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Abstract

A fundamental problem with the current generation of file system benchmarks is that

they fail to take into account the fact that a file system’s performance can vary depending

on the workload running on it. Many benchmarks attempt to reduce file system perfor-

mance to a single number, producing a simplistic one-dimensional ordering of the sys-

tems being tested. Although this may be useful for marketing literature, the performance

of file systems in the real world is more complicated. Different workloads place different

demands on the file system, and can result in different behavior from the underlying sys-

tem. A file system that provides superior performance for a web server may have inferior

performance when running a software development workload.

In this dissertation I demonstrate that the “one size fits all” approach of current

file system benchmarks does not accurately predict the performance of different

workloads on different file systems. I then present a new benchmarking methodology

that not only predicts file system performance in the context of a specified workload, but

also allows researchers and developers to isolate the areas of file system performance that

present the greatest bottlenecks for particular workloads.
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Chapter 1

Introduction

In his keynote address at the first Symposium on Operating Systems Design and Imple-

mentation, David Patterson observed that, “For better or for worse, benchmarks shape a

field [Patterson94].” When a benchmark gains wide-spread acceptance, vendors and

researchers use the benchmark as a yardstick for measuring improvements to their sys-

tems. Thus, an important focus for improving system performance is to improve the sys-

tem’s benchmark results.

This narrow focus on benchmark results can be either good or bad, depending on

the quality of the benchmark. A good benchmark accurately reflects the usage patterns of

an important class of applications and provides results that predict the performance of

those applications. With a good benchmark, targeting system improvements to increase

benchmark performance results in better performance for end users. In contrast, a poor

benchmark leads researchers and developers to tune their systems in ways that improve

benchmark results but provide little or no benefit to the end user.

In the field of computer file systems, we often find ourselves at the “worse” end of

this spectrum. There are few standard benchmarks, and those that exist have significant

flaws. A recent survey of research papers published between 1991 and 1996 showed that

file system researchers seldom used standard benchmarks [Small97]. The most
1



commonly used benchmark in this study, the Andrew Benchmark [Howard88] was

frequently mis-used.

A fundamental problem with the current generation of file system benchmarks is

that they fail to take into account the fact that a file system’s performance can vary

depending on the workload running on it. Many benchmarks attempt to reduce file

system performance to a single number, producing a simplistic one-dimensional

ordering of the systems being tested. Although this may be useful for marketing

literature, the performance of file systems in the real world is more complicated. Different

workloads place different demands on the file system, and can result in different

behavior from the underlying system. A file system that provides superior performance

for a web server may have inferior performance when running a software development

workload.

In this dissertation I demonstrate that the “one size fits all” approach of current

file system benchmarks does not accurately predict the performance of different

workloads on different file systems. I then present a new benchmarking methodology

that not only predicts file system performance in the context of a specified workload, but

also allows researchers and developers to isolate the areas of file system performance that

present the greatest bottlenecks for particular workloads.

1.1 Dissertation Overview

Because different types of file system workloads can have widely different characteristics,

a benchmark that does not take into account the target workload for a file system may be

a poor predictor of how a particular workload will perform on that file system. In Chap-

ter 2, I survey a range of common workloads that a file system may encounter and exam-

ine some of the important differences between them. I also discuss existing benchmarks.

This chapter also provides background information on the architecture and implementa-

tion of the file systems that I use throughout this dissertation.
2



There are two major problems with existing file system benchmarks. The first problem is

that they are typically conducted on file systems that are empty—a state rarely seen by

real users. The second problem is that most file system benchmarks do not answer the

question that most users ask, “How will my workload perform on this file system?”

In Chapter 3, I address the first problem by presenting a technique called file

system aging. Before benchmarking a file system, I use an artificial workload (generated

from real file system usage patterns) to age a file system. An aging workload can

reproduce the effect of months, or even years, of file system activity. Applying the aging

workload to a file system prior to running benchmarks creates a benchmarking

environment representative of the file system state typically seen in the real world. By

using a fixed aging workload, a researcher can age file systems in a reproducible manner.

Similarly, by applying the same workload to different file systems, we can see how

differences in file system architecture affect long term file system behavior. Because the

aging workload is generated from traces and snapshots of a real file system, aging

workloads representative of different types of file system activity can be created using

data collected from different file system.

To address the second problem, predicting the performance of a particular

workload on a particular file system, I have developed a benchmarking framework called

HBench-FS, which separates the evaluation of the test file system from the evaluation of

the workload. In Chapter 4, I describe this scheme, in which a vendor would run a series

of microbenchmarks on their file system. The resulting microbenchmark vector (or system

vector) provides quantitative measurements for a wide range of simple file system

operations, such as creating or reading a file. Potential customers would characterize

their workload by tracing it. HBench-FS takes a file system trace and the system vector as

inputs and combine them to predict the latency of each operation in the trace. By

summing the predicted latencies for all of the operations in a trace, it can accurately

predict the relative performance of the workload on different file systems.

Separating the workload from the file system evaluation provides several

important benefits. It allows researchers and developers to explore “what if?” scenarios.
3



Before attempting to optimize a piece of the file system, a researcher can easily determine

how much an application would benefit from the contemplated improvement by

modifying the system vector and using the new vector to analyze the workload. Also, by

separating the file system evaluation from the workload analysis, it should be possible

for users to evaluate products from different vendors without having access to the

hardware in question. Unlike the current situation, users would be able to perform this

comparison in the context of their own workload(s), rather than by comparing a single

benchmark number provided by the different vendors.

Having performance predictions on a per-operation basis allows several useful

types of performance analysis. The user may, for example, know that certain operations

are more critical than others (perhaps they occur when the end-user is waiting for a

response) and can look at the performance of only those operations. Similarly, a

researcher can analyze the performance of a workload in terms of where the time is

going, determining what types of operations have the longest latencies or consume the

most file system time.

Chapter 5 provides a survey of related work from several areas of computer

science. In this chapter, I describe existing techniques for file system benchmarking, other

tools for analyzing system behavior in the context of a particular application or

workload, and application-specific benchmarking tools and techniques used in other

areas of computer science.

Finally, I summarize my results and conclusions in Chapter 6.

1.2 Contributions

This dissertation makes the following contributions:

• I demonstrate that benchmarking empty file systems is, at best, inaccurate,

and at worst misleading. I also show that a simple technique for artificially

aging file systems provides more accurate and meaningful results than the

traditional approach of benchmarking empty file systems.

• I show that different workloads place different demands on file systems,

and that a simple, one-dimensional performance evaluation is inadequate
4



to predict how a particular application will perform on a specific file

system architecture.

• I present a suite of file system benchmarking tools, HBench-FS, that

analyze the performance of a file system in the context of a specific

workload of interest. HBench-FS provides accurate predictions of the

relative performance of different file systems executing the same

workload. It also provides fine-grained performance information that can

be used by either file system or application architects to locate and

eliminate performance bottlenecks.
5



Chapter 2

Background

In this chapter, I provide background information about the architecture and implemen-

tation of the file systems that I use throughout this dissertation. I discuss the techniques

for collecting data about file system workloads, and survey a range of common work-

loads a file system may encounter, examining some of the important differences between

them. I also provide a brief overview of traditional file system benchmarks.

2.1 File System Architecture

This section provides an overview of file system design and implementation, focusing on

the aspects of file system architecture that have the largest impact on performance. The

following discussion focuses on the Berkeley Fast File System (FFS), which is the native

file system used by the various BSD implementations of the UNIX operating system. This

is a mature and well-optimized file system that has influenced the design of several other

commonly used file system architectures, including Linux’s ext2fs [Beck98]. It is also the

file system that I use for most of the examples and demonstrations throughout this dis-

sertation.
6



2.1.1 General File System Architecture

Computer systems typically provide storage in the form of files. The file system imple-

ments this storage abstraction on top of the storage peripherals attached to the host com-

puter—typically one or more hard disks. The file system also exports an interface,

allowing clients to read, write, and manipulate files. On a traditional desktop system, the

file system’s clients are user applications executing on the same machine. Network file

systems, such as NFS [Sandberg85], allow clients on remote machines to share access to

files on a server machine.

A file system consists of both the persistent on-disk data and the software that

provides access to this data. The on-disk representation of a file system is essentially a

large data structure. The file system software implements the various algorithms for

manipulating the on-disk data. It is possible to have completely different software

implementations for the same on-disk file system. This allows developers to add new

features or performance enhancements to existing file systems without requiring that

users re-initialize their on-disk file systems. It also allows completely different

implementations for the same on-disk file systems. Many UNIX systems, for example,

provide support for MS-DOS file systems that may be co-resident on the local disk

[Forin94].

In addition to file data, a file system also stores a variety of internal data

structures on the disk. This meta-data provides the information the file system needs to

access and manipulate its file data. The meta-data includes global file system

information, such as which disk blocks are allocated, as well as per-file information, such

as the location of each file’s data on the disk and each file’s name. Modern file systems

use directories to provide a hierarchical namespace. A directory is an object that contains

the names of other files and directories, along with internal pointers that the file system

can use to find the named objects. Thus, instead of providing a flat namespace,

containing the names of all of the files on the system, directories allow file systems to

organize files into a tree-like, hierarchy.1 Directories are often implemented as a special

1. Most file systems provide support for links (also known as shortcuts or aliases), which allow multiple names

to point to the same file. On such systems the namespace forms a directed graph, rather than a simple tree.
7



type of file that supports special operations and can only be manipulated by the

operating system.

2.1.2 UNIX File System Architecture

UNIX-like systems implement files as an ordered stream of bytes. The basic unit

of data transfer between an application and a file is a single byte. For efficiency,

applications usually read or write larger units of data, but the file system imposes no

such requirement. Applications may read data from any location within a file. The

default behavior is for the file system to keep track of the offset of the last byte transferred

to or from the file. Successive I/O requests start at the subsequent byte within the file.

When writing data, an application may either overwrite existing data within the file or

append it to the end of the file. The file system does not provide a mechanism for

inserting or deleting data in the middle of a file. The only way to accomplish these actions

is to rewrite the file contents after the point of insertion or deletion.2

UNIX systems allow support for multiple file system implementations on the

same system. This allows a single system to access files on native file systems (e.g., FFS),

on DOS or Windows partitions on the same machine, as well as on remote file systems on

other machines. UNIX provides support for multiple file system implementations via a

Virtual File System (VFS) interface [Kleiman86]. VFS provides a uniform interface to all file

systems supported by the UNIX kernel. By conforming to this interface, developers can

create new file systems and easily integrate them into the kernel. This is, in essence, an

object-oriented approach to implementing files and file systems within the UNIX kernel.

The kernel dispatches file system operations to the appropriate file system

implementation based on pointers stored in its per-file (and per-file-system) data

structures.

UNIX systems provide a number of services that are used by most file system

implementations. Because the disk media on which file systems reside are typically

2. This is in contrast to record-oriented file systems, which require all file I/O to be performed on one or more

records. Record-oriented file systems may support only a single record size per file, or may allow for variable

sized records. Some record-oriented file systems also allow for insertion or deletion of records at arbitrary

points within the file.
8



several orders of magnitude slower than main memory, the kernel attempts to cache

frequently used data in memory. This allows the system to avoid repeated requests to the

disk when it receives multiple requests for the same data.

The primary cache of file data, sometimes called the buffer cache, contains copies of

recently accessed data blocks. The operating system typically replaces cache blocks in an

LRU manner. To optimize performance, and to avoid making applications block on the

disk unnecessarily, most file systems attempt to overlap I/O requests with application

computation. By prefetching blocks from the disk before applications request them, the

system tries to avoid forcing applications to stall while waiting for data from the disk.

Similarly, the operating system may write dirty data from the buffer cache to disk

asynchronously, so that write requests can return to the application without blocking on

the disk.

On many systems, the size of the buffer cache is fixed at boot time. Other systems,

such as Solaris, Sprite, and NetBSD, allow the amount of memory for caching file data to

grow and shrink according to the relative demands of file system and virtual memory

activity [Gingell87][Nelson88][Cranor99].

Although the raw data blocks containing file system meta-data are usually stored

in the buffer cache along with regular file data blocks, the kernel also provides separate

caches for frequently accessed types of meta-data. A name cache, sometimes called a

directory name lookaside cache (DNLC), stores the results of recent name lookup operations,

and an attribute cache (or vnode cache) stores the attributes and meta-data for recently

accessed files. These caches avoid the overhead of repeatedly translating the raw meta-

data and provide fast access to their contents even after the corresponding meta-data

blocks have been evicted from the buffer cache.

When a file system can not satisfy requests using the data in the various caches. It

reads and writes data to the underlying disk system. The operating system provides a

simple block-oriented interface to disk devices. The file system performs all I/O

operations in multiples of a fixed block size. The minimum block size is determined by

the disk’s sector size (the smallest possible I/O size), which is typically 512 bytes, but
9



many file systems use larger block sizes because of the performance benefits that come

from issuing large sequential I/O requests to the disk.

Older file systems were often designed to exploit the geometry of the underlying

disk when they allocated space to files. Current trends in disk and storage technology

make this impossible for current file systems. In contrast to older disk drives, which

divided all tracks into a constant number of sectors, modern disks maximize the usable

storage space by increasing the number of sectors per track with the distance of the track

from the disk’s spindle [VanMeter97]. While the use of such zoned constant angular velocity

disks makes it difficult for a file system to determine and exploit disk geometry, the real

problem comes from large scale storage systems such as Hewlett-Packard’s AutoRAID,

which presents a standard SCSI disk interface to the host system, but actually stores data

in two different formats on multiple internal disks [Wilkes95].

Without any reliable knowledge of the geometry and performance characteristics

of the underlying storage media, the only behavior that contemporary file systems can

rely on is that sequentially numbered disk blocks will be organized in such a way to

optimize sequential I/O to these blocks. On a single disk, sequentially numbered blocks

typically correspond to adjacent blocks in the same track. In general, this means that the

optimal file layout is to allocate logically sequential file blocks to physically sequential

disk blocks.

2.1.3 Berkeley Fast File System

In the early 1980s, Kirk McKusick and his colleagues at the Computer Systems Research

Group at Berkeley developed the Berkeley Fast File System (FFS) [McKusick84]. They

released it as part of the 4.2 Berkeley Software Distribution of UNIX (BSD). Since then, it

has become the de facto standard file system for BSD-derived UNIX implementations,

including FreeBSD, BSD/OS, Solaris, and Digital UNIX.

As FFS is the file system I use for most of the research in this dissertation, this

section provides an overview of its design and implementation. This section also

discusses the evolution of the FFS architecture since its initial introduction. A more
10



complete description of FFS is available in The Design and Implementation of the 4.4BSD

Operating System [McKusick96].

2.1.3.1 Fast File System Architecture

FFS places a superblock at a fixed location at the beginning of its disk partition. This block

summarizes the state of the file system and includes global file system information such

as the file system block size, the number of blocks on the disk partition, various parame-

ters governing the file layout policy, and pointers to the on-disk locations of other meta-

data structures.

Each file on FFS is described by an on-disk data structure called an inode (or index-

node). This data structure contains information about the file’s attributes and pointers to

the blocks containing the file’s data. The attribute information includes the file’s owner

and group, its access permissions, its size (in bytes), and the times the file was last

accessed and modified. Because the inode is a fixed-size data structure (128 bytes), there

is a limited amount of space to list the disk blocks allocated to a file. To allow arbitrarily

large files, FFS uses an indirect addressing scheme (illustrated in Figure 2.1), similar to

that used in the original UNIX file system [Ritchie74]. The inode itself contains pointers

to fifteen disk blocks. The first twelve of these pointers contain the addresses of the first

twelve blocks of a file. For larger files, FFS uses the remaining block pointers in the inode

to point to indirect blocks. The first of these points to a singly indirect block containing

pointers to additional file data blocks. The next points to a doubly indirect block, which

contains pointers to additional singly indirect blocks, which in turn hold pointers to file

data blocks. Finally the inode has a pointer to a triply indirect block, containing pointers to

additional double indirect blocks. On a file system using the default block size of eight

kilobytes, this scheme allows file sizes of over 64 terabytes. FFS only allocates indirect

blocks on demand, as a file grows large enough to require them.

FFS stores directories in the same manner as files. FFS sets a flag bit in the inode to

indicate that the file should be interpreted as a directory instead of as a regular file. For

each file in the directory, the on-disk directory file contains the file name and the inode
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number for that file. FFS always stores the inode for the root directory in a fixed location

(inode number 2).

FFS divides the underlying disk partition into allocation pools called cylinder

groups. In the original FFS implementation, a cylinder group corresponded to some

number of consecutive cylinders on the physical disk. Since it is difficult to determine the

cylinder size on modern disks, current FFS implementations simply allocate a fixed

number of blocks to each cylinder group. Most of the blocks in each cylinder group are

used as data blocks. FFS can allocate them to any file, either as data blocks or indirect

blocks. A fixed set of blocks in each cylinder group hold inodes, with multiple inodes

stored in each block. As both the number of cylinder groups and the number of inodes

per cylinder group are fixed when the file system is initialized, the total number of inodes

. . .

. . .

. . . . . .

. . .. . .

File
Attributes

Indirect
Blocks

Double
Indirect Blocks

Triple
Indirect Block

File Data Blocks

Block
Pointers

Inode

File

Figure 2.1. Sample FFS Block Layout. This figure depicts a file (at the bottom), its inode (at the top), and

the indirect blocks the inode uses to list the file’s data blocks. The inode contains twelve direct block pointers,

which point to the first twelve data blocks of the file. The inode also contains three indirect block pointers,
which point to a single, double, and triple indirect block. In addition to block pointers, the inode also

contains the file’s attributes.
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represents the maximum number of files (or directories) that can be created on the file

system. Each cylinder group also contains bookkeeping information, including bitmaps

indicating which blocks and inodes are allocated, and a redundant copy of the

superblock, which can be used for disaster recovery.

FFS uses cylinder groups as allocation pools, and attempts to exploit expected

patterns of locality of reference by collocating related items in the same cylinder group.

For example, FFS tries to allocate files in the same cylinder group as their directory (and

hence in the same cylinder group as all other files in the same directory).

An important issue for all file systems is maintaining file system integrity in the

face of a possible system failure. This is especially important for file system operations

that modify more than one piece of data or meta-data, such as file creation and deletion.

When FFS creates a new file, it writes two pieces of meta-data; it initializes the file’s inode

and writes the new file name in the appropriate directory, along with a pointer to the

inode. In a naive implementation, a variety of states would be possible if the system

crashed just after creating the file, depending on which (if any) of these modifications

reached disk. In one scenario, the new directory entry might be written to disk before the

system failure, but the newly initialized inode might not be. After rebooting, the file

system would have a directory entry that referenced an invalid inode. This situation

could result in a variety of unexpected behaviors.

Traditionally, FFS has taken two steps to avoid this sort of problem. FFS requires

that when a file system operation modifies more than one piece of meta-data, the meta-

data modifications must be written to disk in a predefined order.3 This allows a

consistency checking program (fsck) to scan the file system after a crash and detect and

correct problems such as the one described above. FFS meets this requirement by

synchronously writing each piece of meta-data. While this is sufficient to ensure file

system integrity, it also introduces a large performance penalty. Any file system operation

that requires synchronous meta-data updates will complete at disk speeds, rather than at

3. FFS only attempts to guarantee the integrity of file system meta-data after a system failure. User file data

may be corrupted.
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CPU or memory speeds. This problem has recently been addressed in FFS by the use of

Soft Updates (see Section 2.1.3.2.2).

2.1.3.2 Fast File System Evolution

Over the years since its introduction, the Fast File System has benefited from a variety of

optimizations and other improvements. In the following sections I summarize a few of

the most important of these improvements, focusing on those that have been included in

the main-stream FFS implementations provided with the various BSD UNIX kernels.

Many other interesting and potentially useful optimizations have been proposed in the

research literature.

2.1.3.2.1 Clustered I/O

The original implementation of the fast file system performed all I/O one block at a time.

Thus, if an application requested a 64 kilobyte read, a file system with an eight kilobyte

block size would generate eight separate disk requests, each individual block. In the

likely event that these blocks were not contiguous on the disk, the system would also

incur the overhead of seek latencies and rotational delays as the disk head moved from

one block to the next.4 McVoy and Kleiman addressed this problem by implementing

clustered I/O in the SunOS version of FFS [McVoy91]. (Margo Seltzer and her colleagues

added clustered I/O to the BSD UNIX version of FFS [Seltzer93].) They modified FFS to

allow it to issue disk requests in multiples of the block size, up to the maximum cluster

size. This value was typically configured to be 64 kilobytes, the maximum SCSI request

size.

Although clustered I/O allowed FFS to issue disk requests spanning multiple

blocks, FFS does not offer any guarantees about the size of the clusters it allocates on the

disk. It attempts to allocate maximally sized clusters, but actual cluster sizes may be

smaller, depending on the availability of contiguous free space.

4. Prior to the introduction of clustered I/O, FFS was typically tuned so that it would attempt to allocate

every other block on the disk to a file (i.e., it used a disk interleave of one). Thus, in the best case, throughput

to a single file was typically half of the raw throughput available from the underlying disk [McVoy91].
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With the clustered I/O enhancement, FFS usually reads not only the block(s)

requested by an application, but also the rest of the cluster containing the final block of

the application’s request. This eliminates the need for an additional disk request in the

likely case that the application continues reading the file sequentially.5 Similarly, FFS

does not queue writes to the disk until the application has written enough data to fill a

cluster.

A subsequent examination of the on-disk file layout showed that FFS frequently

allocated small clusters to new files even when large extents of contiguous free space

were available on the disk [Seltzer95]. In response to this problem, Kirk McKusick

implemented a more sophisticated disk allocation algorithm, which dynamically

reallocated data to new locations on disk in order to achieve larger cluster sizes. As this

reallocation only occurs when the relevant data is dirty and in the buffer cache, the

algorithm does not introduce any additional disk I/O. Evaluating the benefits of this new

algorithm led me to develop the file system aging techniques discussed in Chapter 3

[Smith96].

The DEMOS operating system was an early example of the use of clustered I/O.

DEMOS ran on the Cray-1 computer at Los Alamos Scientific Laboratory and needed to

provide high file throughput [Powell77]. Kent Peacock introduced file clustering to

UNIX, adding it to the System V file system [Peacock88].

2.1.3.2.2 Soft Updates

One of the most noteworthy enhancements to FFS was the recent introduction of Soft

Updates as a technique to avoid the synchronous meta-data update problem described in

Section 2.1.3.1. Soft Updates meets the FFS requirement that meta-data updates be writ-

ten to disk in a fixed order by maintaining detailed information about the relationships

between cached items of meta-data. Soft Updates uses this dependency information to guar-

antee that the individual pieces of meta-data are written in the correct order. This allows

FFS to perform these meta-data updates asynchronously, relying on Soft Updates to

5. In some circumstances, FFS may prefetch an additional cluster of data beyond the end of the cluster from

which the user is currently reading.
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ensure that the ordering requirements are met. Using Soft Updates eliminates the disk as

a bottleneck in meta-data intensive workloads, which can run up to twenty times faster

than on FFS without Soft Updates [Ganger00]. Soft Updates is an alternative to the more

common approach of using a journaling file system to eliminate synchronous meta-data

updates [Chang90][Seltzer00a]

2.2 File System Workloads

One of the primary goals of file system design is to hide the slow speed of the disk using

techniques such as caching, prefetching, and delayed write-back. Even when the file sys-

tem must issue synchronous requests to the disk, file system designers attempt to mini-

mize their latency by collocating related data on the same region of the disk. All of these

optimizations incorporate assumptions about the behavior and file access patterns of

user-level applications. Common prefetching policies, for example, assume that most

files are read sequentially. In order to better understand how file systems are used, many

researchers have studied the file access patterns of different workload and different com-

puting environments.

In 1985 John Ousterhout and his colleagues at the University of California at

Berkeley published a landmark study of file system usage patterns in the 4.2 BSD UNIX

Fast File System [Ousterhout85]. As this study was conducted on a server in the Berkeley

computer science department, the results document the usage patterns seen in that

environment. The years since then have seen the publication of a variety of similar

studies. Later studies have examined how file system usage has changed since initial BSD

study. Other researchers have presented data on file system usage in different computing

environments, such as VAX/VMS or Windows NT, and under different types of

workloads, such as scientific computing or web servers.

In this section I provide an overview of these file system usage studies, with an

emphasis on how file system usage varies under different workloads.
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2.2.1 Methodology

There are two major techniques that researchers have used to collect data about file sys-

tem usage patterns, snapshots and traces. A snapshot is a static description of file system

state at a single instant in time. A snapshot is typically collected by a program that scans

the file system (or the corresponding disk) and collects the desired information. In con-

trast, a file system trace describes file system usage rather than file system state. A trace is

a dynamically collected record of the operations issued to the file system over a period of

time.6

Each of these data collection techniques offers advantages and disadvantages.

Snapshots suffer from the fact that they provide no information about how often or in

what manner the file system is accessed. Looking at two snapshots collected from the

same file system at different times, it is possible to infer some of the file system activity

that must have occurred between the snapshots, but it is impossible to infer all of it. For

example, if a file’s last access time changed between the snapshots, we can infer that the

file was accessed at the specified time. But it is impossible to know what other times (if

any) the file was accessed. File system traces can provide complete information about the

types of accesses made to the file system, but provide no information about the state of

files that don’t appear in the trace. For example, given a file system trace, we cannot tell

what percentage of the files on the file system were accessed during trace.

A more complete technique for understanding file system usage is to combine a

file system trace with a snapshot collected at the beginning of the trace period. The

snapshot allows the trace to be interpreted in the context of the file system state at the

time the trace was collected. For example, a trace might record only a numerical identifier

for each file accessed, and the snapshot might provide the information needed to map

these identifiers to the names of the corresponding files. With both a snapshot and a trace

6. Other researchers have emphasized the difference between static and dynamic data collection in snapshots

and traces, respectively [Bennet91][Bozman91]. While this is an accurate distinction, I believe that it is more

important to focus on the fact that snapshots and traces contain fundamentally different types of data.

Several researchers, for example, have conducted studies based on a series of snapshots taken every few

minutes on a file system [Bennet91][Chiang93]. This is dynamic data, but it conveys different information

than a trace does.
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it is possible to model the state changes each trace operation causes, providing an

accurate view of the file system state at any point in the trace.

The choice of what data to include in a file system snapshot or trace is up to the

researcher collecting the data. Many contemporary systems provide utilities that can be

used to collect snapshots or traces. Tools for listing files or performing backups can be

used to generate snapshots. Various system monitoring and profiling tools can be used to

generate traces (e.g., ktrace in BSD UNIX systems, or the Linux Trace Toolkit

[Yaghmour00]). In many studies, researchers have built their own tools, or instrumented

their systems by hand, often because they needed to customize the type(s) of data

collected.

In either case, the researcher is typically constrained both by the types of data

available and by the amount of time and space available to collect and store the data. A

common concern when collecting file system traces is that the operations performed by

the tracing tools may interfere with the workload being traced. If the tracing system

performs too many file system operations, the resulting trace might be dominated by the

tracing system itself. Similarly, if the tracing infrastructure uses too many system

resources, overall system performance may degrade to the point where the system is no

longer useful. To minimize this interference, researchers often restrict the types (and

therefore the amount) of data they collect.

Over time, faster computers and larger storage systems have allowed researchers

to collect increasingly detailed file system data. The types of data included in snapshots

and traces have increased, as have the durations of traces. For example, in their 1985

study of the BSD Fast File System, Ousterhout and his colleagues examined three traces,

each of which recorded seven types of file system operation over approximately three

days [Ousterhout85]. In contrast, for their 1998 study, Roselli and Anderson collected

traces of 55 different types of file system operation over time periods of one to four

months [Roselli98].

A complete discussion of the numerous studies of file system usage patterns is

beyond the scope of this thesis. Mummert and Satyanarayanan provide a thorough but
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brief survey of file system usage studies up to 1996 [Mummert96]. The important recent

studies include snapshot and trace-based studies of Windows NT file system usage by

Douceur and Vogels [Douceur99][Vogels99], and Drew Roselli’s examination of long-

term file access patterns in both HP-UX and Windows NT [Roselli98][Roselli00].

2.2.2 Workload Differences

Most studies of file system usage patterns have tried to make generalizations about

access patterns, rather than examining the differences between different types of work-

loads. In fact, many of these studies examined only a single type of workload. A few

studies, however, have collected data from different types of workloads. In addition,

some studies have examined differences in file system workloads across different operat-

ing system environments (i.e., Windows NT and UNIX). Other studies have reported on

changes in workload patterns over time.

All of these differences in file system access patterns motivate the need for

application-specific benchmarking techniques. If benchmarking technology is to allow

users to evaluate system performance in the context of their own workload, then it must

also adapt to the differences in access patterns that come with changes of operating

system or changes of time. In other words, an application-specific benchmarking

framework must make accurate predictions about the performance of application

workloads today, and must continue to be able to make accurate predictions in the future.

Likewise it should allow researchers and users to evaluate the performance impact of

switching from one operating system platform to another.

The wide range of differences in file access patterns seen in these studies indicates

the need for workload-specific benchmarking techniques. Seemingly small differences in

access patterns can have a substantial impact of file system performance and on file

system design. Two similar workloads, for example, with different working set sizes

might see considerably different performance on a system if one workload’s working set

fits in the buffer cache and the other does not.

In this section I survey the studies of file system usage patterns that have shed

some light on these differences.
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2.2.2.1 Differences Between Workloads

Although a variety of file system usage studies have collected data from different work-

load environments, only a few of these studies have provided substantive information

about how file system access patterns have differed between the environments studied.

K.K. Ramakrishnan and his colleagues collected file system usage data at eight

different production environments using VAX/VMS computer systems

[Ramakrishnan92]. These sites included traditional software development, office

management, transaction processing, and batch processing workloads. The authors were

primarily interested in finding the common features across the different workloads they

examined. They found many common features between the VAX/VMS environment and

the UNIX-like environments examined by Ousterhout and Baker—most files are only

open a short time, most files are small, most files are read/written sequentially. The

authors also observed several significant differences in the file access patterns of the

different workloads.

• Although the median file sizes were similar for all workloads, the average

file sizes for the transaction processing and batch processing workloads

were 5 – 10 times larger than for the other workloads, indicating that the

large files in these workloads were larger than in the other workloads. The

transaction processing and batch processing workloads also had fewer

total files on their file systems than the other workloads in the study.

• Most of the workloads only accessed 10-30% of their total data (in bytes)

during a day of activity. The transaction processing workloads accessed a

much larger portion of their file system data, 59 – 86%.

• The batch processing workload had the highest ratio of data bytes read to

data bytes written, followed by the transaction processing workloads.

• While most of the workloads accessed only a small percentage of the total

files in their file systems (less than 25%), the workload from an order-entry

database accessed 82.2% of its files in a twelve hour period.
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In general, Ramakrishnan and his colleagues found that although their traces displayed

similar probability density functions for many access characteristics (e.g., number of files

accessed per day), the effect of the outliers was most significant in the transaction pro-

cessing workloads. For example, in their program development trace, the most active

1.1% of the files account for 39% of the file opens, compared with the airline reservation

database, where the most active 2.6% of files account for 84% of the file opens.

In a different study, Smith and Seltzer reported on a snapshot-based study of

nearly fifty file systems on servers at the Harvard Division of Applied Science. The

servers were all running SunOS 4.1.3. The authors collected snapshots of these file

systems on a nightly basis for approximately ten months. The snapshots included

extensive information about the physical layout of the files on disk, allowing the authors

to examine the variations in file fragmentation across the file systems, and how file

fragmentation changed over time.

Smith and Seltzer found wide variation in the amount of file fragmentation on

different file systems. This reflected the usage patterns of the file systems. A news spool

file system, which stored usenet news articles and experienced the frequent creation and

deletion of small files, was highly fragmented. In contrast, a file system containing

system binaries, had almost no fragmentation, reflecting the fact that there was very little

turn over on the file system. Smith and Seltzer also found that the location of free space

varied across the file systems in their study. Since new files must be allocated from the

existing pool of free space, the location and fragmentation of free space on a file system

restricts the layout (and hence the performance) of newly created files.

In 1994, Geoffrey Kuenning and his colleagues at UCLA published a trace-based

study of file access patterns in commercial environment running DOS [Kuenning94].

Their goal was to evaluate algorithms for predicting what files a mobile computer might

need while disconnected from the network so those files could be prefetched to the

mobile computer’s disk. The authors divided their traces into three broad categories,

personal productivity (i.e., e-mail, project planning, and calendar applications),

programming, and commercial (i.e., a commercial accounting package). Kuenning and
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his associates found that the commercial environment accessed more data per day. The

total sizes of the files accessed in a single day was 18.2 megabytes in the commercial

environment, compared with 0.3 – 1.0 megabyte in the other environments. The authors

also examined the different sets of traces for conflicts—events where two or more users

write to the same file within a short time span, a potential problem when one of the users

is disconnected from the file server. They found that the commercial environment had a

higher conflict rate (4.3 per user per day) than the other environments (0 – 1.2 per user

per day).

Drew Roselli and her colleagues collected long term file system traces from

several computing environments during the late 1990s [Roselli98][Roselli00]. These

environments included UNIX clusters supporting instructional and research activities at

the University of California, Berkeley, as well as a web server serving images from a large

database library. They also traced eight desktop workstations running office productivity

applications under Windows NT.

Roselli and her colleagues found that the research and instructional workloads

were similar in many respects. This is not surprising since the users in both environments

were performing similar tasks—programming and text editing. Despite these similarities,

the authors found enough differences between these workloads to demonstrate the need

for workload-specific benchmarking tools. In particular, the locality of reference and the

working set sizes were significantly different in the two environments. Cache simulations

showed that for comparable cache sizes, the instructional workload generated 5 – 10

times as much read traffic and three times as much write traffic to the disk. This would be

important in evaluating the performance of a system for these workloads. A hardware

configuration that provided sufficient disk bandwidth for the less demanding research

workload might collapse under the heavier demands of the instructional workload.

Roselli and her colleagues also observed several significant differences between

the web server workload and the more conventional research and instructional

workloads.
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• Unlike the instructional and research workloads, which showed a steady

improvement in cache hit rate as the cache size was increased, the web

server workload showed little improvement in cache hit rate until the

cache size exceeded 16 megabytes. At this point, the hit rate improved

dramatically. This suggests that although the web server workload had a

well defined working set, there was little locality of reference within

subsets of this working set.

• All of the workloads had more read traffic than write traffic. In the

instructional and research workloads, however, large caches (256

megabytes) could absorb enough of the read traffic so writes would

dominate the disk requests. In contrast, even with a 256 megabyte cache,

the web workload would still generate twice as much read traffic as write

traffic. This suggests that the web workload would benefit from a file

system that was optimized for reads, whereas the instructional and

research workloads would gain more benefit from a write-optimized file

system.

• In the instructional and research workloads, the files that were accessed

most frequently were written often and read rarely. This phenomenon did

not occur in the web workload, where there was little write traffic.

Several studies have examined the file access patterns of scientific computing applica-

tions in both parallel and super computing environments. These studies have found a

variety of significant differences between these scientific workloads and traditional time-

sharing workloads.

Miller and Katz traced application file system accesses on a vector-processing

supercomputer (a Cray Y-MP 8/8128 at NASA Ames) [Miller91]. The super computing

applications that they studied performed repeated sequential accesses to large files. Since

these files were typically too large to be cached in memory, a key characteristic in

determining file system behavior was the ability of the system to stream large sequential

files into and out of memory.
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Purakayastha and his colleagues collected file access traces from a parallel

supercomputer (a 512 node CM-5 at the National Center for Super computing

Applications) [Purakayastha95]. Like Miller and Katz, they found that file sizes were

larger than in traditional time-sharing workloads; more than a third of the files accessed

were larger than ten megabytes, and some accesses were to files larger than ten gigabytes.

Unlike the vector-computer workloads, however, Purakayastha and his colleagues found

that most I/O requests were small (90% of them were less than one kilobyte).

Furthermore, many requests were for sequential, but not consecutive blocks with the

files. This reflects the partitioning of data sets across the multiple processors in the CM-5.

Kotz and Nieuwejaar performed a similar study of a 128 node iPSC/860 at NASA Ames,

and saw similar results [Kotz94b].

2.2.2.2 Differences Over Time

Ousterhout’s 1985 study of file access patterns in the 4.2BSD UNIX Fast File System has

become a touchstone to which many subsequent file system studies have referred. In par-

ticular, several subsequent studies explicitly compared their results with Ousterhout’s

(and with each other) to examine the changes in file access patterns over time. Since all of

these studies examined traditional academic workloads in similar operating system envi-

ronments, the authors attributed most of the differences between them to the changes

brought by faster computers, larger disks, and new applications.

In 1991, Mary Baker and her colleagues performed a trace-based study of file

access patterns in the Sprite distributed operating system [Baker91]. They explicitly

compared their results to the earlier BSD UNIX study, and found that although most

aspects of file system usage had remained the same, file throughput had increased by a

factor of twenty, and that it had become much burstier. A primary cause for this change

was that the sizes of the largest files accessed in the traces had increased by an order of

magnitude. Baker and her colleagues also found that file lifetimes had decreased.

More recently, Werner Vogels and Drew Roselli performed trace-based studies of

file access patterns in Windows NT and HP-UX [Vogels99][Roselli00]. Both authors

explicitly compared their results to the earlier Sprite and BSD studies. These studies
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showed a continued increase in file throughput with burstiness commensurate with

increases in the large file sizes. Both of these studies also found that although sequential

access was still the dominant access pattern, there was a significant increase in random

accesses.

2.2.2.3 Differences Across Operating Systems

After the publication of the trace-based study of file accesses in the 4.2BSD UNIX Fast File

System [Ousterhout85], researchers performed similar studies in other operating envi-

ronments. Studies of VAX/VMS and VM/CMS showed that file access patterns in those

environments were similar to those Ousterhout and his colleagues observed in BSD

UNIX [Biswas90][Bozman91]. More recent studies have compared Windows NT work-

loads to UNIX workloads and have found more significant differences.

In her study of HP-UX and Windows NT workloads, discussed above, Roselli also

examined block lifetimes for the different workloads [Roselli00]. This is a measure of the

time between when a data block is written, and when it is deleted, whether because the

block’s file was truncated or deleted, or because the block was overwritten with new

data. On many systems, a significant fraction of newly written data has a short lifetime.

(Approximately 35% of files in Mary Baker’s Sprite-based study were deleted less than

thirty seconds after they were created [Baker91].7). Some systems, such as Sprite

[Nelson88], exploit this characteristic by holding dirty data in the buffer cache for a short

interval before writing it to disk. This allows short-lived data to die in the cache and

reduces disk traffic.

Unlike the HP-UX workloads she studied (and the earlier Sprite workload),

Roselli found that block lifetimes in Windows NT had a bimodal distribution. While 20%

of newly written blocks died within one second, few died after that; only 30% of newly

written blocks died within a day. The HP-UX workloads, in contrast, showed a sharper

increase in blocks deleted over time. In the instructional workload, for example, 20% of

7. Baker’s original study actually showed a much higher fraction of files—up to 80%—lived for less than

thirty seconds. The more conservative 35% figure comes from Roselli’s study, where she uses a different

method to compute file and block lifetimes [Roselli00].
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new data blocks also lived less than a second, but over 80% of newly written blocks lived

less than a day.

In 1999, Douceur and Bolosky published a study of files in a commercial

environment running Windows [Douceur99]. They collected snapshot data from more

than ten thousand file systems on machines throughout Microsoft Corporation’s main

campus. Although they did not study file systems from any other operating system

environment, it is interesting to compare some of their results to those from other studies.

Several earlier studies (and anecdotal evidence) showed that most file systems had little

free space [Bennet91][Smith94]. In contrast, Douceur and Bolosky found that on average

file systems were only half full. While this difference may be due to inherent differences

between Windows and UNIX environments, including the fact that Douceur and Bolosky

were studying desktop workstations, in contrast to earlier studies, which examined

centralized servers, another likely explanation is the rapid increase in disk capacities over

recent years.

2.2.2.4 Netnews Workloads

Usenet news servers are another source of a unique file system workload. This workload

stresses conventional file system architectures so severely, that there have been proposals

for file system optimizations [Zadok99] or completely new file system architectures

[Christenson97][Fritchie97] specifically targeted to supporting Usenet news.

With the advent of the World Wide Web, it may seem that Netnews is an obsolete

technology, but anecdotal evidence suggests that news bandwidth continues to increase,

currently reaching volumes of up to twenty gigabytes per day of traffic. There is enough

demand for news that most ISPs provide news service, and file server vendors offer

news-specific optimizations [Manley00].

Scott Fritchie provides an excellent overview of the problems traditional file

systems, such as FFS, face in supporting a Usenet news server [Fritchie97].

• News server software, such as INN [Spencer98] Henry Spencer, David

Lawrence. Managing Usenet. O’Reilly & Associates, Inc. Cambridge, MA.

1998., often organizes the file system with a separate directory for each
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newsgroup and individual files within those directories for each article. In

high volume newsgroups, directory sizes can reach tens of thousands of

files. File systems, such as FFS, that use a simple linear scan of a directory

when looking for a name pay a large overhead for these lookups.

• Articles tend to arrive at servers in random order with respect to news

groups. This diminishes the effectiveness of the buffer cache, as the cached

contents of directories are likely to be replace before they are reused. The

random newsgroup distribution also works at cross-purposes with the

common file system assumption that files in the same directory are likely

to be accessed together, and therefore should be collocated on the disk.

• Even though the behavior of news clients tends to display locality of

reference, this is of little use to the news server. Most clients are humans.

By the time they read another article in the same newsgroup, the disk

heads on the server have long since been relocated to a different location.

• Because each news article is stored as a separate file, processing a

newsfeed requires the creation of many small files. UNIX-style file

systems, which have traditionally performed file creates synchronously

(see Section 2.1.3.1), perform very poorly with this type of workload.

2.3 File System Benchmarks

Like all systems benchmarks, traditional file system benchmarks can be broadly classified

into two different categories. Microbenchmarks measure one specific characteristic of file

system behavior, such as the time to create or delete a file. Macrobenchmarks, in contrast,

measure the performance of the file system under some pre-determined workload. A

macrobenchmark may use either a real application to generate a workload (e.g., compil-

ing and linking a large piece of software), or it may itself be a custom application that

drives the file system with a synthetic workload. In isolation, neither type of benchmark

fully illuminates the behavior of a file system. Macrobenchmarks can determine the sys-

tem on which a particular workload will perform best, but they provide little information

about the underlying causes for such performance differences. Microbenchmarks, in con-
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trast, are useful for understanding the detailed performance differences between sys-

tems, (e.g., one system may provide higher I/O throughput than another). Sometimes,

microbenchmarks may show that one file system out-performs another in all areas. More

commonly, however, different file systems offer different advantages. In such cases, the

microbenchmark results by themselves provide no insight into which systems are best

suited to particular workloads.

2.3.1 File System Microbenchmarks

Four quantities are the most common targets of file system microbenchmarks:

• the time to create a file,

• the time to delete a file,

• the throughput for reading files, and

• the throughput for writing files.

Occasionally researchers use microbenchmarks to measure other quantities, such as the

time to create a symbolic link or read a directory. These quantities are measured less

often, because the corresponding file system operations are perceived to occur less often

in real file system workloads.

Each of these quantities offers a range of parameters that researchers can vary in writing

a microbenchmark. For example, file read throughput usually depends on two important

parameters, whether or not the file data is in the buffer cache, and whether the test pro-

gram reads the files sequentially or randomly. While researchers usually report on the

behavior of their microbenchmark programs in this regard, there are a variety of other

parameters that also affect benchmark results. File read throughput can also depend on

the size and number of files being read, as well as on the location of the files within the

directory hierarchy. Even a minor detail such as whether the files are read in the same

order they were created can affect benchmark results. Researchers seldom provide full

details of their microbenchmark programs. Without knowing whether two studies used

similar parameters for their microbenchmark programs, it is impossible to compare

microbenchmark results from different researchers.
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Chris Small and his colleagues reported on this problem, not just for file system

benchmarks, but for many areas of systems research, and argued for the need for

standardized benchmark programs [Small97].

In addition to ad hoc microbenchmark programs explicitly designed to measure

one aspect of file system performance, some researchers use standard utility programs as

microbenchmarks. Such researchers choose a program that exercises a small part of file

system functionality, such as file copies, or recursive directory listings.

2.3.2 File System Macrobenchmarks

The goal of macrobenchmark programs to understand how real workloads perform on a

file system. Thus, many macrobenchmarks consist of executing some application with

carefully specified parameters. While any program that exercises the file system may be

suitable for use as a macrobenchmark, the most common such program is the compiler.

Not only does the compiler read and write many files, it is also a tool that researchers fre-

quently use. A typical compilation-based macrobenchmark consists of building and link-

ing the operating system kernel for the system being benchmarked.

The Andrew benchmark [Howard88] is one of the most commonly used file

system macrobenchmarks [Small97]. It too uses the time to build a piece of software as a

metric of file system performance. Andrew, however includes several other phases,

intended to mimic the behavior of software developers. These phases consist of creating a

directory hierarchy for the source files, copying the source files into this hierarchy,

examining each new copy (using the stat system call), and reading each new copy (using

the grep utility). Other researchers have modified Andrew to run multiple concurrent

Andrew workloads on the same system, attempting to mimic the effect of timesharing

[Seltzer93]. Ironically, in light of its wide spread use, Andrew was originally intended for

measuring the scalability of file servers in distributed file systems, not for evaluating the

performance of the file system.

In addition to application-based macrobenchmarks, a variety of macrobenchmark

programs use synthetic workloads. The most widely known and used of these is the

SPEC SFS benchmark (based on the earlier LADDIS benchmark [Wittle93]) for measuring
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NFS server performance. This benchmark creates an initial file hierarchy on an NFS

server. Multiple client machines then issue random NFS requests to the server. The clients

select these operations from a pre-defined distribution that was generated from traces of

actual system behavior. SFS reports results in NFS operations per second.

Other less commonly used synthetic macrobenchmarks include PostMark

[Katcher97] and IOStone [Park90]. Both benchmarks are similar to SFS in that they

perform random operations selected from a pre-determined distribution. Diane Tang

provides an overview and critique of several file system benchmarks (including IOStone

and LADDIS) [Tang95].

Like SFS, most macrobenchmark programs report only a single result, either the

elapsed time to execute the benchmark, or the file system throughput achieved by the

benchmark.8 By providing only a single number as the evaluation of a file system’s

performance, these benchmarks are essentially claiming to be able to provide a one-

dimensional ordering of different file systems. As we will see in Chapter 4, this claim

doesn’t hold up when we examine how different file systems perform with different

workloads. In fact, the most that a benchmark can do is predict the performance of a file

system with a workload that is similar to the benchmark workload.

This highlights the central deficiency of existing benchmarking methodology.

Most users turn to benchmarks, or benchmark results, in order to answer the question,

“How will my workload perform on this system?” Microbenchmarks provide detailed

information about file system performance, but in isolation they are seldom sufficient to

answer this question. In the absence of a detailed understanding of the interactions

between a workload and the file system, however, microbenchmarks provide little

insight into the workload’s performance on the target file system. Macrobenchmarks, in

contrast, are designed to answer this very question, but the user is still left with the

difficult task of determining whether publicly available macrobenchmarks are similar to

his own workloads. In the following chapters, I will discuss a technique researchers can

8. The Andrew benchmark is unusual in this regard as it reports the time for each of its five phases to

complete. Since the different phases exercise different parts of the file system, this provides additional

information about how differences in file system architecture map to differences in workload performance.
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use to make the environment in which they execute benchmarks more realistic, and new

benchmarking strategies that make it possible for users to determine how well their own

workload will perform on a file system of interest.
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Chapter 3

File System Aging

The increasing prevalence of I/O-intensive applications, such as multi-media applica-

tions and large databases, has placed growing pressure on computer storage systems. In

response to these pressures, researchers have investigated a variety of new technologies

for improving file system performance and functionality. Rosenblum and Ousterhout

proposed the log-structured file system (LFS) as a way to address the increasing fraction

of disk traffic due to writes [Rosenblum92]. Ganger and Kaashoek proposed several tech-

niques for reorganizing small files and meta-data objects to improve on-disk locality

[Ganger97]. Researchers have also explored a variety of strategies for application-assisted

prefetching and caching, exploiting application-specific knowledge of I/O patterns to

better utilize I/O systems [Patterson95][Kimbrel96][Mowry96][Cao96].

In order to accurately assess the utility of any of these technologies, researchers

need tools that allow them to understand the behavior of their file systems in realistic

conditions. In laboratory settings, “realistic conditions” are usually simulated by the use

of benchmark programs. In Section 2.3, I described the range of benchmarking techniques

and some of the benchmarks currently used by file system researchers. Selecting the

proper benchmark, however, is only half of the problem. To accurately characterize the

performance of a file system, the benchmark itself must be executed in an environment

similar to the conditions under which the system will be used in the real world.
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Unfortunately, the latter requirement seems to have been widely ignored by file system

researchers. Standard practice in file system research is to perform benchmarking on

empty file systems, a state rarely seen in real world environments.

In this chapter, I propose a methodology for artificially aging a file system by

simulating a long term workload on it. By aging a file system prior to running

benchmarks, the resulting benchmark performance resembles that of the real file system

from which the workload was generated. Just as researchers use different benchmarking

programs to simulate different application workloads, they can use different aging

workloads to simulate different execution environments.

In the next section, I motivate this work by describing some of the inaccuracies

that arise when using the traditional approach of executing benchmarks on empty file

systems. Section 3.2 describes my file system aging technology and demonstrates the it

produces realistically aged file systems. In Section 3.3 I use this aging methodology to

evaluate two new file layout policies for the UNIX Fast File System. Finally, in Section 3.4,

I present my conclusions.

3.1 Motivation

Executing a benchmark on an empty file system fails to capture two important character-

istics of file system behavior, both of which can have a substantial effect on file system

performance. First, real file systems are almost never empty. This fact can have a pro-

found effect on the performance of a file system. Most file systems optimize throughput

by allocating physically contiguous disk blocks to logically sequential data, allowing the

data to be read and written at near optimal speeds. On empty disks, this type of alloca-

tion is simple. On real file systems, which are typically highly utilized, contiguous alloca-

tion may be difficult (or impossible) to achieve due to fragmentation of the available free

space. As a result, new files may be more fragmented on a highly utilized system, result-

ing in lower file system throughput.

The second problem with benchmarking an empty file system is that it is

impossible to study the evolution of the file system over time. With the passage of time,

the state of a file system may change. As files are created and deleted, patterns of file
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fragmentation may change, as well as the relative locations of logically related objects on

the disk (e.g., a file’s data and meta-data). There are a variety of file system policies that

may have no effect over the short term on an empty file system, but that can have a

noticeable impact on file system performance over the long run. Decisions that a file

system makes today (e.g., which blocks to allocate to a new file) may affect the file system

for months or years into the future.

In this section, I present an example of each of these problems, demonstrating that

benchmarks conducted on an empty file system can either provide misleading results, or

fail to measure the effects of significant changes to the underlying file system.

3.1.1 Empty File Systems

The most common problem with benchmarking empty file systems stems from the fact

that it is very difficult to measure the effects of file fragmentation on an empty disk.

Because fragmentation is a fact of life in most file system designs, it is foolish to bench-

mark such file systems when they are empty, and have no file fragmentation. To demon-

strate this effect, I ran a simple file system benchmark on both empty and full UNIX file

systems. To measure the performance of a full file system, I copied an active file system

from one of the departmental file servers onto a test machine1. After benchmarking this

file system, I built an empty file system, with the same parameters, on the same disk, and

measured its performance.

The benchmark program that I use throughout this chapter measures file system

throughput reading and writing files of a variety of different sizes. Figure 3.1 shows the

read throughput for files from 16 KB to 16 MB. Throughput on the real file system was as

much as 77% lower than throughput on a comparable empty file system.

1. Rather than copying the entire file system, I only copied the file system’s meta-data. The result was that the

test file system had exactly the same free blocks and allocated blocks as the original file system that I copied,

but not the actual data.
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3.1.2 Life Time Evolution

Most file systems attempt to optimize performance by clustering logically related data on

the underlying disk(s). The effectiveness of different clustering strategies may not be

apparent when observing the short term behavior of the file system. Over time, however,

both free and allocated space on the disk may become fragmented, affecting the ability of

the file system to perform clustering. Note that this fragmentation affects not only the

sequential layout of each file’s data, but also the proximity of related files on the disk, and

the relative locations of a file and the meta-data that describes it. In such cases, the only

way to evaluate competing designs is by comparing file systems after a long period of

activity.

In previous work [Smith96], I studied the effect of one such design parameter on

file system performance. The 4.4BSD fast file system [McKusick84] optimizes sequential

I/O performance by allocating physically contiguous clusters of blocks to logically

sequential file data. Over the life of a file system, as free space becomes fragmented, it

becomes increasingly difficult to find contiguous free space for new clusters. In
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Figure 3.1. Effect of utilization on file system performance. This graph shows the read throughput for a

range of file sizes on two UNIX file systems. The only difference between the file systems is the amount of

free space available. One file system was empty when the benchmark was performed. The other file system

was a duplicate of a seven month old file system that was 75% full. The sharp performance drop at 96

kilobytes occurs when the test files become large enough to require an indirect block. This is characteristic

of all FFS file systems and is explained in detail elsewhere [Seltzer95].
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comparing two different algorithms for finding and allocating free space to new files, we

discovered that they provided nearly identical performance on an empty disk (see Figure

3.2A). After applying a simulated ten month workload to the two file systems, however,

it became apparent that there was a substantial performance difference between file

systems using the two different disk allocation policies (see Figure 3.2B).

3.2 File System Aging

As the previous section demonstrates, benchmarking empty file systems cannot provide

an accurate assessment of the real-world behavior of a file system architecture. In order to

get a realistic picture of file system behavior, a file system must be analyzed in realistic

conditions. This means that the file system should not be empty, and should have the his-

torical state that would be developed over many months, if not years, of operation. In

order to analyze file system performance in this manner, we need to apply a methodol-

ogy that allows researchers to fill a file system in a realistic manner, resulting in a file sys-

tem that is similar to one that had been active in real-world conditions for an extended

period of time. Analyzing file system performance in this manner presents a variety of

problems that do not arise when benchmarking an empty file system:
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Figure 3.2. Effect of aging on file system behavior. Each of these graphs plots the read throughput for a

range of file sizes on file systems using two different block allocation strategies. In the graph A,

performance was measured on empty file systems. In the graph B, performance was measured after aging
the two file systems with a simulated ten month workload. On the empty file system, the new allocation

algorithm performed slightly better, but the performance of the two systems was nearly identical On the

aged file systems, both file systems perform worse than in the empty case, and the new allocation algorithm

provides a large improvement in read throughput. A complete discussion of this study is presented

elsewhere [Smith96].
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• Because different applications apply different workloads to the file

system, it should be possible to simulate the effects of different file system

workloads. A file system used in a traditional engineering environment

for a year may behave very differently from one that has been used on a

news server for a similar period of time, even if the underlying file system

architectures are identical.

• The technique used to fill a file system should be reproducible, allowing

scientific comparisons in a laboratory setting.

• The manner in which file systems are filled should be independent of the

architecture of the underlying file system, allowing different file system

implementations to be compared.

In order to study file system performance in a realistic manner, and to address the con-

cerns listed above, I have developed a technique I call file system aging. I precompute an

artificial workload intended to simulate the pattern of file operations that would be

applied to a file system over an extended period of time. This aging workload consists of a

sequence of records, each of which describes the creation, deletion, or modification of one

file or directory2. By applying the same workload to different file systems, a researcher

can see how differences in file system architecture affect the long term behavior of the file

system. The aging workload is generated from snapshots and traces of a real file system.

Aging workloads representative of different types of file system activity can be created

using data collected from appropriate file systems.

Despite my desire for an architecture neutral file system aging technique, the

tools I present in this chapter have several minor dependencies on the underlying file

system (FFS in this case). These dependencies are discussed in Section 3.2.2.

In this section I present the technique I use to generate aging workloads, describe

the program that actually applies a workload to a test file system, and then evaluate the

2. In a real file system workload, a file creation consists of multiple events, one to create the file and one or

more to write data to the new file. In my aging workloads, I coalesce these separate events into a single record

specifying the name and size of a new file. This is a reasonable simplification in light of the fact that most files

are written in their entirety immediately after being created [Ousterhout85] [Baker91].
37



accuracy of an aging workload by comparing artificially aged file systems with the

original file systems from which the aging workloads were generated.

3.2.1 Generating a Workload

The central problem in aging a file system is generating a realistic workload. Because a

test system is likely to start with an empty disk, this workload should start with an empty

file system and simulate the load on a new file system over many months or years, result-

ing in a file system that is mostly full. One possible method for generating this workload

would be to collect extended file system traces and to age a test file system by replaying

the exact set of file operations seen in the trace. Unfortunately, the time and storage space

required to collect such a trace usually make this strategy impractical3. Instead, I have

generated aging workloads from two sets of file system data that were already available.

As a result, we sacrifice some realism in the workload, in exchange for greater flexibility

in tuning the workload to our needs.

An aging workload is a sequence of records, each of which describes a single file

system operation. At first glance, this is the same as a file system trace. The difference is

that where a file system trace includes all operations performed on a file system, the

aging workload only needs to include operations that can have an effect on the long term

state of the file system. In particular, the operations we are interested in are those that

allocate or deallocate file data or file system meta-data. The most common of these

operations are file (and directory) creates and deletes. We are also interested in write

operations, as they represent the primary mechanism by which file data space is

allocated. As most files are written in their entirety immediately after they are created

[Ousterhout85] [Baker91], we don’t need to explicitly include individual write operations

in the workload. Instead, it is sufficient to have the file create records include the size of

the target file4.

To generate an aging workload, I use a set of file system snapshots collected from a

file system on a local file server. These snapshots, originally gathered for a different

3. Drew Roselli and her colleagues at Berkeley recently released a set of file system traces collected over a

period of almost a year [Roselli00]. These are the first traces I know of that could potentially be used to age a

file system.
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research project [Seltzer95], were collected nightly from approximately fifty file systems

on five different file servers over periods of time ranging from one to three years. Each

snapshot describes all of the files on a file system at the time of the snapshot. For each file,

the snapshot includes the file’s inode number, inode change time, inode generation

number, file type, file size, and a list of the disk blocks allocated to the file.

By using a sequence of snapshots of one file system, I generate an aging workload

modeled on the actual activity on that file system during the period of time covered by

the snapshots. Because I have snapshots from a variety of different file systems, I can

generate aging workloads that are representative of different file system uses. The

extended period of time covered by the file system snapshots makes it possible to build

an aging workload that simulates many months of file system activity.

Generating a workload from a sequence of traces is a three step process. First, I

generate operations that initialize the target file system to a state similar to the first

snapshot of the original file system. Next, I create a skeleton of the workload by

comparing successive pairs of snapshots and generating a workload to account for the

changes on the original file system between each pair of snapshots. Finally, I flesh out the

workload by adding the create and delete events for a variety of short-lived files.

The first step in creating an aging workload is to generate a sequence of file

system operations that will bring the test file system into a state similar to the one

represented by the first snapshot of the original file system. Because the only state I am

trying to reproduce is the set of files that exist on the file system, this is a simple matter of

creating each file in the initial snapshot. I sort the actual create operations based on the

inode change times of the files in the snapshot in the expectation that this will be a

reasonable approximation of the order in which the files were created on the original file

system.

4. For conventional file system architectures, file and directory create and delete operations are the only

records that we need to include in an aging workload in order to reproduce the long term evolution of file

system state. For some experimental file system architectures, however, we would have to include other

types of operations in the aging workload. Carl Staelin’s Smart File System, for example, migrates file data

blocks to the central cylinders of a disk based on how frequently they are accessed [Staelin91]. To properly

age such a file system, the aging workload would have to include file read operations.
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Next I generate the skeleton of the aging workload. By comparing the inodes

listed in successive pairs of snapshots, I generate a list of the files that were created,

deleted, modified, or replaced between the times of the two snapshots. The major

difficulty at this stage is determining the sequence in which these actions occurred, as the

snapshots do not provide sufficient information to determine the exact time at which

these operations took place.

I use several heuristics to assign times to the create and delete operations

generated by comparing successive snapshots. The inode change time, recorded for each

file in a snapshot, indicates the last time that the file’s meta-data was modified. Such

modifications include the original creation of the file, and the allocation of new disk

blocks to the file. As previous studies have shown that files are typically written in one

burst, and are seldom modified after they are first written [Ousterhout85] [Baker91], I use

the inode change time on a newly created file to approximate the time at which the file

was created. When a file was deleted between two snapshots, there was no information

providing hints about the time it was deleted. I randomly assign times to the file

deletions that occurred between two snapshots. This was an ad hoc decision made to

expedite the development of the file system aging workloads. A more careful analysis of

file deletion times in real file system traces might provide a more accurate solution and

improve the realism of the aging workloads.

When the same inode is listed in two successive snapshots, but with different file

attributes, one of two things may have happened on the original file system; the file was

either modified, or replaced. The inode generation number provides the information

required to determine which of these actions actually occurred. If the generation number

is the same in both snapshots then the file was modified. In this case I place a file

modification operation in the aging workload, and assign it a time corresponding to the

inode change time in the later snapshot. If the generation number is different between the

two snapshots, then the original file must have been deleted, and a new file assigned the

same inode number. In this case, I place two operations in the workload, a delete, and a
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subsequent create. I determine the time of the create as described above, and place the

delete immediately prior to it.

After processing the snapshots in this manner, the workload is missing an

important component of real file system activity. Any file that was both created and

deleted between successive snapshots will not appear in either snapshot. Trace-based file

system studies have shown that most files live for less than the twenty-four hours

between successive snapshots [Ousterhout85] [Baker91]. These files may have a

significant effect on the state of the longer lived files on the file system.

To approximate the effect of these short-lived files, we must add additional file

operations to the workload generated from the snapshots. In order to add this additional

workload, we must answer two questions—what operations should we add, and where

(both physically and temporally) should we add them?

To determine what file operations we should add to the aging workload, I

examined the patterns of activity displayed by short-lived files in a seven day trace of

NFS requests to a Network Appliance file server [Hitz94]. For each day in the trace, I

made a list of the active directories, and then created a profile of the short-lived file

activity in those directories. The result was 449 different profiles, each containing a list of

create and delete operations on short-lived files that occurred on one day in one directory.

For each day in the aging workload, I select 25 of these profiles at random and added

them to the aging workload5.

Given a day of activity from the aging workload, and a set of short-lived file

profiles, I integrate the two by finding the most active directories6 in that day of the aging

workload, and randomly distributing the profiles among them. I time-shift each profile

so that it coincides with the peak of activity in the directory to which it is added.

The NFS trace that I used to generate our profiles of short-lived file activity was

originally collected during a study of cleaning algorithms for log-structured file systems

5. I actually scaled the number of short-lived file profiles that we used based on the size of the file system

from which I generated the aging workload, adding one profile for every 40 MB on the original file system.

6. Since the file system snapshots do not preserve the names of the files in them, I actually used the most

active cylinder groups instead of the most active directories. This is a reasonable approximation since FFS

allocates all of the files in a directory to the same cylinder group.
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[Blackwell95], and was generated from a server used for a typical academic workload,

consisting of text editing, compilation, executing simulations, etc. I therefore only use this

trace to generate aging workloads from file systems that were used in similar

environments. In order to generate aging workloads for other types of file system activity,

such as database or news servers, I would need to use different traces to approximate the

activity to short-lived files.

3.2.2 Replaying the Workload

To age a file system, I apply an aging workload generated as described above to an empty

file system. In all of my measurements, I use a target file system that is the same size as

the file system from which the aging workload was generated, although an aging work-

load could also be used on larger file systems. The aging program reads records from the

workload file, performing the specified file operations. Although the aging workload

includes timestamps for each file operation, I simply execute the requests as rapidly as

possible. Replaying the workload in real time was unnecessary for our purposes, because

in FFS (and many other file systems) the order in which requests are received by the file

system, not the relative times of the requests, determines the behavior of the file system.

The task of replaying an aging workload was complicated by the fact that the file

system snapshots did not provide pathnames for the files. Because FFS exploits expected

patterns of locality by allocating files in the same directory to the same cylinder group on

the disk, the algorithm used by the aging program to assign files to directories can have a

major impact on the accuracy of the aging simulation.

Due to the absence of the original pathnames in the file system snapshots, I

decided that it would be sufficient to create the files in the correct cylinder groups. By

creating files in the same cylinder group on the simulated file system as on the original

file system, I ensured that each cylinder group on the simulated file system received the

same set of allocation and deallocation requests that were presented to the corresponding

cylinder group on the original file system from which the snapshots were generated. I

used each files’s inode number to compute the cylinder group to which it was allocated
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on the original file system. To force the files into the same cylinder groups on the aged file

system, I exploited several details of the FFS implementation.

I start the aging process with an empty file system. The first step is to create one

directory for each cylinder group on the file system. The algorithm used by FFS to assign

directories to cylinder groups ensures that each directory was placed in a different

cylinder group. For each file in the aging workload, I use its inode number to compute

the cylinder group to which it was allocated on the original file system, and place the file

in the corresponding directory on the aged file system. Because FFS places all files in the

same cylinder group as their directory, this guarantees that all of the files that are in the

same cylinder group on the original file system are also in the same cylinder group on the

aged file system.

There are two drawbacks to this approach. First, by creating an extra directory for

each cylinder group, I am introducing one file per cylinder group that did not exist in any

of the data sets used to generate the aging workload (i.e., the directory). The effect of

these directories should be negligible, however, as the space that they occupy is much

less than that of the files being manipulated during the aging simulation. The second

drawback is that by exploiting these details of the FFS implementation, I am limiting the

applicability of my file system aging tools to file systems that use the same physical

partitioning to improve the clustering of logically related data.

3.2.3 Workload Verification

In order to evaluate the realism of my simulation, I compared a test file system aged

using our techniques with the real file system from which I generated the aging work-

load. Because my test file system necessarily starts in an empty state, I generated an aging

workload from a file system for which I had snapshots starting the day it was created.

This file system, which contains the home directories of several graduate students study-

ing parallel computing, was not one of the file systems that I used in deriving the aging

methodology. The aging workload I generated from this file system simulates 215 days

(approximately seven months) of activity on a one gigabyte file system. The workload
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contains approximately 1.3 million file operations that write 87.3 gigabytes of data to the

disk and takes seven hours to replay on a generic FFS implementation.7 At the end of the

workload, the file system is 65% full.

I ran this aging workload on a test file system that was configured with the same

file system parameters as the original system and compared the resulting state of the test

file system with the state of the original file system at the end of the sequence of

snapshots. In this discussion, I refer to the original file system from which the aging

workload was generated as the real file system, and I refer to the test file system that was

aged using my artificial workload as the simulated file system. Table 3.1 describes the

hardware configuration that I used both to age the simulated file system, and for the

benchmarks described in Section 3.3.

One of the primary changes observed in many file system architectures as a

system ages is increased file fragmentation on the disk. Therefore I started by comparing

7. I measured the seven hour replay time for this aging workload on a file system mounted with BSD’s async
option. This option forces all file system writes to occur asynchronously, including the synchronous meta-

data updates described in Section 2.1.3. It is impractical to use this option on a file system holding live data,

but it is useful when running an aging workload. If there is a system failure while executing the aging

workload, there is no danger of losing valuable data as we can simply re-run the workload. Running the

same workload on a file system mounted without the async option takes 39 hours.

CPU Parameters Disk Parameters File System Parameters

CPU Intel Pentium
Pro

Disk Controller NCR 53c825 Size 1024 MB

Clock Speed 200 MHz Disk Type Fujitsu
M2694ES

Fragment Size 1 KB

Memory 32 MB EDO
RAM

Total Disk Space 1080 MB Block Size 8 KB

Bus Type PCI Rotational
Speed

5400 RPM Max. Cluster
Size

56 KB

Cylinders 1818 Rotational Gap 0

Heads 15 Cylinder Groups 63

Avg. Sectors/
Track

94 Heads 19

Track Buffer 512 KB Sectors/Track 111

Average Seek 9.5 ms

Table 3.1: Benchmark configuration. This table describes the hardware configuration used for

benchmarking and verifying the file system aging workload. The file system parameters shown in italics

were set to match the file system from which I generated the aging workload, despite the fact that they do

not match the underlying hardware.
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several aspects of fragmentation on the real and simulated file systems. I define a layout

score to quantify the amount of file fragmentation in a file or file system. The layout score

for an individual file is the fraction of that file’s blocks that are optimally allocated. An

optimally allocated block is one that is contiguous with the preceding block of the same

file. The first block of a file is not included in this calculation, since it is impossible for it to

have a “previous block.” Similarly, layout score is not defined for one block files, since

they cannot be fragmented. A file with a layout score of 1.00 is perfectly allocated; all of

its blocks are contiguously allocated on the disk. A file with a layout score of 0.00 has no

contiguously allocated blocks.

To evaluate the fragmentation of a set of files (or of an entire file system), I

compute the aggregate layout score for the files. This metric is the fraction of the blocks in

all of the files that are optimally allocated (again ignoring the first block of each file and

one block files).

At the end of the simulation period, the aggregate layout score on the real file

system was 0.815, compared to 0.876 on the simulated file system.8 Thus, although the

aging workload does cause fragmentation on the file system, it does not generate as

much fragmentation as occurred on the real file system. Figure 3.3, which presents a time

series of the aggregate layout scores for both file systems over the 215 days of the

simulation, indicates that although the aggregate layout score of the simulated file

system tracked the real file system very closely for the first half of the simulation, during

the second half of the simulation, the aging workload failed to replicate several large

changes in file fragmentation on the real file system.

To gain a better understanding of the fragmentation differences between the real

and simulated file systems, I sorted the files on both file systems by size and computed

the aggregate layout scores for files of a variety of sizes. Figure 3.4 shows the results.

Although the two file systems have similar layout scores for small files (up to 64 KB), for

larger files, the simulated file system has higher layout scores, indicating that it failed to

8. Note that these seemingly high layout scores—more than 80% of the blocks on both the real and simulated

file systems were optimally allocated—are typical of FFS. On all of the file systems in the snapshot library,

there is seldom an aggregate layout score of less than 0.7 except on news servers, which are subject to extreme

file fragmentation.
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capture all of the fragmentation that actually occurred on the real system. It is these large

files that cause the aged file system to have a higher aggregate layout score then the real

one. The difference in layout scores is most noteworthy for files of 2 – 4 MB. It is not clear

what caused this discrepancy. Many files of these sizes on the original file system are

unusually fragmented, and have layout scores of less than 0.5. On other file systems that

I have examined, large files do not exhibit this degree of fragmentation. According to the

the owners of these files, they are outputs from large simulation programs. I have

speculated that file activity concurrent with the creation of these large files, and taking

place in the same cylinder groups, may have caused this fragmentation, but I do not have

the data necessary to confirm this hypothesis.

To summarize, the simulated aging workload mimics the real file system from

which it was derived in the steady increase in fragmentation over time. However, the

total amount of fragmentation on the simulated system is less than on the real file system,

largely because the simulated file system failed to replicate several large changes in

fragmentation seen on the real file system. The fundamental cause of this inaccuracy in

our aging workload is that when I did not have sufficient information to perfectly
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Figure 3.3. Real vs. simulated file system. This

chart plots the aggregate layout score for each

day in the seven month simulation period. The

“Simulated” line shows the fragmentation on the

artificially aged file system. The “Real” line

shows the fragmentation on the original file

system from which the aging workload was

generated. Although the two file systems behave

similarly for the first half of the simulation, the

aging workload fails to capture several of the

large changes in the original file system workload

during the later half of the simulation period.

Figure 3.4. Fragmentation as a function of file
size. File sizes were rounded up to an even

number of file blocks and the aggregate layout

score was computed for files of various sizes on

the real and simulated file systems. The results are

graphed here. Both file systems suffer from

extreme fragmentation of small files (< 32 KB). On

the real file system, file layout drops noticeably

for large files (2 – 4 MB). A similar decline is not

present on the simulated system.
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reconstruct the workload on the real file system, I made randomized decisions. The two

most important areas where this occurred were in assigning times to file delete

operations and in simulating the activity of short-lived files on the file system. In real file

system workloads, there are dependencies between these operations and the other

activity occurring on the file system. An accurate model of these interdependencies

would allow more realistic decisions regarding file delete times and short-lived file

activity. The absence of such a model decreases the verisimilitude of the aging.

Nevertheless, these tools are still superior to the traditional approach of benchmarking

empty file systems, and they are effective for evaluating the impact of design decisions

on the long term behavior of a file system.

3.3 Applications of Aging

In an earlier study [Smith96], I used file system aging to analyze the effectiveness of an

improved block allocation scheme in FFS. On an empty file system, the original and

improved schemes were virtually indistinguishable, but on an aged file system the

improved scheme resulted in performance improvements of up to fifty percent. Aging

enables a researcher to explore the long term effects of a number of policy decisions and

file system features. In this section, I will use my aging methodology to answer the fol-

lowing questions about FFS layout.

• Indirect blocks (blocks that contain pointers to data blocks) are usually

allocated in a separate cylinder group from the one containing the

previous part of the file. This imposes a sharp performance penalty on

midsize files (i.e., 104 KB to 256 KB). If we allocate the first indirect block

of a file in the same cylinder group as the start of the file, how does this

affect performance? Are there any undesirable side effects?

• Fragments (partial blocks) are rarely allocated adjacent to the preceding

block of their file. Placing fragments adjacent to their preceding blocks

may improve performance, but it may also lead to more internal

fragmentation. Is changing fragment allocation beneficial?
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The basic technique used in exploring these two issues was to propose and implement a

modification to FFS. I then aged two file systems that differed only in this modification,

and ran a variety of benchmarks on the aged file system to evaluate the effect of the pro-

posed change on the long term behavior of the file system.

In order to compare the performance of two file systems, we used two simple

benchmark programs. The first measures the file system throughput sequentially reading

and writing files of a variety of sizes. Each run of the benchmark measures the read and

write performance for one file size. The benchmark operates on 32 MB of data, which is

decomposed into the appropriate number of files for the file size being measured.

Because FFS allocates all of the files in a single directory to the same cylinder group, the

data is divided into subdirectories, each containing no more than twenty-five files. This

increases the number of cylinder groups exercised during the benchmark.

The benchmark executes in two phases:

1. Create/Write: All of the files are created. For file sizes of 4 MB or less, the

entire file is created with one write operation. Large files are created

using as many 4 MB writes as necessary. This phase measures write

throughput, including the time required to create new files and

allocate disk space to them.

2. Read: The test file system is unmounted and remounted to flush the file

cache. Then the files are read in the same order in which they were

created. As with the create phase, I/O is performed in 4 MB units.

For each file size in our tests, I executed this benchmark ten times, averaging the resulting

throughput measurements. In all test cases, the standard deviation was less than 1% of

the average throughput.

This benchmark is unrealistic in one important sense. Real file system workloads

seldom create large batches of files of the same size. Actual usage patterns typically

interleave the creation and deletion of files of a variety of sizes, possibly resulting in more

file fragmentation than we would see in the sequential I/O benchmark described above.

Our second benchmark attempts to address the problem, by exploiting the more
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“realistically” created files that are left on the test file system at the end of the aging

workload.

Previous research has shown that most older files are seldom accessed

[Satyanarayanan81], and therefore that the most active files on a file system tend to be

relatively young. I approximated the set of hot files on our simulated file system by using

all of the files that were modified during the last thirty days of the aging workload. These

files represent 9.5% of the files on the aged file system (3,207 out of 33,797 files), and use

92.3 megabytes of storage (14.5% of the allocated disk space).

The second benchmark measures file system throughput when reading and

writing this complete set of hot files. To limit the amount of time spent seeking from one

file to the next, I sorted the files by directory, so multiple files would be read from one

cylinder group before moving to another. To preserve the file layouts, I overwrite the files

during the write phase of this test.

I used FFS enhanced with the improved block-clustering algorithm [Smith96]

mentioned in Section 3.1.2 as the baseline system.9 The performance of this file system

(after aging) is shown in Figure 3.5.

9. At the time I performed these experiments, this allocation algorithm was still considered experimental. It is

now a standard part of FFS on many BSD-based systems.
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Figure 3.5. Performance baseline. These charts show the performance of our baseline file system in the file

throughput benchmark. The benchmark was executed after the file system had been aged using the

workload described in Section 3.2.1. Graph A plots read and write throughput as a function of file size.

Graph B plots the layout scores of the test files created during the benchmark. The sharp drops in all of

these graphs as the file size passed 96 KB corresponds to the point where FFS allocates the first indirect

block to a file (see Section 3.3.1).
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3.3.1 Indirect Block Allocation

Each time an indirect block is allocated to a file in FFS, the file system assigns that block,

and all of the data blocks it references, to a different cylinder group than the previous

part of the file. The new cylinder group is chosen by selecting the next cylinder group on

the disk that has at least an average number of free blocks (relative to the rest of the file

system).

This scheme seems undesirable, as it forces long seeks at periodic locations in

large files. For very large files, however, these extra seeks are typically amortized over the

transfer of the entire file, and have a negligible effect on I/O throughput. Given a typical

file system block size of 8 KB, this policy will force a change of cylinder groups every 16

MB of the file. However, switching cylinder groups may be useful in practice, as it

prevents a single large file from consuming all of the free space in a cylinder group.

Unfortunately, there is one glaring problem with this policy of switching cylinder

groups with the allocation of each indirect block of a file—in FFS the first indirect block is

allocated after only the twelfth data block of a file. On an 8 KB file system, this means that

FFS imposes an extra seek after the first 96 KB of a file. For medium size files of a few

hundred kilobytes, this extra seek can have a noticeable impact on performance. The

effect of this extra seek is apparent in the performance of our baseline file system in

Figure 3.5A. The layout score of the test files drops from 0.98 to 0.91 when the first

indirect block is allocated (between 96 KB and 104 KB) and both read and write

performance decline precipitously at the same point. There is a larger drop in read

performance (33%) than in write performance (25%) because the indirect block not only

causes a seek during the read, but also interferes with file prefetching, as the blocks

referenced from the indirect block cannot be prefetched until the indirect block itself has

been read from the disk.

To address this problem, I modified FFS to not switch cylinder groups until it

allocates the second indirect block in a file. (In the test file systems, this occurs when the

file size reaches approximately 16 MB). I call the implementation of FFS that includes this

enhancement NoSwitch. I expected this minor enhancement to have the effect of
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improving file throughput for files of a few hundred kilobytes. Larger files should not see

as much improvement because the savings from eliminating one seek are amortized over

the time it takes to read or write the entire file. I used the throughput benchmark to

compare the performance of the NoSwitch file system to our baseline file system on both

empty and aged partitions. Figure 3.6 shows the results.

As expected, read and write throughput to files of a few hundred kilobytes

improves on the NoSwitch file system. Note that there is still a slight performance drop

as file size passes 96 KB and the first indirect block is used. This occurs because in

addition to transferring the file data, the file system must also transfer the indirect block.

Comparing the performance on empty and aged file systems in Figure 3.6 we see that the

NoSwitch system outperforms our baseline in both cases. The magnitude of the

performance improvement, as shown by the area between the pairs of curves for the two

file systems, is smaller on the aged file system. In the best case (104 KB files) the

NoSwitch file system improves performance by 87% on an empty file system, but only by

43% on an aged file system.

If the only concern were whether the NoSwitch file system would improve

performance, we would not have needed to run our benchmarks on an aged file system.

By using an aged file system, however, we can more accurately assess the magnitude of

the performance improvement. Using an aged file system also allows us to assess an
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Figure 3.6. Performance with improved indirect block allocation. These charts compare the read and

write throughput of the baseline file system to a file system that does not switch cylinder groups when

allocating the first indirect block (NoSwitch). Graph A shows this comparison on an empty file system;

Graph B shows this comparison on aged file systems. The NoSwitch file system offers higher throughput in

both cases, but the magnitude of the improvement, indicated by the area between the NoSwitch and

Baseline lines in the graphs, is significantly smaller on the aged file systems.
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adverse side effect of this enhancement. As described earlier, FFS attempts to exploit

locality of reference by co-locating all of the files in a directory in the same cylinder group

as the directory itself. In a directory with many files, some of which are large, the original

scheme of switching cylinder groups after only twelve blocks of a large file may have

ensured that a single large file did not consume all of the free space in a cylinder group,

forcing subsequently allocated files to be placed in other cylinder groups, thus destroying

the desired locality.

To study this effect, I examined the state of the baseline and NoSwitch file systems

after they had been aged. If the NoSwitch file system caused an increase in the number of

files displaced from the cylinder group of their directory, we would expect to see a larger

number of files where the first data block of the file is in a different cylinder group from

the file’s inode. (FFS also tries to locate a file’s inode in the same cylinder group as its

directory.) I counted the number of these split files on the two file systems, and for each

such file, determined how many cylinder groups separated the file’s inode and its first

data block. The more intervening cylinder groups, the longer the seek required to read

the file’s data after reading its inode. The results are summarized in Table 3.2.

The NoSwitch file system has more than twice as many of these split files as the

baseline file system, indicating that not switching cylinder groups when the first indirect

block is allocated does, in fact, cause highly utilized cylinder group to run out of free

space. On the baseline file system, most of the split files require relatively short seeks; in

Baseline NoSwitch
Number of split files 4312 9155

% of all files that are split 13 27

% of one cyl. group splits 58 37

% of < 10 cyl. group splits 95 67

Table 3.2: Number of split files on NoSwitch file systems. This table

compares the number of split files (files where the inode and the first data

block are in different cylinder groups) on the baseline file system and on

the aged file system with the NoSwitch enhancement. The four rows of

the table present, respectively, the total number of split files on each file

system, the percentage of all files on each file system that are split, the

percentage of split files where the data block is only one cylinder group

away from the inode, and the percentage of split files where the data

block is no more than ten cylinder groups away from the inode. Both file

systems had sixty-three cylinder groups.
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more than half the cases, the file’s data is only one cylinder group away, and in almost all

cases, the data is within ten cylinder groups of the file’s inode. In contrast, a third of the

split files on the NoSwitch file system involve seeks of more than ten cylinder groups.

In an attempt to balance the performance gain for large files, which are not

allocated in one cylinder group, against the potential performance loss from the longer

seeks required to read the extra split files that are generated on the NoSwitch file system,

we turn to the results of the hot file benchmark. The results of this benchmark, which are

summarized in Table 3.3, show that the NoSwitch file system offers a modest

improvement in read throughput, with virtually no change in write throughput. This

performance improvement suggests that the throughput gained from a better layout of

larger files outweighs the throughput lost by increasing the number of split files. The

improvement in performance is small enough, however, that it may be an artifact of this

particular workload, and this file system modification may not be universally applicable.

It is important to note, however, that we would have had no means to evaluate this trade-

off if we had only benchmarked NoSwitch on an empty file system.

3.3.2 Fragment Allocation in FFS

To limit the amount of internal fragmentation caused by small files, FFS allows a single

file system block to be subdivided into fragments. The minimum fragment size is deter-

mined at the time that the file system is created, and blocks may only be divided into

pieces that are integral multiples of the fragment size. For files with no more than twelve

data blocks (i.e., files that do not use any indirect blocks), a partial block containing an

Baseline NoSwitch
Aggregate Layout Score 0.928 0.931

# of split files 327 594

Read bandwidth (MB/sec) 0.810 0.835

Write bandwidth (MB/sec) 0.494 0.495

Table 3.3: Performance of recently modified files on NoSwitch file
system. This table presents the read and write throughput of the files

modified during the last thirty days of the aging workload on the baseline

and NoSwitch file systems. The aggregate layout scores of the files used

during this test, and the number of these files where the first data block

was located in a different cylinder group than the file’s inode (“split files”)

are also presented. Throughput measurements are the averages of ten test

runs. All standard deviations were less than 0.2% of the reported means.
53



integral number of fragments may be used as the last data block instead of a full-sized file

system block. On our test file system, for example, the block size was 8 KB and the frag-

ment size was 1 KB. Thus, a 30 KB file would be allocated as three file blocks, followed by

a partial block containing six fragments.

While this scheme is efficient in reducing the amount of disk space wasted by

internal fragmentation, the algorithm FFS uses to allocate fragments to files results in

suboptimal file layout. When allocating a fragment, FFS first attempts to find a free

fragment of the appropriate size in the same cylinder group as the file. If such a fragment

is not available, FFS will divide a larger free fragment. Finally, if no fragment of an

appropriate size is available, FFS will allocate an entire file system block, and divide it

into fragments. Thus the primary goal of the fragment allocation algorithm is to limit the

amount of free space that exists in fragments. The downside of this approach is that the

fragment at the end of a file is seldom allocated near the preceding block of the file. In

Figure 3.4, for example, we see that the layout scores of small files are much lower than

those for other files, indicating that small files are more fragmented. This fragmentation

is almost entirely due to the fragment allocation policy. On the baseline file system, for

example, only 36% of two block files are allocated with their two blocks contiguous on

disk. Of the two block files where the second block is a full block rather then a fragment,

however, 87% are allocated contiguously.

Ideally, we would like the fragment at the end of a file to be contiguous with the

preceding block of the file. To this end, I modified the FFS fragment allocation algorithm.

The new algorithm always attempts to allocate the block immediately adjacent to the

previous file block. If that block is available, it is broken into fragments, and the unused

portion is marked as free. If the desired block is not available, we fall back to FFS’s

original fragment allocation policy. For small files, where the only data block is a

fragment, we always use the original FFS policy, hoping to fill in the free fragments

created when full blocks are broken up to provide contiguous fragments for larger files. I

refer to the version of FFS that uses this new fragment allocation policy as SmartFrag.
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I used the sequential I/O benchmark to compare the performance of the

SmartFrag file system to that of the baseline system. Since we are interested in the

behavior of files that use fragments, I focused on small files in running this benchmark.

Figure 3.7 shows the layout score of the small files created by running the benchmark on

the two aged file systems. Figure 3.8 presents the measured performance of the two

versions of FFS on both empty and aged file systems.

Figure 3.7 shows that the SmartFrag scheme dramatically decreases file

fragmentation for files that use fragments. Both the SmartFrag and baseline file systems

achieve nearly perfect layout for file sizes that are an integral multiple of the eight

kilobyte disk block size. For intermediate sizes, however, SmartFrag eliminates almost all

of the fragmentation seen on the baseline system.

This difference in file layout translates to the performance differences seen in

Figure 3.8. The saw-tooth effect in the read performance on all of the tested systems is

caused by changes in the performance characteristics of the file systems when fragments

are used. All file sizes that are even multiples of the file system block size do not require

fragments. Note that at these file sizes, the performance of the baseline file system is the

same as on the SmartFrag file system, as they both use the same file layout algorithm. For

file sizes that are not integral multiples of the file system block size, SmartFrag

outperforms the baseline system due to the improved allocation of fragments for these
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Figure 3.7. File layout with smart fragment allocation. This graph shows the amount of file fragmentation

for small file sizes on the baseline and SmartFrag file systems. The layout score is plotted for the files

created by the throughput test in Figure 3.8B.
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files. Both the SmartFrag and baseline systems have decreased throughput for files that

use fragments because FFS issues a separate I/O request to the disk driver for the

fragment, regardless of whether the fragment is contiguous with the previous file block.

The differences in write throughput are much smaller because this test both

creates and writes the test files, and the test time is dominated by the create operation,

which requires synchronous disk writes [Seltzer95]. The cost of creating a file is the same

for both the SmartFrag and baseline file systems.

The write performance on all of the tested systems also shows an unexpected

jump when the file size reaches 64 KB. This is the result of a performance bug (since

fixed) in the version of FFS used in these tests. Until a full cluster (64 KB) of data has been

written to a file, FFS did not use clustered writes. The result is that for smaller file sizes,

FFS issued one write request for each file block, regardless of the layout on disk. At these

file sizes, the overhead of performing these individual I/O operations completely

masked any performance differences caused by the fragment allocation policy. For files

larger than 64 KB, we see that the SmartFrag file system provided improved throughput

for file sizes that required the use of a fragment.
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Figure 3.8. Performance with smart fragment allocation. These charts compare the read and write

throughput of the baseline file system to a file system that uses our improved fragment allocation algorithm

(SmartFrag). Graph A shows this comparison on empty file systems; Graph B shows this comparison on

aged file systems. The saw-tooth effect shows the impact of changing fragment size on file system

performance. The peaks represent file sizes that are an integral number of blocks. File sizes that require the

use of a fragment do not perform as well because reading or writing the fragment requires an extra I/O

operation. The step in writer performance at 64 KB files it the result of a performance bug in FFS, described

in the body of this chapter. All of the performance curves drop precipitously after 96 KB because FFS

switches cylinder groups at this point.
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The potential downside to the SmartFrag strategy is the amount of fragmentation

of free space that it causes. Most of the data on a file system is allocated in full-sized file

system blocks. If too much of the file system’s free space is in fragments instead of full-

sized blocks, the file system may run out of free blocks while there is still a sizeable

amount of free space in fragments. Seltzer and her colleagues have described a

particularly spectacular instance of this problem [Seltzer95]; one of their news servers

reported that it was out of free space despite the fact the file system had more than ninety

megabytes (ten percent of the disk) free—all in fragments.

To evaluate how much the SmartFrag file system increases the fragmentation of

free space, I compared the number of free blocks and free fragments on the baseline and

SmartFrag file systems. As expected, both file systems had the same amount of free space.

On the SmartFrag file system, however, twice as much of this space was in fragments (5%

vs. 2.5% of free space). Because the total amount of fragmented free space is relatively

small on both file systems, this side effect of the SmartFrag allocation scheme is tolerable

for most applications; it is unlikely to cause problems until the file system is very close to

maximum capacity.

3.4 Conclusions

The behavior of a file system can change dramatically with the passage of time. As a file

system is filled, or as successive generations of files are created, modified, and deleted,

the performance characteristics of the system also change. By ignoring these changes in

file system behavior, researchers fail to accurately assess how file system designs will

respond to real-world conditions. Not only do active file systems behave differently from

empty ones, but there are also a variety of file system design decisions whose full effects

are only apparent after a long period of use.

In order to accurately evaluate the long-term behavior of competing file system

architectures, I have developed a process for artificially aging a file system by replaying a

long-term workload on a test file system. As demonstrated by the evaluation of two new

file layout policies for the UNIX fast file system, this technology allows for the scientific
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evaluation of design decisions that may have no discernible effect on the short-term

characteristics of file system behavior.
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Chapter 4

Workload-Specific
Performance Analysis

One of the fundamental questions that benchmarking tries to answer is, “How well will

my workload perform on this system?” In the previous chapter, I demonstrated that file

system aging helps to answer this question by producing benchmark results that are

more accurate and realistic than the traditional approach of benchmarking empty file sys-

tems. But the results achieved by measuring the performance of an aged file system can

only be as good as the benchmark used to generate those results. Regardless of the verisi-

militude of the test file system, a read-intensive benchmark is probably a poor predictor

for the performance of a write-intensive workload.

Unfortunately, current file system benchmarks often suffer from this type of

mismatch with user workloads. Typical benchmarks, such as SFS, Andrew, and IOStone,

assign a single score to each system that they measure. The tacit assumption made by

these benchmarks is that there is a single one-dimensional ranking of the systems under

test. In the real world, this is seldom the case. The file system that performs best for one

workload, may not be the best for another workload. This has been shown repeatedly, in

a variety of research papers comparing different file system architectures [Seltzer93]

[Patterson95] [Tomkins97] [Seltzer00a].
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The ideal benchmark would allow a user to evaluate a system in the context of her

own workload. Workload-specific performance evaluation is becoming increasingly

important in today’s computing environment. Many tasks that were formerly handled by

a single central server now run on dedicated hardware. For example, many large

computing installations have separate systems acting as file servers, mail servers, web

servers, news servers, name servers, etc. Ideally, administrators of such sites should have

tools that they could use to determine which of several competing hardware and

operating system configurations would provide the best performance for each of these

services. These tools could also be used to evaluate the benefits of hardware upgrades,

such as installing more memory or faster disks, and to determine optimal configuration

parameters for applications and operating systems.

Traditionally, if a user has wanted to evaluate the performance of her workload

on a variety of file systems, she has had to actually execute that workload on the various

systems of interest. While this is possible for users with the clout (financial or otherwise)

to get access to evaluation systems, it is less practical for most users. To facilitate the

(common) situation of the latter class of users, I have designed a benchmarking

methodology that allows a user to evaluate the performance of her workload on a file

system without having access to an actual machine using that file system.

The key to this benchmarking methodology is separating the measurement of the

file system from the analysis of the user’s workload. In this scheme, a file system vendor

provides a profile of its file system—the results of a suite of microbenchmarks that

evaluate different aspects of the system’s performance. The user analyzes her application

by collecting a trace of the calls to the file system API. By combining these two profiles I

predict the performance of the workload on the file system and identify the types of

operations where the file system consumes the most time. The latter information is useful

both to application developers, who wish to tune their software to avoid file system

bottlenecks, and to file system architects who wish to eliminate those bottlenecks.

In the next section, I motivate this work by demonstrating that different file

system architectures provide better performance for different workloads. In Section 4.2, I
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discuss traditional approaches to analyzing file system performance. Section 4.3

describes the goals of my workload-specific performance analysis tools. In Section 4.4 I

explain the architecture and implementation of these tools, and in Section 4.5 I validate

them by comparing their performance predictions against the actual behavior of several

workloads on a variety of file system architectures. Section 4.6 describes possible avenues

for future work. Finally, in Section 4.7 I present my conclusions.

4.1 Motivation

Most existing macrobenchmarks attempt to reduce file system performance to a single

number. Thus, these benchmarks assume that the file system with the best benchmark

result is the best performing. Unfortunately, real world file systems seldom lend them-

selves to such simple analysis. The file system that is best for one workload may not be

the best for a different workload. Even similar benchmark programs, intended to repre-

sent the same type of workload, may rank files systems differently.

The problem can be observed in Figure 1, which shows data collected in an earlier

study comparing a log-structured file system (“LFS”) to two versions of FFS [Seltzer93].

In this figure, “FFS” is an old version of the Fast File System, that does not include

support for clustered I/O (see Section 2.1.3.2.1), and “EFS” is a version of FFS that

includes clustered I/O. The graph shows the time to run one or more concurrent

instances of the Andrew benchmark [Howard88]. This set of benchmark results clearly

shows that there is no single file system that consistently out-performs the others. When

only one instance of the Andrew benchmark was run, LFS outperformed the other two

file systems. When six instances of the Andrew benchmark were run, EFS showed the

best performance, and LFS the worst performance. Many other research studies

comparing multiple file system architectures, have shown this same phenomenon—that

ranking file systems by performance depends on the benchmark used [Howard88]

[Patterson95] [Tomkins97] [Seltzer00a].
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4.2 Existing Benchmarking Techniques

Traditional techniques for analyzing and understanding file system performance have

relied on a mix of both microbenchmarks and macrobenchmarks. Researchers typically

use microbenchmark results to explain (or predict) the performance of macrobench-

marks. At its best, this approach allows a researcher to understand which file system

operations perform well (or poorly) on a particular system and to examine how these

microbenchmark results influence the performance of large-scale workloads, highlight-

ing the workloads that are well-suited to the architecture.

While this type of measurement can provide excellent insight into the behavior of

the systems under study, it is also painstaking to carry out. As it is seldom practical for

such studies to focus on more than a handful of workloads, the results may be of little

benefit to users whose workloads differ from the macrobenchmarks in the study. The

only recourse for such a user is to perform her own analysis of the system in question,

Figure 4.1. File System Comparison. This graph compares the performance of three file systems, a log-

structured file system (LFS), an old version of the Berkeley Fast File System (FFS), and a version of the

Fast File System that supports clustered I/O (EFS). The graph shows file system performance (in

application run time) to execute one or more concurrent instances of the Andrew benchmark. The file

system offering the best performance varies, depending on the degree of multiprograming. This data

was copied from an earlier publication with permission of the author [Seltzer93].
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Benchmark Result (ms)

Lookup miss 6.437

Lookup hit 0.012

File create 6.794

either by performing her own measurements of the system, or by trying to infer the

performance of her workload from previously published results. The former approach

requires access to the file system of interest, a potential problem for users with limited

financial resources. The latter approach requires a detailed understanding of the

interaction between the workload and the file system. Inferring the performance of a

workload based on microbenchmark results alone can also be problematic if the

workload stresses parts of the system that were not microbenchmarked.

My benchmarking methodology is an attempt to automate this general approach

of using microbenchmarks to understand workload performance. I provide an extensive

suite of microbenchmarks that evaluate the performance of all aspects of standard file

system functionality and a set of tools that analyze the performance of a workload using

the results of these microbenchmarks. The output of this analysis provides the same

types of information researchers have traditionally generated by hand when analyzing

file system performance.

4.3 Goals

My goal is to develop a benchmarking methodology that explicitly acknowledges the

workload-dependent nature of file system performance. This benchmark should allow

users to understand how a given workload will behave on different file system architec-

tures. It should also highlight the performance trade-offs the different file systems make,

and the impact of those trade-offs on performance. In this chapter, I present a set of tools,

called HBench-FS,1 that allow a researcher to perform several important types of perfor-

mance analysis.

• HBench-FS predicts the overall performance of a workload on a target file

system. This allows easy comparisons between competing file system

architectures in the context of a workload of interest. For these

comparisons to be useful, HBench-FS must provide accurate performance

1. Several other researchers at Harvard have been investigating workload-specific benchmarks for different

types of computer systems. The name “HBench-FS” is part of the overall naming scheme for these

benchmark suites. Hence HBench-OS [Brown97a] measures operating system performance, HBench-Web
[Manley98] measures web server performance, etc.
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predictions. More importantly, HBench-FS must be able to correctly rank

different file systems in terms of the performance they provide for a

workload of interest.

• HBench-FS provides an analysis of the underlying causes of performance

differences between different systems. In addition to predicting the overall

performance of a workload on a target file system, HBench-FS breaks

down the performance in terms of file system functionality, showing the

request types that consume the most time. While the ultimate goal is to

provide complete accuracy in this performance breakdown, the data that

is most useful to researchers and developers is information about which

types of file system operations consume the most time for a particular

workload and file system combination.

• Developers and researchers can use the results from HBench-FS to

optimize application or file system performance in response to the specific

bottlenecks a workload encounters on a file system.

• Developers or researchers contemplating changes to a file system, or an

entirely new file system architecture, can use HBench-FS to conduct “what

if” experiments. A user can provide a hypothetical performance

characterization of the proposed file system and use HBench-FS to predict

the performance of various workloads on it.

The output from HBench-FS provides a variety of information that helps to perform the

different types of performance analysis described above. HBench-FS also provides access

to its raw prediction data, which can be used for customized performance analysis.

While the individual tasks described above can be performed using existing

techniques, such an approach usually requires a tremendous amount of expertise, as well

as access to both the applications and file systems in question. HBench-FS separates file

system analysis from workload analysis, allowing a user to study the performance of her

workload on a file system architecture she may not have access to, or which may not exist

yet. HBench-FS also automates many tasks traditionally associated with performance
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analysis, including the selection of microbenchmarks, and determining which aspects of

file system performance have the greatest impact on a workload.

4.4 Application-Specific Benchmarking

Figure 2 shows the high-level architecture of HBench-FS. A set of analysis tools combine

data from profiles of both a file system and a workload of interest to predict how the

workload will perform on the file system. The file system profile consists of the results of

a large suite of file system microbenchmarks, intended to fully characterize all aspects of

traditional file system functionality. The workload profile includes a system call trace of

the desired workload, collected from any operating system environment, and a snapshot

of the file system at the beginning of the trace. Because the file system and workload pro-

files can be generated separately, a researcher need not have access to both the file system

implementation and the application to analyze how the two will perform together. In an

ideal world, system vendors would publish file system profiles for the systems they sell.

Application vendors would also publish profiles of their applications. In the simplest

case, an end user could select the application and file system profiles of interest, and ana-

lyze their combined performance. More sophisticated users could generate their own

application profiles.

In the following sections, I provide more details about HBench-FS, including the

file system profiles, the workload profiles, and the techniques it uses to make

File System
Profile

Workload

Analysis
Tools

Performance
Predictions

Profile

Figure 4.2. HBench-FS High-Level Architecture. HBench-FS consists of a set of tools that analyze the

performance of a specific workload on a target file system by combining data about both the file system

and the workload. In addition to these analysis tools, HBench-FS includes tools for generating a

performance profile of a target file system.
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performance predictions from these profiles. As HBench-FS is a research prototype

intended to demonstrate the validity of this approach, rather than a commercial-quality

product, it has several limitations, which I also describe in the following sections.

4.4.1 General Approach

Margo Seltzer and her colleagues have proposed three different methods for performing

application-specific benchmarks, vector-based, trace-driven, and hybrid [Seltzer99].

HBench-FS falls into the latter category, combining aspects of both the vector-based and

trace-driven approaches. A vector-based benchmark uses a system vector to characterize

the performance of a system, and an application vector to characterize the behavior of an

application. Each element of the system vector gives the performance of one aspect of the

target system. The corresponding element of the application vector is a measure of how

much the application uses that piece of the system’s functionality. The dot-product of

these vectors provides a prediction of the application’s performance on the system that

provided the system vector. Aaron Brown has used this technique to analyze the effect of

operating systems on Apache web server performance [Brown97a]. Xiaolan Zhang has

used vector-based techniques to perform application specific benchmarking of Java vir-

tual machines [Zhang00].

Given a workload profile that consists of a stream of file system requests issued

by an application of interest, the goal of HBench-FS is to predict the latency of each

operation in the trace. HBench-FS makes these individual performance predictions using

the vector-based methodology described above. In this case, the system vector consists of

the microbenchmark results from a file system profile. HBench-FS generates an

application vector (called a request vector in this context) for each file system request, and

produces the performance prediction for each request by taking the dot-product of the

two vectors.

The performance of a file system is heavily dependent on the order in which it

receives requests. Read requests to sequential ranges of a file typically outperform

random requests to the same file. Similarly, a series of requests that exhibit strong locality

of reference will outperform a request stream with no locality of reference. HBench-FS
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captures these aspects of file system performance in the system and request vectors by

including separate performance elements for sequential and random access patterns and

for cached and uncached file accesses. In order to generate these request vectors, HBench-

FS needs know the access pattern and cache behavior of each request. As this information

depends on the relationships between requests in a workload it cannot be obtained by

looking at individual file system requests in isolation. This is where HBench-FS uses

Seltzer’s trace-driven methodology. Before generating the request vectors, HBench-FS

preprocesses the workload trace using a cache simulator and other tools that annotate the

trace to indicate the cache behavior and access patterns of each request.

To better understand how HBench-FS generates performance predictions

consider as an example, a single request to create a file named

/usr/home/keith/test/file. HBench-FS would subdivide this request into six discrete

file system operations, five name lookup operations (one for each component of the

pathname), and a single file create operation. HBench-FS also analyzes the cache

behavior of each request it processes. Thus, it might conclude that the first three lookups

will hit in the name and attribute caches, and that the final two lookups will miss in both

caches. If the request vector had the form

<# lookup misses, # lookup hits, # file creates> (EQ 1)

then the application vector would be <2, 3, 1>. Table 4.1 provides sample microbench-

mark measurements for these values (taken from FFS performance on the fast test config-

uration described in Section 4.5.1). Using these values, we get a system vector of <6.347,

0.012, 6.794>, and we predict the latency of the file creation request by taking the dot

product of these vectors:

<2, 3, 1> • <6.347, 0.012, 6.794> = 19.524ms (EQ 2)

As we will see later, generating the request vector for a file system request is more com-

plicated than I have described here. In addition to differentiating between lookups that

hit or miss in the name and attribute caches, HBench-FS also considers the request pat-
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tern of a stream of lookups, treating successive lookups to the same directory differently

from lookups to different directories. The above analysis also assumes that the create

request will succeed. In practice, it could fail for a variety of reasons—the target file

might already exist, or a component of its pathname might be invalid. By analyzing the

file system requests in the context of the snapshot included in the workload profile,

HBench-FS can determine whether and how a request will fail, and generate the appro-

priate request vector.2

4.4.2 Limiting Assumptions

I designed HBench-FS to evaluate a limited class of file system and storage system archi-

tectures—locally-attached single-disk file systems. While this means that HBench-FS can-

not be used to evaluate a variety of interesting architectures, this class of file systems

provides a sufficient range of architectural variation to provide an interesting set of test

cases for validating and experimenting with this benchmarking methodology.

In its current form, HBench-FS cannot model several important aspects of

networked file systems. To make performance predictions for these systems, HBench-FS

would need to account for the effects of network topology and congestion on file system

performance. Similarly, large-scale direct-attached storage devices, which typically

contain multiple disks and additional cache memory, would require extensions to

HBench-FS’s performance model to account for an additional level of caching and the

ability to concurrently serve multiple I/O requests off of parallel disks. The general

HBench-FS approach does not preclude analyzing these more complex file system

architectures and in Section 4.6 I discuss some of the ways they might be supported.

2. HBench-FS only checks for common error conditions, such as invalid pathnames. Other types of errors

(such as invalid permissions), are much less common and typically represent exceptional case rather than the

expected case behavior for applications.

Table 4.1: Sample Microbenchmark Results. This table contains the microbenchmark results used for the

example in Section 4.4.1. The results are taken from the Fast FFS configuration described in Section 4.5.1.

Microbenchmark Result (ms)

Lookup Miss 6.437

Lookup Hit 0.012

File Create 6.794
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The current version of HBench-FS is also limited to operating system

environments that provide a POSIX, or POSIX-like interface to the file system and other

basic operating system services.

4.4.3 File System Characterization

HBench-FS uses an extensive set of microbenchmarks to characterize the performance of

a file system. These programs attempt to measure the performance of all aspects of a file

system’s functionality. They do not make any assumptions about the underlying file sys-

tem architecture nor do they take advantage of any file system or operating system spe-

cific knowledge to obtain measurement data. HBench-FS uses the collective

microbenchmark results to create the system vector, which it combines with the stream of

request vectors to generate performance predictions for a workload.

4.4.3.1 Microbenchmark Goals

In designing the suite of microbenchmarks HBench-FS uses in generating the system vec-

tor, there were several goals and constraints. First, the benchmarks should be comprehen-

sive. In other words, they should measure all aspects of file system functionality. This

functionality is defined by the set of system calls that manipulate the file system or its

files. Table 4.2 lists the important calls in the POSIX file system interface and provides a

brief description of their functionality. The goal of the HBench-FS microbenchmarks then

is to quantify the performance of the different aspects of file system functionality

expressed in this system call interface.

Where possible, the benchmarks should be orthogonal to avoid redundancy.

Ideally, each benchmark should measure exactly one piece of file system functionality,

and each piece of functionality should be measured by exactly one microbenchmark. As a

practical reality, however, there are areas where it is impossible to divide the file system

functionality in as fine a granularity as might be desired. Writing a file, for example,

typically requires allocating space for the data, as well as transferring the data to the file.

In most file system interfaces, there is no way to separate and measure these two actions.
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Table 4.2: File System Interface. This table lists the important calls in the POSIX file system interface, lists

their primary arguments, and provides a brief description of their functionality. Several of these calls

(truncate, stat, chmod, chown, chgrp) have two versions, one that takes a file pathname as an argument and

another (e.g., ftruncate) that takes a descriptor for an already open file as an argument. Although it is listed as

a separate call, creat is usually implemented by passing a special file creation flag to open. The descriptions

of some calls ignore complex aspects of their behavior.

System Call Arguments Functionality

open Pathname of target file.

Access mode.

Open a file, returning a file descriptor. Cer-

tain file operations (e.g., read and write) can

only be performed using a file descriptor.

creat Pathname of new file.

File permissions.

Access mode.

Create a new file, returning a file descriptor

for the new file.

unlink Pathname of target file. Remove the specified file.

read File descriptor.

Transfer size.

Buffer.

Read data from the current file offset into an

application buffer.

write File descriptor.

Transfer size.

Buffer.

Write data from an application buffer to the

file, beginning at the current offset.

close File descriptor. Close a file. The calling process can no

longer use the file descriptor

lseek File descriptor.

New offset.

Set the file offset pointer

truncate Pathname of target file. Truncate the file, freeing the storage space

allocated to the file without removing its

inode or directory entry
ftruncate File descriptor.

mkdir Pathname of new directory.

Access mode.

Create a new directory

rmdir Pathname of target directory. Remove a directory

getdirentries File descriptor.

Transfer size.

Buffer.

Read directory entries from a directory.

stat Pathname of target file. Return the attributes for a file or directory

fstat File descriptor

access Pathname of target file.

Desired access mode.

Determine whether specified type of access

is allowed on the target file.

rename Pathname of existing file.

New pathname for file.

Change the name of a file.

chmod, chown,

chgrp, utimes

Pathname of target file.

New file attributes

Change the access mode, owner, or group, or

access times of target file.

fchmod,

fchown

File descriptor

New file attributes
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Portability is another important goal for the microbenchmark suite. To achieve

this, the microbenchmarks should access the file system only through standard public

interfaces. As mentioned in Section 4.4.2, the benchmarks assume that they run on a file

system that supports the POSIX interface. The benchmarks cannot exploit knowledge the

designer may have about file system internals, nor can they use system-specific

interfaces. For example, some systems provide a system call that provides access to the

values of various system parameters such as the size of the buffer cache (e.g., the sysctl

call in BSD UNIX). Since this call is not standard, however, we cannot rely on it to

determine the size of the target system’s buffer cache. Instead, HBench-FS includes a

microbenchmark that measures the buffer cache size empirically.

4.4.3.2 Microbenchmark Selection

The simplest approach to building a microbenchmark suite might be to provide one

microbenchmark for measuring each call in the file system interface. This approach pre-

sents a number of problems, however. First, many system calls perform differently

depending on their arguments and the state of the system. The read system call is a prime

example. The amount of time it takes to complete a read will vary considerably depend-

ing on how much of the target data (if any) is in the buffer cache. Even if all of the data is

in the buffer cache, the latency of a read call will vary according to the size of the read

request; it takes longer to transfer one megabyte of data from the buffer cache than to

transfer one kilobyte. Requests for data that is not in the buffer cache will also see perfor-

mance that varies. In this case, performance depends not only on request size, but also on

the access pattern. Many file systems optimize file layout for sequential access. Thus a

series of reads that request sequential ranges of data from a file will often perform better

than a series of reads that request data from random locations in the same file. All of

these factors mean that a comprehensive suite of microbenchmarks requires multiple

measurements for some system calls.

Another drawback of the one-benchmark-per-system-call approach is

redundancy. Many file system calls have overlapping functionality. The truncate call frees
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all storage allocated to a file. Removing a file also frees all of a file’s storage in addition to

freeing its inode and clearing its directory entry.

In an effort to avoid redundancy, I found several important overlaps between the

various calls in the file system interface. I also found several scenarios where system calls

might need to be measured with a variety of arguments or with the system in different

states. Table 4.3 lists the system calls, identifying those that share functionality and those

that require similar measurement techniques.

4.4.3.2.1 Pathname Resolution

As shown in Table 4.2, many of the calls in the file system interface take a pathname as

one of their arguments. In processing each of these calls, the file system must parse the

specified pathname to determine the target file for the operation. Benchmarking each of

these system calls independently would redundantly measure the overhead of pathname

parsing and would require each benchmark to account for how the performance of the

target system call varies with the length of the pathname argument. Instead, HBench-FS

includes a separate microbenchmark for measuring the time the file system takes to

resolve a single pathname component.3 HBench-FS uses this program to measure the

time to perform a single lookup under a variety of circumstances, with the name either in

the name cache or not, with the attributes for the target file either in the attribute cache or

not, and when a series of lookups occur in the same directory or when they occur in dif-

ferent directories.

HBench-FS then benchmarks the file system calls that take a pathname as an

argument under controlled circumstances, in order to minimize or eliminate the

overhead of pathname processing. HBench-FS measures the performance of each of these

calls using short (one or two component) pathnames. The tests also ensure that the

3. To measure the latency of a single pathname lookup, the microbenchmark performs a series of access calls.

The first call accesses a directory on the test file system. This should bring all of the data needed to resolve the

pathname into the cache. A second call measures the time to access the same directory with all of the names

and directory attributes in the caches. A third call measures the time to access a file in that directory. This call

must do all of the work of accessing the directory, plus the additional work of resolving one pathname. Thus,

the difference in the two measurements represents the time to resolve one pathname component.
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pathname data is already loaded into the name and attribute caches before they measure

the operation under test.

Thus, to predict the latency for any of these pathname parsing system calls,

HBench-FS combines the results of the name lookup benchmark with the result of the

relevant system call benchmark, as demonstrated in the example in Section 4.4.1.

Table 4.3: Characteristics of File System Calls. This table summarizes common characteristics of the

frequently used file system calls. Each column corresponds to a piece of functionality or an aspect of behavior

shared by one or more of the calls. The Pathname Resolution column indicates calls which must translate one

or more pathname arguments to determine the file(s) they operate on. The Request Size column indicates calls

whose performance depends on a request size argument provided by the caller. Usually this is the size of an

I/O request. Truncate calls specify the request size implicitly via the size of the file being truncated. The

Access Pattern column indicates calls whose performance depends on the caller’s pattern of access (sequential

vs. random) across multiple requests. The performance of calls designated in the Cache State column depends

on whether the target data is in the buffer cache. The Truncate column indicates calls that truncate their target

file either explicitly or implicitly. The Get Attr and Set Attr columns indicate calls that read or modify

(respectively) the target file’s attributes. Calls listed in the Async column generate file system activity

asynchronous to the system call itself.

System Call Pathname
Resolution

Request
Size

Access
Pattern

Cache
State Truncate Get

Attr
Set
Attr Async

open ✓ ✓

creat ✓

unlink ✓ ✓

read ✓ ✓ ✓

write ✓ ✓

close

truncate ✓ ✓ ✓ ✓

ftruncate ✓ ✓ ✓

mkdir ✓

rmdir ✓ ✓

getdirentries ✓ ✓ ✓

stat ✓ ✓

fstat ✓

access ✓ ✓

rename ✓

chmod, chown,

chgrp, utimes

✓ ✓

fchmod,

fchown

✓
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4.4.3.2.2 Request Size, Cache State, and Access Pattern

The performance of several file system calls depends on the request size passed to them.

Read and write calls transfer a variable amount of data between the file system and the

user. The time to transfer data between the user and the buffer cache will be proportional

to the request size, which can vary from just one byte to several gigabytes (or more, on

64-bit architectures). In some file system architectures, the performance of the file system

varies depending on the size of the file. As we saw in Chapter 3, the overhead of reading

the first indirect block in FFS can have a substantial impact on file throughput.

HBench-FS accounts for this relationship between request size and latency in two

ways. For cached reads, and all writes (which HBench-FS assumes will be written to disk

asynchronously), HBench-FS assumes that performance can be expressed by Equation 3,

which only requires two benchmark measurements, one to measure the basic overhead of

the read and write system calls, and another to measure the rate at which the system

transfers data between an application and the buffer cache. HBench-FS actually measures

these quantities twice, once for read calls and once for write calls.

Latency = Syscall Overhead + Request Size ∗ Data Transfer Rate (EQ 3)

For read requests that cannot be satisfied out of the buffer cache, the system call latency

includes the time to fetch the desired data into the buffer cache from disk. Because this

time depends on a variety of factors, including the file system’s layout and clustering pol-

icies, and the parameters of the underlying disk, it is difficult to reduce uncached read

performance to a simple formula. Instead HBench-FS measures uncached read perfor-

mance for a variety of file sizes, similar to the file throughput benchmark in Chapter 3

(Section 3.3).

The performance of uncached reads can also depend on the requesting

application’s access pattern. To account for this, HBench-FS also benchmarks uncached

reads with both sequential and random access patterns.4 Thus, for each read request size

4. Traditionally, all non-sequential file access patterns are referred to as “random,” even though few of them

are truly random.
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that HBench-FS benchmarks, it measures the latency for both sequential and random

accesses.

In theory, the getdirentries system call would be treated in the same way as read

and write calls, with separate measurements of its system call overhead, transfer rate, and

uncached throughput for a variety of request sizes and access patterns. Instead, HBench-

FS approximates the performance of getdirentries using the microbenchmark results for

the read system call.

4.4.3.2.3 File Truncation

The truncate and ftruncate calls are two more cases where performance may be a function

of request size. In this case, the request size is not actually passed to the file system as an

argument, but rather is implicit in the size of the file being truncated. The performance of

these calls depends on the size of the target file. As with the benchmarks for uncached

reads, HBench-FS measures the time to truncate files of a variety of sizes.

Truncate performance depends not only on the size of the target file, but also on

the state of the buffer cache. Most file systems use some form of indirection (e.g., indirect

blocks in FFS) to store pointers to the data blocks of large files. In order to truncate a file,

the file system must determine which blocks are allocated to the file so they can be freed.

If the file’s indirect blocks are not in cache, the truncate call must synchronously read

them from disk, significantly increasing the call’s latency. So it can accurately capture this

behavior, HBench-FS measures truncate performance for files that are both cached and

uncached.

The unlink system call implicitly truncates its target file, freeing its file blocks as

part of removing the file. Rather than separately benchmarking the unlink call for a

variety of file sizes and cache states, as it does with truncate, HBench-FS uses the truncate

benchmark results to predict the latency of unlink calls. HBench-FS determines the cost to

remove a file, above and beyond the time to deallocate its storage, by measuring the time

to remove a zero-length file. To predict the overall latency of a particular unlink call,

HBench-FS adds the time to truncate a file of the appropriate size and cache state to this

basic unlink overhead. Since the unlink call takes a pathname argument, HBench-FS also
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adds the time to resolve the pathname. HBench-FS handles the rmdir call, which removes

a directory rather than a file, the same way.

The last place where a truncate operation can occur is during an open call. An

optional argument to the open system call allows the caller to specify that operating

system should truncate the target file before opening it. In this case, HBench-FS adds the

truncation time to its prediction for the latency of the open call.

4.4.3.2.4 File Attributes

Table 4.3 shows that there are a number of file system calls that manipulate a file’s

attribute data. These calls can be divided into two groups, those that return some of a

file’s attribute data to the caller (stat, fstat, and access) and those that change the value of

one or more file attributes (chown, chmod, chgrp, etc.). Instead of benchmarking each of

these calls individually, HBench-FS measures the performance of one call from each

group (stat and chmod) and uses those results for all of the calls in the same group.

4.4.3.2.5 Asynchronous Overhead

So far, this discussion has assumed that the performance impact of each file system

request is limited to the synchronous execution time of that operation. For many request

types this is true. Other requests, however, impose additional asynchronous performance

costs on the file system. Many file systems, for example, optimize write performance by

implementing a write-behind cache. When an application issues a write request on such a

system, the file system copies the target data from the application to the buffer cache and

then control returns to the application, which continues executing. The file system marks

the data blocks in the buffer cache as dirty, indicating that they must be flushed to disk at

some future time. At a later time, either when the file system needs to reclaim the buffer

space used by the dirty data, or as part of a regularly scheduled syncer task, the file sys-

tem writes the dirty data to disk. From the application’s perspective, the only latency for

the write request is the time to transfer the data to the buffer cache, as the corresponding

disk writes occur asynchronously. Although these disk writes have no effect on the
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latency of the original write request, they can affect the performance of subsequent file

system operations, which may find their disk requests queued behind these asynchro-

nous writes.

HBench-FS includes a microbenchmark to quantify this asynchronous cost. This

benchmark executes a workload with known performance characteristics concurrently

with a task that issues write requests at a fixed rate. HBench-FS varies the rate at which it

generates write traffic, and measures the corresponding slowdown of the known

workload. This provides a measure of the asynchronous overhead of the write

operations. The “known workload” that HBench-FS uses in this benchmark is the hot

cache file truncation test, which contains a mix of file read, write, create, truncate, and

delete operations. As an example, Figure 4.3 shows the slowdown of FFS performance as

a function of write load.

In theory, any type of file system operation could generate asynchronous

overhead, and HBench-FS should measure the potential asynchronous overhead of every

type of file system operation. In practice, however, write operations are the most

Figure 4.3. Example of Asynchronous Overhead. This graph shows the slowdown of a mixed workload of

file system operations as a function of the write load generated by a concurrent process. This data was

collected from FFS running on the slow hardware platform described in Section 4.5.1.
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common source of asynchronous activity, and that is the only type of operation for which

HBench-FS currently measures this overhead.

4.4.3.2.6 Other Microbenchmarks

In addition to the various performance measurements that I have described to this point,

HBench-FS includes a handful of measurements that determine the values of various file

system parameters, such as the block size and the sizes of the buffer cache, name cache,

and attribute cache. Many of the other HBench-FS microbenchmarks use these values. In

measuring uncached read times, for example, HBench-FS uses the measured buffer cache

size to determine how much garbage data it needs to read from the file system in order to

flush all other data from the cache. HBench-FS also uses the values of these file system

parameters when it analyzes a workload profile (see Section 4.4.5).

Table 4.4 provides a complete list of the benchmarks included in the HBench-FS

system vector.

4.4.3.3 Microbenchmark Design and Implementation

A complete description of the implementation of each microbenchmark is beyond the

scope of this chapter. Each benchmark is a stand-alone C program. The various programs

share a library that provides functionality for performing common tasks, such as generat-

ing test files and initializing the various caches to a desired state. As some benchmarks

use the results of other benchmarks, there are dependencies among them. These depen-

dencies are managed using make [Oram86] to control benchmark execution.

The benchmarks are designed to try to determine the average latency for each

performance characteristic. Therefore, they attempt to vary conditions that might affect

performance. Since different areas of disk drives have different performance

characteristics, most benchmarks operate on a large number of files deliberately spread

over different directories in an attempt to guarantee that the files are distributed across

the disk.

Although HBench-FS does not explicitly require it, all of the benchmarks should

be run on an aged file system to ensure that their results reflect the performance of the
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Table 4.4: HBench-FS Microbenchmarks. This table lists the microbenchmarks used by HBench-FS to

characterize the performance of a file system. The name column indicates the keyword associated with each

result in the microbenchmark result file. HBench-FS runs some benchmarks repeatedly, varying the file size

or background workload. (E.g., RD128 is the throughput reading 128 kilobytes files.) Most of the

benchmarks measure the latency of the corresponding file system functionality. The read and write

benchmarks measure file system throughput. HBench-FS converts these throughput measurements to

latencies when predicting the execution time for read and write system calls.

Name Description Units

BC Buffer cache size Kilobytes

DNLC Name cache size Name entries

MDC Meta-data cache size Files

BS File system block size Bytes

FS File system fragment size Bytes

LUS_BC Sequential lookup time with both name and attributes cached Milliseconds

LUS_NC Sequential lookup time with neither name nor attributes

cached

Milliseconds

LUS_AC Sequential lookup time with attributes cached and name

uncached

Milliseconds

LUR_BC Random lookup time with both name and attributes cached. Milliseconds

LUR_NC Random lookup time with neither name nor attributes cached Milliseconds

LUR_AC Random lookup time with attributes cached and name

uncached.

Milliseconds

RDC Cached read throughput Kilobytes/sec

RD1, RD2,

RD4, etc.

Sequential read throughput for different size requests (1 KB,

2KB, 4KB, etc.)

Kilobytes/sec

RRD1, RRD2,

RRD4, etc.

Random read throughput for different size requests (1 KB, 2

KB, 4KB, etc.)

Kilobytes/sec

WRC Write throughput Kilobytes/sec

WR0, WR100,

WR200, etc.

Execution time of fixed workload with different amounts of

concurrent write load (0 KB/s, 100 KB/s, 200 KB/s, etc.)

Seconds

RDO System call overhead for read call Milliseconds

WRO System call overhead for write call Milliseconds

OPEN Open system call time Milliseconds

CR Create system call time Milliseconds

RM Unlink system call time Milliseconds

STAT Stat system call time. Milliseconds

MKDIR Mkdir system call time Milliseconds

RMDIR Rmdir system call time Milliseconds

RENAME Rename system call time Milliseconds

CHMOD Chmod system call time Milliseconds

TR1, TR2, TR4,

etc.

Cached truncate time for different size files (1 KB, 2 KB, 4KB,

etc.)

Milliseconds

TRC1, TRC2,

TRC4, etc.

Uncached truncate time for different size files (1 KB, 2 KB, 4

KB, etc.)

Milliseconds
79



target file system in real world conditions. All of the results presented in Section 4.5 used

aged file systems.

4.4.4 Workload Characterization

A workload characterization has two components, a trace of the file system operations

generated when the workload runs and a snapshot of the target file system at the time the

trace started.

The snapshot provides a recursive listing of the names of all of the files and

directories on the target file system. The snapshot specifies the parent directory and inode

number for each file on the test file system.5 In my workload profiles, I collected the

snapshots using UNIX’s file listing command, ls. The same information could be

collected in a variety of other ways, and then converted into the input format HBench-FS

requires.

Each file system request in the trace includes a variety of information. Most

importantly, all requests include the inode number of the target file. Depending on how

the trace is collected, this information may be included in the raw trace, or it may be

derived by post-processing the trace to convert pathnames or file descriptors to inodes

numbers. HBench-FS also needs many of the original arguments passed to the file system

requests. For read and write calls, it requires the request sizes, as well as the file offset.6

The trace also includes all pathname arguments. Since pathnames may be specified

relative to the calling process’s current directory, the inode number of that directory is

also needed.

There are a variety of ways of collecting the required trace information. I collected

the traces used in this study by instrumenting the BSD/OS kernel. Whenever an

application makes a call to the file system, the kernel writes the relevant trace

information to an internal buffer. A user-level daemon process periodically copies this

5. Throughout this chapter, I use the term inode to refer to any unique identifier for a file. In my traces, it is, in

fact, the inode number used by FFS. All that HBench-FS requires, however, is that these numbers be unique

to each file and that they be used consistently throughout the file system trace and snapshot.

6. In the POSIX definition of read and write, the file offset is not explicitly provided as a system call argument.

Instead it is maintained internally by the file system. If the offsets are not available in the raw trace, they can

be computed by post-processing the trace.
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data from the kernel to a remote file. This technique is similar to that used by the Linux

Trace Toolkit, although the actual trace points and data collected are different

[Yaghmour00]. Other tracing techniques can also provide the necessary data. Many

operating systems provide tools for tracing all system calls (e.g., ktrace on BSD systems).

Although these traces seldom provide all of the data HBench-FS needs, it is usually

possible to post-process the traces to generate the missing data. Many system calls, for

example, specify the target file using a small integer called a file descriptor. Taken by itself,

the file descriptor is insufficient to identify the target file. If, however, the trace includes

the file system operation (usually an open or creat call) that returned the file descriptor,

then we can determine the corresponding file. Appendix A describes the trace format

HBench-FS uses for both its input and output.

4.4.5 Workload-Specific Performance Analysis

Section 4.4.3 described how HBench-FS divides file system performance into the various

microbenchmark results that comprise the system vector. In order to analyze a workload

profile, HBench-FS needs to generate a request vector for each operation in the workload,

combine those vectors with the system vector to predict the performance of each opera-

tion, and then summarize the performance predictions in a way that is useful to the end-

user of HBench-FS. In this section, I examine each of these steps.

For some operations, it is easy to generate the appropriate request vector. Recall

that the synchronous cost of a write request is expressed by Equation 3. So the request

vector for a write request is one write system call overhead and N write data transfers,

where N is the number of kilobytes of data transferred by the write request. All other

elements of the request vector are zero.

Other operations’ request vectors are more difficult to generate. An unlink

operation, for example, consists of one unlink, the appropriate size of truncate, and one

or more lookups. For the truncate and lookup operations, however, we need to know

whether they hit in the cache or go to disk. In addition, we need to know whether the

lookup requests are sequential (i.e., to the same directory) or random (i.e., to different
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directories).7 In order to determine the necessary information, HBench-FS includes

several tools that analyze the trace for cache locality and access pattern.

HBench-FS generates its performance predictions using a chain of analysis tools.

Each tool makes a pass through the workload trace adding additional information to it. A

cache simulator, for example, annotates each operation to indicate whether it hits in the

cache or not. The tool chain is implemented as a UNIX pipeline, and each tool reads and

writes the trace in a fixed format. The tools share a library of functions for manipulating

traces. This makes it easy to add additional tools as needed. For example, a custom

preprocessing tool can be added at the beginning of the chain to convert other trace

formats into the format expected by HBench-FS. Similarly, additional tools can be added

at the end of the chain to perform custom analysis of the performance predictions.

7. Given a pathname with multiple components, the lookup requests will usually be random. Sequential

lookups will occur either when the pathname includes a “.” component, or when successive file system

requests use pathnames in the same directory.
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Figure 4.4. HBench-FS Tool Chain. This diagram shows the interactions between the various HBench-FS

analysis tools. The boxes in the left column represent the inputs to these tools. The center column contains

the tools. The right column shows the various outputs produced by these tools. The outputs from some tools

become inputs to other tools.
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Figure 4 shows the full tool chain, and Figure 4.5 shows how each of the tools

modifies a sample trace. In the following sections, I discuss each of the tools in more

detail.

4.4.5.1 Preprocessing

The first thing HBench-FS does with the workload profile is to preprocess it into a format

that can be used by the rest of the analysis tool chain. The primary goal of this step is to

make sure that all of the information in the workload snapshot is propagated to the

appropriate operations in the workload trace. The preprocessor first reads the workload

snapshot and builds an in-memory graph representing the file system hierarchy

described by the snapshot.8 The preprocessor then iterates through the requests in the

workload trace. Whenever it encounters an operation with a pathname argument, it uses

the in-memory image of the file system hierarchy to resolve the pathname and adds the

inode number of the resulting file or directory to the request record. The preprocessor

updates its in-memory model of the file system hierarchy whenever it encounters a

request that creates or deletes a file or directory.

In a typical trace, many commands fail due to incorrect pathnames. In traversing

its in-memory image of the file system hierarchy, the preprocessor detects these failures,

and annotates the corresponding file system requests to indicate where the failure

occurred. With this information, HBench-FS can generate a request vector that includes

only the parts of the operation that occur before the file system detects the failure. For

example, if an open request has a four component pathname, and the third component is

invalid, HBench-FS generates a request vector that only contains three lookup requests.

The last lookup and the open do not occur because the file system cannot continue

processing the request after the failed lookup.

8. The code for building and manipulating the in-memory copy of the file system hierarchy is based on a

similar tool written by Diane Tang for her senior thesis [Tang95].
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INPUT TRACE:
Open /tmp/file

Read File ID = 123, Offset = 0, Count = 8192

Read File ID = 123, Offset = 8192, Count = 8192

Close File ID = 123

PREPROCESSOR OUTPUT:
Open /tmp/file, File ID = 123

Operations: 2 lookups, 1 open
Read /tmp/file, File ID = 123, Offset = 0, Count = 8192

Operations: 1 block read
Read /tmp/file, File ID = 123, Offset = 8192, Count = 8192

Operations: 1 block read
Close /tmp/file, File ID = 123

Operations 1 close

CACHE SIMULATOR OUTPUT:
Open /tmp/file, File ID = 123

Operations: 1 cached lookup, 1 uncached lookup, 1 open

Read /tmp/file, File ID = 123, Offset = 0, Count = 8192

Operations: 1 uncached block read

Read /tmp/file, File ID = 123, Offset = 8192, Count = 8192

Operations: 1 uncached block read

Close /tmp/file, File ID = 123

Operations 1 close

PATTERN ANALYZER OUTPUT:
Open /tmp/file, File ID = 123

Operations: 1 cached lookup, 1 uncached random lookup, 1 open

Read /tmp/file, File ID = 123, Offset = 0, Count = 8192

Operations: 1 uncached random block read

Read /tmp/file, File ID = 123, Offset = 8192, Count = 8192

Operations: 1 uncached sequential block read

Close /tmp/file, File ID = 123

Operations 1 close

PERFORMANCE ANALYZER OUTPUT:
Open /tmp/file, File ID = 123

Operations: 1 cached lookup, 1 uncached random lookup, 1 open

Latency = 6.46 ms
Read /tmp/file, File ID = 123, Offset = 0, Count = 8192

Operations: 1 uncached random block read

Latency = 5.88 ms
Read /tmp/file, File ID = 123, Offset = 8192, Count = 8192

Operations: 1 uncached sequential block read

Latency = 0.25 ms
Close /tmp/file, File ID = 123

Operations 1 close

Latency = 0.09 ms

Figure 4.5. Processing a Sample Trace. This figure shows a sample trace, consisting of opening a file

(/tmp/file), reading 16 kilobytes from it in two read requests, and closing the file. The data in the trace is

shown after each tool in the HBench-FS tool chain processes it. New data added by each tool is shown in

bold face. The latency numbers in the performance analyzer output were computed using the

microbenchmark results from the slow FFS configuration described in Section 4.5.1.
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4.4.5.2 Cache Simulator

The cache simulator determines which file system operations hit in the buffer cache,

name cache, and attribute cache. The simulator uses the parameters in the system vector

to determine the sizes of the three caches and the file system fragment size, which it uses

as the unit of granularity for the buffer cache. The simulator assumes that all of the caches

are empty at the beginning of the trace, and keeps track of the caches’ contents through-

out the trace, updating them as it processes each request.

The cache simulator assumes that all three caches use an LRU replacement

scheme. It also assumes that all dirty buffers have been flushed to disk and are ready to

be re-used by the time they reach the head of the LRU list. The buffer cache simulation

only tracks file data blocks ignoring meta-data, such as inode blocks and indirect blocks,

which would typically be stored in the buffer cache in an actual file system. The

simulator may, therefore, be over-optimistic in predicting which requests hit in the buffer

cache. Since meta-data typically makes up only a small portion of the total data on a file

system, this should have a minimal impact on the predicted hit rate.

For each read or getdirentries request that the simulator processes, it determines

how many of the requested blocks, if any, are in the buffer cache, and annotates the

request to indicate that this number of blocks hit in the buffer cache. When it encounters a

request that has a pathname argument, the simulator indicates which, if any, of the name

lookups hit in the name and attribute caches. For truncate, ftruncate, and unlink requests

we would like the cache simulator to indicate whether the target file’s indirect blocks are

in the buffer cache, since the cache state of this data can have a significant effect on

performance. (See Section 4.4.3.2.) Because the cache simulator does not keep track of this

information, HBench-FS approximates the cache state of indirect blocks by assuming that

if a file’s inode and first and last data blocks are cached, then the indirect blocks are also

cached. While this heuristic may not always be accurate, in practice it works well.

This tool is based on a buffer cache simulator written by Mary Baker to analyze

the benefits of adding Non-volatile RAM (NVRAM) to computer systems [Baker92]. I
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modified her code to eliminate the NVRAM simulation and to add support for the name

and attribute caches.

4.4.5.3 Pattern Analyzer

As described in Section 4.4.3.2, HBench-FS’s system vector differentiates between

sequential and random access patterns. When analyzing a workload trace, the pattern

analyzer annotates individual file system operations to indicate which access pattern

they follow. Because performance usually depends only on the access pattern of requests

that miss in the cache and go to disk, this tool ignores all requests that are satisfied out of

the cache. Thus when we talk about a request being sequential, we mean that it is sequen-

tial relative to the previous request that generated disk I/O.

There are two request types that we analyze for access patterns, file reads (and the

comparable getdirentries operation for directories) and the lookup operations associated

with requests that include a pathname argument. Analyzing reads is simple. If two disk-

bound read-requests are to successive ranges of the same file, then the second request is

considered sequential. All other read requests are random. Successive lookup requests

are considered to be sequential if they are looking up files in the same directory.

4.4.5.4 Performance Analyzer

The final component of the tool chain in the performance analyzer. This tools computes

the predicted latency for each operation in the workload trace. It also aggregates data

about the asynchronous costs of the write requests in the trace.

For each operation in the workload trace, the performance analyzer computes the

dot product of the operation’s request vector and the target file system’s system vector.

The result is HBench-FS’s prediction of the operation’s latency on the target file system.

The performance analyzer’s output is the fully annotated workload trace, including the

request vector and predicted latency for each operation.

The analyzer also computes the total write throughput for the workload along

with the file system utilization. The throughput computation uses the total run time of

the workload (from the timestamp of the first operation to the timestamp of the last
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operation) as the divisor. The file system utilization represents the fraction of the

workload’s runtime when the file system is active. It is computed by dividing the total

latency of all the file system operations by the total run time of the workload. If the

computed file system utilization is greater than one (as can happen if the target file

system is slower than the system from which the trace was collected), then the

performance analyzer uses a value of one. The performance analyzer uses these values to

predict the asynchronous overhead of the write requests in the workload.

The performance analyzer interpolates the write overhead data included in the

system vector to determine the amount of slowdown associated with the expected

throughput level. It then predicts the asynchronous overhead using Equation 4.

Asynchronous Overhead = Slowdown * Total Latency * Utilization (EQ 4)

The intuition behind this equation is that the estimated slowdown factor multiplied by

the total latency of all file system operations predicts the cost of all of the asynchronous

activity associated with the workload. Not all of this overhead will effect the operations

in the workload, however. If the file system (and hence the disk) is idle half the time, then

we would expect roughly half the asynchronous operations to occur when the disk

would otherwise be idle. Hence we scale the total overhead by the utilization.

Ideally, we would like to be able to assign the asynchronous overhead to the

individual operations in the workload trace that will suffer from this additional latency.

In practice, this is impossible without empirically determining the system’s write behind

and disk scheduling policies. Since this would add a considerable amount of additional

complexity, the performance analyzer simply reports the write and meta-data update

overheads in addition to producing a trace annotated with the predicted latencies of each

operation.

For example, consider a hypothetical workload being analyzed on the test

platform whose write overhead is shown in Figure 4.3. Assume that this workload has a

total latency of 10 seconds spread over a run time of 25 seconds and 500 kilobytes per

second of write traffic. Using the write overhead data, the pattern analyzer would
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estimate that this write load would result in a 13.9% slowdown. Multiplying this

slowdown factor by the total predicted latency, the analyzer would predict the total

overhead from asynchronous write traffic to be 1.39 seconds. The utilization of the system

is only 40%, however (10 seconds of predicted latency divided by 25 second of runtime),

so the performance analyzer would scale the total asynchronous overhead by this

amount, and predict that the additional latency from asynchronous write traffic would be

0.556 seconds.

4.4.5.5 Postprocessing

The output from the performance analyzer, described in Section 4.4.5.4, is the official

HBench-FS output. By providing the complete, annotated workload trace, HBench-FS

allows the user to perform whatever additional analysis or summarization of the results

she wishes. The user, for example, can sum the latencies of all of the individual opera-

tions in the trace to get a prediction of the total amount of time the file system will add to

the workload’s latency. Another useful type of analysis is to sum the latencies by request

type. This provides information about the types of operations that consume the most

time, identifying bottlenecks either in the application or file system.

The trace processing library makes it easy generate custom post-processing tools.

It took me approximately five minutes to build a tool to compute the predicted hit rate for

the buffer cache.

Figure 4.6 shows sample output from the postprocessing tool used to analyze the

HBench-FS predictions in the rest of this chapter. This tool computes the total latency for

the trace, including the asynchronous overheads from writes and meta-data updates, as

well as the latencies for each operation type. It reports these totals both in absolute time,

and as percentages.
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4.4.5.6 Understanding the Results

It is important to understand exactly what HBench-FS is predicting. For each operation in

the workload trace, HBench-FS predicts the amount of latency that the file system will

contribute to the workload. This is subtly different from predicting the actual latency of

each operation. The key difference is that HBench-FS does not account for the time a disk-

bound request may spend waiting in disk queue for unrelated I/O requests to complete.

Anytime the file system issues a request to the disk, that request may be queued

behind other pending I/O operations. These operations can come from one of two

sources, concurrent file system operations, or write-behind operations triggered by

earlier file system operations. In either case, HBench-FS does not attempt to predict the

amount of time a request spends blocked in the disk queue. This prevents HBench-FS

from double-billing the same I/O time to two different file system requests.

4.5 Validation

In order to evaluate the predictions HBench-FS produces, I used it to analyze the perfor-

mance of several workloads on a variety of file systems and hardware platforms. For each

workload and test platform combination I compared actual measurements of the work-

Operation       Count   Time (sec)      Percent
---------       -----   ----------      -------
OPEN             3758    0.411            3.96%
READ             5500    6.878           66.16%
WRITE            3171    0.028            0.27%
CREATE           2401    1.156           11.11%
REMOVE           2295    0.475            4.57%
MKDIR             202    0.105            1.01%
RMDIR             194    0.040            0.39%
TRUNC               0    0.000            0.00%
GETATTR          6798    0.442            4.25%
SETATTR           715    0.056            0.53%
READDIR          1650    0.805            7.74%

TOTAL           26684   10.396          100.00%

Predicted Write overhead = 0.184 sec.

Figure 4.6. Sample HBench-FS Output. This table shows the output of a HBench-FS after processing a

sample trace. The raw output has been postprocessed by a simple tool that computes the total latency, and

collects some statistics (latencies and number of operations) for each type of operation in the trace. The

latency for each operation type is listed by in seconds and as a percentage of the total latency for the

workload.
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load’s performance to the predictions generated by HBench-FS. By selecting workloads

that place different demands on the underlying file system, I show that HBench-FS can

make accurate predictions in a variety of conditions and that it can help isolate the per-

formance critical operations in each case.

4.5.1 Test Environment

I evaluated HBench-FS using two different hardware platforms each running two differ-

ent file systems. The two machines were a 500 MHz Pentium III, and a 133 MHz Pentium.

I refer to these as the fast and slow machines. Table 4.5 provides a full description of the

hardware configurations. Both machines ran BSD/OS Release 4.1. This operating system

is derived from 4.4BSD UNIX [McKusick96] and uses FFS as its native file system.

Table 4.5: Test Hardware Configuration. This table describes the hardware configurations of the two test

machines.

Table 4.6: Test configurations. This table lists the hardware platform, operating system, and file system that I

use in each of the four test configurations.

Slow Machine Fast Machine

CPU Pentium Pentium III

Clock Speed 133 MHz 500 MHz

Memory 64 MB 512 MB

Disk Controller NCR/SYM825 Adaptec AHA-2940UW

SCSI Bandwidth 10 MB/sec 20 MB/sec

Disk Type Seagate ST34520N Seagate ST39102LW

Total Disk Space 4.3 GB 8.5 GB

Rotational Speed 7,200 RPM 10,000 RPM

Average Access (r/w) 9.5 ms / 10.5 ms 5.4 ms / 6.2 ms

Configuration Hardware Operating
System File System

Slow FFS Slow Machine BSD/OS FFS

Slow FFS+SU Slow Machine BSD/OS FFS with

Soft Updates

Fast FFS Fast Machine BSD/OS FFS

Fast FFS+SU Fast Machine BSD/OS FFS with

Soft Updates
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BSD/OS includes support for Soft Updates (see Section 2.1.3.2.2). Enabling or disabling

Soft Updates support provides the two different file systems that I evaluate. Table 4.6

summarizes the four resulting test configurations.

Both of the test machines had an extra disk that was used exclusively for test file

systems. This eliminated contention for the disk head between the test workloads and

I/O generated by loading executables and swapping. All of the test file systems were

located in a 1.5 gigabyte partition at the beginning of the test disks. Before running

HBench-FS, or any of the test programs, I aged the test file systems using the aging

workload described in Section 3.2.3. The partition size is slightly larger than the file

system from which the aging workload was generated to allow room to create the

various files needed by the test workloads.

4.5.2 Methodology

For this evaluation, I select several workloads, each of which stresses different parts of

the underlying file system, and execute them on multiple file system platforms, measur-

ing their actual performance. I also trace each workload on one of the platforms. Using

this trace, along with file system profiles of each platform, I use HBench-FS to predict the

performance of the workload on all of the platforms. Finally, I compare these predictions

to the measured performance on each platform.

In predicting the overall performance of a workload, I use the total latency

computed by HBench-FS. For workloads that spend most of their time interacting with

the file system, it would be sufficient to compare HBench-FS’s prediction to the total run

time of the workload. Most workloads, however, spend significant amounts of time

outside of the file system. Since HBench-FS only predicts the latency generated by the file

system, we cannot compare the total execution time for these workloads to HBench-FS’s

predictions. Instead, I trace the workload on each platform of interest. In addition to the

data required by HBench-FS, these traces include the measured latency of each operation.

I use this information to determine how much time the workload spends in the file

system, and compare this figure to the predictions from HBench-FS.
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As described in Section 4.4.5.5, the postprocessing tools for HBench-FS provide a

breakdown of the total time spent on each type of operation. I also compare these

predictions with measurements from running the workloads on each of the target

systems. Here again, I use traces of the workloads running on each platform to determine

the actual performance of the system, this time dividing the timing information in the

trace by operation type.

4.5.3 Workloads

In evaluating HBench-FS, I present results for several different workloads executing on a

range of different file system platforms. By varying the applications, I examine how

HBench-FS responds to workloads that place different demands on the underlying file

system. By varying the file system, I show that HBench-FS can accurately predict which

system(s) offer the best performance for different applications.

In this section, I describe each of the workloads I used to evaluate HBench-FS.

Because I need to compare the measured and predicted performance of the same

workload across multiple platforms, I need to accurately reproduce the workloads on

each test platform. Therefore, I use macrobenchmarks for my test workloads.

4.5.3.1 Kernel Build

The first workload is a traditional compiler workload, a complete build of the generic

BSD/OS 4.1 kernel. This workload consists primarily of file read and write operations, as

the compiler reads each source file, along with the requisite headers, and writes the

resulting object files. The linker then reads all of the object files and writes the kernel

binary. There are approximately four file reads for each write. This workload also per-

forms a small number of file create and delete operations.

4.5.3.2 SDET

This is a former SPEC benchmark designed to emulate a typical time sharing workload. It

was deprecated as the computing environments shifted from time-shared central com-

puters to networked client and server machines [Gaede99]. Interestingly, the advent of
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thin-client computing, which relocates most computations to a central server machine,

suggests that this type of workload may again be relevant for evaluating system perfor-

mance [Schmidt99][Wong00].

The basic SDET benchmark is a script of user commands designed to emulate a

typical software-development environment. The script includes commands for editing,

compiling, searching, comparing, copying, and spell checking a variety of files. SDET

executes one or more copies of this script concurrently, reporting system performance in

scripts per hour as a function of the degree of concurrency. For my evaluation of HBench-

FS, I consider several workloads with different levels of concurrency, varying from one to

ten scripts.

4.5.3.3 PostMark

PostMark is a macrobenchmark designed by Jeffrey Katcher to reproduce the file system

activity generated by e-mail, Usenet news, and e-commerce applications at internet ser-

vice providers [Katcher97]. These workloads typically involve a large number of small

(less than 100 kilobytes) files that are in constant flux. To model this workload, PostMark

creates a large set of files with random sizes uniformly distributed over a preset range.

PostMark performs a fixed number of operations on these files. The operations alternate

between creating or deleting a random file and reading or appending data to a random

file. For the create operation, PostMark selects the size of the new file at random from the

same range of sizes used for the initial file set. When it reads a file, PostMark reads the

file in its entirety. For an append operation, PostMark opens the file, seeks to the end, and

writes a random amount of data to the file, not exceeding the maximum file size.

The PostMark workload uses 5,000 initial files ranging in size from 512 bytes to 16

kilobytes. The files are distributed over fifty directories on the test file system. The

workload consists of 20,000 file operations, as described above.
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4.5.4 Evaluation

4.5.4.1 Kernel Build Results

Figure 4.7 shows the measured total latency on each system, and the latency predictions

generated using the Slow FFS trace for the workload profile. The graph shows that

HBench-FS accurately ranks the performance of the four systems, and captures the large-

scale performance differences between them. For this workload, switching from the slow

machine to the fast machine provides a much larger performance gain than adding Soft

Updates to FFS.

In addition to predicting the total latency of the kernel build workload on the four

test configurations, HBench-FS also provides a breakdown of how much of that latency is

generated by different types of system calls. Figure 4.8 shows the results of this

breakdown, along with the actual breakdowns determined from the traces. From this

data we can see that the kernel build workload spends most of its time performing file

Figure 4.7. Measured and Predicted Kernel Build Performance. This graph shows the measured and

predicted performance for the kernel build workload on the four BSD/OS test configurations. The

performance metric is the total latency generated by the file system. The predictions were generated using

the Slow FFS trace for the workload profile.
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reads. This accounts for both the large performance improvement when switching from

the slow to the fast platform and the relatively modest improvement offered by Soft

Updates. The fast platform offers much higher I/O throughput, both for cached and

uncached reads. In contrast, Soft Updates only improves the performance of meta-data

updates, which do not occur during read requests. In the kernel build workload, the

impact of Soft Updates is most apparent in the almost total elimination of time spent

performing create operations in the Slow FFS+SU and Fast FFS+SU configurations.

Figure 4.8 also shows that most of the error in HBench-FS’s predictions for this

workload can be attributed to the read predictions. HBench-FS overestimates the read time

for the configurations that use the slow machine, and underestimates the read time for the
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Figure 4.8. Kernel Build Performance Breakdown. This chart compares the measured (M) and predicted

(P) performance of the kernel build workload on the four BSD/OS test configurations. The bars are

subdivided to show the amount of time consumed by each type of operations. For the performance

predictions, I also show the predicted amount of asynchronous overhead from write requests. This

overhead is impossible to isolate on the measured systems, and hence the additional latencies caused by

asynchronous disk writes are included with the operations that experience them.
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configurations that use the fast machine. On the slow machine, HBench-FS also slightly

over predicts the time consumed by Get Attribute (stat, fstat, and access) and open

operations. On the fast machine, HBench-FS slightly under predicts the time spent

during write requests.

In addition to predicting the latencies for individual requests, HBench-FS predicts

the total additional overhead caused by asynchronous file system activity. In Figure 4.8,

this quantity is show separately from the per-operation-type costs in the predicted

results. Since it is impossible to isolate the cost of this activity in the measured data, this

overhead is necessarily included with the individual requests that incur the added

latency. The impact of this asynchronous overhead from write requests is one of the most

difficult results to evaluate in HBench-FS’s predictions. Since it is impossible to gauge

how much this overhead affects the measured performance of operations in the trace,

there is no easy measurement against which to compare HBench-FS’s prediction. We can,

however, examine how the predictions of asynchronous overhead affect the overall

accuracy of HBench-FS’s results. Figure 4.8 shows that the asynchronous overhead

predictions increase the errors for the slow configurations, by increasing the predicted

total latency further past the measured latency. On the fast platform, the opposite

happens; asynchronous overhead brings HBench-FS’s predictions closer to the measured

performance in those configurations.

Another way to examine the accuracy of HBench-FS’s predictions is to compare

the distribution of predicted and measured latencies among all of the individual requests

in the workload. Figure 4.9 shows this data for each of the four test configurations. For

ease of readability, this data is displayed using a logarithmic scale for latency (on the x-

axis). All of the systems show large discrepancies between the measured and predicted

distributions for short latency (less than 0.1 millisecond) events, but much smaller

differences for longer latency events. Because file system performance is dominated by

the longer latency disk-bound requests, HBench-FS produces accurate performance

predictions despite its mispredictions for faster events.
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Platform Average
Error

Slow FFS 19.8%

Slow FFS+SU 30.1%

Fast FFS 29.4%

Fast FFS+SU 46.7%

To better understand the errors in HBench-FS’s predictions, we can examine the

distributions of latencies for different types of file system requests. Figure 4.10 shows the

distribution of measured and predicted latencies for read, open, and get attribute

requests on the Slow FFS configuration. (The distributions for the Slow FFS+SU

configuration are nearly identical.) In these graphs, we see two different causes for

HBench-FS’s mispredictions. For the get attribute and open requests, HBench-FS

consistently predicts higher latencies than were measured on the actual system. This

indicates that the microbenchmark results for these operations were overly pessimistic.

Note, however, that in both graphs, the general shape of the predicted distribution curve

closely matches that of the real distribution, indicating that the HBench-FS tool chain is

accurately predicting information such as cache hits and access patterns.

The read requests on the Slow FFS platform exhibit a different problem. In the

predicted data, there is a sharp jump at approximately six milliseconds. This corresponds

to a large number of eight kilobyte uncached random read requests in the trace. Since the
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Figure 4.9. Kernel Build Latency Distribution. Each graph shows the cumulative distribution of

measured and predicted request latencies for the kernel build workload on one of the four BSD/OS

configurations. The x-axis in these graphs uses a log scale.
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Figure 4.10. Slow FFS Kernel Build—Distribution of Latencies. These graphs show the cumulative

distribution of predicted and measured latencies of get attribute, read, and open requests in the kernel

build workload running on the Slow FFS configuration. These distributions include 22,308 get attribute

requests, 24,801 read requests and 15,010 open requests.
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HBench-FS microbenchmarks provide a single measurement for this value, all of these

requests are predicted to have the same latency. On the real system these requests

experience a range of latencies, as indicated by the gradual slope of the measured read

distribution. In this case, it turns out that the sum of the measured latencies is slightly less

than the sum of the predicted latencies, resulting in HBench-FS’s over prediction for read

latency on the Slow FFS configuration.

Figure 4.11 shows the distribution of measured and predicted latencies for read

and write requests on the Fast FFS configuration. (The Fast FFS+SU configuration

distributes are nearly identical.) As with the reads on the Slow FFS, there is a noticeable
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Figure 4.11. Fast FFS Kernel Build—Distribution of Latencies. These graphs show the cumulative

distributions of predicted and measured latencies for read and write requests in the kernel build workload

running on the Fast FFS configuration. These distributions include 24,801 read requests and 7,447 write

requests.
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jump in the predicted latencies where HBench-FS predicts the same latency for eight

kilobyte uncached random read requests. In this case, the actual distribution includes

longer latencies for uncached reads than HBench-FS predicts.

For the write requests on the Fast FFS configuration, HBench-FS predicts

relatively fast service times. The longer predicted latencies correspond to the larger

request sizes where the system spends more time transferring data between the

application and the buffer cache. The measured latencies, however, include a number of

longer latencies. The magnitude of these latencies (greater than a millisecond) indicates

that the requests are blocking on the disk. These writes occur when the assembler is

writing object files. The assembler writes its output in non-sequential order. As a result, it

periodically writes data to a block that the file system has already flushed to disk. While

this disk I/O is pending, the file system locks the corresponding cache buffer, forcing the

subsequent write call to block until the disk request completes. This phenomenon occurs

more often on the fast machine than the slow machine because of the greater difference

between CPU speed and disk speed on that platform. On the slow machine, the file

system flushes buffers to disk in exactly the same point in a sequence of writes, but

because of the slower CPU, the disk I/O is more likely to complete before the assembler

writes additional data to the corresponding file block. HBench-FS attempts to account for

these delays in its aggregate prediction of asynchronous overhead. On the fast

configuration, the predicted asynchronous overhead plus the predicted time for write

operations is less than the measured time for write operations (see Figure 4.8), indicating

that HBench-FS is under predicting the asynchronous overhead associated with this type

of background write activity.

4.5.4.2 One Script SDET Results

We turn now to examine the results of the SDET workload, starting with the results of a

workload that consists of running just one SDET script. As with the kernel build work-

load, I use the trace collected on the Slow FFS configuration as the workload profile, and

use HBench-FS to generate performance predictions for all four of the test platforms. Fig-

ure 4.12 shows the measured and predicted total latency for this workload. The graph
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also shows how different types of file system operations contribute to these latencies. As

with the kernel build workload discussed in Section 4.5.4.1. HBench-FS captures the large

scale performance differences between the various platforms. Unlike the kernel build

workload, adding Soft Updates to FFS has a larger impact on performance than switch-

ing from the slow to the fast hardware platform. The reason for this is readily apparent in

the performance breakdown. On the vanilla FFS configurations, this workload spends

most of its time performing create and remove operations. Without Soft Updates, these

operations require synchronous disk accesses. With Soft Updates, these meta-data

updates occur asynchronously, allowing the create and remove requests to execute at

Figure 4.12. One Script SDET Performance. This chart shows the measured (M) and predicted (P)

performance of the one script SDET workload. The bars are subdivided to show the amount of time

consumed by each type of operation. For the performance predictions, I also show the predicted amount of

asynchronous overhead from write requests. This overhead is impossible to isolate on the measured

systems, and hence the additional latencies caused by asynchronous disk writes are included with the

operations that experience them.
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memory speeds instead of disk speeds. The Fast FFS platform also improves the perfor-

mance of create and remove requests, by providing a faster disk and I/O subsystem, but

this is not as large an improvement as that offered by Soft Updates.

Figures 4.12 to 4.15 show the distribution of predicted and measured latencies for

the individual requests in the one script SDET workload. Each figure shows latencies of

all requests on each of the four platforms and provides additional graphs that show the

operations where HBench-FS has the greatest errors. As with the kernel build workload,

all of the configurations show that HBench-FS consistently over-predicts the duration of

short latency events (less than 0.1 millisecond). These requests are mostly Get Attribute

and open requests where all of the required pathname and attribute data is cached. In

additional to this discrepancy, the different configurations show different amounts of

error for longer latency events. It is these differences that have the greatest effect on the

total latency predictions.
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Figure 4.13. Slow FFS latency distributions for one script SDET workload. The top graph shows the

cumulative distribution of predicted and measured latencies for all requests in the one script SDET

workload. The bottom graphs show the distribution of latencies for creates and reads, the operations that

contributed the most to HBench-FS’s mispredictions. Note that for readability, the x-axis in the top graph

uses a logarithmic scale.
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There are several different sources of errors that can be observed in this data. For

some operations, such as read requests on all four configurations and create requests on

the Slow FFS configuration, HBench-FS predicts a single average performance metric for

a class of operations. These cases introduce errors when the actual average performance

is different from HBench-FS’s prediction. This phenomenon is best illustrated in the

create performance on the Slow FFS configuration in Figure 4.13. HBench-FS predicts that

almost all create requests will have a latency of approximately 17 milliseconds, with a

few operations taking longer due to uncached pathname components. The distribution of

measured latencies shows broader range of times, tightly clustered around 15

milliseconds. This workload contains 426 create operations. With an average error of two

milliseconds per create, we get a total error of almost a full second, which closely matches

the error seen in Figure 4.12.
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Figure 4.14. Slow FFS+SU latency distributions for one script SDET workload. The top graph shows the

cumulative distribution of predicted and measured latencies for all requests in the one script SDET

workload. The other graphs show the distribution of latencies for read, remove, and rmdir calls, the

operations that contributed the most to HBench-FS’s mispredictions. Note that for readability, the x-axis in

the top graph uses a logarithmic scale.
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Figure 4.15. Fast FFS latency distributions for one script SDET workload. The top graph shows the

cumulative distribution of predicted and measured latencies for all requests in the one script SDET

workload. The bottom charts show the distribution of latencies for reads and removes, the operations that

contributed the most to HBench-FS’s mispredictions. Note that for readability, the x-axis in the top graph

uses a logarithmic scale.

Figure 4.16. Fast FFS+SU latency distributions for one script SDET workload. The left graph shows the

cumulative distribution of predicted and measured latencies for all requests in the on script SDET

workload. The right graph shows the distribution of latencies for read requests, the operations that

contributed the most to HBench-FS’s mispredictions. Note that for readability, the x-axis in the left graph

uses a logarithmic scale.
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On both the Slow FFS+SU and the Fast FFS configurations HBench-FS has

noticeable errors in its predictions for file remove operations. The latency distributions

are shown in Figure 4.14 and Figure 4.15, respectively. On the Slow FFS+SU

configuration, the average remove latency predicted by HBench-FS is considerably

higher than any seen in the measured data. Since both the predicted and measured

latencies are quite small this difference has a minor impact (0.115 milliseconds) on the

overall performance prediction.

HBench-FS incurs much larger errors for the remove requests on the Fast FFS

configuration. Because file remove operations execute at disk speeds, errors here have a

significant impact on the overall accuracy of HBench-FS’s performance predictions.

4.5.4.3 Multiple Script SDET Results

As described in Section 4.5.3.2, the SDET benchmark allows the user to vary the number

of scripts that it executes concurrently. I generated additional workloads using up to ten

concurrent SDET scripts. Figure 4.17 shows the measured and predicted total latencies

for these workloads. In general, the performance here is similar to the one script work-

load, and HBench-FS predicts the important performance differences. In the eight and ten

script workloads, however, HBench-FS incorrectly predicts that the Fast FFS configura-

tion will outperform the Slow FFS+SU configuration. In all of the SDET workloads,

HBench-FS slightly under-predicts the latency for the Fast FFS configuration, and slightly

over-predicts the latency for the Slow FFS+SU configuration. As the number of concur-

rent scripts increases, the measured performance of these two platforms converges. In the

eight and ten script workloads, the HBench-FS errors are large enough to change the

ordering of these systems.

4.5.4.4 PostMark Results

The final workload that I examine is the PostMark benchmark. Figure 4.18 shows the

measured and predicted latency for this workload, as well as the contributions of differ-

ent request types to this latency. Unlike the kernel build and SDET workloads, HBench-
105



FS consistently under-predicts the performance of PostMark across all of the test plat-

forms. This is largely due to substantial errors in the predictions for the amount of time

spent processing read and write requests.

Figure 4.19 shows the distribution of request latencies for the entire workload,

and for reads and writes on the Slow FFS configuration. (These distributions are similar
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Figure 4.17. Multiple Script SDET Performance. These graphs show the measured and predicted

performance for SDET workloads with different levels of concurrency (from one to ten).
106



on all of the other test platforms.) While HBench-FS predicts the approximate shape of

the overall latency distribution, it consistently under-predicts the latency of disk-bound

requests (i.e., requests with latencies of more than one millisecond). Almost all of these

errors occur on read and write requests, where measured latencies are sometimes as

much as 100 milliseconds longer than HBench-FS’s predictions, as can be clearly seen in

the latency distributions for those request types.

There are two causes for these discrepancies. The primary cause is that HBench-

FS underestimates the asynchronous overhead caused by write traffic. This workload

writes 95 megabytes of data to the test file system, compared with 24 megabytes for the

kernel build workload, and 12 megabytes for the ten script SDET workload. Furthermore,

since much of this data is written to small files, there is a large amount of internal
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Figure 4.18. PostMark Performance. This chart shows the measured (M) and predicted (P) performance of

the one script SDET workload. The bars are subdivided to show the amount of time consumed by each type

of operation. For the performance predictions, I also show the predicted amount of asynchronous overhead

from write requests. This overhead is impossible to isolated on the measured systems, and hence the

additional latencies caused by asynchronous disk writes are included with the operations that experience

them.
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fragmentation, and the file system actually writes far more data to the disk. In fact, disk

writes outnumber disk reads in the PostMark workload by a ratio of approximately eight

to one. In the other workloads, disk reads outnumber disk writes. The net result of all this

write traffic is to impose significant latency on other disk-bound requests. Figure 4.18

shows that HBench-FS does predict some asynchronous overhead for the PostMark

workload, but not nearly enough to account for the large differences between the

measured and predicted time spent performing read and write operations.

Another phenomenon that accounts for the some of the differences in the write

latencies on the PostMark workload is partial block writes. When an application appends

data to the end of a file, the last block of the file may not be completely full. In this case,

the file system will need to add the new data to the existing file block. If that block is not

in memory, the file system will synchronously read it from disk. Unfortunately, this

phenomenon occurs often in the PostMark workload, and HBench-FS’s cache simulator
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Figure 4.19. Slow FFS Latency Distributions for PostMark Workload. The top graph shows the

cumulative distribution of predicted and measured latencies for all requests in the PostMark workload. The

bottom graphs show the latency distributions for read and write requests, the operations that contributed

the most to HBench-FS’s error. The distributions for the PostMark workload on the other test platforms are

similar to those seen here.
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does not charge the corresponding write requests with the cost of reading the partial

block. This accounts for the fact that HBench-FS predicts that all of the writes in this

workload will execute at memory speeds. The real latencies show that approximately 35

percent of the write requests have to go to disk. The extremely long latencies seen by

some of these write requests is due to additional overhead from write-back traffic.

4.5.4.5 Summary of Results

In the previous sections, I’ve described HBench-FS’s predictions on a case-by-case basis.

Now I examine all of these results together in an attempt to understand how well

HBench-FS predicts file system performance.

One of the primary goals for HBench-FS is to allow users and researchers to

compare how a workload will perform on different file systems. For these predictions to

be useful, it is important that HBench-FS properly rank the performance of the test

systems. The ideal benchmark, given two file systems and a workload, would always

correctly predict which file system would perform best for that workload (i.e., would

cause the least latency). Combining the data from the three workloads and four test

platforms I studied, there are 48 such comparisons we can make. In all but two cases,

HBench-FS correctly predicts the faster file system. The exceptions are the comparisons of

the Slow FFS+SU and Fast FFS configurations with eight and ten script SDET workloads.

(See Section 4.5.4.3.) This gives HBench-FS an accuracy rate of 95.8%.

It is worth noting that the two mispredictions occurred in cases where the relative

performance difference between the two systems was small (32% for the eight script

SDET workload, and 9% for the ten script workload). While cases such as these, where

the real performance difference between systems is small, are the hardest to predict

correctly, the negative consequences of mispredicting the performance ordering for them

is also the smallest. When the performance difference between two systems is small,

other factors, such as price, reliability, and usability, become far more important in

comparing the systems.

The best we could hope for from a system like HBench-FS would be that each

predicted latency be a precise match for the corresponding measured latency. To get an
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overall understanding of how closely HBench-FS approaches this ideal, Figure 4.20 plots

the measured and predicted latency for each test (i.e., for each workload and file system

pair). A correlation coefficient of 0.966 between the performance measurements and

predictions indicates a strong linear relationship between them.

Table 4.7 shows the raw data from Figure 4.20, listing the measured and predicted

latency for each test. This table also shows the error in each HBench-FS prediction, both

in absolute terms and as a percentage of the measured performance. These errors range

from 8.1%, for the one script SDET workload running on the Slow FFS configuration to

76.2% for the four script SDET workload running on the Fast FFS+SU configuration. The

average error is 30.8% and the median is 31.6%. The root mean square (RMS) error is

35.5%.

Table 4.8 shows the average absolute error for the tests on each of the four file

system configurations. The Slow FFS platform provided the least error of the test

configurations. The other platforms have higher error rates. This is not surprising since
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Figure 4.20. HBench-FS Accuracy. This scatter plot shows the predicted and measured latency for each

validation test. The data shows a strong linear relationship between the measured performance of each

workload and HBench-FS’s predictions. (Correlation coefficient = 0.966) Note that both axes use
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Workload File System Measured
Latency (sec)

Predicted
Latency (sec)

Prediction
Error (sec)

Prediction
Error (%)

Kernel Build Slow FFS 51.10 58.49 7.39 14.5

Slow FFS+SU 45.14 51.73 7.39 14.6

Fast FFS 15.07 12.21 –2.85 –18.9

Fast FFS+SU 12.61 7.76 –4.85 –38.4

SDET

1 script

Slow FFS 19.43 21.00 1.57 8.1

Slow FFS+SU 2.60 2.98 0.39 15.0

Fast FFS 11.07 8.76 –2.31 –20.9

Fast FFS+SU 1.43 1.25 –0.18 –12.6

SDET

2 scripts

Slow FFS 45.94 42.02 –3.92 –8.5

Slow FFS+SU 6.20 8.63 2.43 39.2

Fast FFS 24.53 17.50 –7.03 –28.7

Fast FFS+SU 2.49 4.23 1.74 69.8

SDET

4 scripts

Slow FFS 109.04 81.65 –27.38 –25.1

Slow FFS+SU 13.27 16.75 3.48 26.2

Fast FFS 50.06 34.02 –16.05 –32.1

Fast FFS+SU 4.63 8.16 3.53 76.2

SDET

6 scripts

Slow FFS 180.20 116.41 –63.79 –35.4

Slow FFS+SU 45.79 27.26 –18.53 –40.5

Fast FFS 73.50 47.41 –26.09 –35.5

Fast FFS+SU 8.57 12.27 3.71 43.4

SDET

8 scripts

Slow FFS 250.60 204.70 –45.90 –18.3

Slow FFS+SU 61.44 81.35 19.91 32.4

Fast FFS 97.98 65.92 –32.05 –32.7

Fast FFS+SU 11.56 16.68 5.12 44.3

SDET

10 scripts

Slow FFS 311.04 275.65 –35.39 –11.4

Slow FFS+SU 108.12 124.27 16.15 14.9

Fast FFS 118.09 81.33 –36.75 –31.1

Fast FFS+SU 13.22 20.90 7.68 58.1

PostMark Slow FFS 547.01 342.86 –204.15 –37.3

Slow FFS+SU 449.89 154.71 –295.18 –65.6

Fast FFS 193.27 124.62 –68.64 –35.5

Fast FFS+SU 75.67 52.63 –23.04 –30.4

Table 4.7: HBench-FS Error Summary. This table lists the predicted and measured total latency and the

prediction errors for all test workloads and configurations. The predicted and measured latencies are listed

in seconds. The errors are listed both in absolute terms, as the difference between the predicted and

measured latency (in seconds) and as a percentage of the measured latency.
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once of the largest sources of error in the HBench-FS predictions is the overhead cache

write-back traffic, and on the faster configurations, the workloads will write data to the

file system faster, thus generating more overhead.

Table 4.9 shows the absolute error for each of the workloads averaged across all

four test configurations. Again, asynchronous write-back traffic is the primary cause of

error, and the workloads with the least write traffic (kernel build and one script SDET).

have the smallest errors, and the workload with the greatest amount of write traffic

(PostMark) has the largest error.

Table 4.8: HBench-FS Prediction Errors by Test Configuration. This table lists the average absolute

prediction error for each of the four test configurations. Each row is the average error for all of the

workloads tested on the corresponding file system configuration.

Table 4.9: HBench-FS Prediction Errors by Workload. This table lists the average absolute prediction error

for each of the test workloads. Each row is the average of the errors for all of the file system configurations

on which I ran the corresponding workload. In addition to listing the error for each different SDET

workload, the “SDET—all” row lists the average error across all of the different SDET workloads.

Test Configuration Average
Error

Slow FFS 19.8%

Slow FFS+SU 31.1%

Fast FFS 29.4%

Fast FFS+SU 46.7%

Workload Average
Error

Kernel Build 21.6%

SDET—1 script 14.2%

SDET—2 scripts 36.6%

SDET—4 scripts 39.9%

SDET—6 scripts 38.7%

SDET—8 scripts 31.9%

SDET—10 scripts 28.9%

SDET—all 31.7%

PostMark 42.2%
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4.6 Future Work

The major weakness in the current version of HBench-FS is the way it predicts overhead

from asynchronous file system activity. In developing HBench-FS, I tried to develop a

simple model that would provide a single estimate for the aggregate cost of the back-

ground activity generated by write requests. The resulting model provides useful esti-

mates for workloads with moderate amounts of write activity, such as the kernel build

and SDET workloads, but it substantially underestimates the impact of asynchronous

I/O in workloads, such as PostMark, with large numbers of small write requests. In the

current implementation, HBench-FS computes a workload’s write throughput using the

number of bytes written by all of the write requests in the workload. This assumes that

the overhead generated by eight kilobytes of write traffic is the same regardless of

whether the workload writes eight kilobytes to a single file, or one kilobyte to eight dif-

ferent files. In reality, the latter case generates eight times as many disk writes. Thus it

might be more accurate to compute asynchronous overhead using the number of blocks

written instead of the number of bytes written.

Another possible approach would be to develop a more sophisticated model of

how these delayed write interact with subsequent I/O requests. If there were a standard

write-back policy used by file system buffer caches, I could update HBench-FS’s cache

simulator to mimic it. Unfortunately, there are a range of write-back strategies employed

by different file systems, so I would need to develop a technique to empirically determine

the algorithm used by each target file system.

The other area where HBench-FS consistently makes errors is in handling remove

requests. Intuitively, the approach of computing the latency of an unlink request using

the time to truncate a file plus the time to remove a zero-length file makes sense. Based on

the results, however, it might be more accurate to handle removes and truncates

separately. To do this I would need to run a series of remove microbenchmarks with

different file sizes and update the analysis tools to compute remove latencies using these

results.
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I could also add extensions to handle a wider range of architectures. I’m most

interested in multiple disk systems (RAID or vanilla striping). To support this, I would

need to develop a method for modeling the parallelism in a workload, and

microbenchmarks for measuring the parallelism available on a system. The other large

class of architectures that it would be useful to support is networked file systems. There

are two non-trivial challenges in predicting the performance for these systems. HBench-

FS would need to model network latencies, which would depend not only on the amount

of file system traffic, but also on the possible presence of large amounts on non-file

system traffic. The second challenge I would face in supporting client-server file systems

is the fact that the workload may be spread across a number of client systems.

There are also a variety of minor improvements that could be added to HBench-

FS. One of the most important would be to add support for memory mapped files. In

principle, this should be a simple extension of HBench-FS’s current functionality.

Mapping a file into memory is similar to opening a file. Page in requests correspond to

file reads and writes of dirty pages would provide a metric for the amount of

asynchronous disk I/O generated by an application. I would need to find a way to

capture the paging activity in the input traces. This wouldn’t be a problem with my

current tracing tools, since I have the sources, but unlike all of the other things I trace, this

information could not be derived from standard tracing tools or from most existing file

system traces.

There are a variety of minor details and corner cases that HBench-FS does not

currently handle, such as hard and symbolic links. I know of no workloads where this

functionality has a significant (or even a visible) effect on overall performance, but for

completeness, it should be included in HBench-FS.

4.7 Conclusions

File system performance is heavily dependent on the workload that runs on the file sys-

tem. Different workloads issue different mixes of requests, placing different demands on

the underlying file system. HBench-FS provides automated tools that allow an end user

or a researcher to predict how a particular file system architecture will perform with a
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particular workload. By separating the file system analysis from the workload analysis,

HBench-FS allows the user to make these predictions without having physical access to

the target system. HBench-FS also automates many parts of performance analysis that

researchers traditionally perform by hand, including microbenchmarking of the target

platform, and determining how different parts of the file system interface contribute to

the overall performance of a workload.

HBench-FS produces predictions of the contribution of the file system to the total

latency of a workload, and also predicts how much time each type of file system

operation contributes to this latency. By providing fine-grained predictions for each

operation in a workload, HBench-FS also allows researchers to perform customized

analysis of their workloads.

The predictions produced by HBench-FS are typically accurate when compared to

the measured performance of the system workloads and file systems. The predictions of

total latency have an average error of 30.8%, and correctly predict which file system will

provide the best performance for a particular workload in 96% of the test cases. The

major sources of error arose in workloads that generated large amounts of write traffic.
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Chapter 5

Related Work

In this chapter I survey other research related to file system aging and workload-specific

benchmarking. I first describe other techniques researchers have used to artificially fill or

age file systems. I then examine a variety of techniques that have been used to evaluate

system performance in the context of specific workloads. Finally, I describe work aimed

at developing analytic models of file system performance.

5.1 File System Aging

Chapter 3 described the use of file system aging to accurately reproduce the real-world

state of a file system. To date, only a few other file system studies have explicitly evalu-

ated the performance of file systems that were not empty. The existing studies that mea-

sure non-empty file system performance use a variety of ad hoc techniques to fill the test

file system.

The simplest way to fill a test file system is to create one or more files that

consume the desired amount of space. Margo Seltzer and her colleagues used this

approach in evaluating the performance of transaction processing workloads on a log-

structured file system (LFS), showing that LFS performance declined as free space on the

file system decreased [Seltzer95]. For these measurements, Seltzer filled the test file

system by creating a single large file of the appropriate size [Seltzer00b].
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Other researchers have used stochastic methods to age a file system. Herrin and

Finkel tested their Viva file system using an aging technique that created and deleted files

at random, selecting file sizes from a hyper exponential distribution [Herrin93]. Ganger

and Kaashoek used a similar technique to evaluate their clustering FFS, using the

distribution of file sizes seen on their servers instead of a hyper exponential distribution

[Ganger97]. In both cases, the authors were interested in understanding how

fragmentation affected their file system optimizations. This type of aging is useful for

fragmenting a file system, but because the aging workload is not based on real file access

patterns, it is impossible to determine whether the amount of fragmentation (and

therefore performance degradation) seen in these studies matches what users would see

in the real world.

Karl Swartz has used a technique similar to file system aging in his study of

Usenet news performance [Swartz96]. Swartz used a benchmark that repeatedly

executed many of the time consuming tasks that a news server must perform,

unbatching, batching, and expiring news articles. Rather than separately aging his test

file systems before running this benchmark, Swartz used the benchmark itself as his

aging workload, repeatedly running the benchmark and observing the decrease in server

performance as the file system became increasingly fragmented.

5.2 Workload-Specific Benchmarks

HBench-FS evaluates file system performance in the context of a workload of interest. In

addition to providing a prediction of overall performance, HBench-FS provides an analy-

sis of which aspects of the file system are the most performance critical for the applica-

tion. HBench-FS also allows users to perform this analysis without access to the target file

system.

Other researchers have used a variety of techniques to provide similar

information, ranging from executing the desired workload on the target platform to

performing a detailed simulation of the target file system and underlying hardware. In

this section I discuss the spectrum of options available, citing prominent examples from

the research literature.
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5.2.1 Application-Based Benchmarks

The simplest approach to determining how a particular workload will perform on a tar-

get file system platform is to execute that workload on the system in question. This ad

hoc approach has been used by numerous researchers and has the benefit of providing

accurate results with minimal effort. This approach, however, assumes that the researcher

has ready access to the target file system and is of little use in the case where the hard-

ware or software is unavailable. Depending on the availability of tracing and profiling

tools on the target platform, this technique may or may not provide the kind of detailed

performance analysis that is available from HBench-FS. The customized nature of this

technique also makes it difficult to compare results from multiple sources, as the work-

loads are seldom identical.

In an effort to standardize the comparison of workloads across different

platforms, a number of researchers and industry groups have proposed standardized

benchmarks for common workloads. Jeffrey Katcher’s PostMark benchmark [Katcher97],

described in Section 4.5.3.3, is an example of this type of benchmark. PostMark is

intended to model the file system activity generated by internet server applications such

as e-mail, e-commerce, and Usenet news. This benchmark issues requests directly to the

file system API, rather than using any of the applications that might generate the

workload. This provides a direct understanding of how the file system contributes to

performance. Without actually executing any of the target applications, however, there is

no assurance that the PostMark workload is actually representative of the file system

requests generated by these applications. The documentation for PostMark,

unfortunately, provides no argument or evidence that the benchmark accurately captures

the file system requests generated by the target internet applications or that it accurately

predicts their performance, leaving users to rely on the intelligence and good faith of the

author.

Most other application-based benchmarks include the execution of the actual

software that generates file system traffic. Typically, these benchmarks are intended as

measurements of the overall performance of the application, including the performance
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of the file system, network, memory system, and any other parts of the system that the

workload exercises. The Transaction Processing Performance Council (TPC), for example,

has standardized a family of benchmarks for different types of database workloads,

including on-line transaction processing, decision support, and web commerce. These

tests measure the performance of a complete database solution, including the database

software, the operating system, and the underlying hardware. By carefully specifying the

measurement and reporting processes, the TPC benchmarks attempt to provide cross

platform performance comparisons for an important class of applications, while

minimizing the opportunities for vendors to manipulate the results to their advantage

[Burgess].

Other similar benchmarks include those from the Storage Performance

Evaluation Council (SPEC) for measuring the performance of web servers, mail servers,

and java virtual machines, [SPEC00][SPECa][SPECb] and Usenet news benchmarks

created by Yasushi Saito and his colleagues [Saito98].

Standardized benchmarks such as the TPC benchmarks make it easier to compare

results achieved by different researchers or vendors, but still provide no generalized way

to understand the performance demands of the workload, or bottlenecks of the

underlying file system.

5.2.2 Trace-Driven Simulations

Researchers who have wanted to understand the behavior of file system implementations

without necessarily building or buying the desired file system have usually used simula-

tions in the place of an actual implementation. The most common simulation studies

have been trace-driven cache simulations. These studies are similar to the cache simula-

tion performed by HBench-FS, only instead of using the results of the simulation to pre-

dict the overall performance of the workload, they simply report on the performance of

the cache, typically in terms of cache events such as misses and write-backs. Early trace-

based cache simulations studied the effects of increasing the size of the file system buffer

cache or changing its write-back policy [Ousterhout85]. More recent studies have exam-

ined a variety of other aspects of cache design, including name and attribute caching
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[Shirriff92], cache consistency in distributed file systems [Baker91], the use of NVRAM in

caches [Baker92], and a variety of cooperative caching strategies

[Dahlin94a][Dahlin94b][Sarkar96].

Researchers have also used trace-driven simulations to study other aspects of file

system performance. In general, these simulations are more difficult to develop than the

cache simulations described above, since they need to simulate not only the file system

cache, but also one or more pieces of file system functionality. The log-structured file

system (LFS) architecture [Rosenblum92] has been the topic of several simulation studies.

The design of the cleaner in the original Sprite-based implementation of LFS was

informed by the results of simulation studies that used random file system workloads

[Rosenblum92]. Subsequent studies used trace-based simulations to study alternative

cleaning algorithms [Blackwell95][Matthews97].

5.2.3 File System Simulations

In contrast to the time-based performance predictions provided by HBench-FS, the simu-

lations described so far have only provided abstract metrics of performance, such as

cache hit rates or, in the case of LFS, write costs. To understand the absolute performance

of a simulated file system architecture, researchers need to include the underlying disk

system in their simulation. Accurate disk simulators are available, both for individual

disks [Ruemmler94][Kotz94a] and for disk arrays [Wilkes96], and several studies have

used this approach to predict the performance of various file system architectures.

Whenever a researcher includes a disk simulator in a file system performance

study, he faces the problem of translating file-level activity into the disk requests that can

be fed to the simulator. In a trace-based cache study, for example, the cache simulator will

decide which requests miss in the cache, but this typically provides no information about

where the corresponding file blocks may be allocated on disk. Different researchers have

used a variety of approaches to solve this problem.

The simplest approaches are to include the on-disk location of files in the traces

that drive the cache-simulation or to use a random mapping of files to on-disk locations.

Kimbrel and his colleagues used both of these strategies in their trace-based study of file
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prefetching and caching policies [Kimbrel96]. More complicated approaches incorporate

some or all of the file system code into the simulation, increasing the detail of the

simulation as well as the work required to build the simulator. Several researchers have

built trace-based simulation environments that provide the scaffolding required to run an

entire file system on top of a disk simulator [Thekkath94][Bosch96].

Randolph Wang and his colleagues used a different approach. Rather than

simulating the file system on top of a disk simulator, they incorporated a disk simulator

into a running operating system. When the test file system issued I/O requests, it sent

them to the disk simulator, which determined the appropriate delay for servicing the

requests and suspended the requesting process the appropriate amount of time

[Wang99]. This approach allowed the researchers to evaluate the performance of a file

system that relied on disk features that were not available in contemporary disks.

HBench-FS offers a middle ground between the detailed simulations described

above and the cache simulations described in Section 5.2.2. With a simulator that includes

the full file system source from the systems under study, researchers can collect

arbitrarily detailed performance data by instrumenting the simulator. This, however,

requires both access to the file system source code and a detailed understanding of the

file system implementation, both of which are unlikely to be available to end users.

HBench-FS, in contrast, automatically provides most of the detailed performance data

needed by users and researchers.

5.2.4 Machine Performance Characterization

Several researchers have used techniques similar to HBench-FS for analyzing and pre-

dicting processor performance. Peuto and Shustek, for example, built an instruction tim-

ing model for predicting the performance of high-performance (circa 1977) processors

such as the IBM/370 and AMDAHL 470 V/6 [Peuto77]. This model used instruction-

level traces to predict the performance of application programs. The authors used timing

formulas derived from the manufacturers’ specifications to predict the latency of each

instruction in the instruction set architecture. They also simulated performance critical

subsystems, such as the caches, memory interlocks, and instruction prefetch, to account
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for the time they add to instruction latencies. Like HBench-FS, this work was motivated

by the desire to compare the performance of different systems with similar interfaces (file

system interfaces in the case of HBench-FS, instruction set architectures in the case of the

instruction timing model). The resulting system accurately predicted processor perfor-

mance and provided useful analysis of how the execution time was spent. In a recent ret-

rospective, Peuto and Shustek observed that the results of this analysis was one of the

lasting and unexpected benefits of their work [Shustek98]. These results included infor-

mation about branch distances and directions, common instruction pairs, operand over-

lap, etc., and were one of the lasting, and unexpected, benefits of their work.

The overall design of this instruction timing model is similar to that of HBench-

FS. Both systems use a combination of trace-based analysis and fine-grained performance

data to predict the performance of both the overall workload and the individual

operations that comprise the workload. Unlike HBench-FS, however, the instruction

timing model cannot provide cross-platform performance comparisons unless the

platforms support the same instruction set architecture. The instruction timing model

relies on manufacturer’s specifications to derive performance models for individual

instructions. The accuracy of the model thus depends on the accuracy and availability of

information about processor performance. In contrast, HBench-FS determines system

performance using a suite of microbenchmark programs, allowing it to treat the target

file system as a black box.

Saavedra and Smith’s abstract machine model uses a similar approach to predict the

performance of Fortran programs [Saavedra96]. They view the execution of a Fortran

program in terms of abstract Fortran operations called AbOps. Saavedra and Smith

summarize the behavior of a program in a program characterization, which they generate

by profiling the program’s execution to determine how many times each AbOp executes.

They generate a machine characterization using a suite of microbenchmarks to determine

the performance of each of the AbOps. In contrast to the instruction timing model

described above, Saavedra and Smith do not include a trace-driven simulation of the
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memory hierarchy, instead relying in published cache and TLB miss data to account for

the impact of the memory system on performance [Saavedra95].

By characterizing application behavior at the programming language level, the

abstract machine model allows performance comparisons across systems with different

processor architectures. The use of a suite of microbenchmarks to characterize system

performance and the vector-based technique for predicting application performance are

both similar to HBench-FS. Because they only analyze the performance of widely studied

benchmark programs, Saavedra and Smith were able to use previously published cache

miss data for their workloads, and did not need to develop trace-based analysis tools

used by HBench-FS and in Peuto and Shustek’s instruction timing model.

5.2.5 HBench

Several other projects at Harvard University are developing workload-specific bench-

marks for a variety computer systems. In all of these projects, the goal has been to pro-

vide a framework for analyzing the performance of a specific workload of interest. Like

HBench-FS, some of these benchmarks (such as HBench-OS, see Section 5.2.5.1) allow the

workload and test system to be measured separately. Other members of the HBench fam-

ily (such as HBench-Web, see Section 5.2.5.4) provide techniques for distilling complex

workloads into benchmarks that can be run on the target systems. All of these projects

rely on either the vector-based or trace-based methodologies described by Seltzer and her

colleagues [Seltzer99]. HBench-FS is currently the only HBench benchmark to use the

hybrid approach of combining vector-based and trace-based benchmarking.

5.2.5.1 HBench-OS

Aaron Brown initially developed HBench-OS to measure the performance of NetBSD

operating system primitives on a variety of hardware platforms [Brown97b]. Using the

results of this benchmarking suite, he used a vector-based methodology to analyze

Apache web server performance on several operating system and hardware platforms

[Brown97a]. Brown used the microbenchmark results produced by HBench-OS as his sys-

tem vector, and used system call tracing facilities to characterize Apache’s use of operat-
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ing system functionality. Because the components of the two vectors did not match

exactly, Brown applied a change of basis to the application vector, mapping each compo-

nent either to the corresponding microbenchmark result, or approximating it with a

related one. Seltzer and her colleagues extended this technique to a collection of standard

UNIX utilities (such as ls and tar) [Seltzer99]. They were able to predict the correct rank-

ing of the systems they tested and achieved reasonable predictions of the performance

ratios of the different systems.

5.2.5.2 HBench-Java

Xiaolan Zhang is using vector-based benchmarking to develop workload-specific bench-

marks for predicting the performance of Java Virtual Machines (JVMs) [Zhang00]. Zhang

identifies four high-level components of a JVM that must be represented in the system

vector:

• system classes,

• memory management, including allocation and garbage collection costs,

• the execution engine, including the costs of bytecode interpretation,

context switching, etc., and

• just-in-time compilation.

The current version of HBench-Java only measures a small subset of the Java core API.

This is sufficient to accurately predict the performance of a variety of large-scale Java

applications. Zhang demonstrates the value of workload-specific benchmarking by com-

paring the predictions of HBench-Java to the results of SPEC JVM98 [SPECa], a standard-

ized workload-independent benchmark. Not only are the SPEC JVM98 predictions less

accurate, in several cases they fail to correctly rank the performance of the different JVMs.

5.2.5.3 HBench-JGC

Xiaolan Zhang has also used vector-based benchmarking to evaluate the application-spe-

cific performance of JVM garbage collectors [Zhang01]. In this benchmark, she character-

izes three aspects of garbage collector performance in the system vector:
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• the fixed cost of running the garbage collector,

• the per-object cost of collecting dead objects, and

• the per-object cost of examining live objects.

The fixed cost is parameterized by the heap size, and the per-object costs for live and

dead objects are parameterized by object size, similar to the way HBench-FS parameter-

izes read and write performance by request size. Zhang uses profiling data to generate

her application vector.

5.2.5.4 HBench-Web

In contrast to the other HBench benchmarks described in this section, Manley and his col-

leagues used trace-based techniques in their workload-specific web-server benchmark

[Manley98]. HBench-Web analyzes web server logs to generate site-specific stochastic

workloads that can be used to measure web server performance. HBench-Web collects

three types of data as it processes server logs:

• logical documents, which are collections of web documents that are

requested together, typically because they appear on the same web page,

• user session profiles, which characterize the pattern of requests made by

different users (i.e., from different IP addresses), and

• the inter-arrival time of new user sessions.

Using this data, HBench-Web generates a stochastic workload mimicking the characteris-

tics of the original workload seen in the server logs. By adjusting the interarrival times

users can easily scale the resulting benchmark to model anticipated traffic increases.

Although the fundamental goals of HBench-Web and HBench-FS are similar,

namely workload-specific performance analysis, HBench-Web has few other similarities

to HBench-FS. Because it does not incorporate vector-based benchmarking, HBench-Web

provides no way to characterize the performance of a web server. HBench-FS, on the

other hand, might benefit from extensions that allowed the development of

parameterized stochastic workloads from file system traces.
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5.3 Modeling

Probabilistic modeling techniques, such as Markov chains and queuing networks have

been widely used to predict the performance of computer systems, most notably in the

field of capacity planning. Like HBench-FS, these models typically combine a workload

characterization with a system characterization to provide performance predictions. The

strategy in capacity planning is to build and validate a model of an existing system, and

then use that model to study the performance impact of increased workload or changes

to the system configuration [Lazowska84].

Models of complex software systems typically reduce their behavior to a

probabilistic model of the demands they place on the underlying hardware. In modeling

a web server workload, for example, a researcher might determine the distribution of

request types, requested files, CGI script executions, etc. The researcher would then

measure the average CPU time, memory requirements, and I/O operations for each type

of request. After validating an initial model against the performance of the actual system,

the researcher could estimate the performance of alternate hardware configurations by

estimating the effect of the proposed changes on the resource demands of each type of

request [Menascé99]. This is a complex process requiring detailed familiarity with the

operating characteristics of the system. Adding memory to a system, for example, might

decrease the miss rate in the file system buffer cache. To accurately model this effect, the

researcher would have to estimate the resulting change in the number of I/O operations

for each request type in the workload.

HBench-FS, in contrast, analyzes file system performance in terms of a standard

API. Thus, HBench-FS can be used to evaluate the performance of a workload and file

system combination without requiring the types of detailed information about the

underlying system components that may be required by analytic models. HBench-FS also

provides more detailed performance estimates than probabilistic modeling techniques.

Where formal models typically represent a workload as a probability distribution of

different request types, HBench-FS explicitly models the exact sequence of requests that

comprise a workload. This allows HBench-FS to make performance estimates based on
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the sequence of requests as well as on the types of requests. While the use of actual

workload traces in HBench-FS may allow for more detailed performance estimates, it

also has the drawback of making it more difficult to model hypothetical changes in the

workload. With a probabilistic model, it is usually a simple matter to increase the request

rate or change the request mix in a workload.

Most efforts to model the behavior of file systems have relied on techniques like

those described above to reduce the file system to a probabilistic model of the resource

demands at places on the underlying hardware system. Shriver and her colleagues are

the only group that has attempted to model the internal behavior of a file system. They

have developed a simple model for the performance of one or more streams of file read

requests in FFS [Shriver99]. This model explicitly incorporates details of the FFS on-disk

layout and prefetching strategy, limiting its use to FFS. It is unclear how easily this model

could be extended to include the full range of file system activity or, more significantly,

whether it is possible to build a model of file system performance that is independent of

the internal details of the target file system architecture.

Researchers have focused more effort on developing models for disk

performance. Disks are better suited to performance modeling. Unlike file systems, many

disks share similar designs and performance characteristics, making it possible to

develop models that support a wide range of disks. Some of the most sophisticated

models for disk performance have been developed in the past few years by researchers

such as Menascé, Shriver, and Barve. Menascé and his colleagues used queuing networks to

model the performance of hierarchical storage systems built using network attached devices.

Shriver and her colleagues have used composite device models to model complex aspects of

modern disk behavior, including read-ahead caches and request reordering [Shriver98].

Barve and his associates have extended these models to multiple disks sharing a common

I/O bus [Barve99].
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Chapter 6

Conclusions

6.1 Lessons Learned

Developing HBench-FS was an iterative process involving repeated tests and improve-

ments to the design. Design improvements were driven by both errors in performance

predictions and increased understanding of the performance critical aspects of file sys-

tem design. In this section, I describe some of the practical lessons learned from this

development experience.

6.1.1 Development process

HBench-FS was developed intermittently over a period of several years. Through this

time the high-level architecture, combining vector-based and trace-based benchmarking,

remained largely unchanged. Many of the details of the system, however, changed sub-

stantially, including the quantities measured by the microbenchmark suite and the meth-

ods of combining these fine-grained measurements with a workload trace to produce

large-scale performance predictions.

The initial design of HBench-FS identified three different types of data that a file

system call might manipulate—file data, naming data, and file attributes. Each type of

data could be either read or written, might be cached, and could be accessed either

sequentially or randomly. This simple taxonomy of file system functionality provided 24
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different operations that HBench-FS needed to microbenchmark, such as cached,

sequential reads of naming data. In this design, a set of tools, similar to the cache

simulator and pattern analyzer in the final HBench-FS design divided each operation in

the workload profile into one or more of these basic file system micro-operations. In the

current implementation of HBench-FS, this strategy is still evident in the way it predicts

the performance of read and write system calls.

While the simplicity of this approach was appealing, in practice it ran into a

number of difficulties.

• Not all of the micro-operations could be benchmarked independently.

Most problematic were operations that read or write name and attribute

data. File system operations that operate on naming data almost always

read or write the attributes of the named file too, making it impossible to

separately measure the cost of naming and attribute micro-operations.

• The cost of performing certain micro-operations varies depending on the

higher-level file system operation. In FFS, for example, it takes

considerably longer to write file attribute data when you create a file than

it does when you change the ownership of a file because the create

operation is synchronous and the change ownership call is not.

• The initial model did not account for the asynchronous overhead

associated with write operations.

In successive designs, I eliminated the quantities that could not be measured and

replaced them with other microbenchmarks, which measured larger pieces of file system

functionality. At this point, the idea of modeling the time to perform a file system opera-

tion as the time to parse the target file name plus the time to perform the operation itself

emerged.

Subsequent improvements involved further refinements to the set of

microbenchmarks and processing algorithms. I discovered the need to treat cached and

uncached truncate operations (and, more importantly, remove operations) differently. I

also added separate benchmarks for creating and removing directories, rather than
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approximating the time for those operations using the results of the file create and

remove microbenchmarks.

Throughout the development of HBench-FS, I followed a strategy of incremental

implementation. The initial implementation of HBench-FS only measured and predicted

the performance of lookup and read operations. My initial validation therefore used a

workload (running make depend on a kernel source tree) that made heavy use of these

operations. Over time, I added support for more file system operations to HBench-FS and

tested it with increasingly complex workloads. Once I reached the point where I was

testing HBench-FS with complex workloads, I continued to make incremental

improvements until the predictions attained a sufficient level of accuracy.

Although I knew from an early stage that HBench-FS needed to address the

problem of how to account for the overhead of write-back activity, it was actually one of

the later pieces of development. In essence, I waited to see if the rest of the system would

produce reasonable results before I tackled one of the harder outstanding problems.

6.1.2 Benefits of HBench-FS Architecture

Many aspects of the HBench-FS architecture and my development strategy facilitated the

evolution, analysis, and tuning of HBench-FS. While most of these benefits are not sur-

prising in retrospect, many of them came about by happenstance. Only a few software

engineering aspects of the development methodology (in particular, the incremental

approach to adding functionality) were fully planned.

File systems are complex software systems. They include many different

components—caches, prefetching and write-back algorithms, disk layout policies, etc.,

Each of these components, as well as the interactions between components, can have a

substantial impact on performance. Not surprisingly, this complexity is the greatest

obstacle to developing a flexible benchmarking tool such as HBench-FS. On first

considering the multitude of factors that can affect a file system’s performance, it seems

that accurate performance predictions must require measurements, simulation, or other

analysis of every aspect of the file system. Yet HBench-FS provides accurate performance
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predictions despite the fact that it is considerably less complex than the file systems it

analyzes.

In practice, it turns out that a relatively small fraction of file system functionality

is critical to file system performance. whether because it is frequently executed, such as

the read and write system calls, or because of the magnitude of its performance impact,

such as the various caches. This phenomenon greatly simplified the development of

HBench-FS. By accurately characterizing the behavior of the most performance critical

aspects of file system architecture, I was able to quickly develop HBench-FS to the point

that the results were promising enough to warrant further investigation.

The iterative development strategy provided a natural way to exploit the fact that

different aspects of file system architecture have different importance in determining

overall performance. It allowed me to focus my initial efforts on measuring and

simulating the performance of a few important parts of the file system, adding additional

detail as needed until HBench-FS provided accurate predictions for a wide range of file

system functionality. By postponing many minor details of file system performance until

late in the development process, I was ultimately able to eliminate them altogether as it

turned out that their effect on performance was too small to be worth the effort of

modeling them. The amount of accuracy desired in the results determined the amount of

detail captured by HBench-FS. For a commercial quality system, rather than a research

prototype, more effort would undoubtedly be required.

The underlying strategy of using vector-based benchmarking to determine the

performance of individual file system operations proved very flexible, and greatly

facilitated the incremental development of HBench-FS. Because vector-based analysis

encouraged dividing file system performance into independent components, expanding

HBench-FS, or changing the way it handled individual operations, seldom required

substantial changes to the bulk of the tool chain. Expanding the system and request

vectors (one of the most common changes during development) typically required only

the development of a new microbenchmark and the addition of one or two simple

functions to the pre-processing and post-processing tools.
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A final benefit from the architecture of HBench-FS was the amount of data it

provides. This wealth of data not only facilitates the analysis of file system performance,

it also proved invaluable in tuning and debugging HBench-FS. During development, as

well as during the validation described in Section 4.5, I used workload profiles that

included the measured latency of each request in the trace. By comparing the predictions

and measurements for both individual operations and different classes of operations, I

was usually able to quickly identify the causes of prediction errors. The intermediate

traces output by each program in the analysis tool chain provided another invaluable

source of debugging information. Because these tools are structured as a pipeline, rather

than as a single monolithic program, it was trivial to look at the output from each one to

quickly ascertain which tool was the source of a problem. With the wealth of data

HBench-FS provides about its predictions and how it computes them, I seldom needed to

add instrumentation to the analysis tools to better understand their behavior.

6.1.3 HBench-FS Details

In the course of developing HBench-FS, I uncovered many peculiarities of file system

behavior and usage that affect the development of a workload-specific benchmarking

tool. In this section I briefly discuss some of these issues.

6.1.3.1 Simulating Partial Block Writes

In Section 4.5.4.4, I describe how partial block writes account for some of the mispredic-

tion error in the PostMark workload. Since file sizes are seldom an exact multiple of the

file system block size, the final block of a file is seldom full. If this partially empty block is

not in the buffer cache when a write operation appends data to the file, then a synchro-

nous read is required to load it from disk. This causes the corresponding write request to

execute at disk speed rather than at memory speed. The same phenomenon occurs when

overwriting existing data in a file. If a write request is not block aligned, then data at the

beginning and/or end of the request must be added to existing data blocks, triggering

disk reads if those blocks are not in the buffer cache.
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Preliminary versions of HBench-FS captured this behavior in the cache simulator,

adding an uncached read to the request vector whenever the cache simulator detected a

partial block write to an uncached data block. Unfortunately, sparse files make it more

difficult for the cache simulator to accurately predict when partial block writes occur. A

sparse file is one that has one or more holes, extents where no data has been written. A

common way to produce a sparse file is to create a new file, then seek to an offset past the

beginning of the file, and start writing data. In the resulting file, the extent from the

beginning of the file to the target of the seek will contain no data, and in FFS (and most

other file system architectures) will have no on-disk blocks associated with it.1

The difficulty arises when an application performs an partial block write to a hole

in a sparse file. If there is no disk block allocated to the offset of the write, then the file

system simply copies the data to an empty cache buffer, and allows the buffer to be

written asynchronously to disk. At first glance, it may seem that this must be an unusual

scenario, but in practice it occurs regularly, since several common applications write their

output in non-sequential order (e.g., the assembler and linker used in the kernel build

workload described in Section 4.5.3.1). Thus, in order to know how to handle an

unaligned write, the cache simulator must be able to determine whether the

corresponding block in the target file has been allocated.

The current implementation of the HBench-FS cache simulator does not model

sparse files. Therefore, I was faced with the choice of either simulating reads triggered by

partial block writes and over predicting write times in workloads that contain writes to

sparse files, or not simulating such reads, and under predicting write times in workloads

that contain non-aligned appends or overwrites. I chose the latter option. Although I

have not examined the data, I suspect that appends are the most common cause of partial

block writes. Therefore, a more balanced approach might have been to include the

overhead of reads triggered by appending data to the end of a file, but to ignore those

generated by other types of partial block writes. The best solution, of course, would be to

1. POSIX semantics dictate that the operating system return zeros when an application reads from a location

in a file that has never been written. This applies to holes in sparse files as well as to reads that occur past the

end of a file.
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modify the cache simulator to accurately model sparse files. This would require

substantial modifications to the simulator, and presents the difficulty of determining

which files (if any) in the workload snapshot are sparse.

6.1.3.2 Simulating Sparse Files

Sparse files can cause other inaccuracies in HBench-FS. Reading from a hole in a sparse

file should never generate disk reads, since the file system simply provides zero data for

the offsets corresponding to the hole. Since the cache simulator does not model sparse

files, however, it always charges an application with an uncached read if the target data is

not in the buffer cache. In the workloads I have examined, this is seldom an issue, as there

are few, if any, reads from sparse files. Other workloads, such as transaction processing,

may make heavier use of sparse files. To accurately predict the performance of these

workloads it may be necessary to add support for sparse files to the cache simulator.

6.1.3.3 Additional Sources of Background I/O

When measuring the overhead from background I/O operations, HBench-FS only con-

siders write-back activity generated by write system calls. Preliminary versions of

HBench-FS included a similar benchmark to measure the background overhead gener-

ated by file create and remove operations. Studies of Soft Updates have shown that these

meta-data updates can sometimes generate substantial asynchronous disk traffic

[Seltzer00a]. On the workloads that I studied, however, the inaccuracies in measuring

this effect were greater than the small amounts of background load caused by create and

remove calls. Therefore I did not include this benchmark in the final version of HBench-

FS.

In theory, any file system request could generate background disk traffic. Ideally,

HBench-FS would model this by running tests similar to the existing write-back

overhead benchmark for each type of file system call.
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6.1.3.4 Pathname lookup

As described in Section 4.4.3.2.1, the microbenchmark for pathname lookup time varies

the state of both the attribute and name caches. It provides measurements for the cases

when both the name and attributes for the target file are cached, when neither is cached,

and when the attributes are cached but the name is not.2 The fourth possible scenario,

cached name data and uncached attribute data, defied measurement, as I was unable to

generate a sequence of operations that would reliably cause a file’s name to be cached

without its attributes. Since this case rarely occurred in the traces I examined, I approxi-

mated its performance using the time for a lookup with neither name nor attribute data

cached.

In practice, a lookup request that misses in either the name or attribute cache may

not have to pay the cost of going to disk to fetch the required data. The data may be in the

buffer cache. To simulate this case, whenever a lookup misses in either the name or

attribute cache, the cache simulator determines whether the first data block of the target

directory is in the buffer cache. If it is, then the cost of the lookup is assumed to be the

same as a lookup that hits in both caches. (I.e., it is satisfied at memory speeds rather than

at disk speeds.) It is probably possible to devise a microbenchmark for this scenario, but

in practice it has not been necessary.

6.1.3.5 Read Request Sizes

Although request size is one of the arguments to read calls, this value does not always

reflect the amount of data actually transferred to the user. If the request size is larger than

the amount of data between the current file offset and the end of the file, the file system

only transfers the existing data. When generating the request vector for a read call,

HBench-FS uses mimics this behavior when it determines the number of blocks trans-

ferred to the user.

2. In benchmarking this scenario, I use hard links, which allow the creation of multiple directory entries that

refer to the same file (and hence the same attributes). This allows me to warm the attribute cache by accessing

a file via one link. Then, during the measurement phase of the benchmark, I measure the time to access the

same file using a different (uncached) link.
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6.1.3.6 Truncate Size Argument

An argument to the truncate and ftruncate system calls specifies the size to which the tar-

get file should be truncated. By truncating a file to a non-zero size, an application can

eliminate part of the data in a file, or grow a file by truncating it to a larger size, essen-

tially creating a hole at the end of the file. It would require a multitude of additional trun-

cate benchmarks to accurately simulate this behavior in HBench-FS. Examining a variety

of workload traces, however, shows that in practice these system calls are rarely used

except to truncate a file to size zero, so I have ignored the uncommon case of truncating

files to a non-zero sizes.

The traces I examined also showed that most file truncation occurs as the result of

open calls which specify the O_TRUNC flag, which directs the operating system to

truncate the target file before opening it.

6.1.3.7 Lookup Failures

In developing HBench-FS, I noticed that most traces contain a large number of lookup

operations that fail, usually during open, stat, or access system calls. This typically occurs

when a program searches several different directories to find a desired file, (e.g., the shell

looking for an executable in each directory listed in a user’s, or a compiler looking for

header files in several directories). This behavior occurs so often that it can have a notice-

able effect on workload performance, and therefore needed to be modeled by HBench-FS.

6.2 Conclusions

Each new generation of computer hardware provides stunning performance improve-

ments. Processor speeds, network bandwidths, and memory sizes continue to grow rap-

idly. Disk performance has also improved, but at a much slower rate. Increased disk

capacities and network bandwidths have sparked a similar increases in data set sizes. As

a result of these two trends, storage systems are becoming an increasing bottleneck for

many contemporary applications.

Many techniques have been proposed, implemented, and sold as solutions to this

“I/O bottleneck,” including file system optimizations such as Soft Updates [Ganger00],
136



hardware solutions, such as striping data across multiple disks to achieve higher

bandwidths [Patterson88], and integrated solutions combining new file systems and disk

array techniques [Hitz94]. Distressingly, the technology for evaluating file system

performance has not kept pace with this rapid evolution of storage system design.

Research papers continue to evaluate new architectures using simple benchmarking

techniques that have changed little over the past twenty years.

Realistic techniques for evaluating the performance of a file system should allow users to

answer the question, “How will my workload perform on this file system?” Current

benchmarks suffer from a variety of shortcomings that prevent them from effectively

answering this question. Benchmarks almost always evaluate empty or near-empty file

systems, a condition real users rarely encounter. Another shortcoming of most bench-

marks is that they operate by executing a fixed workload on the target file system. This

provides little, if any, information about how workloads with different mixes of opera-

tions will perform.

In this dissertation, I have presented techniques for addressing both of these

problems. File system aging provides a deterministic technique for evaluating a file

system in a realistic state. Because aging generates this state by replaying a sequence of

operations mimicking the long term workload on a file system, it accurately reproduces

both visible (e.g., file system utilization) and invisible (e.g., file fragmentation) aspects of

file system state, including types of state that may be unique to the underlying file system

architecture, such as the clustering or fragmentation of related inodes in FFS. File system

aging also provides a technique to evaluate design decisions only affect performance

over the life of the file system.

Workload-based benchmarking addresses the second problem. HBench-FS

provides a framework that allows users to predict how a specific workload will perform

on different file systems. In addition to allowing workload-specific benchmarking,

HBench-FS offers a number of other advantages to potential users. By separating the

evaluation of a file system from the evaluation of a workload, it allows a user to predict

the performance of a file system workload using only published data about the file
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system’s performance. This makes it possible to evaluate a file system that might not be

physically available for testing, whether due to cost or other factors. Similarly, HBench-

FS can be used to evaluate file systems that do not even exist, allowing users to conduct

“what if” studies by providing hypothetical system vectors. In addition to providing

simple predictions about how a workload will perform on a specific file system platform,

HBench-FS provides a wealth of data that researchers and developers can use to better

understand application behavior and file system performance.
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Appendix A

HBench-FS Input Formats

As described in Chapter 4, HBench-FS takes two inputs, a workload profile, consisting of

a file system trace and a file system snapshot, and a system profile containing the results

of a suite of microbenchmarks. In this appendix, I document the formats of these inputs

and briefly describe the library functions that the HBench-FS tools use to manipulate

them.

A.1 Trace Format

An HBench-FS trace consists of multiple records, each of which describes all or part of a

single file system operation. The records are written in binary format. This allows the

processing tools to manipulate the traces without extensive parsing but means that traces

are not portable across big- and little-endian machines.

A trace record consists of an fsop_t (file system operation) structure followed by

one or more strings. Some file system operations are described by multiple trace records.

The fsop_t structure, along with related substructures, is shown in Figure A.1. The fsop_t

structure may contain pointers to one or more strings associated with the file system

operation, such as the name of the target file and its directory. These pointers are invalid

in raw traces; the trace processing library fills them it as it reads records from a trace.

Multiple fsop_t structures may be chained together to specify a single file system

operation. An open system call, for example, would use one fsop_t for each component of
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the target file’s pathname and one for the open request. When multiple operations are

chained together in this manner, all except the last have the FLAG_CHAIN flag set in the

op_flags field of the fsop_t structure. The last operation in the chain has the

FLAG_CHAIN_END flag set. All operations that take a pathname argument must be

broken into chains in the input to the HBench-FS tools.1 The HBench-FS preprocessing

tool adds truncate operations to chains for file and directory remove operations and for

open requests that specify the O_TRUNC flag. This tool also substitutes a create

operation for open operations that have the O_CREAT flag set. In its final output,

HBench-FS collapses each chain to a single record.

The fsop_t structure contains the following fields.

op_type

This field specifies the type of operation described by the record. Table A.1 lists

the valid operation types. Note that some of these operations types are not sup-

ported in the current version of HBench-FS.

op_flags

This field contains one or more flags. Valid flag values are described in Table A.2.

op_time_sec

op_time_nsec

These two fields provide a time stamp (seconds and nanoseconds, respectively)

for the current operation. This indicates the time that the operation was issued in

the original trace. HBench-FS uses these timestamps to determine the elapsed

time between operations and the total time from the beginning to the end of the

trace. Operations that are chained together have the same timestamp. The value

of the timestamp for the first operation in a trace does not matter, as long as sub-

sequent timestamps increase to indicate the passage of time.

1. For maximum usability, HBench-FS should include a preprocessing tool that divides individual operations

into chains. In the current version, however, this functionality has been combined with the tool that parses

the trace data produced by an instrumented kernel.
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/* Descriptor for a file */

typedef struct {
        ino_t   inum;
        u_int   filenamelen;
        char    *filename;
        ino_t   dirinum;
        u_int   dirnamelen;
        char    *dirname;
} file_t;

/* Parameters for an I/O operation */

typedef struct {
        off_t   filesize;       /* File size */
        off_t   offset;         /* Offset for start of I/O */
        u_int   count;          /* Size of I/O in bytes */
} io_t;

/* Settable attributes */

typedef struct {
        u_int   mode;
        u_long  uid;
        u_long  gid;
        u_long  size;
        time_t  atime;
        time_t  mtime;
} attr_t;

/* The fsop_t structure defines the internal format HBench-FS tools use. */

typedef struct {
        u_int           op_type;        /* Operation type */
        u_int           op_flags;       /* Flags */
        time_t          op_time_sec;    /* Time of operation */
        u_int           op_time_nsec;
        pid_t           op_pid;         /* Process ID of calling process */
        u_long          op_client;      /* Client ID */
        u_int           op_packsize;    /* Size of NFS packet */
        u_int           op_open_flags;  /* Flags to open sys call */
        u_int           op_class;       /* General class of operation. */
                                        /*   specifies which of the following */
                                        /*   structures are valid. */
        file_t          op_target;      /* Target file */

 union {
            io_t        op_un_io;       /* Operation will use at most one of */
            attr_t      op_un_attr;     /*   these.  Second file is needed */
            file_t      op_un_file2;    /*   for rename and link. */
        } op_un;
        u_int           op_linklen;     /* Symlink data */
        char            *op_linkdata;

        u_int           subop[NSUBOP];  /* Sub-operations in this one */
        int             relation;       /* Relation to prev. op */
        double          op_latency;     /* Predicted latency of op. (in msec) */
        double          op_latency_real;/* Measured latency of op. (in msec) */
        double          op_dsched;      /* Measured time process was de- */
                                        /* scheduled---runnable w/o running */
        double          op_sleep_time;  /* Measured time process was sleeping */
                                        /* (I.e., blocked) */
} fsop_t;

Figure A.1. Trace Data Structures. This figure shows the C structures that define the trace format used by

the HBench-FS tools. One or more fsop_t structures are used for each operation in the trace.
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Table A.1: Operation Types. This table lists the operation types supported by the HBench-FS trace format.

Note that some of the types are not supported, and some (e.g., OP_WRITECACHE and OP_ROOT) are NFS

operations, rather than system calls.

Table A.2: Flag Values. This table list the legal flag values for the op_flags field of the fsop_t structure.

HBench-FS sets the FLAG_FAIL flag on operations that it expect to fail, for example attempts to open non-

existent files. HBench-FS sets the FLAG_IGNORE flag on operations that it can’t process. This typically

occurs when an operation in the middle of a chain fails. Subsequent operations in that chain are ignored.

Operation Name Operation
Number Description

OP_NULL 0 Null operation.

OP_GETATTR 1 Get Attributes. Used for stat and fstat system calls.

OP_SETATTR 2 Set Attributes. Used for chmod, chown, etc.

OP_LOOKUP 3 Lookup. Resolve one name in a specified directory

OP_READ 4 File read operation

OP_WRITE 5 File write operation

OP_WRITECACHE 6 Not Used

OP_CREATE 7 File create operation.

OP_REMOVE 8 File remove operation.

OP_RENAME 9 File rename operation.

OP_LINK 10 Create link to existing file. Not Supported.

OP_READLINK 11 Read symbolic link. Not Supported.

OP_SYMLINK 12 Create symbolic link. Not Supported.

OP_MKDIR 13 Directory create operation.

OP_RMDIR 14 Directory remove operation

OP_READDIR 15 Directory read operation

OP_STATFS 16 Return file system attributes. Not Supported

OP_ROOT 17 Return handle for root of file system. Not Supported

OP_OPEN 18 File open operation.

OP_OPENDIR 19 Directory open operation.

OP_CLOSE 20 File close operation.

OP_CLOSEDIR 21 Directory close operation.

OP_ACCESS 22 Access system call.

OP_TRUNCATE 23 File truncate operation.

OP_CHDIR 24 Change directory call.

Flag Name Flag Value Description

FLAG_ISFILE 0x001 Target of this operation is a file.

FLAG_ISDIR 0x002 Target of this operation is a directory.

FLAG_ISLINK 0x004 Target of this operation is a symbolic link.

FLAG_FAIL 0x008 This operation fails.

FLAG_CHAIN 0x010 This operation is part of a chain of operations.

FLAG_CHAIN_END 0x020 This is the last operation in a chain

FLAG_IGNORE 0x100 This operation should be ignored.
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op_pid

This field provides an identifier for the process that issued the current operation.

Current versions of HBench-FS do not use this field.

op_client

This field provides an identifier for the client that issued the current operation.

Combined with the op_pid field, above, this should provide a unique identifier for

every job running in a distributed system. As the current version of HBench-FS

only supports workloads running on a single machine, this field is not used.

op_packetsize

This field is not used. It was originally intended to store the size of an NFS request

for traces that were generated from NFS traffic.

op_op_flags

For open requests (OP_OPEN in the op_type field), this field indicates the flags

that were passed to the open request. HBench-FS uses these fields to determine

the proper behavior to simulate for the open request. I.e., whether to create or

truncate the target file.

op_class

This field indicates the class of the operation. HBench-FS divides all file system

operations into six different classes. The class indicates which of the optional

fields (esp. in the op_un field) are valid. Table A.3 shows the possible values for

this field and the mapping from operation types to classes. Because this mapping

is fixed, the class field is redundant. It is a relic from earlier versions of HBench-

FS.

op_target

This sub-structure describes the target file or directory of the operation. It is a

file_t structure, as defined in Figure A.1. This structure contains the inode number

and name of the target file/directory and its parent directory.
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op_un

This is a union of three structures. Table A.3 shows which (if any) of these sub-

structures is valid for each class of operation.

op_linklen

If the operation is type OP_SYMLINK (corresponding to the symlink system call),

this field will contain the length of the symbolic link.

op_linkdata

If the operation is type OP_SYMLINK (corresponding to the symlink system call),

this field is used as a pointer to the link data. I.e., to the pathname contained in

thy symbolic link.

subop

This represents a partial request vector. It contains 17 elements, which are

described in Table A.4. Note that this array does not contain the complete request

vector. The full request vector is not (currently) stored in one place. Other data

used in the request vector is stored in the relation and op_type fields.

relation

This field indicates the relationship (if any) between the current operation and the

previous disk-bound operation. Valid values for this field are listed in Table A.5.

Table A.3: Operation Class Definitions. This table lists the legal values for the op_class field of the fsop_t
structure. For each class, the table lists the operations which belong to that class and the fields in the fsop_t
structure that are valid for operations of that class. For brevity, a complete list of the operations that use

CLASS_SIMPLE is not included here. All operations that don’t appear elsewhere in this table use

CLASS_SIMPLE. For truncate operations, only the filesize field of the io_t substructure is used (i.e.,

Class Name Class
Value Operations Valid Fields

CLASS_SIMPLE 1 All operations not listed in

other classes

CLASS_IO 2 OP_READ, OP_WRITE,

OP_READDIR,

OP_TRUNCATE

op_un.op_un_io

CLASS_ATTR 3 OP_SETATTR op_un.op_un_attr

CLASS_FILE 4 OP_RENAME, OP_LINK op_un.op_un_file2

CLASS_SYMLINK 5 OP_SYMLINK op_linklen, op_linkdata

CLASS_IGNORE 6 OP_NULL,

OP_WRITECACHE,

OP_STATFS, OP_ROOT
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op_latency

This field contains the predicted latency of the operation, in milliseconds.

op_latency_real

This optional field contains the measured latency for the current operation, in mil-

liseconds.

Table A.4: Request Vector Components. This table lists the components of the request vector that are

stored in the subop array in an fsop_t structure. Note that the values 11 and 12 are not used.

Component Name Component
Index Description

SUBOP_WRBLOCKS 0 Total number of blocks written

SUBOP_WRFRAGS 1 Total number of fragments written (only

includes fragments contained in partial

block at end of file)

SUBOP_RDBLOCKS 2 Total number of blocks read

SUBOP_RDFRAGS 3 Total number of fragments read (only

includes fragments contained in partial

block at end of file)

SUBOP_RDMISSBLOCKS 4 Number of blocks read that were not in

buffer cache

SUBOP_RDMISSFRAGS 5 Number of fragments read that were not in

buffer cache

SUBOP_LUHIT 6 Number of lookups hitting in both the

name and attribute caches

SUBOP_LUMISS 7 Number of lookups missing in both the

name and the attribute caches

SUBOP_LUMISSBC 8 Number of lookups missing in both the

name and attribute caches, but where the

name is in the buffer cache

SUBOP_LUATTRHIT 9 Number of lookups hitting in the attribute

cache but missing in the name cache

SUBOP_LUNAMEHIT 10 Number of lookups hitting in the name

cache but missing in the attribute cache

SUBOP_TRUNCCACHED 13 Number of truncate operations with cached

meta-data

SUBOP_TRUNCUNCACHED 14 Number of truncate operations with

uncached meta-data

SUBOP_FILEREMOVE 15 Number of file remove operations

SUBOP_DIRREMOVE 16 Number of directory remove operations

SUBOP_FILECREATE 17 Number of file create operations

SUBOP_DIRCREATE 18 Number of directory create operations
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op_dsched

This optional field contains the measured amount of time (in milliseconds) that

the current operation was not running. This includes all time not spent in the run

state, whether the process is blocked or ready to run and waiting for a processor.

op_sleep_time

This optional field contains the measured amount of time (in milliseconds) that

the current operation spent in the blocked state. This difference between the

op_dsched and op_sleep_time fields is the amount of time that the calling process

spent runnable, but waiting for a processor.

Table A.5: Relationship Values. This table lists the valid values for the relation field of the fsop_t structure.

Table A.6: String Order. This table shows the order of strings in a trace file. The directory names may be

either absolute or relative pathnames. Note that a second file and directory name can never appear in the

same trace record as a symbolic link.

Relation Name Relation
Value Description

REL_INVALID 0 The relation field is uninitialized.

REL_SAME 1 The targets of the current and previous operations are

the same.

REL_CHILD 4 The target of the previous operation is a child of the tar-

get of the current operation.

REL_PARENT 5 The target of the previous operation is the parent direc-

tory of the target of the current operation.

REL_SAMEDIR 6 The targets of the current and previous operations are

in the same directory.

REL_UNKNOWN 7 There is no relationship between the targets of the cur-

rent and previous operations.

REL_CACHED 8 The current operation is satisfied out of the cache.

String Description

op_target.filename Name of target file.

op_target.dirname Name of target directory.

op_un.op_un_file2.filename Name of second file.

op_un.op_un_file2.dirname Name of second file’s directory

op_linkdata Contents of symbolic link.
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Each record in a trace file may be followed by one or more strings. There are five different

strings that may be associated with a trace record—the file and directory names for the

target file, the file and directory names for a second file (stored in op_un.op_un_file2 in the

case of link, and rename operations), and the contents of a symbolic link. For each of these

strings the fsop_t structure contains a char * pointer and an unsigned integer field contain-

ing the length of the string. If a string is present in the trace file, the corresponding length

field will be non-zero. Any strings that are present after a record are always stored in

fixed order, shown in Table A.6.

A.2 Trace Library

In practice, there is seldom a need to directly manipulate trace files. All of the HBench-FS

tools share a library of common functions for reading and writing trace records. This

library can also be used to write filters to either pre-process or post-process workload

profiles. The primary functions in the trace library are described in the following para-

graphs.

fsop_t *
new_op (void)

This function allocates memory for a trace record, initializes the new record to

contain null data, and returns a pointer to the new record.

fsop_t *
read_op (int fd)

This function reads a trace record from the file descriptor specified by fd. It reads

the record and any associated strings from the current offset in the target file, allo-

cating memory for them as needed. It returns a pointer to the new record or

NULL if it reaches the end of the input file.

void
write_op (int fd, fsop_t *record)

This function writes the trace record specified by record to the file descriptor spec-

ified by fd. It writes the trace record along with any strings it contains.
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void
delete_op (fsop_t *record)

This function deletes the trace record specified by record. It frees all storage allo-

cated to the record itself as well as any strings it contains.

void
print_op (FILE *output, fsop_t record)

This function prints a human-readable summary of the contents of a trace record.

The standard paradigm for using these functions is to iterate over a trace reading each

record (with read_op), processing it, possibly writing it (with write_op), and then deleting

it (with delete_op). Figure A.2, shows a simple program that post-processes a trace to

determine the predicted cache miss rate.

#include <stdio.h>
#include <sys/types.h>
#include "trace.h"

main (argc, argv)
int argc;
char *argv[];
{

fsop_t  *rec;
int     read_blocks = 0;
int     read_miss_blocks = 0;

while ((rec = read_op(0)) != NULL) {
if (rec->op_flags & FLAG_IGNORE) {

delete_op(rec);
continue;

}

read_blocks += rec->subop[SUBOP_RDBLOCKS];
read_miss_blocks += rec->subop[SUBOP_RDMISSBLOCKS];
delete_op (rec);

        }

        printf ("Miss rate = %4.3f\n",
(double) read_miss_blocks / (double) read_blocks);

}

Figure A.2. Sample Trace-Processing Program. This sample program demonstrates the use of the trace

library functions. The program iterates through the records in a trace file, reading them from standard

input. It sums the total number of blocks read across all operations, along with the total number of reads

that miss in the buffer cache. When it finishes processing the trace file, the program prints the predicted

cache miss rate for the workload.
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A.3 Snapshot Format

In addition to a file system trace, HBench-FS also requires a snapshot of the file system

from which the trace was collected. Unlike the trace format, the snapshot uses a simple

text format, typically generated by post-processing the output from the UNIX ls –liArR

command. The snapshot contains a listing of the files in each directory on the target file

system. Each listing starts with the pathname of the directory (relative to the root of the

file system) on a single line. Each following line describes one entry in that directory.

These lines have the format:

inum type size name [link]

The inum field contains the inode number of the file. The type field specifies the type of

the file (0 for regular files, 1 for directories, or 2 for symbolic links). The size field contains

the file size in bytes. The name field is the name of the file. The optional link field contains

the link data if the file is a symbolic link.

The last line of the directory listing is a line containing two tilde characters (i.e.,

“~~”).

The directories are typically listed in depth-first order, as that is the order they

appear in the output from the ls command. Any order is acceptable, as long as no

directory is listed until after its parent directory has been listed.

The first line of the snapshot file necessarily contains the name of the root

directory. In addition to the name, this line also contains the inode number and size of

that directory.

Figure A.3 contains a small sample snapshot.
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A.4 System Profile Format

The system profile is a text file containing the results of running the HBench-FS

microbenchmark suite on a file system. Each line of this file contains the results of a single

microbenchmark. The lines are of the format:

benchmark result

The benchmark field contains the name of a benchmark as listed in the first column

of Table 4.4. The result field contains the benchmark result in the units listed in the third

./ 2 512
21376 1 512 src
32064 1 512 lib
42752 1 512 include
10688 1 512 bin
~~
./src/
21386 0 3196 trim.c
21385 0 1958 total_time.c
21384 0 907 summary.c
21380 0 445 print_trace.c
21378 0 19124 logparse.c
21377 2 10 include ../include
53440 1 512 RCS
21388 0 1166 Makefile
~~
./src/RCS/
53446 0 4626 trim.c,v
53447 0 1056 summary.c,v
53443 0 669 print_trace.c,v
53445 0 23779 logparse.c,v
53441 0 547 Makefile,v
~~
./lib/
32065 0 26152 libfssim.a
~~
./include/
42753 0 7502 trace.h
~~
./bin/
10697 0 31288 trim
10696 0 29196 total_time
10689 0 51712 timing
10695 0 28420 summary
10690 0 161918 simulator
10694 0 28114 print_trace
10693 0 54927 logparse
10692 0 83295 computeRelation
10691 0 83236 computeInodes

Figure A.3. Sample Snapshot. This figure shows a small sample snapshot in the format expected by

HBench-FS. The target file system contains four top level directories, src, lib, include, and bin, each of which

contains a variety of files.
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column of Table 4.4. The system profile may contain comment lines starting with the ‘#’

character.

This file is generated automatically by the Makefile that controls the running of the

HBench-FS microbenchmarks.
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