
- 1 -

Abstract Querying in a Tree-Structured Class Hierarchy

Abstract

Class hierarchies are an important data modeling concept that forms the basis of most of
today’s object-oriented databases. We integrate the class hierachy concept in the formula-
tion of queries as well as the presentation of answers. We formally define the notion of an
abstraction in this context. The concept of an abstraction is applied in a graphical query
language in which uninteresting classes are hidden. The answer to the query is also
expressed as an abstraction. In a preferred abstract answer, classes subsumed by other
class are not included. We show that the preferred abstract answer has the minimum num-
ber of classes and is unique in its representation. Labeled abstractions are introduced to
accommodate exceptions in an abstract answer. A labeled abstraction is an abstraction
whose classes are labeled. We consider expressing an abstract answer in terms of a
restricted and then a general form of labeled abstraction. For either case, we consider the
preferred answer as one that has the minimum number of classes in its representation. We
show that the preferred answers are unique in their representations. Efficient algorithms
for obtaining preferred answers follow from the constructive proofs. We extend the idea of
an abstraction beyond a tree-structured class hierarchy to a partially ordered set (poset) of
classes. In this more general context, preferred abstract answer under a poset of classes is
no longer unique in its representation. Obtaining the preferred abstract answer under a
poset of classes is shown to be an NP-complete problem. For multiple class hierarchies,
which defines a restricted poset of classes, the problem remains intractable.

Index Terms - Answer representations, class hierarchies, graphical query languages,
intensional answers, object-oriented databases.

1 Introduction

New data-intensive applications such as computer-aid design (CAD) [9], computer-aided software

engineering (CASE) [11], multimedia databases [13], and geographical information systems (GIS) [6]

pose new requirements that conventional databases oriented toward commercial applications fail to satisfy.

These new applications require new data models, new query facilities and new transaction models. Among

Chung-Dak Shum
Department of Computer Science

The HK University of Science and Technology
shum@cs.ust.hk

Richard R. Muntz
Computer Science Department

University of California, Los Angeles
muntz@cs.ucla.edu

- 2 -

the requirements of these new applications are the support of complex objects, behavioral data, meta

knowledge and long-duration transactions. Object-oriented databases are being developed to support these

complex data-intensive applications. Issues in the design of object-oriented databases capable of support-

ing a rich collection of sophisticated data modeling concepts have become an important area of research

[10,17]. Recent research efforts have also focused on providing facilities for querying object-oriented data

models [1,2,14]. Most of these proposals for query processing in object-oriented databases are based on

extending the relational framework to support various concepts of object orientation. Typically, the query

facilities allow a user to retrieve a set of objects satisfying certain predicates and the answer to the query is

given as an enumeration of individual object instances. The returned object instances may be interrelated.

They may even belong to the same class in a class hierarchy. But none of this information is presented to

the user nor do the query facilities allow the easy specification of such information. Class hierarchy is inar-

guably one of the more important concepts in object-oriented models. In this paper, we propose a graphical

means to express queries as well as to present answers in the context of a class hierarchy.

Consider a personnel database of a small corporation and the query:

Q1: “Select all employees with a salary greater than 40K.”

A conventional answer to the query is an enumeration of employee objects such as

A1: “John Smith, Peter Lee, James Daly, Allen Brown, Jim Blaine, Jerry Cox”

In the object-oriented model, similar objects are grouped naturally into classes and similar classes are in

turn grouped to form super-classes. The recursive grouping of classes into super-classes forms a class hier-

archy with each class as a specialization of its super-class. Figure 1 shows a simple example class hierar-

Employee

Engineer Manager Secretary

Electrical
Engineer

Mechanical
Engineer

Computer
Engineer

John
Smith

Peter
Lee

Frank
Rogers

Robert
Crane

James
Daly

Allen
Brown

Jim
Blaine

Jerry
Cox

Carol
Short

Irene
Runyon

Figure 1: Employee Class Hierarchy

- 3 -

chy for our personnel database. The boldface employee objects correspond to the answers A1 that satisfy

the query Q1. It turns out that all Electrical Engineers, Computer Engineers and Managers satisfy the

query. Graphically, in the presence of the employee class hierachy, the answers can also be presented as

shown in Figure 2. Notice that the employee objects whose salaries are greater than 40K are not explicitly

listed. We say that employee objects John Smith and Peter Lee are abstracted by the class Electrical Engi-

neer. The hiding of objects (classes) or abstraction is the concept that we are going to exploit in expressing

queries and in the presentation of answers. We term such an answer an abstract answer. One of the advan-

tages of presenting abstract answers is to facilitate information exchange at higher level of abstraction.

When complex information is presented, the user may not be interested in too fine a detail. This is espe-

cially the case when the number of object instances satisfying the query is very large. Abstract answers can

be very useful in decision support systems. It helps the user in acquiring some global understanding of the

answer. Since explicit enumeration of object instances is not required, abstract answers also help in meet-

ing resource constraints imposed by user interfaces.

The idea of an abstraction is not restricted only to the presentation of answers, but also applies to

the querying for abstract answers. To obtain the abstract answer depicted in Figure 2, the query can be

expressed graphically as shown in Figure 3. The meaning of the graphical query is similar to Q1; except

that the answer is allowed to be expressed in terms of class concepts as well as object instances. Class con-

cepts above the dotted line L are not shown or we say they are hidden. The answer is not allowed to contain

class concepts such as Engineer or Employee. Thus the abstract answer given in Figure 2 is an answer to

the graphical query. Another possible answer is shown in Figure 4. Notice that the former is expressed only

in terms of class concepts whereas the latter is a combination of class concepts and object instances. Pro-

Manager

Electrical
Engineer

Computer
Engineer

Figure 2: Example Abstract Answer.

- 4 -

posing and evaluating criteria for the “goodness” of various abstract answers is another major contribution

of this paper.

The remainder of this paper is organized as follows. Section 2 formally define the notion of an

abstraction. In Section 3, we integrate the concept of an abstraction in the formulation of queries and the

presentation of answers. In Section 4, we define the criteria for expressing preferences among abstract

answers. We show that the preferred answer has the minimum number of classes and is unique in its repre-

sentation. To accommodate exceptions in an abstract answer, Section 5 extends the concept of an abstrac-

tion to a labeled abstraction. We consider answers expressed in terms of a restricted as well as a general

form of labeled abstraction. Under the same set of preference criteria, we show that the answer representa-

Manager Secretary

Electrical
Engineer

Mechanical
Engineer

Computer
Engineer

John
Smith

Peter
Lee

Frank
Rogers

Robert
Crane

James
Daly

Allen
Brown

Jim
Blaine

Jerry
Cox

Carol
Short

Irene
Runyon

Salary > 40K

Figure 3: Example Graphical Query.

L

Manager

Electrical
Engineer

James
Daly

Allen
Brown

Figure 4: Another Possible Abstract Answer.

- 5 -

tions in both cases are unique in their representations and efficient algorithms exist in obtaining such

answers. In Section 6, the idea of an abstraction is extended to a partially ordered set of classes. The repre-

sentation of a preferred abstract answer is no longer unique. We also show that obtaining a preferred

abstract answer is an NP-complete problem. In Section 7, we show that even for the case of multiple class

hierarchies, a restricted poset of classes, the problem of obtaining a preferred abstract answer still remains

intractable. Section 8 describes some work related to our study and how those work fit in our framework.

Our conclusions and some suggestions of possible further work are given in Section 9.

2 Class Hierarchy and Abstraction

We consider a finite set D of object instances, and classes relative to D. A class is a unary predicate

C(•) defined over D, where C, with possible subscripts, is the label of the class. For convenience, we will

also denote the extension of the predicate {x | C(x)} by C. The context should suffice to disambiguate. A

class C1 is said to be subsumed by an other class C2 if and only if . We shall use both terminology

(union, intersection, complementation, set inclusion, difference) and logic terminology (disjunction, con-

junction, negation, subsumption) when referring to classes. We are not dealing with an arbitrary collection

of classes; instead, we are interested in a class hierarchy.

Definition 1: A class hierarchy is a finite tree whose nodes are labeled by classes. Any node other
than a leaf node has one or more successors. The successor classes of each are subsumed by their
parent class. A class hierarchy is called strict if all sibling classes are mutually exclusive.

Definition 2: A path P in a class hierarchy T is a sequence of nodes in which successive nodes are
connected by edges in T. A rooted path is any path whose first node is the root node. A terminal
path is any path ending at a leaf node. A full path is a rooted terminal path.

Since we will be working mostly with strict class hierarchies, the term class hierarchy will refer to a strict

class hierarchy unless otherwise stated. It is convenient to view an object instance as a singleton class of its

own. Very often these singleton classes form the leaf nodes of a class hierarchy.

The number of classes in a class hierarchy can be very large and the user may not be interested in

all classes or too fine a detail. For this reason, the hiding of classes or abstraction is an important concept in

querying and the representation of answers in the presence of a class hierarchy. The hiding of a class from

a class hierarchy changes the structure of a class hierarchy.

Definition 3: The hiding of a class from a class hierarchy results in one of the following structural
changes:

C1 C2!

- 6 -

1. If the class labels a leaf node, the leaf node is removed from the class hierarchy.
2. If the class labels a root node, each child becomes the root node of a class hierarchy.
3. If the class C labels any node other than a leaf or root node, each child of C becomes the direct

child of C’s parent.

Definition 4: An abstraction TA of a class hierarchy T is a forest of class hierarchies resulting
from the hiding of one or more classes from T. An abstraction TA of a forest of class hierarchies
FT is a forest of class hierachies resulting from the hiding of one or more classes from FT.

A graphical illustration of an abstraction is shown in Figure 5. A class hierarchy T is shown in Figure 5a.

An abstraction TA with hidden classes CO, C4, C5, C9 and C1O is shown in Figure 5b. Notice that (i) the

leaf nodes C9 and C1O are removed from the class hierarchy; (ii) with the removal of the root node CO, TA

becomes three class hierarchies and (iii) C3 becomes the parent of C11, C12, C13 and C14. The meaning of

an abstraction is related to its extension.

Definition 5: Let class(TA) be the set of classes remaining in abstraction TA. The extension of an
abstraction TA, denoted extension(TA), is the set of object instances formed from . We
also denote as the number of classes in an abstraction TA.

Definition 6: Two abstractions TA1 and TA2 of a class hierarchy T are equivalent if and only if
. They are equal if and only if .

Since an abstraction of a class hierarchy is characterized by its set of classes, we can infer a partial order

between two abstractions.

Definition 7: Two abstractions TA1 and TA2 are related by the partial order if and only
if .

C0

C1 C2 C3

C5C4 C6

C11C12 C13C14 C15 C16C9 C10C8C7

C1 C2 C3

C6

C11C12 C13C14 C15 C16C8C7

Figure 5a: A Class Hierarchy T Figure 5b: An abstraction TA

C
C c l a s s T A()"
#

T A

extension T A 1() extension T A 2()= class T A 1() class T A 2()=

T A 1 T A 2$

class T A 1() class T A 2()%

- 7 -

3 Querying a Class Hierarchy

In relational databases, an object instance is represented as a tuple in a relation. Similar object

instances in a relation can be thought of as forming a class. But there is no concept of class hierarchies. A

construct for modeling class hierarchies does not exist in the relational model. Queries in relational data-

bases typically ask for objects instances that satisfy certain conditions. Formally, a query can appear as

where D is the domain to which object instance x belongs and P(x) is the condition that x has to satisfy.

Most query languages proposed for object-oriented databases are based on extending the relational frame-

work. Although the query languages allow the retrieval against classes, the target answer is still a set of

object instances. The goal of a query language is to support the requests for information by a user and pro-

viding better facilities for a user to specify the presentation of an answer is clearly an advantage. Since the

semantics of a class hierarchy are captured by the underlying object-oriented model, we advocate that

those class hierarchical structures should also be incorporated in the querying and answering session.

Definition 8: A query over a class hierarchy T is defined as a 5-tuple . where P is
the query condition, TA is an abstraction of T and the abstract answers and are abstractions of
TA such that
1. There exists no abstraction such that and

. We say that minimally covers
.

2. There exists no abstraction such that and
. That is, minimally covers

From Definition 8, it should be clear that TA forms the basis of the answer to the query. Since the answer to

the query is defined as an abstraction of TA, any classes belonging to the answer should also belong to TA.

It is possible that the classes contained in the set class(TA) are not detailed enough to exactly describe the

extensional answer . For example, consider the class hierarchy T and its

abstraction TA from Figure 5a and b respectively. If an extensional answer to a query consists only of C9,

based on the abstraction TA, the exact answer cannot be expressed. Since the abstraction TA is user speci-

fied, it contains the amount of detail that the user would like to see. Thus, a least upper bound and a

greatest lower bound are defined as the answer to the query. This is similar to the definition of rough sets

[12] which employs a lower and an upper approximation to define an “undefinable” set. The rational is that

this is the maximal information expressible given the amount of detail the user is willing to see. From the

x D" P x(){ }

Ã A
˜

T A T P, , , ,& '

Ã A
˜

Ã(extension Ã(() x extension T A() P x()"{ })

extension Ã() extension Ã(()) extension Ã()

x extension T A() P x()"{ }

A
˜
(x extension T A() P x()"{ } extension A

˜
(())

extension A
˜
(() extension A

˜
()) x extension T A() P x()"{ }

extension A
˜
()

x extension T A() P x()"{ }

Ã

A
˜

- 8 -

definition of an abstraction, least upper bound and greatest lower bound answers are not necessary unique.

This uniqueness issue will be further discussed in the next section.

4 Answer Representation

Our query specification (Definition 8) allows a user to specify the amount of detail he would like to

see in an abstract answer. We have also shown that the amount of detail the user would like to see may not

be enough to precisely express the exact answer. We provide the least upper and greatest lower bound

answer to the query. It is obvious that if the exact answer can be expressed, a least upper bound answer is

also the greatest lower bound answer or vice versa, but in general, neither a least upper bound answer nor a

greatest lower bound answer is necessarily unique. Consider again the class hierarchy T and its abstraction

TA from Figure 5a and b respectively. Suppose C7, C8, C9 and C10 are the only objects in extension(TA)

which satisfy the query predicate P. Then the abstract answers to the query can be

expressed exactly as shown in Figure 6a and b. It is easy to verify that either abstract answer can be the

least upper bound and greatest lower bound to the query. The non-uniqueness of abstract answers

allows a choice as to which answer we would prefer to see. Since one of our goals is to facilitate informa-

tion exchange at higher level of abstraction, the abstract answer in Figure 6b is certainly more preferable.

The idea of facilitating information exchange at higher level of abstraction applies equally to least upper

bound answers as well as to greatest lower bound answers . For simplicity, from this point on, we will

only consider abstract answers that exactly express the answer. Extending the idea to least upper bound

answers and greatest lower bound answers is straightforward.

Definition 9: Let be an abstract answer and . Then is a preferred abstract answer
if there exist no equivalent abstract answer such that and is an ancestor of .

Ã A
˜

T A T P, , , ,& '

C1 C2

Figure 6a: Abstract Answer Figure 6b: Abstract Answer

C2

C8C7

Ã A
˜

Ã A
˜

Ã A
˜

A C class A()" A
A(C(class A(()" C(C

- 9 -

The hiding of classes from a class hierarchy forms the basis of an abstraction. The hiding of more classes

implies the suppression of more details. The number of classes appearing in an abstract answer is clearly

one of the criteria against which to measure how “abstract” an answer is, in the sense of how much detail is

hidden. The number of classes appearing in an abstract answer is related to the preferred abstract answer

from Definition 8 in the following theorem.

Theorem 1: A preferred abstract answer has the minimum number of classes in its representa-
tion.

Proof: Assume the contrary, then there exists an abstract answer with minimum number of

classes such that . Since and are equivalent, for any class and

 there exists either (i) a class where is an ancestor of or (ii) a

set of classes where each is a descendant of and

. For the latter case (ii) where , will not have the minimum number of

classes. The case alone will not make . The former case (i) can make . But

 must have a set of descendant classes and

where . But by Definition 9, . Contradiction. !

The preferred abstract answer also has the property that it is unique.

Theorem 2: A preferred abstract answer is unique in its representation.

Proof: Assume the contrary, then there exists another preferred abstract answer where for some

, . Since and are equivalent, for any class and

 there exists either (i) a class where is an ancestor of or (ii) a

set of classes where each is a descendant of and

. For case (i), by Definition 9, . For case (ii), again by Definition 9, for

all , . Contradiction. !

The following property of a preferred abstract answer should also be obvious. The simple proof is omitted.

Proposition 1: Let be a preferred abstract answer and . If and
 is in the full path of , then .

A preferred abstract answer can be characterized by its classes. The algorithm for obtaining a preferred

abstract answer is a simple postorder traversal of an abstraction. We assume the abstraction is a tree. Gen-

eralizing the algorithm to a forest is just a simple task of applying it to each tree in the forest.

A

A(

A(A< A A(C class A()"

C class A(()* C(class A(()" C(C

C+1 C+2 … C+k, , ,{ } class A(()! C+i C

C+i1 i k, ,
C= k 1> A(

k 1= A(A< A(A<

C(C C1 … Ck, , ,{ } class A(()! Ci
1 i k, ,
#() C# C(=

k 1- C C1 … Ck, , ,{ } class A(().

A

A(

C class A()" C class A(()* A A(C class A()"

C class A(()* C(class A(()" C(C

C+1 C+2 … C+k, , ,{ } class A(()! C+i C

C+i1 i k, ,
C= C class A()*

i 1 i k, ,, C+i class A(()*

A C class A()" C(class T A()"

C(C/ C C(class A()*

- 10 -

Function Preferred_Abstract_Answer(TA: abstraction, P: predicate): abstract_answer
Begin

class(A) := ;
Perform a postorder traversal of TA and for each class C encountered Do

If C is a leaf node and C satisfies the predicate P Then
class(A) := class(A) + {C}

Else If all the children of C are in class(A) Then
Begin

Remove all children classes from class(A)
class(A) := class(A) + {C}

End
End postorder traversal
Return(A)

End

5 Extending the Expressive Power of an Abstraction

The preferred abstract answer is one way of representing an answer to a user. It facilitates informa-

tion exchange at a high level since detail is suppressed. We associate the amount of detail with the number

of classes in an abstract answer. The preferred abstract answer contains the least detail in the sense that it

contains the minimum number of classes. We will also prove the nice property that a preferred abstract

answer is unique. One of the drawbacks to the abstraction approach to representing answers is due to the

fact that the classes in a class hierarchy often do not satisfy the query conditions as a whole. As a result, we

cannot abstract answers to the extent we might want, except in a limited number of cases. For example,

consider the class hierarchy T and its abstraction TA from Figure 5a and b respectively. Suppose an exten-

sional answer to a query consists of C11, C12, C13, C14 and C15. The preferred abstract answer is shown in

Figure 7. Although the extensional answer “almost” equals the class C3, we cannot use C3 to abstract the

answer because C16 is not part of the answer, but it is a descendant of C3. If an exception is allowed in an

0

C11C12 C13C14 C15

C3
+

C16
-

Figure 7: Preferred Abstract Answer Figure 8: Abstract Answer with Exception

- 11 -

abstraction, an abstract answer can be represented as shown in Figure 8. The “-” denotes that the class is

excluded. To be able to specify exceptions in an abstraction, we need to augment the definition of an

abstraction.

Definition 10: A labeled abstraction is an abstraction whose classes are labeled by either a “+” or
a “-”.

The intuitive meaning of the label should be clear. When presented as an answer, a “+” label indicates that

the class is in the answer; whereas, a “-” label indicates that the class is not part of the answer. Conflict

occurs when the label of a class is different from the label of one of its descendants. In this case, the label

for the subclass overrides the label for its superclass. This is in line with the concepts of inheritance and

specialization in object-oriented modeling. In our case (Figure 8), a “+” label is associated with C3 and a “-

” label is associated with its descendant C16. The answer “C3 - C16” is read as C3 except C16.

To formally capture and explain the meaning of a labeled abstraction, we introduce the notion of

an expression.

Definition 11: The alphabet of an expression defined over an abstraction TA of a class hierarchy T
is composed of the following:
1. Classes: ,

Each class is a label of a node in TA.
2. Empty: ,

This denotes the empty expression.
3. Signs: +,-.

Next we introduce the notion of a literal, followed by the syntax of an expression.

Definition 12: There are two types of terms:
1. If C is a class, then +C is a positive term.
2. If C is a class, then -C is a negative term.

Definition 13: An expression over an abstraction TA is defined recursively as follows:
1. A positive term is an expression.
2. is an expression.
3. If e is an expression and t is a term, then e t is an expression.

Expressions are introduced as a convenient formalism for specifying a labeled abstraction. It is not difficult

to see that the negative term is introduced to accommodate exceptions in an abstraction. Since we associate

C1 C2 …, ,

1

1

- 12 -

the meaning of an abstraction to the its extension, it is natural to associate the meaning of an expression to

the set of object instances it represents.

Definition 14: The meaning of an expression over an abstraction TA of a class hierarchy T is given
by a mapping : , where Exp is the set of expression over TA and R is the root class of T.
1.

2.

Note that C is any class from the abstraction TA and e is an expression over TA.

We assume that and - operators within a set expression have the same precedence and the left associa-

tive rule is used in the evaluation of such an expression. With the meaning of an expression defined, we can

compare two expressions.

Definition 15: Two expressions e1 and e2 over an abstraction TA are equivalent iff
.

Notice that by way of definition, expressions with same terms do not necessarily carry the same meaning.

For example, if a class C0 is the parent of class C1 and class C1 is the parent of class C2 then the two

expressions and , although they contain the same terms, are not

equivalent provided that . The relationship between an expression and a labeled abstraction is given

by the following definition.

Definition 16: The pre-order traversal of a labeled abstraction LA yields an answer expression e
where
1. For each class C labeled “+” encountered in the traversal of LA, a positive term +C is append-

ed to the expression e.
2. For each class C labeled “-” encountered in the traversal of LA, a negative term -C is appended

to the expression e.

The meaning of a labeled abstraction is taken to be the meaning of its associated answer expression.

The motivation for introducing the concept of a labeled abstraction is to allow the further abstrac-

tion of an abstract answer which is otherwise not possible. The idea is still the hiding of classes; more pre-

cisely, the hiding of labeled classes. The number of labeled classes appearing in an answer is again one of

the criteria which we use to measure how abstract an answer is. From Definition 16, it is clear that each

labeled abstraction yields a unique answer expression. Conversely, each answer expression corresponds to

2 Exp 2R3

2 + C() C=

2 1() 0=

2 e C+() 2 e() C#=

2 e C4() 2 e() C4=

#

2 e1() 2 e2()=

e1 + C0 C14 C2+= e2 + C0+ C2 C14=

C1 C2/

- 13 -

one labeled abstraction. Thus, one criterion for a good answer can be translated to finding an answer

expression with the minimum number of terms.

Introducing exceptions in an abstract answer allows us to further abstract an answer. But unless it

helps in reducing the number of labeled classes in a labeled abstraction, its presence may not be very desir-

able. In querying, it is assumed that the user is interested to know which classes satisfied the query condi-

tion, not the classes that do not satisfy the query condition. A second criterion, after satisfying the

minimum number of terms, is to minimize the number negative terms.

Preferred abstract answers are the simplest possible. In a preferred abstract answer, as illustrated in

Proposition 1, there is at most one class from each full path. This is, however, no longer valid with the

introduction of labeled abstractions. When expressing exceptions in a labeled abstraction, the answer may

include more than one (labeled) class from the same full path. For example, in Figure 8, the example

answer has two classes, C3 and C16, and they are both from the same full path. To retain some simplicity, it

is possible to introduce further restriction on the answer expressions.

Definition 17: A restricted answer expression is an answer expression over an abstraction TA such
that there exists at most one positive term and one negative term whose corresponding classes
belong to the same full path in TA.

The definition of a restricted answer expression is influenced by the property stated in Proposition 1. Fig-

ure 9 illustrates a graphical representation of a restricted answer expression. A restricted answer expression

corresponds to a forest of trees in which each tree has a root node with a “+” label and zero or more

descendants with “-” labels and all other nodes are hidden. Apparently, such representations are simple and

easy to comprehend. Figure 10 shows a graphical representation when a general answer expression is used

C+

C+

C+

C-

C- C-

C-

C+

C+ C+

C-

Figure 9: Restricted Answer Expression Figure 10: General Answer Expression

- 14 -

to represent an abstract answer. A general answer expression also corresponds to a forest of trees, although

Figure 10 only shows one tree. Each tree can be complicated and has a number of levels. But the abstract

response still provides the user with some high level information regarding the classes of objects that sat-

isfy the query. In the next two sections, we will study the representation of abstract answers using restricted

answer expressions and general answer expressions.

5.1 Restricted Answer Expression

It will be shown in this section that restricted answer expression can be used to represent abstract

answers. There are two criteria for comparing restricted answer expressions. The first criterion is the num-

ber of terms in an expression. The fewer the number of terms, the more abstract the answer is. When the

number of terms in two expressions are the same, the one with the fewer number of negative terms is pre-

ferred.

Definition 18: Given a set of equivalent restricted answer expressions over an abstraction TA. A
restricted answer expression is preferred if it satisfies the following properties.
1. has a minimum number of terms.
2. If an equivalent expression e has the same number of terms as , has a fewer number of neg-

ative terms.
3. If a class is the only child of a parent , does not contain either the term or the term

.

Property 3 is consistent with the spirit of Definition 9 for preferred abstract answer. Abstract answers are

expressed in terms of classes in the highest possible level in a class hierarchy. From the definition, a pre-

ferred restricted answer expression has the minimum number of terms. In the following, we will show that

a preferred restricted answer expression is also unique. First, we define what we mean by a subexpression.

Definition 19: Let e be a restricted answer expression over an abstraction TA and TA
c be a subtree

of TA rooted at class . A subexpression of e over a class is e, with every term in e whose
corresponding class is not in TA

c, removed.

A subexpression is a restricted answer expression which only concerns a subtree from TA.

Theorem 3: A preferred restricted answer expression is unique in its representation.

Proof: Assume the contrary, then there exists another preferred restricted answer expression

such that and has the same number of positive as well as negative terms, but

Case (I): has some term not in .

ê

ê

ê ê

C C(ê + C
C4

C C C(±

C(

ê

ê(

ê(ê

ê(+ C(ê

- 15 -

Let us consider the meaning represented by the subexpression of over the class . Since

and are equivalent, there must exist either (i) a subexpression

 of over the class

where all are descendants of or (ii) a subexpression of over

where is an ancestor of .

Subcase (i): The number of terms in is ,where the summation of the

represents the number of negative terms. Each term in subexpression indicates that the

object instances in class do not belong to the answer. Since is a descendant of ,

must also belong to . If is a preferred restricted answer expression, also has

 terms. The “1” accounts for the term , the summation of rep-

resents the number of negative terms that also belong to and the last “j - 1” accounts for other

negative terms. If , is preferred since it has fewer number of negative terms. If , by

Property 3 of Definition 18, again is preferred. Thus is not a preferred restricted answer

expression. Contradiction.

Subcase (ii): If there is no under such that , by Property 3 of Definition 18,

is preferred. Otherwise, consider the subexpression of over the class . Each negative

term in subexpression indicates that the object instances in the corresponding class do not

belong to the answer. Since is an ancestor of all those classes, every negative term must also

belong to . Thus, has at least as many negative terms as . If has more negative

terms, then is not a preferred restricted answer expression. Otherwise, has less terms than

. is not a preferred restricted answer expression. Contradiction.

Case (II): has some term not in .

Since has the minimum number of terms, will not be in unless there exists another term

 in where is an ancestor of . From Case (I), must also be in . For and to have

the same meaning, the object instances represented by must be excluded from . Without the

term , there must exist terms in such that s are descendants of and

by Definition 18, . Thus, does not have the minimum number of terms and is not a pre-

ferred restricted answer expression. Contradiction. !

The algorithm for obtaining a preferred restricted answer expression is a recursive function. We also make

use of the Preferred_Abstract_Answer function defined in Section 4. Since the output of the function is an

abstraction, for convenience, we redefine the function as Preferred_Abstract_Expression. The output of

this function is an expression constructed from a pre-order traversal of the original output abstraction. For

e 0() ê(C(ê

ê(

e i() + C
˜ 10 C

˜ 11 C
˜ 12… C

˜ 1k 1
+ C

˜ 20 C
˜ 21 C

˜ 22… C
˜ 2k 2

…+ C
˜ j0 C

˜ j1 C
˜ j2… C

˜ j k j
444444444= ê C(

C
˜ x y C(e i i() + C C14 C2…4= ê C

C C(

e i() j k1 k2 … kk+ + +()+ ki

C
˜ x y4 e i()

C
˜ x y C

˜ x y C(C
˜ x y4

e 0() ê(e 0()

1 k1 k2 … kk+ + +() j 14()+ + + C(ki

e i()

j 1/ e i() j 1=

e i() ê(

C+ C C+ C5 0= e i i()

e i i i() ê(C

e i i i()

C

e i i() e i i() e i i i() e i i()

ê e i i()

e i i i() ê(

ê(C4 (ê

ê(C4 (ê(

+ C ê(C C(+ C ê ê ê(

C(ê

C4 (C1(C2(… Cn (444 ê Cj (C4 (

n 1> ê ê

- 16 -

each class encountered in the abstraction, a negative term is appended to the expression. We gener-

ate negative terms because we only use this function to identify classes not belonging to an answer. Again

we assume the abstraction is a tree. Generalizing the algorithm to a forest is just a simple matter of apply-

ing it to each tree in the forest.

Function Preferred_Restrict_Expression(TA: abstraction, P: predicate): expression
Begin

Let R be the root class of TA and TA
1, TA

2, ... ,TA
k be k subtrees under R.

/* Note: listing two expressions one after another defines an append operation */
Let = Preferred_Restrict_Expression(TA

1, P) ...
Preferred_Restrict_Expression(TA

k, P)
Let = +R Preferred_Abstract_Expression(TA

1,) ...
Preferred_Abstract_Expression(TA

k,)

If the number of terms in and are different Then
Return the one with fewer terms

Else
Return the one with fewer negative terms

End

5.2 General Answer Expression

This section deals with the representation of abstract answers using general answer expressions.

The criteria for comparing answer expressions are the same as those for comparing restricted answer

expressions.

Definition 20: Given a set of equivalent answer expressions over an abstraction TA. An answer
expression is preferred if it satisfies the following properties.
1. has the minimum number of terms.
2. If an equivalent expression e has the same number of terms as , has a fewer number of neg-

ative terms.
3. If a class is the only child of a parent , does not contain the term or .

From the definition, a preferred answer expression has the minimum number of terms. Since a restricted

answer expression is an answer expression, a preferred answer expression must use at most the same num-

ber of terms that a preferred restricted answer expression uses in expressing the same abstract answer. In

the following, we will show that a preferred answer expression is unique. First, we define a path subexpres-

sion and prove a lemma that will be useful in establishing the uniqueness theorem.

C C4

6

7 P¬
P¬

6 7

ê

ê

ê ê

C C(ê + C C4

- 17 -

Definition 21: Let e be an answer expression over an abstraction TA and P be a full path in TA. A
path subexpression of e over P is an expression formed by removing from e all those terms whose
associated class are not in P.

Lemma 1: Let be a preferred answer expression. Then any path subexpression
 of over some full path P must have alternate positive and negative terms.

Proof: Assume the contrary. There are two cases:

(i)

where and represent respectively the head and tail portion of and represents the
portion between and .

Note that, by the definition of subexpression of over P, all classes associated with are
not in P, and . Thus, object instances in , being introduced by the term ,
are not affected by . So the term is redundant.

Therefore, is not a preferred answer expression. Contradiction.

(ii)

The proof of this case is similar to (i). !

Now we are ready to establish that a preferred answer expression is unique. We use the term preferred

expression to refer to those expressions (not necessarily answer expressions) that satisfy the above three

criteria given in Definition 20. For simplicity, we also assume that the abstraction is a tree and each non-

leaf class has at least two child classes. Extending the proof to a general forest of tree is a simple extension.

Theorem 4: A preferred answer expression is unique in its representation.

Proof: Since an answer expression is a pre-order traversal of a labeled abstraction, for a preferred
answer expression to be unique in its representation, we only need to show the set of terms mak-
ing up is unique. The proof proceeds by induction on the height of the tree abstraction. The
inductive proof also elicits an algorithm for obtaining a preferred answer expression.

 (a root class with leaf classes attached)

Consider two ways of expressing the answer:

(i) without root class :

ê
êP CP 1

CP 2
… CP k
±±±= ê

ê eH CP i
en o t P CP i 1+

eT++=

eH eT ê en o t P

+ CP i
+ CP i 1+

ê en o t P

CP i 1+
CP i

! CP i 1+
+ CP i

en o t P + CP i 1+

ê

ê eH CP i
4 en o t P C4 P i 1+

eT=

ê

ê
ê

height 1= R Ci

R R 1 if the answer is null
+ Ci1

… Cik
+8

9=

- 18 -

(ii) with root class : where

We claim that

(1) is a preferred expression conditioned on being excluded;

(2) is a preferred expression conditioned on being included;

(3) except for the case where all children of belong to the answer, has more negative terms
than .

From (1), (2) and (3), we conclude that only one of or will contain the set of terms making
up the preferred answer expression ().

In the inductive proof, we will establish properties (1), (2) and (3) for trees of arbitrary height n
and conclude that only one of or will contain the set of terms making up the preferred
answer expression ().

Assume that

(1) is a preferred expression conditioned on the root class being excluded;

(2) is a preferred expression conditioned on the root class being included;

(3) except for the case where all children of belong to the answer, has more negative terms

than .

From (1), (2) and (3), we conclude that one of or will contain the set of terms making up
the preferred answer expression .

Assume that the root has children and each child is the root of a tree with height .
For each subtree rooted at child , and exist and have the properties
as described above .

Again consider two ways of expressing the answer:

(i) without root class :

R e1
+ R + Re1

-=

e1
-

1 if all children of R belong to the answer
R4 if answer is null

C4 j1
… Cjm

4 m R 1+
2<

R+4 Ci1
… Cik

+ otherwise
:
;
;
<
;
;
=

=

e1
R4 R

e1
+ R R

R e1
+ R

e1
R4

e1
+ R e1

R4

e1
p r e

en
+ R en

R4

en
p r e

height k=

ek
R4

ek
+ R + Rek

-=

R ek
+ R

ek
R4

ek
+ R ek

R4

ek
p r e

height k 1+=

R n S1 …Sn,() k
Ti Si 1 i< n,() ek i

R4 ek i

+ R Siek i

-=

height k=()

R ek 1+
R4 ek 1

p r e…ek n

p r e=

- 19 -

It is easy to see that

(1) is a preferred expression conditioned on the root concept being excluded.

Without the root, the subtrees are mutually independent. Thus the only “preferred” way to
express the answer is to concatenate preferred expressions from each subtree.

(ii) with root class : where

The PRE function simply returns the argument expression which is the preferred of the two.

We note that expression and cannot have the same number of posi-
tive and negative terms.

To show that, we compare each pair of terms and in and respectively. Let denotes
the number of terms in an expression. Consider the following cases:

1. if then
 and has an extra positive term over .

2. if then
 and has one more term but less negative term than .

3. if then
 and has less negative term than .

4. otherwise and thus
 and and has an extra negative term.

Assume that and can have the same number of positive and negative terms and there are w
case 1, x case 2, and y case 3, and z case 4. If and have the same number of terms,

The comes from in . If the expressions have the same number of negative terms,

Again the 1 on the right hand side of the inequality comes from in . Furthermore, the number
of successors of is at least two, that is,

Since w, x, y, and z are all natural numbers, it should be obvious that no solution can satisfy (I), (II)
and (III) simultaneously. Contradiction. Thus, the expressions and cannot have the same
number of positive and negative terms.

ek 1+
R4

Ti

R ek 1+
+ R + Rek 1+

-=

ek 1+
-

1 if all children of R belong to the answer
R4 if answer is null

PRE ek 1

- …ek n

- Re4 k 1

p r e…ek n

p r e,() otherwise:
<
=

=

6() ek 1

- …ek n

- 7() Re4 k 1

p r e…ek n

p r e

ek i

- ek i

p r e 6 7 •

ek i

R4 ek i

+ R>

ek i

p r e ek i

+ R Siek i

-= = ek i

p r e ek i

-

ek i

R4 ek i

+ R=

ek i

p r e ek i

R4= ek i

p r e ek i

-

ek i

R4 1+ ek i

+ R=

ek i

p r e ek i

R4= ek i

p r e ek i

-

ek i

R4 2+ ek i

+ R=

ek i

p r e ek i

R4= ek i

- Siek i

R44= ek i

-

6 7

6 7

w x 1+ + z I()=

+ 1 R4 7

x y z 1 II(),+ +

R4 7

R
w x y z 2 III()-+ + +

6 7

- 20 -

Next we show that

(2) is a preferred expression conditioned on the root class being included.

The case where all the children of belong to the answer and the case where the answer is null are
trivial. We only show the last case. Suppose .

Assume that there exists which is preferred conditioned on being
included. By Lemma 1, for any full path, any class in or which is closest to must be neg-
ative.

Thus for subtree we can get which is preferred conditioned on being included instead
of . Contradiction.

Similarly, we can show the same for .

Also

(3) has more negative terms than .

This is true since each has more negative terms than .

Hence, from (1), (2) and (3) one of or must be a preferred expression and the set of

terms making up the preferred answer expression must be unique. !

As mentioned, the proof of Theorem 4 is constructive in nature, an algorithm for obtaining a preferred

answer expression over an abstraction TA falls naturally out of its induction step. Basically, we do a pos-

torder traversal of TA, that is, before a node is visited, all its descendants must have been traversed.

Expressions and are constructed as each node (indexed by) is being encountered and the pre-

ferred answer expression is readily obtainable once the root has been visited.

6 Partially Ordered Classes

A collection of classes relative to a domain D does not necessarily fall into a strict (tree) hierarchy.

In other words, for two classes, it may neither be the case that their intersection is empty nor one is the sub-

set of the other. For example, consider two job categories of the employees of a company: computer scien-

tist and electrical engineer. It is not surprising that some employees belong to both categories, whereas

others belong exclusively to one category. In fact, if enough members belong to the intersection, it is quite

natural to form another class, say, computer engineer, so that we can denotate them collectively as an

aggregate. A simple extension beyond the strict hierarchy leads us to consider a partially ordered set

(poset) of classes.

ek 1+
+ R

R
ek 1+

+ R + Rek 1

- …ek n

-=

ek 1+
+ R (+ Rek 1

- …ek i

- (…ek n

-= R
ek i

- ek i

- (R

Ti + Siek i

- (Si

ek i

+ R

ek 1+
+ R + R Rek 1

p r e…ek n

p r e4=

ek 1+
+ R ek 1+

R4

ek i

+ R ek i

R4

ek 1+
+ R ek 1+

R4

ek i

+ R ek i

R4 ki

- 21 -

A graphical illustration of a poset P is shown in Figure 11. The classes and in P are related

by the partially ordered relation and the relation is shown graphically by the edge connecting

and from top to bottom. and are also related by the partially ordered relation . But the

relation is implied by transitivity and not explicitly shown. In this case and imply .

The idea of hiding classes and the definition of an abstraction of a class hierarchy extend naturally to a

poset of classes. Figure 11b provides an illustration of an abstraction of P. It should also be apparent that, in

our case, the partially ordered relation is taken as the subset relation. That is, for if and

only if .

Let us consider, instead of querying a class hierarchy, querying a partially ordered set of classes.

The definitions applying to a class hierarchy in Section 2, 3 and 4 can be generalized to apply to a partially

ordered set of classes. The generalizations should be trivial and we will not restate the definitions here. It

would be ideal if after the generalization to a poset of classes, the preferred abstract answer still has the

minimum number of classes and is unique in its representation. But a simple example shows that this is no

longer the case. Suppose, in Figure 11a, the extensional answers to the query consists only of C6, C7 and

C8. Then the preferred abstract answer to the query can be expressed either as shown in Figure 12a or Fig-

ure 12b. Thus, Theorem 2 is not always true under a poset of classes.

The hiding of details is still our main concern. Without worrying about the uniqueness in represen-

tation, we would like to know whether a preferred abstract answer, one that has a minimum number of

C1

C2 C3

C6 C8C7

C4 C5

Figure 11a: A Poset P of Classes

C1

C2

C6 C8C7

C5

Figure 11b: An Abstraction P

C1 C2

C2 C1, C1

C2 C1 C7 C7 C1,

C2 C1, C7 C2, C7 C1,

C1 C2 P C2 C1,,",

C2 C1!

C2 C3 C3 C4

Figure 12a: Abstract Answer Figure 12b: Abstract Answer

- 22 -

classes in its representation, can be obtained through an efficient algorithm. Unfortunately, we are able to

show that the problem at hand belongs to the class of NP-complete problems. First, let us restate our prob-

lem in terms of a decision problem.

Minimal Abstract Answer
INSTANCE: An abstraction PA of a poset P of classes, a set of classes Q where
and each class in Q satisfies the query, and a bound (where denotes the positive inte-
gers).
QUESTION: Is there an abstraction A of PA such that and the number of
classes in A is no more than B?

Clearly, if we could find an abstraction with the minimum number of classes for describing Q in polyno-

mial time, we could also solve the associated decision problem described above in polynomial time. All we

need to do is find such abstraction, determined the number of classes involved, and compare it with the

given bound B. Thus, the decision problem can be no harder than the corresponding optimization problem.

If we could demonstrate the Minimal Abstract Answer problem is NP-complete, we would know that its

optimization problem is at least as hard.

Theorem 5: Minimal Abstract Answer is NP-complete.

Proof: It is easy to see that since a non-deterministic algorithm
need only guess an abstraction A and check in polynomial time whether
and has the appropriate number of classes.

The remaining part of the proof involves the transformation of some already know NP-complete
problem to our Minimal Abstract Answer problem and showing that the transformation can be
done in polynomial time. We transform Vertex Cover to Minimal Abstract Answer.

Vertex Cover
INSTANCE: A graph G = (V,E) and a positive integer .
QUESTION: Is there a vertex cover of size K or less for G, that is, a subset such that

 and, for each edge , at least one of u and v belongs to V?

The technique we use in the transformation is local replacement. Let an arbitrary instance of Ver-
tex Cover be given by the graph G = (V,E) and the positive integer . We must construct a set
of classes such that G has a vertex cover of size K or less if and only if an abstrac-
tion A of PA satisfying contains no more than B classes.

The local replacement just substitutes for each edge a class and for each vertex
 a class v. Next, we introduce an ordering for the defined classes as follows:

 iff v is a vertex of the edge
Figure 13 shows an example of PA obtained from a graph G.

Q class P A()!

B Z+" Z+

extension A() Q#=

Minimal Abstract Answer NP"

extension A() Q#=

K V,

V(V!

V(K, u v,{ } E"

K V,

Q class P A()!

extension A() Q#=

u v,{ } E" u v Q"

v V"

u v v, u v,{ }

- 23 -

It is obvious that the construction can be accomplished in polynomial time. All that remains to be
shown is that G has a vertex cover of size K or less if and only if an abstraction A of PA satisfying

 has no more than B = K classes. This should be apparent by way of con-
struction. !

7 Multiple Class Hierarchies

In object-oriented model, similar objects are grouped naturally into classes and the recursive

grouping of classes forms a class hierarchy. Since there can be more than one way to group objects, objects

can belong to more than one class, each such class belonging to a different class hierarchy. In Figure 1, the

employee objects belong to a job category class hierarchy. The employee objects can also belong to

another education level class hierarchy. Consider again the query

Q1: “Select all employees with a salary greater than 40K.”

Usually, an employee’s salary is related to his job. Also, it may be the case that his salary is related to his

education. It would be convenient if in addition to querying a single class hierarchy, we can query a com-

position of multiple class hierarchies. An example answer to the above query is

A1: “All manager and all engineers with master degrees.”

Notice that there are three classes in the answer. Of the three classes involved, Manager and Engineer

belong to the job category class hierarchy, whereas Master belongs to the education level class hierarchy.

In this Section, we are concerned with querying a composition of multiple class hierarchies.

To express the set of “all engineers with master degrees”, we introduce the notion of a composite

class.

Definition 22: Let Ti be a set of class hierarchies and be a class of Ti. Then the tuple
 is a composite class over k class hierarchies. We also referred to each as a simple

class.

a b

cd

a b c d

ab bc ac cd

Vertex Cover Minimal Abstract Answer

Transform

Figure 13: Minimal Abstract Answer is NP-Complete

extension A() Q#=

1 i k, ,() Ci

C1… Ck,& ' Ci

- 24 -

If of T1 denotes the set of engineers and of T2 denotes the set of masters, we use the composite

class to denote the set of all engineers with master degrees. As is true for all classes, a composite

class represents a set of objects; but, instead of being defined inherently as in simple classes, it is given in

terms other simple classes.

Definition 23: Let be a composite class over k class hierarchies. The extension of
 is defined as .

The collection of composite concepts that we are dealing with is not arbitrary. Their relationships with one

another can be derived from the following definition.

Definition 24: The direct product of k class hierarchies , is the set of all tuples
 with , partially ordered by the rule that if and only if

 for all .

If the partial order relations are taken as the subsumption relations, it is not difficult to see that our defini-

tion of composite classes satisfies the ordering introduced by Definition 24 and our collection of composite

classes over k classes hierarchies corresponds to the direct product of k class hierarchies. Figure 14 shows

an example of a direct product of two class hierarchies.

From Definition 24, the direct product of k class hierarchies is a poset of composite classes. Query-

ing a composition of multiple class hierarchies is almost like querying a poset of classes. However, the

structure of a direct product of class hierarchies is more restricted. It is natural to ask whether the results

we obtained in Section 6 apply to the case of multiple class hierachies and the answer is that they do hold.

It is easy to see that the preferred abstract answer is not unique. We show that there is no efficient algorithm

to obtain a preferred abstract answer. For this purpose, we look at a decision version of a simpler problem.

C1 C2

C1 C, 2& '

C1… Ck,& '

C1… Ck,& ' Ci
1 i k, ,
5

T1…Tk Ti 1 i k, ,,

x1 … xk, ,& ' xi Pi" x1 …xk,& ' y1 … yk, ,& ',

xi yT i i, i 1 i k, ,()

a

cb d

1

2

<a,1>

<c,1> <a,3> <d,1><a,2><b,1>

<c,2> <c,3> <d,2> <d,3><b,3><b,2>

3

Figure 14: A Direct Product of two Class Hierarchies

- 25 -

Multiple Class Hierarchies Abstract Answer
INSTANCE: An abstraction PA of a direct product of n class hierarchies, Ti , a set of
composite classes Q where and each class in Q satisfies the query, and a bound

 (where denotes the positive integers).
QUESTION: Is there an abstraction A of PA such that and the number of
classes in A is no more than ?

If we could demonstrate the Multiple Class Hierarchies Abstract Answer problem is NP-complete, we

would know that its corresponding optimization problem, namely, finding an abstraction with the mini-

mum number of classes for describing Q, is at least as hard.

Theorem 6: Multiple Class Hierarchies Abstract Answer is NP-complete.

Proof: It is easy to see that since a non-determinis-
tic algorithm need only guess an abstraction A and check in polynomial time whether

 and has the appropriate number of classes.

The remaining part of the proof involves the transformation of some already known NP-complete
problem to our problem and showing that the transformation can be done in polynomial time.
Below we define the Minimum Cover problem which is known to be NP-complete [KARP72] and
then continue with a construction that transform Minimum Cover to Multiple Class Hierarchies
Abstract Answer.

Minimum Cover
INSTANCE: Collection C of subsets of a finite set S, positive integer .
QUESTION: Does C contain a cover for S of size K or less, i.e., a subset with such
that every element of S belongs to at least one member of ?

Our transformation basically follows that of the proof that the Minimal Disjunctive Normal Form
problem is NP-complete [GIMP65]. Let be a finite set, be a col-
lection of subset of S, and a positive integer be an instance of Minimum Cover. We must
construct an abstraction PA of a direct product of n class hierarchies Ti , a set of com-
posite classes Q where , and a positive integer such that an abstraction A of PA
satisfying contains no more than composite classes if and only if C has
a cover of size K or less.

First, we construct n class hierarchies Ti , with ’s as the roots, and and as the
only successors for each root. Class hierarchies and are hierarchies of 3 classes, with

, as their roots, and and , respectively, as their successors. They are named dif-
ferently because, as we will see later, they serve different purposes. We will be dealing with com-
posite classes over (=n+2) class hierarchies. For convenience, we will simply refer to them as
composite classes and those which compose of no root classes as base classes.

For each element , we associate it with a base class

1 i n, ,()

Q class P A()!

K (Z+" Z+

extension A() Q#=

K (

Multiple Class Hierarchies Abstract Answer NP"

extension A() Q#=

K C,

C(C! C(K,
C(

S s1 … sn, ,{ }= C c1 … cm, ,{ }=

K m,
1 i n(, ,()

Q class P A()! K (

extension A() Q#= K (

1 i n(, ,() ri xi xi (

T n 1+ T n 2+

p1 p2 y1 y1(, y2 y2(,

n(

si S"

- 26 -

For each , we associate it with a composite class

It should be clear from Definition 24 that if , ; but there are base concepts such
that for all i . Let D be the subset of all base concepts such that iff
for some j and for all i . Define

Notice that every base concept in is contained exactly by one composite class in
. Moreover, every base class in D is also contained by exactly one composite classes

in either or . The even-odd arrangement and the involvement of two more class hierar-
chies, and , are to ensure that each newly introduced composite class has to be included
in the abstraction A if .

Let us complete the construction by specifying Q and .

Since our construction basically follows that from [7], we omit showing that the transformation
can be done in polynomial time.

We claim that there is an abstraction A of PA with no more than composite classes if and only
if C has a cover of size K or less. Suppose C has a cover size of K or less. We can form an abstrac-
tion A such that for all composite classes , is a composite classes in A. Notice
that and . Now all that
remains of Q is . Recall that if . Since C has a cover of size K or
less, we can form an abstraction A with no more than composite classes.

Suppose an abstraction A has no more than composite classes. By way of construction, for all
composite classes , is a composite classes in A and .
Finally, for each in A, we pick the corresponding for the cover . Thus there is a cover
with size or less. !

>i x1 … xi (… xn y1 y2, , , , , ,& '=

ci C"

?j zj1
… zjn

y1 y2, , , ,& '= where zjk

xk sk cj*

rk sk cj"
{=

si cj" >i ?j, > ?j,

> >i/ 1 i n, ,() > D" > ?j,

1 j m, ,() > >i/ 1 i n, ,()

 De v e n z1 … zn y1 y2(, , , ,& ' | > z1 … zn y1 y2, , , ,& ' D and number of non-primed x‘s is even"={ }=

?e v e n z1 … zn y1 p2, , , ,& ' | z1 … zn y1 y2(, , , ,& ' De v e n"{ } =

 Do d d z1 … zn y1(y2, , , ,& ' | > z1 … zn y1 y2, , , ,& ' D and number of non-primed x‘s is odd"={ }=

?o d d z1 … zn p1 y2, , , ,& ' | z1 … zn y1(y2, , , ,& ' Do d d"{ } =

De v e n Do d d()

?e v e n ?o d d()

?e v e n ?o d d

T n 1+ T n 2+

D Q!

K (

Q D De v e n Do d d >i | 1 i n, ,{ }# # #{ }#=

K (K D +=

K (

? ?e v e n ?o d d#" ?

?e v e n ?o d d#{ }# D De v e n Do d d# #{ }#= ?e v e n ?o d d+ D=

>i | 1 i n, ,{ } >i ?j, si cj"

K (K D+=

K (

? ?e v e n ?o d d#" ? ?e v e n ?o d d+ D=

?j cj C(C(
K K (D4=

- 27 -

8 Related Work

Many researchers have recognized the need for higher-level, intensional, implicit, query answers.

In the context of deductive database, Cholvy and Demolombe [3] choose to ignore the set of elementary

facts completely. They were not interested in a set of atomic objects which satisfy a given query in a partic-

ular database state, but in the conditions objects must satisfy, in any state, to belong to the answer. The rule

base is considered as a set of axioms T which are formulas of a first order language. The answer to a query

Q(X) is a formula ans(X) such that

that is, is a theorem of T, where X is a tuple of free variables. An interesting idea is

allowing the user to restrict the representation of the answer to a pre-specified set of predicates, which cor-

responds to the domain of interest to the user. Part of our work here is related to this last suggestion as we

assume the availability of pre-defined hierarchies of classes, but our answers to query are expressed not

simply as collections of classes but as forests of class hierarchies. The notion of an abstraction, an impor-

tant concept in this paper, was not addressed by Cholvy and Demolombe.

In a large knowledge base system, data can be represented in the form of both general rules (Horn

clauses) and assertions representing specific facts (tuples of relations). Imielinski [8] argues that rules as

well as atomic facts should be allowed in the answer for a query. He proposes rule transformation as a tech-

nique for query processing. In our case, it is possible to encode a class hierarchies using a set of rules.

Since each class is basically a predicate, a class C is subsumed by another class C’ can be expressed as

If Q is the condition of a query, and the concepts satisfy the query. The answer can be

expressed as a set of rules:

Further, in [4], Chomicki and Imielinski define a formal notion of finite representation of infinite query

answers in an extension of Datalog. Again the notion of an abstraction has not been addressed. Moreover,

since rules are given as Horn clauses, literals are all positive and thus, exceptions to classes cannot be

expressed in the answer.

T |- X ans X() Q X()3()@

X ans X() Q X()3()@

C x() C(x()3

C1 C2 … Cn, , ,

C1 x() Q x()3

C2 x() Q x()3

…

Cn x() Q x()3

- 28 -

Taking a TTL catalog as an example, Corella [5] showed the existence of a class of potential appli-

cations which are special in that the entities to be retrieved in response to queries are concepts whose

extensions are immaterial. A set of “retrievable concepts” is defined from which the elements of all result

answers should be chosen. A query has a condition Q, which is a predicate. A concept C satisfies a query

with condition Q if Q subsumes C. Concepts are also organized into a finite tree taxonomy. Our definitions

of classes and class hierarchies actually correspond to the respective definitions of concepts and taxonomy.

There is also a notion of levels of abstraction associated with queries and answers. In Corella’s paper, a

level of abstraction is formally defined as a set of concepts; whereas in our definition, an abstraction is a

forest of class hierarchies. The motivation is that our definition more readily models a graphical querying

and answering facility. We also introduce a labeled abstraction which is unique in this paper. Labeled

abstractions increase our expressive power and, further, allow us to express exceptions to an answer.

In a preliminary version [15] of this paper, we were concerned with the implicit representation of

extensional answers. Answers are given in terms of expressions of concepts and individuals. Exceptions

within individual concepts are allowed. Two criteria are defined as measures of the goodness of such

expressions: (i) minimizing the number of terms; (ii) positive terms preferred over negative terms. In this

paper, we present a comprehensive study of querying a tree-structured class hierarchy. We introduce the

notion an abstraction. The idea of an abstraction not only applies to the presentation of answers, but also

applies to the querying for abstract answers. To accommodate exceptions, we further introduce a labeled

abstraction. We illustrate that these definitions easily translate into graphical interfaces. Moveover, we con-

sider other sets of criteria that might be preferable, study the uniqueness properties under such criteria and

provide efficient algorithms, whenever possible, for obtaining such answers.

Siegelmann and Badrinath [16], based on the preliminary version [15] of this paper, suggest a dif-

ferent set of criteria for measuring the goodness of implicit answers. Their i-coherent expression is an

expression that contains no subtree with more than i negative terms, but contains at least one subtree with i

negative terms. Each subtree also contains the root term as the only positive term. The user is allowed to

choose the parameter i. Coherent answers are not necessarily optimal in the number of terms, but they still

are unique in their representation. Our preferred restricted answer expression is similar to i-coherent

expression, although the former has its emphasis on the optimal number of terms. Again our comprehen-

sive treatment of the abstraction concept is unique in this paper.

- 29 -

9 Conclusions

Class hierarchy is an important data modeling concept in today’s object oriented databases. In this

paper, we integrated the class hierarchy concept in the formulation of queries and the presentation of

answers. We defined the notion of an abstraction. Informally, the hiding of classes from a class hierarchy

forms an abstraction. We applied the concept of an abstraction in a graphical query language. A user can

hide some uninteresting classes from the class hierarchy. The representation of the answer is also

expressed as an abstraction. The hiding of more classes from the answer implies the suppression of more

details and the more abstract the answer is. Thus classes subsumed by other class in the answer are not

included. This defined our preferred abstract answer. We proved that preferred abstract answer had the

minimum number of classes in its representation and was unique in its representation. We also presented an

efficient algorithm for obtaining a preferred abstract answer.

To accommodate exceptions in an abstract answer, we introduced labeled abstraction. Associated

with each class, a “+” label indicates that the class is in the answer; whereas, a “-” label indicates the class

is not part of the answer. The label for a subclass overrides the label for its superclass. First, we considered

a restricted form of abstract answer using labeled abstraction in which every “-” label class has exactly one

“+” label ancestor class. The preferred restricted form has the minimum number of classes in its represen-

tation and for two representations with the same minimum number of classes, it has fewer “-” labeled

classes. We proved that the preferred restricted form was unique in its representation. Again we presented

an efficient algorithm for obtaining a preferred restricted form answer. Next, we considered the general

abstract answer using labeled abstraction. The criteria for preferred general answer are the same as those

for preferred restricted form. We proved that the preferred general answer was still unique in its representa-

tion. An efficient algorithm for obtaining preferred general answers can be elicited from the constructive

proof.

We extended the idea of an abstraction beyond a tree-structured class hierarchy to a partially

ordered set of classes. We illustrated that preferred abstract answer under a poset of classes was no longer

unique in its representation. We also proved that obtaining preferred abstract answer under a poset of

classes was an NP-complete problem. For multiple class hierarchies, a restricted poset of classes, the prob-

lem still remains intractable.

- 30 -

The various set of criteria we considered here as preferred answer are, by no means, exhaustive.

Other reasonable criteria include putting a bound on the maximum number of negative terms in the abstract

answer, and assigning weights to classes at different levels in a class hierarchy.

Throughout the paper, we assume that for a class to satisfying a query, each object within the class

has to be tested individually. An interesting question is to what extent the finding of an abstract answer can

be integrated with conventional query optimization and, as a result, be obtained more efficiently.

References

[1] A. Alashgar, S. Su, H. Lam, “OQL: A query language for manipulating object-oriented databases,”
Proc. 15th Int. Conf. on VLDB, Amsterdam, Aug. 1990, pp. 433-442.

[2] J. Banerjee, W. Kim, K. Kim, “Queries in object-oriented databases,” Proc. 4th IEEE Conf. on
Data Engineering, Feb. 1988, pp. 31-38.

[3] L. Cholvy, R. Demolombe, “Querying a rule base,” Proc. 1st Int. Conf. on Expert Database Sys-
tems, South Carolina, 1986.

[4] J. Chomicki, T. Imielinski, “Finite representation of infinite query answers,” ACM Trans. on Data-
base Systems, vol. 18, no. 2, Jun. 1993, pp. 181-223.

[5] F. Corella, “Semantic retrieval and levels of abstraction,” Expert Database Systems: Proc. 1st Int.
Workshop on Expert Database Systems, L. Kerschberg (eds.), Benjamin Cummings, New York,
1986, pp. 91-114.

[6] G. Gambosi, M. Scholl, H.-W. Six, eds., Geographic database management systems: workshop
proceedings, Capri, Italy, May 1991, Springer, 1992.

[7] J. Gimpel, “A method of producing a boolean function having an arbitrarily prescribed prime
implicant table,” IEEE Trans. Computers, vol. 14, no. 3, 1965.

[8] T. Imielinski, “Intelligent query answering in rule based systems,” J. Logic Programming, vol. 4,
no. 3, Sep. 1987.

[9] W. Kim, J. Banerjee, H.-T. Chou, J.F. Garza, “Object-oriented database support for CAD,” Com-
puter Aided Design, vol. 22, no. 8, Oct. 1990, pp. 469-479.

[10] W. Kim, F. Lochovosky, Object-Oriented Concepts, Databases, and Applications, ACM Press,
1990.

[11] L.-C. Liu, E. Horowitz, “Object database support for CASE,” Object-Oriented Databases with
Applications to CASE, Networks and VLSI CAD, R. Gupta, E. Horowitz (eds.), Prentice-Hall,
1991.

[12] Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publish-
ers, 1991,

[13] N. Qazi, M. Woo, A. Ghafoor, “A synchronization and communication model for distributed mul-
timedia objects,” Proc. First ACM Int. Conf. on Multimedia, Aug. 1993, pp. 147-156.

- 31 -

[14] G. Shaw, S. Zdonik, “A query algebra for object-oriented databases,” Proc 6th IEEE Conf. on
Data Engineering, Feb. 1990.

[15] C.-D. Shum, R. Muntz, “Implicit Representation of extensional answers,” Proc 2nd Int. Conf. on
Expert Database Systems, Apr. 1988, pp. 257-273.

[16] H. Siegelmann, B. Badrinath, “Integrating implicit answers with object-oriented queries,” Proc
17th Int. Conf. on VLDB, Barcelona, Sep. 1991, pp. 15-24.

[17] S. B. Zdonik, D. Maier, Readings in Object-Oriented Database Systems, Morgan Kaufmann, 1990.

