc-
curs, that update must be conveyed to all proxy servers
caching views (query results) that might be affected by
the update, so that they can either update or invalidate
those views accordingly. Our approach is to employ a
fully distributed multicast infrastructure to disseminate
updates among proxies. When a proxy server caches a
view, it subscribes to one or more multicast channels re-

lated to the cached view. Any time an update occurs, a
message is broadcast to all channels related to views that
may be affected by the update, and proxy servers that
have subscribed to those channels can update or invali-
date the affected views as necessary.

A good multicast environment to use for this purpose
should support a large number of channels with highly
dynamic groups of subscribers for each channel. In our
scheme the rate of subscribing to and unsubscribing from
channels is dictated by the rate at which views are cached
and evicted. If invalidation is used as a consistency en-
forcement mechanism as we intend (see Section 1.2.2),
then the rate of subscription churn can conceivably ex-
ceed the rate of multicast messages used to disseminate
updates. Therefore it is crucial that subscribing and un-
subscribing from multicast channels be highly efficient
operations. At some point we may consider designing
a custom multicast environment that can be optimized
specifically for our context. In the meantime, we plan to
use an out-of-the-box solution. The multicast environ-
ment Scribe [7], which uses a Pastry DHT overlay [29]
as a basis for organizing multicast trees, seems to meet
most of our needs.

4.1 Transactional Semantics

Recall from Section 1.2.2 that in our approach, when-
ever a data update is generated by application code run-
ning at a proxy server, the update is forwarded directly
to the home server(s) corresponding to that application.
Meanwhile, notification of that update must be sent to
all proxy servers caching potentially conflicting views
(including, of course, the proxy server at which the up-
date originated). In this setting, to ensure proper transac-
tional consistency semantics, i.e., one-copy serializabil-



ity, a distributed consistency enforcement mechanism
such as distributed locking must be used. The asyn-
chronous, unidirectional messaging capability offered by
Scribe and other multicast environments is not a suffi-
cient basis upon which to build any distributed consis-
tency mechanism. Bidirectional messaging is required
to synchronize actions across multiple nodes. We are
in the process of considering how best to graft bidirec-
tional messaging onto a multicast environment for this
purpose, and weighing the merits and drawbacks of dif-
ferent transactional consistency and availability mecha-
nisms in our context.

At present the primary focus of our distributed consis-
tency management work is on studying alternative ways
to configure multicast channels. We discuss this issue
next.

4.2 Configuration of Multicast Channels

There are many ways to configure multicast channels for
dissemination of updates. To illustrate some of the al-
ternatives and showcase the issues involved, we intro-
duce a simple example inventory application in which the
following two parameterized update templates and three
query templates are embedded (question marks indicate
parameters bound at execution time):

Update Template 1:
INSERT INTO inv VALUES (name = ?,

id = ?, qty = ?, entry date = NOW())

Update Template 2:
UPDATE inv SET qty = ? WHERE id = ?

Query Template 1:
SELECT qty FROM inv WHERE name = ?

Query Template 2:
SELECT name FROM inv
WHERE entry date > ?

Query Template 3:
SELECT * FROM inv WHERE qty < ?

4.2.1 Channel-By-Query Versus
Channel-By-Update

For now let us ignore optimizations that can be made
by considering parameter bindings supplied at execution
time (we return to this issue in Section 4.2.2). Consider a
bipartite graph between update templates and query tem-
plates, in which an edge from update template U to query
template T indicates that whenever an instantiation of
U is issued, all proxy servers currently caching one or
more instantiations of Q are to be notified. In our ex-
ample application there is an edge between every U /T
pair with the exception of Update Template 2 and Query
Template 2, which are independent. We refer to this
graph as the nonindependence mapping. For a given set

of query/update templates this mapping can be obtained
using offline query/update independence analysis [17]. 1

Given a precomputed nonindependence mapping, to
ensure proper delivery of update notifications there are
two basic alternatives: channel-by-query and channel-
by-update:

• Channel-By-Query: There is a multicast channel
corresponding to each query template. Numeric
channel identifiers can be assigned using hashing.
(Collisions in the channel identifier space may re-
sult in some proxy servers receiving spurious update
notifications, but do not affect correctness.) When
an update occurs at some proxy server, the server
applies the precomputed nonindependence mapping
to determine which query templates might be af-
fected, and forwards the update along the corre-
sponding multicast channels.

• Channel-By-Update: The determination of which
update templates potentially affect a cached query
result is performed eagerly, when the result is
cached at some proxy server, as opposed to lazily,
i.e., whenever an update occurs. In this scheme
whenever a proxy server begins caching a query
result, it applies the nonindependence mapping to
determine which update templates might affect the
query result, and subscribes to the corresponding
multicast channels. When an update occurs, notifi-
cation is sent along a single channel corresponding
to the template for that update.

In both schemes, the set of proxy servers notified of
a particular update is the same. The difference is that
with channel-by-query, less work is performed each time
a query result is cached or evicted, while more work is
performed each time an update occurs, compared with
channel-by-update. The cost of each strategy is highly
dependent on the workload, of course, as well as the
overhead of applying the nonindependence mapping, the
overhead of subscribing to and unsubscribing from mul-
ticast channels, and the overhead of sending multicast
messages. Overall, since most Web applications have
read-dominated workloads, including our testbed appli-
cations described in Section 3.3, we expect channel-by-
query to perform better.

4.2.2 Parameter-Specific Channels

The number of proxy servers notified of an update can,
in some cases, be reduced substantially by considering
runtime parameter bindings. It is not clear what can be
done in the case of inequality predicates, so we focus

1The general query/update independence problem is undecid-
able [17]. As a result, in the presence of certain classes of query/update
templates the nonindependence mapping can turn out to be conserva-
tive, i.e., contain unnecessary edges. This aspect can impact perfor-
mance but not correctness, in our setting.



on equality predicates. Also, to simplify exposition in
this section we assume the channel-by-query scheme is
in place, although our discussion can be translated to fit
the channel-by-update scheme.

Consider Query Template 1, which contains an equal-
ity predicate on the name attribute. Suppose that in
addition to the template-level multicast channel corre-
sponding to Query Template 1 we have an additional
channel corresponding to each of the possible runtime
bindings of the name parameter (there may be infinitely
many). Numeric channel identifiers can be assigned us-
ing a hash function operating over the combination of
template identifier and parameter binding. In most mul-
ticast environments, including Scribe, zero bookkeeping
overhead is incurred for channels with no subscribers
(i.e., those channels are not materialized).

Suppose proxy server A starts with a cold cache, and
then begins caching the result of issuing Query Tem-
plate 1 with parameter binding name=‘fork.’ Server A
must subscribe to the template-level channel for Query
Template 1 as well as the parameter-specific channel
for name=‘fork.’ Then, if Update Template 1 is instan-
tiated at proxy server B to insert a new record with
name=‘spoon,’ B transmits the update on a channel cor-
responding to Query Template 1 with name=‘spoon,’
which does not reach A. (B must also transmit the update
on the template-level channel for each of Query Tem-
plates 2 and 3.)

While the simple example given above illustrates the
main idea, the presence of more sophisticated predi-
cates (e.g., those containing conjunctive and disjunc-
tive clauses) complicates the situation. We are currently
studying the general problem of how best to configure
parameter-specific channels so as to minimize the num-
ber of recipients of update notifications. We are also con-
sidering alternatives to channel-by-query and channel-
by-update in which multicast channels can correspond
to arbitrary units of data, and need not be tied to partic-
ular query or update templates embedded in the applica-
tion. If it turns out that there is no universal best scheme
that dominates the others in all cases, we will investi-
gate adaptive policies that adjust the channel configura-
tion dynamically in response to current conditions.

5 Tradeoffs in Invalidation Strategies for
Cached Views

When a proxy server receives notification of an update
(either a local update or an update forwarded by another
node) that potentially conflicts with one or more locally-
cached views, the next step is either to update or invali-
date all affected views to ensure consistency. Recall from
Section 1.2.2 that we choose to focus on invalidation
rather than maintenance of cached views to avoid dis-
tributed updating of data, which causes numerous prac-
tical difficulties in our context. Hence, the issue is to
decide which locally-cached views, if any, to invalidate

upon receiving notification of an update.
One rather conservative strategy is to invalidate any

view that cannot be ruled independent of the update by
inspection of the view definition (the methods of [17] can
be used, for example). Under this strategy invalidation of
a view in response to an update is only avoided if it can
be determined that any instance of the view would re-
main unchanged after application of the update (different
view instances result from different database content).
Often, the particular instance of a view being cached is
not affected by an update, although some conceivable in-
stances of the same view would be affected. Hence, any
approach that relies solely on inspection of the view def-
inition to determine independence tends to be quite con-
servative. A less conservative determination of indepen-
dence can be made by inspecting the content of the cur-
rently cached view instance, using the techniques of [13]
or others. Doing so can reduce the number of view inval-
idations performed, thereby improving scalability.

Customers, however, may be reluctant to permit ac-
cess to sensitive data by cache management code that
is written by a third party and lies outside their trusted
code base. With statement-level view invalidation strate-
gies that do not inspect data, applications are free to en-
code and encrypt data arbitrarily, a significant advantage
in terms of security and privacy. These are crucial con-
cerns when data flows through an infrastructure shared
by many organizations. Additionally, when cache man-
agement entails inspection of data, interoperability with
a wide range of DBMS products also becomes signifi-
cantly more complex to achieve.

We illustrate the inherent tradeoff between scalabil-
ity, on one hand, and a combination of low imple-
mentation complexity and data secrecy on the other
hand, using a simple example. Consider an online
bookstore application with data stored in two rela-
tions: Books(Title, Author, Subject) and
Authors(Author, Awards, Country). Sup-
pose that a proxy server has cached an instance of the
following view, giving the awards of American authors
who have written history books:

CREATE VIEW MyView(Author, Awards) AS
SELECT A.Author, A.Awards
FROM Authors A, Books B
WHERE B.Author = A.Author

AND A.Country = "USA"
AND B.Subject = "history"

Say the following update occurs:

UPDATE Authors SET Country="France"
WHERE Author="Tocqueville"

An instance of MyView will be affected by the update
if and only if it contains one or more records for author
Tocqueville. Hence, an implementation that conserva-
tively determines independence without inspecting view



contents will invalidate, whereas one that inspects the
contents of cached views can avoid invalidation in some
cases. The former strategy has a simpler implementation
that preserves data secrecy, whereas the latter strategy
accommodates greater scalability.

Consider now the following update:

UPDATE Books SET Subject="fiction"
WHERE Title="Napoleon’s Television"

Here, inspecting the view does not help rule out con-
flict, but inspecting the base relations might help, say if
no book with title “Napoleon’s Television” occurs in the
Books relation. Therefore, inspection of data that lies
outside the view in question, using, say, the techniques
of [6], can reduce the number of invalidations further,
potentially leading to even better scalability. However,
caution is warranted since caching additional data for the
purpose of making more informed invalidation decisions
is not necessarily a win in terms of overall scalability be-
cause the additional data must also be kept consistent.
Plus, implementation complexity increases under such a
strategy.

Which of these approaches, then, is the right one to
take? This question has no one-size-fits-all answer. A
system designer might opt for a simple implementation
that treats cached views as black boxes and thus permits
arbitrary data encryption by applications, as long as do-
ing so does not unduly compromise scalability. Alter-
natively, the designer might implement a sophisticated
invalidation strategy that inspects data, but switch to a
statement-level strategy for customers that demand high
security, even if it means decreased scalability for those
customers. To determine the best approach, the system
designer will need quantitative estimates of the impact
these design decisions are likely to have on scalability.
To this end we are developing an analytical framework
for comparing various view invalidation implementation
strategies quantitatively, in terms of the number of inval-
idations performed under a given workload. Our work is
grounded in a formal characterization of view invalida-
tion strategies, provided next.

5.1 Formal Characterization of View Invalidation
Strategies

A view invalidation strategy S is a function whose argu-
ments include an update statement, a view definition, and
possibly other information, and that evaluates to one of
I (for “invalidate”) or DNI (for “do not invalidate”). A
view invalidation strategy is correct if and only if when-
ever a view changes in response to an update, all corre-
sponding cached instances of that view are invalidated.
A formal definition of correctness is as follows:

Correctness: A view invalidation strategy S is correct
iff for any view definition Q, database D, and update µ,
(Q(D) 6= Q(Dµ)) ⇒ (S(µ, Q, . . .) = I).

Here, Dµ denotes the state of database D after apply-
ing update µ, and Q(D) denotes the result of evaluating
view definition Q over database D. We assume that up-
dates are applied sequentially, and that all invalidations
necessitated by one update are carried out before the next
update is applied.

We now define three classes of view invalidation
strategies, which differ by which portions of the database
they may access:

• Black-Box Strategy S(µ, Q): Only the update µ
and the view definition Q may be used to make
the invalidation decision. Correctness requires that
(∃D (Q(D) 6= Q(Dµ))) ⇒ (S(µ, Q) = I).

• View-Inspection Strategy S(µ, Q, Vp): The up-
date µ, the view definition Q, and the content of
the view Vp = Q(Dp), where Dp denotes the state
of the database at the time the view was evaluated
(i.e., prior to application of the update), may be
used to decide whether to invalidate Vp. Correct-
ness requires that (∃D ((Q(D) = Vp) ∧ (Q(D) 6=
Q(Dµ)))) ⇒ (S(µ, Q, Vp) = I).

• Full-Access Strategy S(µ, Q, Vp, Dp): The up-
date µ, the view definition Q, and any portion
of the database as it stood prior to application of
µ, Dp (including the view Vp = Q(Dp) itself),
may be used to decide whether to invalidate Vp.
Correctness requires that (Q(Dp) 6= Q(Dµ

p
)) ⇒

(S(µ, Q, Vp, Dp) = I).

Every correct black-box strategy is a correct view-
inspection strategy, and every correct view-inspection
strategy is a correct full-access strategy, as shown in Fig-
ure 6.

We are now ready to define minimality:

Minimality: A view invalidation strategy S belonging
to class C is minimal if and only if it is correct and there
exists no view definition Q, update µ, and database D
such that S invalidates the view Q(D) in response to µ,
while another correct view invalidation strategy in class
C does not.

Corresponding to each class of invalidation strategy
we give a simple criterion that is a sufficient and neces-
sary condition for minimality:

• Minimal Black-Box Strategy: A black-box strat-
egy S(µ, Q) is minimal if and only if it is correct
and whenever it invalidates a view defined by Q in
response to update µ, there exists some database D
such that the outcome of Q(D) changes as a result
of applying µ to D. Combining this condition with
the correctness criterion for black-box strategies,
we determine that a black-box strategy S is mini-
mal iff (S(µ, Q) = I) ⇔ ∃D (Q(D) 6= Q(Dµ)).
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Figure 6: Venn diagram depicting relationships among classes of view invalidation strategies.

• Minimal View-Inspection Strategy: A view-
inspection strategy S(µ, Q, Vp) is minimal if and
only if it is correct and whenever it invalidates
view Vp in response to update µ, there exists some
database D from which Vp could have been derived
such that the outcome of Q(D) changes as a result
of applying µ to D. Formally, a view-inspection
strategy S is minimal iff (S(µ, Q, Vp) = I) ⇔
∃D ((Q(D) = Vp) ∧ (Q(D) 6= Q(Dµ))).

• Minimal Full-Access Strategy: A full-access
strategy S(µ, Q, Vp, Dp) is minimal if and only if
it is correct and whenever it invalidates view Vp in
response to update µ, applying µ to database Dp

changes the outcome of Q(Dp). Formally, a full-
access strategy S is minimal iff (S(µ, Q, Vp, Dp) =
I) ⇔ (Q(Dp) 6= Q(Dµ

p
)).

It is not difficult to construct a formal proof to show
that no correct black-box strategy is a minimal view-
inspection strategy. Similarly, one can prove that no
correct view-inspection strategy is a minimal full-access
strategy. Figure 6 depicts the relationships among classes
of view invalidation strategies as a Venn diagram.

5.2 Ongoing Tradeoff Analysis Work

Our eventual goal is to be able to answer the follow-
ing question (without having to perform arduous manual
analysis or build a sophisticated simulator): Given an ex-
pected query/update workload, how many invalidations
would be incurred under each class of minimal invali-
dation strategy? As a starting point, we are working to
identify restricted classes of workloads for which there is
provably no advantage to inspecting cached views, i.e., a
minimal view-inspection strategy would incur precisely
the same set of invalidations as a minimal black-box
strategy. The next step is of course to examine cases in
which view inspection does offer an advantage in terms
of fewer invalidations, and characterize the size of the
advantage as a function of the workload.

We hope to do the same for minimal full-access strate-
gies, although the situation is more complex because
full-access strategies are “double-edged swords,” so to
speak. In certain cases they necessitate bringing addi-
tional portions of the database into the cache solely for
the purpose of making invalidation decisions. An inter-
esting open problem is to find a portion of the database
to cache for this purpose that can be kept consistent with
little overhead (where consistency is ensured through in-
validation or other means). This problem is related to the
problem of finding the minimal set of auxiliary views to
enable self-maintenance of a particular view [27]. It re-
mains to be seen to what extent the problem differs in our
context.

6 Future Work

Regardless of the exact invalidation strategy employed,
the practice of always invalidating cached data in re-
sponse to updates affecting that data places bounds on
scalability. Our ultimate goal is to design a service that
provides virtually unlimited scalability to applications,
so that users are never denied access due to overload
situations. As future work we plan to explore cache
management techniques that always avoid overloading
home servers by continuously monitoring and reacting to
changing conditions. For one, we intend to study load-
aware collaborative caching schemes in which proxy
servers attempt to serve cache misses from other proxy
servers before resorting to retrieving the data from a
heavily-loaded home server. The more heavily-loaded
the home server, the more additional proxy servers are
contacted in an effort to locate a copy of the data. Such
an “adaptive reach” policy would trade request response
time against home server load as needed. Additionally,
we plan to consider cache eviction policies that avoid
evicting data housed at home servers currently experi-
encing heavy load. Finally, we may investigate policies
that, when all else fails, relax data consistency as needed
to avoid overload situations. One possibility is to defer
invalidation of cached views when the impact on consis-



tency is not severe, as judged in the context of the appli-
cation.

7 Summary
In this paper we presented our ongoing work on creating
a scalability service for dynamic Web applications. The
purpose of a scalability service is to allow application
providers to accommodate fluctuating demand without
investing in costly equipment and in-house management
expertise. We began by describing our preliminary work-
ing prototype and reporting some early performance re-
sults. The primary remaining challenge in realizing our
vision of scalability offered as a plug-in service lies in
the development of a scalable consistency enforcement
mechanism for data requiring strong consistency. We
presented our initial work on this topic, aimed at de-
veloping a fully distributed update propagation scheme.
Our scheme exploits the fact that Web applications typi-
cally contain a small set of predefined query and update
templates. In our scheme independence relationships be-
tween query and update templates are determined offline
and then used at runtime to limit the number of proxy
servers receiving notification of each update. Lastly, we
turned to a discussion of alternative strategies for invali-
dating cached data in response to update notifications. In
particular, we described our ongoing effort to character-
ize the inherent tradeoff between scalability and data se-
crecy, a crucial issue for an environment managing data
from multiple organizations.
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