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Abstract

This paper presents a new approach in application of the Fourier transform to the complex error function resulting in
an efficient rational approximation. Specifically, the computational test shows that with only 17 summation terms the
obtained rational approximation of the complex error function provides the average accuracy 10−15 over the most domain
of practical importance 0 ≤ x ≤ 40, 000 and 10−4 ≤ y ≤ 102 required for the HITRAN-based spectroscopic applica-
tions. Since the rational approximation does not contain trigonometric or exponential functions dependent upon the input
parameters x and y, it is rapid in computation. Such an example demonstrates that the considered methodology of the
Fourier transform may be advantageous in practical applications.
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1. Introduction

The forward and inverse Fourier transforms can be defined as (Bracewell, 2000; Hansen, 2014)

F (ν) = F { f (t)} (ν) =
∞∫
−∞

f (t) e−2πiνtdt (1a)

and

f (t) = F −1 {F (ν)} (t) =
∞∫
−∞

F (ν) e2πiνtdν, (1b)

respectfully. Approximation theory based on the Fourier trigonometric series for functions or signals remains a topi-
cal subject in mathematical analysis and many new efficient methodologies have been reported in the recent scientific
literature (see for example Mishra & Mishra, 2012; Mishra et al. 2013; Boyd, 2013).

In our recent publication (Abrarov & Quine, 2015d) we have shown that a sampling with the Gaussian function of the
kind he−(t/c)2

/
(
c
√
π
)

leads to the trigonometric approximations for the forward

F (ν) = F { f (t)} (ν) ≈ he−(πcν)2
N∑

n=−N

f (nh) e−2πiνnh (2a)

and inverse Fourier transforms

f (t) = F −1 {F (ν)} (t) ≈ he−(πct)2
N∑

n=−N

F (nh) e2πitnh, (2b)

where h is the step between two adjacent sampling points and c is the fitting parameter, e−2πiνnh = cos (2πiνnh) −
i sin (2πiνnh) and e2πitnh = cos (2πitnh) + i sin (2πitnh). The parameters h, c and N in the equations (2a) and (2b) may
be the same in the forward and inverse Fourier transforms only when we imply the most favorable conditions h << 1,
c << 1 and N >> 1. In practical tasks, however, these conditions may be compromised in order to reduce the number of
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the summation terms. As a result, these parameters may not be necessarily equal to each other in the forward and inverse
Fourier transforms. Consequently, it is convenient to rewrite two equations above in form

F (ν) = F { f (t)} (ν) ≈ h f e−(πc f ν)2
M∑

m=−M

f
(
mh f

)
e−2πiνmh f

and

f (t) = F −1 {F (ν)} (t) ≈ hie−(πcit)2
N∑

n=−N

F (nhi) e2πitnhi ,

where h f , c f , M and hi, ci, N are the steps, the fitting parameters and the integers corresponding to the forward and inverse
Fourier transforms, respectively.

The presence of the damping functions e−(πc f ν)2

and e−(πcit)2
in the equations above excludes periodicity of the approxi-

mated functions f (t) and F (ν). Consequently, a solitary wavelet (or non-periodic pulse) can be effectively approximated
in the Fourier transform. However, when we take c f = ci = 0, the right side of these equations become periodic with
corresponding periods 1/h f , 1/hi and represent the Fourier-type expansion series as follows

F (ν) ≈ h f

M∑
m=−M

f
(
mh f

)
e−2πiνmh f , − 1

2h f
≤ ν ≤ 1

2h f
, (3a)

and

f (t) ≈ hi

N∑
n=−N

F (nhi) e2πitnhi , − 1
2hi
≤ t ≤ 1

2hi
. (3b)

It should be noted that if the integral (1a) is not analytically integrable, then the function f (t) can be approximated by
substituting equation (3a) into (3b). This substitution yields

f (t) ≈ hi

N∑
n=−N

h f

M∑
m=−M

f
(
mh f

)
e−2πinhimh f

︸                              ︷︷                              ︸
≈F(nhi)

e2πitnhi

= hih f

N∑
n=−N

M∑
m=−M

f
(
mh f

)
e2πinhi(t−mh f ), − 1

2hi
≤ t ≤ 1

2hi
.

In this work we show a new application methodology of the Fourier transform to the complex error function. Due to
representation of the complex error function as a rational approximation, it is rapid in computation. Furthermore, with
only 17 summation terms the obtained rational approximation of the complex error function provides accuracy 10−15 over
the most domain of practical importance 0 ≤ x ≤ 40, 000∩10−4 ≤ y ≤ 102 required for applications utilizing the HITRAN
molecular spectroscopic database (Rothman et al., 2013).

2. Derivation

2.1 Function Overview

The complex error function, also known as the Faddeeva function or the Kramp function, can be defined as (Faddeyeva &
Terent’ev, 1961; Gautschi, 1970; Abramowitz & Stegun, 1972; Armstrong & Nicholls, 1972; Schreier, 1992)

w (z) = e−z2

1 + 2i
√
π

z∫
0

et2
dt

 .
where z = x + iy is the complex argument. The complex error function is a solution of the differential equation (Schreier,
1992)

w′ (z) + 2zw (z) =
2i
√
π
,

with initial condition w (0) = 1.

The complex error function is closely related to a family of the special functions. Among them the most important one is
the complex probability function (Armstrong & Nicholls, 1972; Schreier, 1992; Weideman, 1994)

W (z) = PV
i
π

∞∫
−∞

e−t2

z − t
dt
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or

W (x, y) = PV
i
π

∞∫
−∞

e−t2

(x + iy) − t
dt.

This principal value integral implies that the complex probability function has no discontinuity at y = 0 and x = t. In
particular,

lim W (x, y→ 0) = e−x2
+

2i
√
π

daw (x) , (4)

where daw (x) is the Dawson’s integral that will be briefly introduced later. There is a direct relationship between complex
error function and complex probability function (Armstrong & Nicholls, 1972; Schreier, 1992)

W (z) = w (z) , Im [z] ≥ 0. (5)

The real part of the complex probability function, denoted as K (x, y), is known as the Voigt function. Mathematically,
the Voigt function represents a convolution integral of the Gaussian and Lorentzian distributions (Armstrong & Nicholls,
1972; Schreier, 1992; Letchworth & Benner, 2007; Pagnini & Mainardi, 2010; Abrarov et al., 2010)

K (x, y) = PV
y
π

∞∫
−∞

e−t2

y2 + (x − t)2 dt,

where the principal value integral also implies that it has no discontinuity at y = 0 and x = t. Specifically, from equation
(4) it follows that

lim K (x, y→ 0) = e−x2
.

At non-negative argument y the real part of the complex error function is also the Voigt function in accordance with
identity (5). The Voigt function is widely used in many spectroscopic applications as it describes the line broadening
effects (Edwards, 1992; Quine & Drummond, 2002; Christensen et al., 2012; Berk, 2013; Quine & Abrarov, 2013).
Therefore, the application of the complex error function is very significant in quantitative spectroscopy.

Other closely related functions are the error function of complex argument (Schreier, 1992)

w (z) = e−z2
erfc (−iz) = e−z2

[1 − erf (−iz)] ⇔ erf (z) = 1 − e−z2
w (iz) ,

the plasma dispersion function (Fried & Conte, 1961)

Z (z) = PV
1
√
π

∞∫
−∞

e−t2

t − z
dt = i

√
πw (z)

the Dawson’s integral (Cody, 1970; McCabe, 1974; Rybicki, 1989; Boyd, 2008; Abrarov & Quine, 2015c)

daw (z) = e−z2

z∫
0

et2
dt =
√
π
−e−z2

+ w (z)
2i

,

the Fresnel integral (Abramowitz & Stegun, 1972; McKenna, 1984)

Fr (z) =

z∫
0

ei(π/2)t2
dt

= (1 + i)
[
1 − ei(π/2)z2

w
(√
π (1 + i) z/2

)]
/2

and the normal distribution function (Weisstein, 2003)

Φ (z) =
1
√

2π

z∫
0

e−t2/2dt =
1
2

erf
(

z
√

2

)

=
1
2

[
1 − e−z2/2w

(
iz
√

2

)]
.
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It is not difficult to show that the complex error function can be represented in an alternative form (see equation (3)
in (Srivastava & Miller, 1987) and (Srivastava & Chen, 1992), see also Appendix A in (Abrarov & Quine, 2015c) for
derivation)

w (x, y) =
1
√
π

∞∫
0

exp
(
−t2/4

)
exp (−yt) exp (ixt) dt. (6)

This representation of the complex error function will be used for derivation of a rational approximation.

2.2 Rational Approximation

In our recent publications we have shown a new technique to obtain a rational approximation for the integrals of kind
(Abrarov & Quine, 2014; Abrarov & Quine, 2015b)

∞∫
0

e−t2
f (t) dt.

We apply this approach together with the Fourier transform methodology discussed above in the Introduction.

We can use either of equation (3a) or (3b). For example, we may choose the equation (3b) corresponding to the inverse
Fourier transform. Consider the function f (t) = e−t2/4. Let us find first its forward Fourier transform by substituting
f (t) = e−t2/4 into equation (1a). These leads to

F (ν) =

∞∫
−∞

e−t2/4e−2πivtdt = 2
√
πe−(2πν)2

.

Now substituting 2
√
πe−(2πν)2

into equation (3b) yields the following approximation for the exponential function

e−t2/4 ≈ 2
√
πhi

N∑
n=−N

e−(2πnhi)2
e2πitnhi , − 1

2hi
≤ t ≤ 1

2hi
,

or

e−t2/4 ≈ 2
√
πhi

N∑
n=−N

e−(2πnhi)2
cos (2πtnhi), − 1

2hi
≤ t ≤ 1

2hi
. (7)

Taking into account that
e−(2π0hi)2

cos (2πt0hi) = 1

and
−1∑

n=−N

e−(2πnhi)2
cos (2πtnhi) =

N∑
n=1

e−(2πnhi)2
cos (2πtnhi)

the approximation (7) can be simplified as given by

e−t2/4 ≈ 2
√
πhi

1 + 2
N∑

n=1

e−(2πnhi)2
cos (2πtnhi)

 , − 1
2hi
≤ t ≤ 1

2hi
. (8)

The right side limitation t ≤ 1/ (2hi) along the positive t-axis in equation (8) can be readily excluded by multiplying both
its sides to exp (−σt) if a constant σ is positive and sufficiently large. This can be explained by considering Fig. 1 that
shows two functions computed according to right side of equation (8) at σ = 0.1 (blue curve) and σ = 0.2 (red curve).
For example, at σ = 0.1 we can observe two additional peaks at 1/hi and 2/hi (blue curve). However, as σ increases
the additional peaks are suppressed stronger to zero due to multiplication to the damping exponential function exp (−σt).
As a result, at σ = 0.2 only a single additional peak at 1/hi remains visible (red curve). By σ & 1 all additional peaks
completely vanish and, therefore, do not contribute to error in integration. Consequently, if the constant σ is large enough,
say approximately equal or greater than 1, we can write the approximation

e−t2/4e−σt ≈ 2
√
πhi

1 + 2
N∑

n=1

e−(2πnhi)2
cos (2πtnhi)

 e−σt, σ >∼ 1,
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Figure 1. Function approximation for e−t2/4e−σt at σ = 0.1 (blue curve) and σ = 0.2
(red curve). The dashed and dot-dashed curves are the exponential functions e−0.1t

and e−0.2t, respectively.

that remains always valid without any limitation along the positive t-axis. Assuming y ≥ 0 we, therefore, can write now

e−t2/4e−(y+σ)t ≈ 2
√
πhi

1 + 2
N∑

n=1

e−(2πnhi)2
cos (2πtnhi)

 e−(y+σ)t, σ >∼ 1. (9)

Since e−t2/4e−yt = eσ
2
e−(t−2σ)2/4e−(y+σ)t from approximation (9) we obtain

e−t2/4e−yt ≈ 2
√
πhieσ

2

1 + 2
N∑

n=1

e−(2πnhi)2
cos (2πnhi (t − 2σ))

 e−(y+σ)t , σ >∼ 1. (10)

Once again, due to presence of the rapidly damping exponential multiplier e−(y+σ)t this approximation is valid without
any limitation along the positive t-axis. As the peak of the function e−(t−2σ)2/4 is shifted towards right with respect to the
origin, we may regard to the value σ as the shift constant.

Finally, substituting approximation (10) into integral (6) yields

w (z) ≈ i
2hieσ

2

z + iσ
+

N∑
n=1

An − i (z + iσ) Bn

C2
n − (z + iσ)2 , (11)

where
An = 8πh2

i neσ
2−(2πhin)2

sin (4πhinσ) ,

Bn = 4hieσ
2−(2πhin)2

cos (4πhinσ)

and
Cn = 2πhin.

As the expansion coefficients An, Bn and Cn are independent of the argument z, the obtained equation (11) is a rational
approximation.

In algorithmic implementation it is more convenient to use ψ-function defined as

ψ (z) = i
2hieσ

2

z
+

N∑
n=1

An − izBn

C2
n − z2

⇒ w (z) ≈ ψ (z + iσ) .

(12)
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2.3 Computational Procedure and Error Analysis

Due to a remarkable property of the complex error function (McKenna, 1984; Zaghloul & Ali, 2011)

w (−z) = 2e−z2 − w (z) , (13)

it is sufficient to consider only I and II quadrants in order to cover the entire complex plane. This can be seen explicitly
by representation of the identity (13) in form

w (±x,− |y|) = 2e−(∓x+i|y|)2 − w (∓x,+ |y|) .

Thus, if the parameter y is negative we can simply take it by absolute value and then compute the complex error function
according to right side of this equation. Therefore, further we will always assume that y ≥ 0.

When the argument z is large enough by absolute value, say |x + iy| >∼ 15, we can truncate the Laplace continued fraction
(Gautschi, 1970; Jones & Thron, 1988)

w (z) =
µ0

z−
1/2
z−

1
z−

3/2
z−

2
z−

5/2
z−

3
z−

7/2
z− ... , µ0 = i/π.

Approximation based on the Laplace continued fraction is rapid in computation. However, its accuracy deteriorates as the
argument z decreases by absolute value.

Figure 2. The logarithm of the relative error log10∆Re for the real part of the rational
approximation (12) over the domain 0 ≤ x ≤ 15 ∩ 10−6 ≤ y ≤ 104.

There are different approximations for computation of the narrow-band domain 0 ≤ x ≤ 15 and 0 ≤ y < 10−6 (Abrarov &
Quine, 2014; Amamou, 2013; Abrarov & Quine, 2015a). We can apply, for example, an approximation proposed in our
recent work (Abrarov & Quine, 2014)

w (x, y << 1) ≈
(
1 − y

ymin

)
e−x2
+

y
ymin

K (x, ymin) + iL (x, ymin) , ymin << 1,

where L (x, ymin) = Im
[
w (x, ymin)

]
and ymin can be taken equal to 10−5. It has been shown that this approximation can

provide accuracy better than 10−9 over the narrow-band domain 0 ≤ x ≤ 15 and 0 ≤ y < 10−6.

The domain |x + iy| ≤ 15∩ y ≥ 10−6 is the most difficult for computation. Nevertheless, with only 17 summation terms (at
N = 16) the proposed rational approximation (12) covers this domain providing high-accuracy and rapid computation. In
computational procedure we have to choose properly the margin value νm for the exponential function e−(2πν)2

that appears
from the forward Fourier transform F (ν) = 2

√
πe−(2πν)2

. As it has been justified by Melone et al. 1988, the margin value
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for integration involving the exponential function e−t2
can be taken as t = tm = 6. We can use this result in order to

determine the required value by solving the following equation with respect to the variable ν as follows

e−(2πν)2
= e−t2

∣∣∣∣
t=6
⇒ (2πν)2 = 36.

There are two solutions for this equation ν1,2 = ±6/ (2π). Consequently, the margin value for the exponential function
e−(2πν)2

can be taken as νm = 6/ (2π). As a parameter hi is the step between two adjacent sampling points along positive
ν-axis (see (Abrarov & Quine 2015d) for details), its value can be calculated as hi = νm/N. Taking N = 16 we can find
that hi = νm/16 ≈ 5.968310365946075 × 10−2.

In order to quantify the accuracy of the rational approximation (12) we may define the relative errors

∆Re =

∣∣∣∣∣∣∣∣
Re

[
wre f (x, y)

]
− Re

[
w (x, y)

]
Re

[
wre f (x, y)

]
∣∣∣∣∣∣∣∣

and

∆Im =

∣∣∣∣∣∣∣∣
Im

[
wre f (x, y)

]
− Im

[
w (x, y)

]
Im

[
wre f (x, y)

]
∣∣∣∣∣∣∣∣ ,

where wre f (x, y) is the reference, for the real and imaginary parts, respectively. The highly accurate reference values can
be generated by using, for example, Algorithm 680 (Poppe & Wijers, 1990a; Poppe & Wijers, 1990b), recently published
Algorithm 916 (Zaghloul & Ali, 2011) or C++ code from the RooFit package, CERN’s library (Karbach et al., 2014).

Figure 2 shows log10∆Re for the real part of the complex error function computed over the domain 0 ≤ x ≤ 15 and
10−6 ≤ y ≤ 15 at N = 16, σ = 1.5 and hi = 5.968310365946075 × 10−2. As we can see from this figure, the rational
approximation (12) provides accuracy 10−15 (blue color) over the most of this domain. Although accuracy deteriorates
with decreasing y, it remains better than 10−9 (red color) in the range 10−4 ≤ y ≤ 10−6. This indicates that at the same
N = 16 the accuracy of the rational approximation (12) is by several orders of the magnitude higher than the accuracy of
the Weideman’s rational approximation (see equation 38(I) in Weideman, 1994).

Figure 3. The logarithm of the relative error log10∆Im for the imaginary part of the
rational approximation (12) over the domain 0 ≤ x ≤ 15 ∩ 10−6 ≤ y ≤ 104.

Figure 3 illustrates log10∆Im for the imaginary part of the complex error function also computed over the domain 0 ≤ x ≤
15 and 10−6 ≤ y ≤ 15 at N = 16, σ = 1.5 and hi = 5.968310365946075 × 10−2. One can see that in the imaginary part
the accuracy is also highly accurate 10−15 (blue color) over the most domain. There is only a small area 0 ≤ x < 1 and
10−6 ≤ y ≤ 10−4 near the origin where the accuracy deteriorates as the parameters x and y both tend to zero. Nevertheless,
the accuracy in this area still remains high and better than 10−9 (red color).
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The computational test reveals that with only 17 summation terms (at N = 16) the rational approximation (12) alone
can cover the entire HITRAN domain 0 ≤ x ≤ 40, 000 ∩ 10−4 ≤ y ≤ 102 providing average accuracy 10−15 for an
input array consisting of 3 × 107 elements. Algorithmic implementation of the rational approximation (12) results to the
same computational speed as that of described in our recent work where we proposed a sampling by incomplete cosine
expansion of the sinc function to approximate the complex error function (Abrarov & Quine, 2015b).

A Matlab subroutine code that covers the HITRAN domain with high-accuracy is presented in Appendix A.

3. Conclusion

We present a new efficient rational approximation to the complex error function by application of the Fourier transform
that provides computationally rapid and highly accurate results. The computational test we performed with only 17
summation terms shows that the accuracy of the rational approximation of the complex error function is 10−15 over the
most domain of practical importance. In particular, the proposed rational approximation of the complex error function
alone can cover with high accuracy the entire domain 0 ≤ x ≤ 40, 000 ∩ 10−4 ≤ y ≤ 102 required for the HITRAN-based
spectroscopic applications.
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Appendix A

function VF = comperf(z)

% This subroutine function file computes the complex error function, also

% known as the Faddeeva function. It covers the entire HITRAN domain

% 0 <= x <= 40,000 and 10ˆ-4 <= y <= 10ˆ2. However, it may be used only in

% the most difficult domain |x + 1i*y| <= 15 and y > = 10ˆ-6. See the

% article that describes how the entire complex plain can be covered.

% The code is written by Sanjar M. Abrarov and Brendan M. Quine, York

% University, October, 2015.

if any(imag(z) < 10ˆ-6)

disp(’One or more imag(z) is less than 10ˆ-6. Computation terminated.’)

VF = NaN;

return

end

num = 16; % number of summation terms is 16 + 1 = 17

vm = 6/(2*pi); % margin value

hi = vm/num; % sampling step

sig = 1.5; % the shift constant

n = 1:num; % define array n

% Define the expansion coefficients

An = 8*pi*hiˆ2*n.*exp(sigˆ2 - (2*pi*hi*n).ˆ2).*sin(4*pi*hi*n*sig);

Bn = 4*hi*exp(sigˆ2 - (2*pi*hi*n).ˆ2).*cos(4*pi*hi*n*sig);

Cn = 2*pi*hi*n;

z = z + 1i*sig; % redefine input z (see formula (12) for the psi-function)

zz = z.ˆ2;

VF = 1i*(2*hi*exp(sigˆ2))./z; % define first term

for n = 1:num

VF = VF + (An(n) - 1i*z*Bn(n))./(Cn(n)ˆ2 - zz);

end

end
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