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Abstract. A generalized iterative regularization procedure based on the total variation penal-
ization is introduced for image denoising models with non-quadratic convex fidelity terms. By using
a suitable sequence of penalty parameters we solve the issue of solvability of minimization problems
arising in each step of the iterative procedure, which has been encountered in a recently developed
iterative total variation procedure Furthermore, we obtain rigorous convergence results for exact and
noisy data.

We test the behaviour of the algorithm on real images in several numerical experiments using
L1 and L2 fitting terms. Moreover, we compare the results with other state-of-the art multiscale
techniques for total variation based image restoration.
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1. Introduction. The aim of this paper is to generalize the iterative regulariza-
tion procedure (cf. [10]) for variational models with convex fidelity functionals based
on the use of the Bregman distance (cf. [2, 5]). In particular we focus on variational
models arising in image recovery. Among different ways to recover a distorted image,
one of the best known and most influential methods is the total variation based model
of Rudin, Osher, and Fatemi(ROF) (cf.[12]). The idea behind the model is to exhibit
the reconstructed image as the minimizer of an energy functional:

u = arg min
u∈BV (Ω)

{|u|BV + λ||u− f ||2L2

}
. (1.1)

for a suitable parameter λ > 0. Here Ω is a domain in RN with Lipschitz boundary
modeling the image region, e.g. a computer screen.

The function f represents the observed and possibly noisy image, which an ele-
ment of L2(Ω). The regularization functional is the BV -seminorm, defined via

|u|BV = sup
|g|∞<=1,g∈C1

c (Ω)2

∫

Ω

u(∇ · g)dx., (1.2)

where |g| =
√

g2
1 + g2

2 and C1
c (Ω) denotes the class of continuously differentiable

functions of compact support in Ω. The key feature of total variation regularization
is the fact that it allows for (and even favours) discontinuous solutions, i.e., images
with sharp edges. Nevertheless, this regularization suppresses oscillations and can
still eliminate high-frequency noise.

However, the ROF model (1.1) has certain limitations. Meyer has performed a
general analysis for standard ROF in [9]. Defining the (dual) space G as the distri-
butional closure of the set

{
w = ∂xg1 + ∂yg2 = ∇ · g | g ∈ C1

c (Ω)2
}

,
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equipped with the norm

||w||∗ = inf
g,w=∇·g

(
ess sup

x
|g(x)|

)
,

Meyer provided arguments in favour of considering elements of this dual space G can
be regarded as textures. He also showed that for the decompostionf = u + v, with u
being the minimizer of (1.1),

||f ||∗ < 1
2λ ⇒ u = 0, v = f ;

||f ||∗ ≥ 1
2λ ⇒ ||v||∗ = 1

2λ ,
∫

uv = 1
2λ |u|BV .

The term v that represents noise is usually ignored; however, it often contains textures.
In order to preserve textures, Meyer suggested the modified variational problem

u = arg min
u∈BV (Ω)

{|u|BV + λ||f − u||∗} , (1.3)

whose computational solution is a rather difficult task because of the nature of the
norm || · ||∗ (cf. [1, 6] for a detailed discussion).

We also mention here another version of the ROF model that has been studied
recently by Chan and Esedoglu [4] (see also the references therein), who used the L1

norm instead the square of L2 norm as in ROF, as a measure of fidelity between the
observed and denoised images. Given an observed image f ∈ L1(Ω), this model is
based on the following variational problem:

u = arg min
u∈BV (Ω)

{|u|BV + λ||u− f ||L1} . (1.4)

Even though this minimization problem may have a lack of uniqueness and continuous
dependence on data is not clear, it has many desirable and some unexpected conse-
quences in applications such as reconstruction of binary images, multiscale image
decompositon (cf. [13]), and data driven parameter selection.

Both these generalizations of ROF with respect to the fidelity functional can yield
an improvement with respect to some aspects, but they share the systematic error
yielding a decrease in the total variation and therefore a loss of information in any
case. In order to overcome this issue an iterative version of Tikhonov regularization
has been introduced in [10], the Bregman distance (cf. [5]) is applied to iteratively
refine a degraded image. The procedure of the iterative scheme is to start with u0 = 0
and then to obtain an iterative improved reconstructed image un by the following
minimization

uk = arg min
u∈BV

{
H(u, f) + λ−1DJ (u, uk−1)

}
, (1.5)

where H(u, f) = 1
2‖u− f‖2L2 , J(u) = |u|BV and

DJ (x, y) = J(x)− J(y)− 〈x− y, ∂J(y)〉, (1.6)

is the so-called Bregman distance related to a differentiable functional J : Rn → Rn.
Here 〈·, ·〉 denotes the inner product in Rn and ∂J(y) is the gradient of J at the point
y. If J is non-differentiable but still convex (like the total variation functional) an
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analogous algorithm can still be used, but now with the generalized Bregman distance
(cf .[7])

DJ (x, y) = J(x)− J(y)− 〈x− y, p〉, p ∈ ∂J(y), (1.7)

now with ∂J denoting the subgradient.
Using (1.5) it has been shown that the sequence {uk} converges monotonically

in L2 to the noisy image f . More importantly, as k increases, for k ≤ k̄ and suffi-
ciently small λ, the Bregman distance between uk and the true noise free image ũ is
decreasing. Here k̄ is defined as

max{ k ∈ N|H(uk, f) > τH(ũ, f) } (1.8)

where τ > 1. We refer to [10] for more details of the analysis. Comparing with the
denoised image from the ROF model, we see that this iterative algorithm improves
the results significantly. Moreover, this algorithm is extremely easy to implement
numerically. We just add back the noise plus texture term v at every iteration (see
[10]). Thus, recently attention has been paid to applying the iterative regularization
procedure based on the Bregman distance for different fidelity terms or regularization
terms. In [8], He, Marquina and Osher have applied the iterative idea to the blind
deconvolution problem to recover finer scales. In that paper, the fidelity term was
taken to H(u, f) = ||K ∗ u− f ||2L2 , where K is a convolution operator.

A key observation in the analysis of the iterative scheme is a rewritten version
as the generalization of proximal point or Bregman iterations (cf. e.g. [2, 5]). These
methods are usually used to solve problems of the form

min{g(u) : u ∈ Rn},
where g : Rn 7−→ (−∞,∞] is a proper, lower semi-continuous convex function. Prox-
imal point methods generate a sequence {uk} from the minimization problems

uk = arg min
u∈Rn

{
g(u) + λ−1

k DJ(u, uk−1)
}

. (1.9)

In general, the convergence analysis of proximal point algorithms has two main re-
quirements:

• lim infk→∞{λk :≥ 0} > 0;
• f is bounded below, and the iterative scheme generates a sequence {uk} such

that uk ∈ Rn for all k.
The second assumption means that a solution of the minimization problem (1.9)
exists, which is however not straight-forward to show for many important cases. We
shall introduce our a modified model with suitable decay of the penalty parameters
which allows to prove the existence of the minimizers in Section 2. Furthermore,
following the theoretical proof in [10], monotonicity and convergence theorems are
also obtained in the same section. In Section 3, some numerical results are given
using various fidelity functionals H while the regularization term is kept as BV term.
Comparisons with other methods of similar spirit are also presented.

2. Analysis of a Modified Iterative Regularization Procedure. In general
it is quite easy to generalize the iterative regularization algorithm to variational models
with a different regularization functional J , as long as this functional has suitable
lower-semicontinuity and compactness properties in some topology (cf. [10]). The
analysis of the algorithm (with respect to well-definedness, convergence, regularization
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properties) can be transfered in a one-to-one way, only computational schemes have
to be adapted to the specific form of the functional.

By far more challenging is the generalization of the procedure with respect to
the fidelity term H. Of course, one can just write down (1.5) and try to solve the
minimization problems in each step. However, the well-definedness of this procedure is
not clear if H is not quadratic, since only in the quadratic each minimization problem
in (1.5) can be rewritten in the same form as (1.1) and corresponding existence and
uniqueness results for minimizers can be carried over.

2.1. Generalization of the Fidelity Term: A Modified Model. Inspired by
Scherzer and Groetsch (cf.[14]) and Tadmor, Nezzar and Vese (cf.[15]), who multiplied
the parameter λ by two after each iteration step, we formulate a new iterative total
variation regularization as

uk ∈ arg min
u∈BV

E(u, uk−1, f) := arg min
u∈BV

{
H(u, f) +

1
2k−1λ

DJ(u, uk−1)
}

(2.1)

where J(u) satisfies the conditions assumed above, and H(u, f) := h(u − f) with h
being a nonnegative, convex, and positively homogeneous functional, which is contin-
uous with respect to weak-* convergence in BV . Moreover, we assume that h(c) does
not vanish for constant functions c 6= 0, so that h(u) + |u|BV is indeed an equivalent
norm on BV (Ω). For convenience we set u−1 = 0 and p−1 = 0 so that u0 is defined
as the minimizer of H(u, f)+2J(u)

λ . Using this new construction, we are able to over-
come the problem of lower boundedness and thus obtain well-definedness in Section
2.2 and prove some monotonicity and convergence theorems in Section 2.3.

The models in [15, 14], which inspire our setting, did not use a proximal point
iteration but instead used Tikhonov-Morozov iteration for which the following con-
vergence analysis does not apply. The difference is that one replaces DJ(u, uk−1) in
(2.1) by J(u − uk−1). We call this Tikhonov-Morozov iteration with the multiscale
coefficient alone a T-N-V method even if H(u, f) is not the L2 square fidelity term as
used in the original papers.

We mention that the multiscale decomposition of T-N-V concerned the function
u directly, in [15] the method was even set up as a sequence of minimization problems
for the update vk = uk − uk−1. For choosing λ constant, one would obtain vk ≡ 0 for
k ≥ 1 and hence, λ has to be decreased in order to access small scale features that have
been eliminated in the previous steps. Our model (2.1) can rather be considered as a
multiscale decomposition for the dual variable pk. Note that the optimality condition
for the variational problem in (2.1) reads

pk − pk−1 ∈ −2k−1λ∂uH(uk, f),

and hence yields the update for k. In this case the dyadic choice is not as obvious.
For an arbitrary variable choice λk we obtain (after summation of the optimality
conditions and using the notation qj ∈ ∂uH(uj , f))

pk = p0 +
k−1∑

j=1

λjqj .

In the quadratic case H(uj − f) = ‖uj − f‖2, the subgradient is single valued and
given by qj = 2(uj−f), and in particular it scales with the residual. Since the residual
tends to zero, the sum

∑k−1
j=1 λjqj can also be bounded if λ is constant (and indeed is
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as can be deduced from the results in [10]). In the case of positively one-homogeneous
fitting functionals such the ones in (1.3) and (1.4), the norm of the subgradients of H
will be of order one in the dual space to the fitting norm. E.g. for the L1-functional,
we obtain that ‖qj‖∞ = 1 for qj ∈ ∂uH(uj , f) (unless uj ≡ f , one can think of qj

as the sign of uj − f almost everywhere). Thus, the update in the dual variable will
actually increase during the iteration in these spaces (except uk ≡ f , which leads to
no subsequent changes in the iteration). In the worst case one has to expect that the
norm of pk is given by

‖pk‖∞ ∼
k∑

j=1

λj‖qj‖∞ =
k∑

j=1

λj .

In the iteration step from k to k+1, the term 1
λk+1

pk appears in the Bregman distance
and subsequently in the optimality condition. In order to obtain a reasonable scaling
with the subgradient of H, also pk should be of order one and this is not true for
constant λ since from the above argument we would expect that

1
λk+1

‖pk‖∞ ∼ k.

On the other hand, the scaling to order one can be achieved directly by the dyadic
choice λk = 2k−1λ, for which we can expect

1
λk+1

‖pk‖∞ ∼ 1
2kλ

k∑

j=1

2k−1λ = 1.

We mention that the same type of scaling argument is possible for other positively
one-homogeneous functionals, but . As we shall prove below, the dyadic choice leads
to a well-defined model for rather general fidelity functionals, but from the scaling
one might argue that it is not the optimal one if H is not positively one-homogeneous
(and one could find the optimal one from the scaling of subgradients). However,
positively one-homogeneous fidelity terms are by far the most interesting examples
in total variation based image restoration (except the previously analyzed quadratic
ones), so that we focus on the dyadic choice in this paper. Possible extensions for
other functionals can then be carried out along the lines of our analysis.

2.2. Well-Definedness of the New Iteration Model. We now derive the
existence of minimizers for the modified iterative method (2.1):
Theorem 2.1. Under the above conditions, the iteration scheme (2.1) yields a well-
defined sequence uk ∈ BV (Ω).

With uk defined via (2.1) we obtain the Euler-Lagrange equations

qk +
1

2k−1λ
(pk − pk−1) = 0, qk ∈ ∂uH(uk, f), pj ∈ ∂J(uj), (2.2)

Using (2.2), first we express pk ∈ ∂J(uk) in terms of the subgradients of the
5



functionals H(uj , f), 0 ≤ j < k, which are denoted by qj ∈ ∂uH(uj , f):

1
2k−1λ

pk =
1

2k−1λ
pk−1 − qk

=
1

2k−1λ
pk−2 − 1

2
qk−1 − qk

= . . .

=
1

2k−1λ
p0 −

k∑

j=1

1
2k−j

qj = −
k∑

j=0

1
2k−j

qj . (2.3)

Next we define v := f − u, thus H(u, f) = h(v). Due to the convexity, nonnegativity,
and homogeneity of the functional h, we have for any w ∈ BV , q ∈ ∂h(w), and t > 0,

t〈v, q〉 = 〈(tv + w)− w, q〉 ≤ h(tv + w)− h(w)

≤ h(tv) = th(v).

Since t > 0, we obtain the inequality

〈v, q〉 ≤ h(v), ∀ v, w, q ∈ ∂h(w). (2.4)

In particular, if we choose w = f − uj , then (2.4) becomes

〈u− f, qj〉 ≥ −H(u, f). (2.5)

Using (2.3) and (2.5) and defining {wn} as a minimizing sequence to uk, we know
there exist M > 0 such that

M ≥ H(wn, f) + 1
2k−1λ

J(wn)− 1
2k−1λ

J(uk−1)− 〈wn − uk−1,
1

2k−1λ
pk−1〉

= H(wn, f) + 1
2k−1λ

J(wn)− 1
2k−1λ

J(uk−1) + 〈uk−1 − f, 1
2k−1λ

pk−1〉
+ 1

2 〈wn − f,
∑k−1

j=1
1

2k−1−j q0〉
≥ 1

2k−1λ
J(wn)− 1

2k−1λ
J(uk−1) + 〈uk−1 − f, 1

2k−1λ
pk−1〉

+H(wn, f)−H(wn, f)
∑k−1

j=0
1

2k−j

≥ 1
2k−1λ

J(wn)− 1
2k−1λ

J(uk−1) + 〈uk−1 − f, 1
2k−1λ

pk−1〉.
Since both uk−1 and f are fixed and bounded independent of n, the sequence {J(wn)}
is bounded. From the compactness and lower semi-continuous properties of the func-
tional J , we can conclude that the iteration model (2.1) is well-defined.

From the proof one observes that the choice 2k−1 is crucial but not the only
choice for the penalization parameters, but it suffices to choose a sequence λk such
that

∑∞
j=1

1
λj
≤ 1.

2.3. Convergence Analysis. We now study some convergence properties of
the new iterative regularization process. Our analysis below basically follows the
lines in [10]. In particular we shall see that all desirable properties like monotonicity
of residual and convergence for the exact image and for the noisy image still hold for
our new model.
Proposition 2.2 (Monotonicity). Let uk ∈ BV (Ω) be a sequence defined by (2.1).
Then the sequence H(uk, f) is monotonically non-increasing and satisfies:

H(uk, f) ≤ H(uk, f) +
1

2k−1λ
D(uk, uk−1) ≤ H(uk−1, f). (2.6)
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Moreover, if J(u) < ∞, then we have:

D(u, uk) + D(uk, uk−1) + 2k−1λH(uk, f) ≤ 2k−1λH(u, f) + D(u, uk−1). (2.7)

Using the definition of subgradient and the fact that uk minimizes E(u, uk−1, f),
we have

H(uk, f) ≤ H(uk, f) + 1
2k−1λ

D(uk, uk−1) = E(uk, uk−1, f)

≤ E(uk−1, uk−1, f) = H(uk−1, f).

To prove (2.7), we use the convexity of the function H(u, f) and a standard decom-
position of the Bregman distance (with the same notation for subgradients as above)

D(u, uk)−D(u, uk−1) + D(uk, uk−1) = J(u)− J(uk)− 〈u− uk, pk〉
−J(u) + J(uk−1) + 〈u− uk−1, pk−1〉
+J(uk)− J(uk−1)− 〈uk − uk−1, pk−1〉

= 〈u− uk, pk−1 − pk〉 = 〈u− uk, 2k−1λqk〉

≤ 2k−1λ[H(u, f)−H(uk, f)].2

The above proposition states that the fidelity term H(uk, f) is decreasing. Fur-
thermore, if we choose u = f in (2.7) and use the fact that H(f, f) = 0, then we
obtain for ”exact data” satisfying J(f) < ∞ that

D(f, uk) ≤ D(f, uk) + D(uk, uk−1)

≤ D(f, uk−1) + 2k−1λ(H(f, f)−H(uk, f))

≤ D(f, uk−1).

(2.8)

Hence, the Bregman distance between the solution uk of (2.1) at the k-th iteration
step and the image f is decreasing, too. In fact, as illustrated by computations in
Section 4, both the Bregman distance D(uk, f) and the fidelity term H(uk, f) decrease
as k increases.
Theorem 2.3 (Exact Data). Let f satisfy J(f) < ∞ and let uk be a sequence
generated by (2.1) with data f . Then

H(uk, f) ≤ J(f)
2kλ

(2.9)

and in particular {uk} is a minimizing sequence of H(·, f).
Moreover, uk → f in the weak-* topology of BV (Ω).
Summing all inequalities (2.7) from 1 to k, we have:

k∑

j=1

[D(uj , uj−1) + 2j−1λH(uj , f)] ≤ D(f, u0)−D(f, uk). (2.10)

From the fact that H(u, f) is a convex function, we also have the following inequality:

J(u0) + λH(u0, f) ≤ J(f)−D(f, u0). (2.11)
7



Now adding (2.11) to (2.10) and using both D(uj , uj−1) ≥ 0 and the monotonicity
property of H(uj , f), we conclude

2kλH(uk, f) ≤ J(f).

Based on (2.10) and (2.11), we also obtain

J(f) ≥ ∑k
j=1 D(uj , uj−1) + J(u0)

= J(uk)−∑k
j=1 〈pj−1, uj − uj−1〉

= J(uk)− 〈pk−1, uk − f〉+
∑k−1

j=1 〈pj − pj−1, uj − f〉

= J(uk) + λ〈Hu(u0, f) +
∑k−1

j=1 2j−1Hu(uj , f), uk − f〉
−∑k−1

j=1 〈2j−1λHu(uj , f), uj − f〉

≥ J(uk)− λ2k−1H(uk, f)−∑k−1
j=1 2j−1λH(uj , f)

≥ J(uk)− 3
2J(f).

Therefore J(uk) ≤ 5
2J(f). Because the level sets of {u ∈ U | J(u) ≤ M} are com-

pact, the further assertions then follow by standard weak-* convergence techniques
analogous to the arguments in [10]. 2

The above result is important from a theoretical point of view since it verifies
convergence of the method. In practice however, the given data do not represent the
exact but rather a noisy version of the image, since otherwise one would not need to
denoise it. Therefore we consider the case where f contains noise in the following.
It is well-known for iterative methods that a regularizing effect is obtained only via
appropriate stopping in dependence of the noise level, which is given for the fidelity
functional H as

H(u∗, f) ≤ δ. (2.12)

We again inspect the decrease of the distance between the iterations and the noisy
image, which is now guaranteed only until the residual becomes to small:
Proposition 2.4. Let u∗ be the true noise free image and let f be a given noisy
version satisfying (2.12). Then, as long as H(uk, f) > δ, the Bregman distance
between uk and the true solution u∗ decreases, i.e.,

D(u∗, uk) ≤ D(u∗, uk) + D(uk, uk−1) < D(u∗, uk−1). (2.13)

Plugging the noise free image u∗ into (2.7), we obtain

D(u∗, uk) + D(uk, uk−1) + 2k−1λH(uk, f) ≤ D(u∗, uk−1) + 2k−1λH(u∗, f)

With the assumption H(uk, f) > δ and (2.12), we can conclude (2.13).2
From Proposition 2.4 we can deduce that the generalized discrepancy principle

(cf. [11]) is a good candidate as a stopping rule for (2.1), i.e., the iteration is stopped
at the index

k∗ = max{k ∈ N |H(uk, f) ≥ τδ} (2.14)
8



where τ > 1. Important features of k∗ are studied. For given δ > 0, we shall consider
uk∗ as the regularized solution, i.e., the result of our iterative scheme. With such
a stopping criterion, we can obtain a so-called semi-convergence property, i.e., the
regularized solutions converge to u∗ as δ → 0, more precisely:
Theorem 2.5 (Noisy Data). The stopping index k∗ is well-defined by (2.14) for
any δ > 0, and k∗(δ) = O(log δ).

Moreover, let fm denotes a sequence of noisy data satisfying (2.12) with noise level
δm → 0. If we denote by um = uk∗(δm) the regularized solutions obtained for data fm,
then there exists a subsequence um` that converges in the weak-* topology of BV , and
the limit of each convergent subsequence is a minimizer of H(., u∗). Furthermore, if
u∗ is the unique minimizer of H(., u∗) then the whole sequence um converges to u∗ in
the weak-* topology.

It is easy to see that k∗ is well-defined because H(uk, f) is monotonically decreas-
ing and H(uk, f) → 0 as k increases. Furthermore, if we sum the inequalities (2.7)
from 1 to k, and then add the following inequality derived from the convexity of the
functional H(u, f)

J(u0) + D(u∗, u0) + λH(u0, f) ≤ J(u∗) + λH(u∗, f), (2.15)

we obtain:

2k∗λH(uk∗ , f) ≤ J(u∗) +
j=k∗∑

j=0

2j−1λH(uj , f) ≤ 2k∗λδ + J(u∗). (2.16)

This means
τδ ≤ H(uk∗ , f) ≤ δ + J(u∗)

2k∗λ
,

i.e. 2k∗ ≤ J(u∗)
λ(τ−1)δ .

In order to prove the weak-* convergence of subsequences, it suffices to prove that
the BV-norm of um is uniformly bounded with respect to m, which can be obtained
by analogous arguments to the proofs of Theorem 2.3 and the semiconvergence result
in [10]. 2

3. Numerical Results. In this section, we will present some numerical results
obtained from two different fidelity term models by using our iterative regularization
procedure. We shall also compare them with the results from the original iterative
regularization procedure (cf. [10]) and the hierarchical decomposition algorithm by
Tadmor-Nezzar-Vese(T-N-V)(cf. [15, 14]). For the sake of appropriate comparison,
we change the coefficient 1

2k−1λ
to 1

2kλ
in the model (2.1), which is equivalent to

doubling λ, and finally allows to choose the same parameter λ in all three methods.

3.1. L2 Fidelity Model. We start with the iterative total variation regulariza-
tion using an L2 fidelity term (but not the square of the L2 norm as in [10]), i.e.,
we

uk ∈ arg min
u∈BV (Ω)

{
||u− f ||L2 +

1
2kλ

D(u, uk−1)
}

. (3.1)

We start with a noisy satellite image with Gaussian white noise with δ = 20.0
and SNR = 11.5. In Figures 3.1 3.2 and 3.3 provide a comparison of the three
methods mentioned above with λ = 10.0. In Figure 3.1, (d)-(f) and (j)-(l) display
the recovered image uk resulted from our new Bregman iteration, and (g)-(i) and
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(m)-(o) display the corresponding residual image uk − f . The choice of a small value
of λ yields an oversmoothed iteration u0, and uk gradually improves as k increases
until the stopping criterion becomes valued at k∗ = 3. The plot of the residual in (p)
confirms the monotonicity theorem, H(uk, f) simply decreases for all k. Moreover, at
the kth step, H(uk, f) is bounded above by J(f)

2kλ
. the residual H(uk, f) = ‖f − uk‖

The plots in (q) and (r) showing thes error ‖u∗ − uk‖ and D(u∗, uk as a function of
the iteration index are in good agreement with the noisy data theorem, which states
that both the L2 distance and the Bregman distance between uk and the true solution
u∗ decrease as long as H(uk, f) > δ. Figure 3.2 is obtained from the iterative total
variation regularization model proposed in [10], i.e, we do not multiply 2 to λ after
each iteration. We observe similar but slightly worse results as in Figure 3.1. From
(m) one observes that the residual H(uk, f) is decreasing slower than in the modified
version, which is not too surprising since the residual is multiplied by increasing
parameters in the modified minimization problems.

Figure 3.3 displays the results obtained from the T-N-V algorithm (i.e., Tikhonov-
Morozov) by using the BV + L2 model. The recovered u3 in (g) seems to be the
visually best one. From the rescaled version of u3 − f in (j) one observes that almost
all the important features of the satellite including the antenna are removed from
the residual. The plot of the L2-error in (n) shows a very similar behaviour to the
iterative total variation regularization; the closest distance between uk and the exact
image u∗, ||u3 − u∗||L2 = 12.3, is even better than ||uk∗ − u∗||L2 = 14.9 in Figure 3.1.
However, at the moment there are no rigorous convergence and monotonicity results
for the T-N-V algorithm using the BV + L2 norm. Moreover, it is not clear how the
T-N-V algorithm behaves with respect to Bregman distances, which might provide
more information about the convergence speed of certain features such as edges (cf.
[3]). Unfortunately one cannot even compute suitable Bregman distances during the
T-N-V algorithm since it does not provide any subgradients.

In the next three pictures we reconstruct a noisy image of a face with Gaussian
white noise δ = 20.0 and SNR = 8.89. The penalty parameter is chosen as λ =
20.0. One observes obvious improvements in the solutions as k increases in all these
three cases. Figures 3.4, 3.5 and 3.6 correspond again to our new iterative total
variation method, the iterative total variation method, and the T-N-V decomposition
algorithm, respectively. When we compare the distance in the L2-norm between the
best recovered uk∗ and the exact image u∗ ( ||uk∗ − u∗||L2 ) for the three methods,
we find that the T-N-V decomposition algorithm ||u3 − u∗||L2 = 9.3 still yields the
lowest among all the three methods, compared to ||u4−u∗||L2 = 10.4 for the new and
||u5 − u∗||L2 = 11.1 for the original iterative total variation regularization.

3.2. L1 Fidelity Model. In this section we apply the new iterative regulariza-
tion procedure using the L1 fidelity term model

uk ∈ arg min
u∈BV (Ω

{
||u− f ||L1 +

1
2kλ

D(u, uk−1)
}

. (3.2)

Corresponding to the motivation of the L1-model as a suitable fidelity for binary
images, we consider the denoising of a black-and white finger print image as a test
case

Figures 3.7, 3.8 and 3.9 show restored images with the three different methods
(same order as before), for Gaussian white noise δ = 10.0 and SNR = 14.8. The
results show similar properties as noticed in the L2-case in the previous subsection.
At the earlier stage, uk is over-smoothed. As k increases, uk is getting closer to the

10



exact image u∗ in terms of L1 distance, until k∗ is reached, and subsequently noise
is added to uk. Comparing the value of ||uk∗ − u∗||L1 among the three models we
see that the differences are very small this time, less than 0.1. However, visually the
result of the T-N-V model seems more noisy than the ones obtained from the iterative
total variation method.

A difference to the L2-case is the behaviour of the original iterative total variation
regularization. In the case of the L2 fidelity term (see (m) in in both Figure 3.2 and
Figure 3.5), H(uk, f) was decreasing rather slow, which is not the case for the L1

fidelity term model (see (m) in Figure 3.8). In fact, the fidelity term ||uk − f ||L1

seems to converge to zero even though we cannot prove that the original iteration
model based on the L1 fidelity term is well defined. A detailed analysis of this effect
might be an interesting problem for future study.

Finally we draw attention to possible cartoon-texture decompositions (cf. [4, 13])
for the BV +L1 model, which corresponds to (d), (g) and (e), (h) of Figure 3.7 for the
first and second iteration. One observes that the main cartoon is already incorporated
in the image after the first step, while the texture remains in the residual v = f − u.
In the later steps the texture is gradually incorporated into the image. Hence, as a
by-product of our algorithm we obtain cartoon-texture decompositions at different
scales.

4. Conclusion. In this paper, we have proposed a modified iterative total varia-
tion regularization procedure (2.1) that can be applied to any variational model given
by H(u, f)+ 1

λJ(u), with a rather wide possibility of choosing the fidelity term H (e.g.
any Banach space norm) By doubling the penalty parameter λ at each iteration step,
we are able to show that the iteration procedure is well-defined, and subsequently
following the approach in [10] we can also obtain convergence results.

The numerical experiments indicate that the iteration procedure yields high-
quality reconstructions and has a similar multiscale nature as the previously known
T-N-V Tikhonov-Morozov iteration. In some cases the T-N-V method seems to per-
from slightly better than the iterative total variation approach, but it might also be
more sensitive to noise. Moreover, the new iterative total variation approach seems
to be only one allowing for a complete convergence analysis so far.

An interesting future study is to apply our new procedure to the BV + G model
(1.3) suggested by Meyer. Since the G norm is a Banach norm satisfying the assump-
tions nonnegativity, convexity and positive homogeneity, it seems possible that our
approach could improve the denoising performance of the model.
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(a)eu: Exact image (b)f: observed image, SNR = 11.5 (c)n: noise
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Fig. 3.1. Satellite reconstructions with the new iterative total variation method,
Gaussian noise δ = 20, λ = 10.
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Fig. 3.2. Satellite reconstructions with the original iterative total variation
method, Gaussian noise δ = 20, λ = 10.
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Fig. 3.3. Satellite reconstructions with the BV + L2 T-N-V method, Gaussian
noise δ = 20, λ = 10.
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(a)eu: Exact image (b)f: observed image, SNR = 8.89 (c)n: noise
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Fig. 3.4. Restorations of a face obtained with the new iterative TV model,
Gaussian noise, δ = 20, λ = 20.
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Fig. 3.5. Restorations of a face obtained with the original iterative TV model,
Gaussian noise, δ = 20, λ = 20.
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Fig. 3.6. Restorations of a face obtained with the BV + L2 T-N-V model ,
Gaussian noise, δ = 20, λ = 20.
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(a)eu: Exact image (b)f: observed image, SNR = 14.8 (c)n: noise
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Fig. 3.7. Restorations of a finger print obtained with the new iterative TV
model, Gaussian noise, δ = 10, λ = 1.0. 19
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Fig. 3.8. Restorations of a finger print obtained with the original iterative TV
model, Gaussian noise, δ = 10, λ = 1.0.
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Fig. 3.9. Restorations of a finger print obtained with the BV +L1 T-N-V model,
Gaussian noise, δ = 10, λ = 1.0.
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