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Abstract. We generalize the standard revealed-preference exer-

cise in economics, and prove a sufficient condition under which the

revealed-preference formulation of an economic theory has univer-

sal and effectively testable implications. We not only generalize

and “explain” classical revealed-preference theory, but we also ob-

tain applications to the theory of group preference and Nash equi-

librium.

1. Introduction

The notion of revealed preference was introduced by Paul Samuel-

son (1938) in his investigation of the empirical content of the theory

that consumers maximize utility. In this paper we generalize the stan-

dard revealed-preference exercise in economics: We provide a general

framework that captures Samuelson’s ideas as a special case; but which

applies to many other economic models.

Samuelson formulated the theory of the consumer as a statement

about observable data. He attempted to characterize the data sets

that are consistent with the existence of some utility function. The

answer, provided by Houthakker (1950), is that the data sets that are
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consistent with utility maximization are those that satisfy the strong

axiom of revealed preference (SARP). It is crucial to understand the

importance of SARP, because it uncovers a basic issue behind any

revealed preference exercise, and this issue is at the heart of our paper.

We often hear that SARP contains the testable implications of the

theory of utility maximization, but the theory is in principle testable

even without access to a result like Samuelson’s and Houthakker’s. As

an empirical statement, the theory of the consumer comprises the data

sets that some utility function can explain. This statement describes

the empirical content of the theory of the consumer just as SARP does.

Importantly, though, it is useless as a test; because to test the theory

of the consumer we would need to check every possible utility function

and see if they could have generated the data—a completely impractical

test. In contrast, SARP provides an “effective” test. Given any data

set falsifying the theory of the consumer, we can in finitely many steps

determine that it violates SARP.

An example from Popper (1959) illustrates our point. Suppose that

theory E says “There is a black swan;” while theory U says “All swans

are white.” Theory E is not falsifiable because no matter how many

finite data sets of non-black swans we find, it is still possible that there

is somewhere a black swan. Theory U is falsifiable because the ob-

servation of a single non-white swan contradicts the theory. Note the

similarity between E and the first formulation of utility maximization,

“There is some utility function that explains the data.” Such a for-

mulation is existential, and it does not lead to a test of the theory for

the same reason that theory E is not testable. In contrast, theory U

and SARP are universal statements. They are testable because they

do not involve any unobservable free parameters.

Our main result provides the existence of SARP-like universal tests

for any revealed-preference exercise satisfying the assumption that the

theory would be testable if only its unobservable terms were observ-

able. More specifically, we prove that if the formulation of a theory is

universal when we assume that its unobservable terms are observable,

then there is a test purely based on observables; this test is universal:
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it is a universal axiomatization of the data sets that comply with the

theory, analogously to SARP. When the formulation over unobserv-

ables is effective (which it is in all applications we can think of), then

our test is also effective, in the sense that a falsifying data set can be

certified to be a falsification in finitely many steps.1

We present applications of our result to the problem of testing for

Nash equilibrium, and to other theories of group decision making. Our

result is easy to apply: we need to write the theory of Nash equilibrium,

for example, using purely universal axioms (axioms that only involve

“for all” quantifiers). Some axioms would make statements about pref-

erences: for example if we are talking about two-player games we can

write “if (x, y) is observed as an outcome, and z 6= x is a strategy for

player 1, then player one prefers (x, y) to (z, y).” Such an axiomati-

zation would be a test of the theory in the unrealistic case in which

preferences are observable. Our main result implies then that there is

a test (a universal axiomatization) that is purely based on observables,

and that this test certifies a falsification in finitely many steps.

Our results are similar in spirit to the applications of “quantifier elim-

ination” in revealed preference theory, see Brown and Matzkin (1996)

and Brown and Kubler (2008). Brown and Matzkin show that the

revealed preference formulation of Walrasian equilibrium theory leads

to testable implications on economy-wide data. That is, there exist

preferences which could generate the data if and only if a collection of

universal statements on data are satisfied. Quantifier elimination and

our results have in common a kind of “projection” of a theory onto

purely observable terms. Our results use completely different tech-

niques, however. As we explain below, we use a result due to Alfred

Tarski on universal axiomatizations in model theory. The applications

1In fact, the problem of falsification is decidable; in the sense that there is an al-
gorithm that determines if a finite instance of data is compatible with the theory.
A direct application of an important theorem from computer science (Fagin’s theo-
rem) implies that the theories in our framework lie in the complexity class NP. This
means that, given a structure which is in our theory, there is a polynomial-time
way of verifying that it is actually in our theory.
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we present in this paper cannot be analyzed by means of quantifier

elimination.2

We proceed to summarize the applications of our main result.

Group preference and group choice. Consumption theory involves

one unobserved preference relation. Our general result allows there to

be multiple unobserved relations.

Two branches of the revealed preference literature focus on the em-

pirical content of group choices: one motivated by social choice consid-

erations, the other by game-theoretic considerations.

One branch is devoted to understanding the empirical content of col-

lections of individuals who have conflicting motivations. We observe

group preferences, but we do not observe the preferences of the under-

lying members of the group, nor do we observe the method by which

they aggregate their preferences. We want to test the joint hypothesis

that the individuals are rational, and use some particular social choice

rule in aggregating their preferences. Exercises of this type date back

at least to Dushnik and Miller (1941), which can be interpreted as ax-

iomatizing those binary relations which could be written as the Pareto

relation for two individuals.

We establish that for a broad class of preference aggregation rules,

namely those which are neutral and satisfy independence of irrelevant

alternatives, the hypothesis that preference is derived from an aggre-

gate of individual rational preferences is universally axiomatizable and

hence falsifiable in principle.

Another recent branch of the revealed preference literature focuses on

the empirical content of group choice functions in games. The approach

is as follows: a set of players is given, and a set of strategies is given.

For any nonempty set of strategies, for each agent, it is imagined that

a joint choice is observed from the game form derived from those sets.

One can ask whether or not the observed choices can be rationalized

as Nash equilibria, or as the Pareto optimal joint choices for some

2At least not by the quantifier elimination of real-closed fields, as in Brown and
Matzkin (1996). We deal with theories that are not necessarily formulated in the
language of real closed fields.
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set of preferences. Examples of such papers include Peleg and Tijs

(1996), Sprumont (2000), Xu and Zhou (2007), Galambos (2009), and

Lee (2009). There are older studies of the same questions, also about

group choice, but using other solution concepts: see Wilson (1970),

Plott (1974), and Ledyard (1986).

Here, we work with a generalized notion of equilibrium which incor-

porates Nash equilibrium, strong Nash equilibrium (Aumann, 1960),

and Pareto optimality as special cases. We show that the theory

hypothesizing that there exist strict preferences rationalizing the ob-

served choices is always universally axiomatizable, and hence falsifiable

in principle.

Section 2 lays down the formal structure of the model, and presents

the main result (Theorem 5). Section 3 presents the application to

group choice and preference aggregation. Section 4 discusses the appli-

cation to group choice behavior. Section 5 establishes the complexity

result (Fagin’s theorem). Section 6 talks about our large sample re-

sult, while Section 7 discusses previous literature and concludes. The

Appendix collects details about model theory, in order to keep our

presentation self-contained.

2. Main Results

2.1. Preliminary definitions. In our setup, a test is an axiomatiza-

tion of possible data; so we are going to theorize about axiomatizations.

To this end we borrow ideas and results from the field of model theory

in mathematics. We proceed to give some standard definitions from

model theory. Readers with at least a minimal exposure to model

theory or mathematical logic will want to skip this section.

We first must specify our language L. The language is a primitive

and specifies the syntax, or the things we can say.

1. Definition. A relational first-order language L is given by a set R
of predicate symbols and a positive integer nR for every R ∈ R.

The symbol R ∈ R is meant to denote a nR-ary relation. Note

that we focus here on language without constant and function symbols.
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(See also Remark 6 below). When R is a binary relation, we use the

notation R(x, y) instead of x R y. When R is a ternary relation, we

write R(x, y, z), and so on.

For example if we wish to talk about preference, we may use a lan-

guage with a single binary symbol R. We can then write axioms, such

as ∀xR(x, x), or ∀x∃yR(y, x), and make sense of when a set X with a

specific binary relation on X satisfy these axiom. Issues that deal with

the form of axioms are issues of syntax ; while specific sets and relations

raise semantical issues.

The semantics are specified by concrete mathematical objects, called

structures. Structures provide the appropriate framework for interpret-

ing our syntax. Specifically, a structure is a universe of possible objects,

and an interpretation of the elements of language in that universe.

2. Definition. An L-structureM is given by a nonempty set M called

the domain ofM, and, for every predicate symbol R ∈ R, a set RM ⊆
MnR .

When the language L is understood, we refer to an L-structure sim-

ply as a structure. The elements RM and are called interpretations

of the corresponding symbols in the language L.3 For example, when

L = 〈�〉 has a single binary relation, then one possible structure is

(R,≥); the structure of the real numbers with the usual greater-than

binary relation.

3. Definition. Suppose thatM and N are L-structures with universes

M and N respectively. An L-embedding η : M → N is a one-to-one

map η : M → N that preserves the interpretations of all predicate

symbols, i.e., such that

RM(a1, ..., amR)↔ RN (η(a1), ..., η(amR))

for all R ∈ R and a1, ..., amR ∈M .

As a notational convention, we write RM(a1, ..., amR) to mean

(a1, ..., amR) ∈ RM.

3We make no cardinality restrictions on structures.
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4. Definition. An isomorphism is a bijective L-embedding.

Appendix A gives definitions of sentence, and of the validity of a

sentence in a structure. These notions correspond closely to their con-

ventional meaning in English.

2.2. The Model. For a given first order language G, a G-theory is a

class of structures for that language which is closed under isomorphism.

We say that a theory T is axiomatized by a collection of sentences Σ

if T consists exactly of the structures for which each sentence in Σ is

valid. Given two theories, T and T ′, where T ⊆ T ′, we say that T

is axiomatized by a collection of sentences Σ with respect to T ′ if T

consists of exactly those structures in T ′ for which each sentence in Σ

is valid.

Let F = 〈R1, . . . , RN〉 and

L = 〈R1, . . . , RN , Q1, . . . , QK〉,

be languages, where all the Rn and Qk are predicate symbols. Note

that F ⊆ L.

The languages F and L are our way of capturing the difference be-

tween observed and unobserved terms. We mean the relations Rn to

be observable in the data, while the relations Qk are unobservable. In

our applications below, we choose F and L with this interpretation

in mind. For example, for the standard revealed preference theory of

individual rational choice, F = 〈R〉 and L = 〈R,Q〉, where R is meant

to represent the revealed preference relation present in the data, and

Q is meant to be a theoretical preference relation, on which we impose

some rationality axioms (see Section 2.4 below).

Let T be an L-theory. Define F (T ) to be the class of F -structures

(X∗, R∗1, ..., R
∗
N) for which there exist relations Q∗1, ..., Q

∗
K such that

(X∗, R∗1, ..., R
∗
N , Q

∗
1, ..., Q

∗
K) ∈ T . That is, F (T ) is the projection of T

onto the language F .4

4If T has a finite first-order axiomatization, then F (T ) is an example of an existen-
tial second-order theory for language F , in that it allows existential quantification
over predicates. That is, if σ is a first-order L-axiom axiomatizing theory T , then
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Recall that a universal axiom is an axiom of the form

∀x1...∀xnϕ(x1, ..., xn), where ϕ(x1, ..., xn) is quantifier free. A universal

axiomatization is an axiomatization that consists entirely of universal

axioms.

Given a collection of L-sentences Σ, the collection of F-consequences

of Σ is the collection of all logical implications of L involving only

predicates from F .

5. Theorem. If T has a universal L-axiomatization, then F (T ) has a

universal F-axiomatization. Moreover, if Σ is a universal axiomatiza-

tion of T , then the collection of universal F-consequences of Σ is an

axiomatization of F (T ).

6. Remark. For readers who are familiar with model theory, we re-

mark that Theorem 5 remains valid when the language F includes also

constant and function symbols. However, the unobservable symbols

Q1, . . . , QK must be only predicate symbols.

7. Remark. In Section 7.1 we present an example of how F (T ) can

fail to have an axiomatization when T is not under the hypothesis of

Theorem 5.

Proof. We first establish that F (T ) is universally axiomatizable, using

a theorem of Tarski (1954). We then show what this axiomatization

should be.

We want to verify the three conditions of Theorem 1.2 in Tarski

(1954). Specifically, conditions (i), (ii), and (iii’) in Tarski’s paper. To

this end, we need to show that F (T ) is closed under isomorphism and

substructure. Lastly, we need to show that for any totally ordered set

Θ and indexed collection of models Mθ ∈ F (T ) where if θ < θ′, then

Mθ is a substructure of Mθ′ , there is M∗ ∈ F (T ) for which each Mθ

is a substructure of M∗.

F (T ) is that F-theory axiomatized by

∃Q1...∃QKσ.
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The first two conditions (closure under substructures and isomor-

phism) follow because T satisfies those conditions as it is a universal

theory. We prove the third condition.

Let Σ be a universal axiomatization of T .

LetMθ = (Xθ, Rθ
1, ..., R

θ
N), θ ∈ Θ, be a monotone class of structures

of F (T ). That is, Θ is totally ordered, and Mθ is a substructure of

Mθ′ whenever θ < θ′. Let M∗ = (X∗, R∗1, . . . , R
∗
N) be defined so that

X∗ =
⋃
θX

θ and R∗k =
⋃
θ R

θ
k for k = 1, . . . , N .

For each θ, let W θ be the set of lists of relations (Q∗1, . . . , Q
∗
K) on X∗

such that

(Xθ, Rθ
1, . . . , R

θ
N , Q

∗
1|Xθ , . . . , Q∗K |Xθ)

is a model of Σ. Note that W θ 6= ∅ as Mθ ∈ F (T ).

We claim that if θ < θ′, then W θ′ ⊆ W θ.

Let (Q∗1, . . . , Q
∗
K) ∈ W θ′ and let ∀x1...∀xMϕ(x1, . . . , xM) ∈

Σ. Then by assumption, (Xθ′ , Rθ′
1 . . . , R

θ′
N , Q

∗
1|Xθ′ , . . . , Q∗K |Xθ′ ) is a

model of ∀x1...∀xMϕ(x1, ..., xM), so ϕ(x∗1, . . . , x
∗
M) is valid for any

{x∗1, . . . , x∗M} ⊆ Xθ′ ; in particular, it is valid for any {x∗1, . . . , x∗M} ⊆
Xθ. Since for all i = 1, . . . , N , Rθ

i = Rθ′
i ∩Xθ, ∀x1...∀xMϕ(x1, ..., xM)

is valid in (Xθ, Rθ
1, . . . , R

θ
N , Q

∗
1|Xθ , . . . , Q∗K |Xθ). As ϕ was arbitrary,

(Q∗1, . . . , Q
∗
K) ∈ W θ.

Note that if Q is a k-ary relation on X∗, it is a subset of Xk. To this

end, regard W θ as a subset of

B = {0, 1}Π1X∗ × · · · × {0, 1}ΠKX
∗
,

where ΠkX
∗ stands for the product X∗ × . . . ,×X∗, as many times as

the order of the predicate Qk. Note that B, endowed with the product

topology, is compact.

We claim that W θ, viewed as a subset of B, is closed. To see this,

let (Qλ
1 , . . . , Q

λ
K) be a net in W θ, converging to (Q∗1, . . . , Q

∗
K). Let

∀x1...∀xMϕ(x1, . . . , xM) be a formula in Σ and let {x∗1, . . . , x∗M} ⊆ Xθ.

Then by definition of product topology convergence, there exists λ

such that if λ < λ, then for k = 1, . . . , K, Qλ
k(x
∗
1 . . . , x

∗
M) if and only if
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Q
∗

k(x
∗
1 . . . , x

∗
M). Then, since

w = 〈Xθ, Rθ
1, . . . , R

θ
N , Q

λ
1 |Xθ , . . . , Qλ

K |Xθ〉

is a model of ∀x1...∀xMϕ(x1, ..., xM), ϕ(x1, ..., xM) is valid at

x∗1 . . . , x
∗
M for the interpretation of the predicate symbols in w.

So Qλ
k(x
∗
1 . . . , x

∗
M) if and only if Q

∗

k(x
∗
1 . . . , x

∗
M) implies that ϕ is

valid at x∗1 . . . , x
∗
M for the interpretation of the predicate symbols in

(Rθ
1, . . . , R

θ
N , Q

∗
1|Xθ , . . . , Q∗K |Xθ). Since (x∗1, ..., x

∗
M) was arbitrary, con-

clude that (Q∗1, . . . , Q
∗
K) ∈ W θ.

The collection W θ, θ ∈ Θ, is thus a nested collection of closed

sets in a compact space, so it has nonempty intersection. Con-

clude that there exists (Q∗1, . . . , Q
∗
K) ∈

⋂
θ∈ΘW

θ. We claim

that u∗ = (X∗, R∗1, . . . , R
∗
N , Q

∗
1, . . . , Q

∗
K) is a model of Σ. Let

∀x1...∀xmϕ(x1, . . . , xM) ∈ Σ and {x∗1 . . . , x∗M} ⊆ X∗. By definition

of u∗, there is θ ∈ Θ such that, for n = 1, . . . , N , R∗n(x∗1 . . . , x
∗
M) if

and only if Rθ
n(x∗1 . . . , x

∗
M), and such that {x∗1 . . . , x∗M} ⊆ Xθ. Since

(Q∗1, . . . , Q
∗
K) ∈ W θ, ϕ(x∗1, . . . , x

∗
M) is valid under the interpretation

(Rθ
1, . . . , R

θ
N , Q

∗
1|Xθ , . . . , Q∗K |Xθ). Hence, the fact that R∗n(x∗1 . . . , x

∗
M)

if and only if Rθ
n(x∗1 . . . , x

∗
M) implies that ϕ(x∗1, . . . , x

∗
M) is valid under

the interpretation (R∗1, . . . , R
∗
N , Q

∗
1, . . . , Q

∗
K). Conclude that u∗ ∈ T .

As F ({u∗}) =M∗, we obtain M∗ ∈ F (T ), establishing the third con-

dition.

Lastly, we now know that F (T ) has a universal axiomatization. Ob-

viously, any structure M ∈ F (T ) satisfies all universal F -implications

of Σ. Conversely, we need to show that any sentence in the universal

axiomatization of F (T ) is a universal F -implication of Σ. So suppose

there is a sentence ϕ which is not. In particular then, there exists a

structureM∈ T for which ϕ is not valid. But as ϕ involves only pred-

icates from F , it therefore follows that ϕ is also not valid for F (M), a

contradiction (as ϕ is valid for all members of F (T )). �

2.3. Recursive Axiomatization. In the introduction we talked of

how SARP gives an effective test, one that certifies a falsification in

finitely many steps. Note that SARP is actually an infinite collection
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of axioms, but it still provides an effective test. SARP allows for an

algorithm that determines when it has been violated.

Here we formalize the notion of effective tests using ideas from com-

putability theory (Rogers (1987), for example, provides an introduc-

tion). The notion of an effective test corresponds to the axiomatiza-

tion in Theorem 5 being recursively enumerable. Intuitively, we show

the existence of axiomatizations for which there is a computer program

that can enumerate all the axioms: this is the meaning of recursively

enumerable. Any violation of the theory would be detected by our

program, as it would check each axiom against the data and see if the

data comply with the axiom.

Assume that an economist proposes a theory T , with universal ax-

iomatization Σ. Suppose that he observes the elements a1, . . . , an

of some structure M, and the relationship between them. If there

exist some universal axiom ∀x1...∀xnϕ(x1, . . . , xn) ∈ Σ such that

ϕ(a1, . . . , an) is not valid in M then T has been falsified. On the

other hand, if none of the axioms is violated, that does not establish

the correctness of the theory, since the axioms may still be violated on

other elements of M. This idea is the fundamental tenet of Popper’s

approach – theories can be falsified, but never be proved.5

We now extend this idea to the process of checking whether observed

data (that is, a collection of elements (a1, . . . , an) and the relations

between them) falsify the theory. To do that, our economist needs a

computer program to produce a list of all the axioms in Σ, so that

he can go over the axioms and check their validity over the data set.

In this case, if the data violate an axiom, we will eventually find the

violations. If none of the axioms are violated, then it is possible that

the search will never end and we will never know for sure that none of

the axioms is violated. Again, theories are not proved, only falsified.

A set Σ of formulas is called recursively enumerable (r.e.) if there

exists a Turing Machine that enumerates over the elements of Σ in some

5This is referred to as the “asymmetry thesis” in Popper’s terminology.
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order.6 Thus, the output of the machine is an exhaustive list ϕ1, ϕ2, . . .

of all the elements of Σ. It is easy to see that SARP constitutes a r.e.

axiomatization.

The following is a simple corollary of Theorem 5.

8. Corollary. If T has a recursively enumerable and universal axiom-

atization, then so does F (T ).

Proof. Let Σ be a r.e. set of universal formulas that axiomatizes T . It is

well known that the set of logical implications of a r.e. set of formulas is

itself r.e. Thus, there exists a Turing machine that enumerates all these

logical implications ψ1, ψ2, . . . . We augment this Turing machine by

checking before printing each ψi whether it is a universal sentence that

contains only observable predicates, and print ψi only if it satisfies these

requirements. The augmented machine enumerates over all universal

logical implications of Σ that contain only observable predicates. By

Theorem 5, this set axiomatizes F (T ). �

9. Remark. A set is recursive if both it and its complement are r.e.

By an argument of Craig (1953), a r.e. set Σ of universal axioms is

equivalent to a recursive set Σ′ of axioms.

To understand the importance of Corollary 8, note that Theorem 5

gives us a universal axiomatization, but it will typically not be a finite

one (SARP is our running example, see Section 2.4 for details). To

be a proper test of the theory, in the same sense as SARP, we need

recursive enumerability. In all the applications we have in mind, T has

a finite axiomatization, so the corollary ensures that our test is r.e.

2.4. Example: Individual rational choice. As an illustration of

Theorem 5, consider the revealed preference formulation of the theory

of individual rational choice. We begin with the simple case in which

revealed preference is the primitive, then we describe the case in which

a choice function is primitive.

6The set of formulas under consideration is always at most countable. This is a
standard notion in mathematical logic; it is at the heart of many celebrated results,
the most famous being Gödel’s theorem.
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Consider the language F = 〈R,P 〉 with two binary predicates;

R(x, y) is intended to mean that x is revealed preferred to y, and P (x, y)

that x is revealed strictly preferred to y.

We are interested in the theory of all structures (X,RX , PX) for

which there exists a complete and transitive binary relation� satisfying

the axioms

(1) ∀x∀y(R(x, y)→� (x, y))

(2) ∀x∀y(P (x, y)→� (x, y))

The language F expresses only observables, but the version we have

of the theory does not constitute a universal axiomatization. We want

to know when we can formulate the theory using only universal axioms

that are statements about observables.

We can extend the language F to a language L, and formulate our

theory using only universal axioms. Let L = 〈R,P,�,�〉. Here, � and

� are meant to be theoretical, unobservable, relations. Consider the

set of L-sentences:

(1) ∀x∀y(� (x, y)∨ � (y, x))

(2) ∀x∀y(� (x, y)↔ (� (x, y) ∧ ¬ � (y, x)))

(3) ∀x∀y∀z(� (x, y)∧ � (y, z))→� (x, z)

(4) ∀x∀y(R(x, y)→� (x, y))

(5) ∀x∀y(P (x, y)→� (x, y))

Let T be the L-theory axiomatized by this set of sentences.

Now, T is a description of the theory of rational choice, but it as-

sumes that we can access, or observe, the relation �. The theory we are

really interested in is F (T ): the projection of T onto the language F .

Since the axioms (1)-(5) are a universal axiomatization of T , The-

orem 5 implies that there is a universal axiomatization of F (T ). In

addition, one such axiomatization is given by the implications of (1)-

(5) that only involve the predicates R and P .

To be concrete, this axiomatization is described by a variant of the

strong axiom of revealed preference (sometimes called Suzumura con-

sistency, after Suzumura (1976)). In fact, in first order logic, the strong

axiom of revealed preference is a collection of axioms.
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The Strong Axiom of Revealed Preference: For every k,

∀x1...∀xk¬
k∧
i=1

(
xi Qi x(i+1) mod k

)
where for all i, Qi ∈ {R,P}, and for at least one i ∈ {1, ..., k}, Qi = P .

10. Proposition. If T is axiomatized by (1)-(5), then F (T ) is axiom-

atized by the strong axiom of revealed preference.

Proof. We offer a sketch, as this type of argument is well-understood.

Clearly the strong axiom is valid for F (T ). Now suppose that

(X,RX , PX) is a model of the theory described by the strong axiom.

We want to show it is an element of F (T ). Let Q denote the transi-

tive closure of RX ∪ PX . Note that if PX(x, y), then ¬Q(y, x) (this

follows by the strong axiom of revealed preference). Consequently, de-

noting the strict part of Q by PQ, we obtain ∀x∀yRX(x, y) → Q(x, y)

and ∀x∀yPX(x, y) → PQ(x, y). Now, by a generalization of the Szpil-

rajn Theorem (see, for example, Suzumura (1976), Theorem 3), Q

has an extension to a weak order � with strict part �, so that

∀x∀yQ(x, y) →� (x, y) and ∀x∀yPQ(x, y) →� (x, y). Consequently,

∀x∀yRX(x, y) →� (x, y) and ∀x∀yPX(x, y) →� (x, y), where � is a

weak order and � is its strict part. This verifies that (X,RX , PX) ∈
F (T ), as (X,RX , PX ,�,�) ∈ T . �

We now turn to a formulation of rational choice theory which uses

different primitives, the idea is again to illustrate how our result works.

When choice is primitive, the application of our theorem is a bit more

involved. This is because we need to be able to describe budget sets,

and we require symbols for standard set-theoretic operations. To this

end, we define the language of choice as F = 〈A,B,∈, C〉. The pred-

icates A and B are unary predicates: A(x) stands for “x is an alter-

native,” B(x) stands for “x is a budget set.” The predicates ∈ and C

are binary, ∈ is the typical set-theoretic predicate, and C is a binary

predicate, where C(x, y) means “x is chosen from y.”
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The theory of choice, TC , consists of the class of all structures for

which there is some global set of alternatives X, and some family of

sets B ⊆ 2X\{∅} (the budgets), and a nonempty choice function c :

B → 2X\{∅} (satisfying the usual properties), for which all predicates

are interpreted properly.

Define the theory of rationalizable choice, TR, to be the subtheory

of TC where, for each structure M, the associated choice function is

rationalizable by a weak order.7 That is, there exists a weak order R

on the global set of alternatives X for which c(B) = {x ∈ B : ∀y ∈
B, x R y}.

The following theorem is well-known (for example, see Richter

(1966)), but we establish it here using our framework.

11. Proposition. TR is universally and r.e. axiomatizable with respect

to TC.

Proof. Introduce the language L = 〈A,B,∈, C,R〉, where all predicates

A,B,∈, C are as in F , and R is a binary predicate. Consider the L-

theory T axiomatized by the sentences:

(1) ∀x∀y∀z(∈ (x, z)∧ ∈ (y, z) ∧ C(x, z))→ R(x, y)

(2) ∀x∀y∀z(∈ (x, z)∧ ∈ (y, z) ∧R(x, y) ∧ C(x, z))→ C(x, z)

(3) ∀x∀y(A(x) ∧ A(y))→ (R(x, y) ∨R(y, x))

(4) ∀x∀y∀z(A(x)∧A(y)∧A(z))→ ((R(x, y)∧R(y, z)→ R(x, z)))

Note that any structure M ∈ TC is a member of TR if and only if

there exists a binary relation R on the global set of alternatives for

which for all budgets B ∈ B, x ∈ c(B) → x R y∀y ∈ B and ∀x ∈ B,

if y ∈ c(B) and x R y, then x ∈ c(B). To see this, note that if R

rationalizes c, then clearly the preceding two conditions are satisfied

for R. On the other hand, suppose these conditions are satisfied for

some R. We claim that R rationalizes c. To see this, note that if

B ∈ B, x, y ∈ B, and x ∈ c(B), then clearly xR y. On the other hand,

suppose that x R y for all y ∈ B. Then because c is nonempty, there

exists y∗ ∈ c(B). Then in particular x R y∗. Conclude x ∈ c(B).

7A weak order is complete and transitive.
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Now note that TR = F (T ) ∩ TC . And as T is universally axiomati-

zable, we conclude that TR is universally and r.e. axiomatizable with

respect to TC by Theorem 5 and Corollary 8. �

3. Rationalizing group preferences

In Section 2.4 we used classical revealed preference theory to illus-

trate how our theorem can be applied. The results were already known,

each having been obtained with arguments designed for each special

case. We now turn to apply our theorem to obtain new results for

more recent theories of choice. We present an application of our result

to theories of group preferences. This section can be understood as an

exercise in characterizing the empirical content of collective decision

making.

The simplest model looks at the Pareto relation with two agents.

Consider the language F = 〈R〉 with one binary predicate; R(x, y) is

intended to mean that x is preferred to y.

We we are interested in the theory of all structures (X,RX), where

RX is a partial order, for which there exists two complete and transitive

binary relations �1 and �2 satisfying the axiom:

(1) ∀x∀y(R(x, y)↔ (�1 (x, y)∧ �2 (x, y))).

The axiom states that R is the Pareto relation associated to the pair of

preferences �1 and �2. We can term this theory the theory of Pareto

relations of groups of size 2.

The language F might allow us to write the axioms on R that de-

scribe the theory. Dushnik and Miller (1941) give one such axiomati-

zation, but it is in general a difficult problem to describe this theory

using only formulas from R. Our results imply the existence of a re-

cursively enumerable universal axiomatization. Consider the language

L = {R,�1,�2} and the L-theory axiomatized by axiom (1), together

with axioms for �i being complete and transitive. Theorem 5 and

Corollary 8 imply that the theory of Pareto relations of groups of size

2 has a universal and r.e F -axiomatization.
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Our results are applicable beyond the theory of Pareto relations. We

turn to problems of group preference, where one may hypothesize that

group has a single preference which is derived from the application

of some specific preference aggregation rule. The idea is that each

agent in a group has a “rational” preference, and that some aggregation

procedure determines the preferences of the group. Given data on the

group’s choices, we want to test whether the hypothesis of preference

aggregation is true.

In this model, given is a fixed and finite set of agents, each of whose

preferences are unobservable, but hypothesized to be rational. Given is

also a rule for aggregating agents’ preferences into a single preference.

The aggregate preference is simply a ranking specified by the social

choice rule. @e observe an aggregate preference (a revealed preference),

and we would like to know whether it could be generated by the rule

for some profile of agents’ preferences.8 We want to test whether or not

a specific group of agents uses a particular preference aggregation rule

in making decisions, only having observed the aggregate ranking. This

question is the correct formulation of the standard revealed-preference

exercise for the group preference model.

Group preference and social choice theories are an excellent example

of how hard it can be to show falsifiability. The theories have a trivial

existential (second-order) axiomatization: Given a preference aggrega-

tion rule, the theory is the collection of observables for which there

exist preferences for individuals generating the observable behavior.

This second-order axiomatization is the “as if” RP formulation of the

theory that we referred to in the introduction. It does not provide an

effective test of the theory any more than the analogous formulation of

individual utility maximization.

Our main assumptions are that the cardinality of the agents is fixed

and finite, and that our preference aggregation rule is neutral and sat-

isfies independence of irrelevant alternatives. We show that any such

theory has a universal axiomatization.

8In this paper, we focus on preferences which are linear orders; however the results
apply more broadly.
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The previous literature relates to the theory of social choice, where,

given some preference aggregation rule, there have been efforts to ax-

iomatize relations which are rationalized by some society of agents.

When the society can be arbitrarily large, it is known that any tran-

sitive antisymmetric relation is the Pareto relation for some society

(which may be infinite). This observation is due to Szpilrajn (1930) and

Dushnik and Miller (1941)–see also Donaldson and Weymark (1998)

and Duggan (1999) for related results in the economics literature. Be-

cause of this, any complete binary relation with a transitive asym-

metric part is the result of the Pareto extension rule for some society

(we identify indifferent alternatives for the Pareto extension rule with

unranked alternatives for the Pareto ordering–see Sen (1969)). By con-

trast, results for the Pareto extension rule with a fixed and finite set

of agents are much more scarce and are generally only understood for

the two-agent case. Dushnik and Miller (1941) give necessary and suf-

ficient conditions for a binary relation to be the intersection of a pair

of linear orders, but this axiomatization is second-order existential.

Universal first order axiomatizations based on the Dushnik and Miller

(1941) axiomatization are known, and aside from basic completeness

and transitivity requirements, boil down to to the absence of certain

types of cycles of the indifference relation (see in particular Section

3.2 of Trotter (2002) and the references therein–also Baker, Fishburn,

and Roberts (1972)). In the economics literature, Sprumont (2001)

provides a similar characterization in a case where preferences are re-

stricted to be suitably “economic.” Knoblauch (2005) establishes that

there is no axiomatization which relies on a bounded (finite) number of

variables. Finally, Echenique and Ivanov (2011) provide an existential

characterization in an abstract choice environment.

Results for majority rule are even weaker: McGarvey (1953) showed

that any complete binary relation is the majority rule relation for some

society of agents (which again may be large). Deb (1976) extends

the result to more social choice rules; Kalai (2004) generalizes this

result to an even broader class. Shelah (2009) establishes results on
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different domains of preferences of individuals. But we know of no

results characterizing such relations for a fixed set of agents.

We work with neutral preference aggregation rules which satisfy in-

dependence of irrelevant alternatives. By working with such preference

aggregation rules, we need not specify what the global set of alterna-

tives is in advance. A set of agents N is fixed and finite. A preference

aggregation rule is therefore defined to be a mapping carrying any set

of alternatives X and any N vector of linear orders9 (termed a prefer-

ence profile) over those alternatives (�1, ...,�n) to a complete binary

relation over X. We write Rf(�1,...,�n) for the binary relation which

results (suppressing notation for dependence on X). We assume the

following property:

12. Definition. (Neutrality and Independence of irrelevant alterna-

tives): For all sets X and Y , for all x, y ∈ X and all w, z ∈ Y and all

preference profiles (�1, ...,�n) over X and (�′1, ...,�′n) over Y , if for

all i ∈ N , x�i y ⇔ w �′i z, then x Rf(�1,...,�n) y ⇔ w Rf(�′1,...,�′n) z.

Our assumption embeds the standard hypotheses of neutrality and

independence of irrelevant alternatives. Neutrality means that social

rankings should be independent of the names of alternatives, while

independence of irrelevant alternatives means that the social preference

between a pair of alternatives should depend only on the individual

preferences between that pair.

Given f , we will say that a binary relation R on a set X is f -

rationalizable if there exists a profile of linear orders (�1, ...,�n) for

which R = Rf(�1,...,�n).

Let F = 〈R〉 be a language involving one binary relation sym-

bol. Given f , a structure (X,RX) is f -rationalizable if RX is f -

rationalizable. Call the class of such F -structures the theory of f -

rationalizable preference, or Tf .

13. Theorem. For any f satisfying neutrality and independence of

irrelevant alternatives, Tf is universally and r.e. axiomatizable.

9A linear order is complete, transitive, and anti-symmetric
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Proof. Since f is neutral and satisfies independence of irrelevant alter-

natives, and outputs complete rankings, we can conclude that there is

a collection of sets Nf ⊆ 2N , satisfying E 6∈ N implies N\E ∈ Nf ,
for which for any set X, any profile of linear orders (�1, ...,�n) over

X, and any pair x, y ∈ X, x Rf(�1,...,�n) y if and only if either x = y,

or there is E ∈ Nf for which for all i ∈ E, x �i y, and for all i 6∈ E,

¬(x�i y).10

Consider the language L = 〈R,�1, ...,�n〉, and the L-theory T ax-

iomatized by the following sentences:

Completeness of �i:

∀x∀y �i (x, y)∨ �i (y, x).

Transitivity of �i:

∀x∀y∀z �i (x, y)∧ �i (y, z)→�i (x, z).

Antisymmetry of �i:

∀x∀y �i (x, y)∧ �i (y, x)→ x = y.

Finally, f -rationalizability:

∀x∀yR(x, y)↔ (x = y) ∨
∨
E∈Nf

(∧
i∈E

(�i (x, y)) ∧
∧
i 6∈E

(¬ �i (x, y))

)
.

Finally, note that Tf = F (T ), so the result follows by Theorem 5

and Corollary 8.

�

14. Remark. The above discussion assumes that preferences are linear

orders, but many social choice papers put different restrictions on indi-

vidual preferences. It is easy to see that the theorem is true on different

10To see why, simply let X be any binary set {x, y}. Define �E to be the preference
profile for which for all i ∈ E, x �i y, and for all i 6∈ E, ¬(x �i y). Define
Nf = {E ⊆ 2N : xRf(�E) y}. Note that by completeness of f(�E), if E 6∈ Nf , then
N\E ∈ Nf . Finally, by neutrality and independence of irrelevant alternatives, the
characterization holds across preference profiles and sets X.
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domains of preference profiles: any domain in which individual pref-

erences are universally axiomatizable (weak orders, for example) will

work. The condition of f -rationalizability in the proof in general may

have to be slightly changed to accommodate individual indifference.

4. Rationalizing group choice behavior

In this section, we look at Nash equilibrium behavior. We assume

that we observe a collection of game forms, and a choice made from

each game form. We ask whether or not there could exist strict prefer-

ences for a collection of agents over those game forms which generate

the observed choices as Nash equilibrium behavior. We show, using

Theorem 5, that this theory has a universal axiomatization.

We first have to set up our framework. Instead of focusing on Nash

equilibrium specifically, we work with a general collection of theories of

group choice. Nash equilibrium, strong Nash equilibrium, and Pareto

optimal choice are special cases. We fix a finite set of agents N =

{1, ..., n} and a collection Γ ⊆ 2N\{∅}. The elements of Γ are the sets

of agents that can deviate from a profile of strategies.

A game form is a tuple (S1, ..., Sn), of nonempty sets, where we think

of Si as the set of strategies available to agent i. For each profile of

preferences (�1, . . . ,�n) over
∏

i∈N Si, a game form (S1, ..., Sn) defines

a normal-form game

(S1, ..., Sn,�1, . . . ,�n).

We define a Γ-Nash equilibrium of a game (S1, ..., Sn,�1, ...,�n) to

be s ∈
∏

i∈N Si for which for all γ ∈ Γ and all s′ ∈
∏

i∈N Si, if there

exists j ∈ γ for which (s′γ, s−γ) �j s, then there exists k ∈ γ for which

s �k (s′γ, s−γ). If we think of Γ as a collection of ‘blocking’ coalitions,

a Γ-Nash equilibrium s is a strategy profile whereby no group γ ∈ Γ is

willing to jointly deviate, where at least one agent i ∈ γ strictly wants

to deviate.

The following are special cases:

• Nash equilibrium results when Γ = {{i} : i ∈ N}
• Pareto optimality results when Γ = {N}
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• Strong Nash equilibrium results when Γ = 2N\{∅}

Other kinds of theories are permissible. For example, by setting

Γ = {G : |G| > |N |/2}, we get a kind of majority rule core.

We imagine that we observe a collection of game forms, and some

strategy profiles which are chosen from each. We do not necessarily

observe the entire collection of strategy profiles which could potentially

be chosen.

We ask when the strategy profiles are rationalizable by a list of pref-

erence relations; obviously, if we make no restriction on preferences,

then every strategy profile is rationalizable by complete indifference.

To this end, we require that preferences be strict over strategy profiles.

This is a significant assumption.

Let us define the language of group choice F to include the following

predicates:

• For each i ∈ N , one unary predicate Si, where Si(y) is intended

to mean that y is a set of strategies for i

• For each i ∈ N , one unary predicate si, where si(x) means that

x is a strategy for i

• The typical set theoretic binary predicate ∈, meant to signify

membership in a set

• A 2n-ary predicate R, where R(y1, ..., yn, x1, ..., xn) means

that (x1, ..., xn) is observed as being chosen from game form

(y1, ..., yn)

The theory of group choice TG is the class of all structures for the

preceding language constructed in the following way. For each agent

i ∈ N , there is a global strategy space Si 6= ∅ for which the following

objects are the elements of the universe:

• Each nonempty Si ⊆ Si
• Each si ∈ Si.

The predicates Si, si, ∈ are all interpreted properly. Finally, for each

game form
∏

i S
∗
i and strategy profile (s∗1, ..., s

∗
n), R(S∗1 , ..., S

∗
n, s
∗
1, ..., s

∗
n)

implies that Si(S
∗
i ), si(s

∗
i ), and lastly that s∗i ∈ S∗i . This lat-

ter requirement means that only strategy sets can go in the first n
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places in R, and that only strategies can go in the last n places.

R(S∗1 , ..., S
∗
n, s
∗
1, ..., s

∗
n) means that strategy profile (s∗1, ..., s

∗
n) is chosen

from game form (S∗1 , ..., S
∗
n)–this explains the requirement that s∗i ∈ S∗i .

The theory of Γ-rationalizable choice TΓ ⊆ TG is the theory of group

choice for which for each i ∈ N , there exists a linear order �i over∏
i∈N Si for which for all game forms (S∗1 , ..., S

∗
n), R(S∗1 , ..., S

∗
n, s
∗
1, ..., s

∗
n)

implies that (s∗1, ..., s
∗
n) is a Γ-Nash equilibrium of the normal-form

game (S∗1 , ..., S
∗
n,�1, . . . ,�n).

15. Theorem. The theory of Γ-rationalizable choice is universally and

recursively enumerably axiomatizable with respect to the theory of group

choice.

Note that Theorem 15 deals with the universal axiomatization of Γ-

rationalizable choice with respect to the theory of group choice. We do

not here want to focus on axiomatizing group choice; we want to focus

only on the additional empirical content of Γ-Nash equilibrium.

Proof. Consider the language L which includes all predicates in F , but

also includes, for each agent i, a 2n-ary predicate �i.
We use the abbreviation

�k (x1, ..., xn, z1, ..., zn) =�k (x1, ..., xn, z1, ..., zn) ∧ ¬

(
n∧
i=1

xi = zi

)
.

For each γ ∈ Γ and k ∈ γ, we use the following shorthand:

If |γ| > 1,

ϕγ,k(x1, ..., xn, z1, ..., zn) =

�k ((zγ, x−γ), x)→
∨

i∈γ\{k}

�i (x, (zγ, x−γ))

otherwise, if |γ| = 1,

ϕγ,k(x1, ..., xn, z1, ..., zn) =�k (x1, ..., xn, z1, ..., zn).

Consider the theory T axiomatized by the following sentences.

For each γ ∈ Γ and k ∈ γ,
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∀x1...∀xn∀y1...∀yn∀z1...∀zn∧
i∈γ

∈ (zi, yi) ∧
∧
i∈N

∈ (xi, yi) ∧R(y1, ..., yn, x1, ..., xn)

→ ϕγ,k(x1, ..., xn, z1, ..., zn)

Completeness: For each k ∈ N ,

∀s1...∀sn∀s′1...∀s′n
n∧
i=1

si(si) ∧
n∧
i=1

si(s
′
i)→ (�k (s1, ..., sn, s

′
1, ..., s

′
n)∨ �k (s′1, ..., s

′
n, s1, ..., sn))

Transitivity:

∀s1...∀sn∀s′1...∀s′n∀s′′1...∀s′′n
n∧
i=1

si(si) ∧
n∧
i=1

si(s
′
i) ∧

n∧
i=1

si(s
′′
i )

→ (�k (s1, ..., sn, s
′
1, ..., s

′
n)∧ �k (s′1, ..., s

′
n, s
′′
1, ..., s

′′
n)→�k (s1, ..., sn, s

′′
1, ..., s

′′
n))

Antisymmetry:

∀s1∀s2...∀sn∀s′1...∀s′n(
n∧
i=1

si(si) ∧
n∧
i=1

si(s
′
i)

)
∧

(�k (s1, ..., sn, s
′
1, ..., s

′
n)∧ �k (s′1, ..., s

′
n, s1, ..., sn))

→
n∧
i=1

(si = s′i)

As T has a universal axiomatization, so does F (T ). Since the ax-

iomatization of T is finite, F (T ) has a recursively enumerable universal

axiom by Corollary 8. And TΓ = F (T )∩TG. So TΓ has a r.e. universal

axiomatization within TG.

�
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Because we ask for group choice functions to be rationalizable by

strict preferences, the exercise here is similar in spirit to Afriat (1967),

who assumes partial observations of demand functions and asks de-

mand functions to be rationalizable by locally non-satiated preference.

5. Complexity results

We now turn to a discussion of the complexity of the theory F (T ),

for a given theory T . In Corollary 8, we addressed the computational

structure of the set of axioms of F (T ), and concluded that this was

a r.e. set under appropriate conditions: this means that there is an

algorithm that can determine that a data set falsifies the theory. Here,

we instead ask about the computational structure of the theory F (T )

itself, as opposed to its axioms. To render this a meaningful exercise,

we here restrict to finite structures.

The question addressed is as follows. Given a finite F -structureM,

how difficult, or complex is it to determine that M ∈ F (T )? This

is therefore the problem of verifying whether or not a structure is a

model of our theory. In contrast; if we take interest in falsification, we

may ask, given a finite F -structureM, how difficult is it to determine

whether M 6∈ F (T )?

We say that a theory F (T ) is in class P (for polynomial time) if

there is a Turing machine operating in polynomial time that, given

any F -structureM, tells us whetherM∈ F (T ). We say that a theory

F (T ) is in class NP (for non-deterministic polynomial time), if there

is a non-deterministic Turing machine (essentially a multi-tape Turing

machine) running in polynomial time that, given any F -structure M,

tells us whether M ∈ F (T ). Equivalently, a theory is in NP if there

is a polynomial time (deterministic) Turing machine such that for any

M ∈ F (T ), there is a certificate (depending on M) which can be

used to verify that M ∈ F (T ). For this reason, the class NP is often
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understood as the class of theories for which there is a polynomial time

proof that a structure is in the theory.11

The following theorem is due to Fagin (1974), and can be found

in many references on descriptive complexity, for example Immerman

(1999), Papadimitriou (2003), or Libkin (2004).

16. Theorem (Fagin). Suppose that T is a finitely axiomatized L the-

ory. Then F (T ) is in NP.

In fact, Fagin’s theorem is much deeper than this (it is an equiva-

lence theorem, of which we have provided the simple part), but some

intuition for this direction can be given. Essentially, if we have a finite

structure M, to determine that M ∈ F (T ), we simply need to find

M′ ∈ T for which M = F (M′). M′ will have associated with it re-

lations for predicates in L\F : checking that these relations satisfy the

finite first order axioms of T provides a polynomial time “proof” that

M ∈ F (T ). The non-determinism of the Turing machine allows it to

“guess” the nature of the additional relations in M′.

As a consequence of Fagin’s theorem, and the formalism introduced

in our paper, we can conclude that the problem of verifying that a

finite structure is a model of rational choice, group preference or Nash

equilibrium are all in NP.

While we can establish that F (T ) is in NP, it is often hard to say

more. General results on these issues do exist, and it is known that

certain “types” of axiomatizations lead to different complexity classes.

Excellent references include Immerman (1999) and Libkin (2004). We

will simply say that there are examples of theories T which generate

F (T ) which is in P and theories T which generate F (T ) which is NP -

complete.12

11Dually, the class of theories for which there is a polynomial time algorithm which,
given a structure not in a theory, determines it is not in the theory is called co-NP.
The class co-NP is clearly more relevant for falsification purposes.
12These are the “hardest” problems in NP to solve.
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6. Large sample results

A related issue dealing with finite structures is the proportion of

structures which are in F (T ). Suppose we fix a cardinality n. We

can ask about the proportion of F -structures with universe {1, ..., n}
which are elements of F (T ).13 Denote this number by µF (T )(n). The

following simple result can be established.

17. Theorem. Suppose that T is a universal L theory, and that there

exists M 6∈ F (T ). Then µF (T )(n)→ 0.

Proof. Suppose that T is a universal L theory, and that there exists

M 6∈ F (T ). Then by Theorem 5, F (T ) is a universal F theory. Since

M 6∈ F (T ), by theorem 1.2 of Tarski (1954), there is a finite structure

M′ 6∈ F (T ). Suppose this structure has cardinality m; without loss

of generality, we may assume it has universe {1, ...,m} (since universal

theories are closed under isomorphism).

SinceM′ 6∈ F (T ), there is a universal axiom σ of F (T ) which is not

satisfied by M′. Let the F theory axiomatized by σ be denoted T σ.

Let µT
σ
(n) be the proportion of structures on {1, ..., n} which satisfy

σ; we have established that µT
σ
(m) = p < 1.

Let a be an integer, and consider the set of structures with universe

{1, ..., am} which satisfy σ. For any k ∈ {0, a−1}, the probability that

a structure satisfies σ when the universal quantifiers are restricted only

to {k + 1, ..., k +m} is p; consequently, µT
σ
(am) ≤ pa.

Finally, consider any l, and consider the set of all structures on

{1, ..., l}. Let a(l) be such that a(l)m ≤ l. We can again ask which

proportion of structures on {1, ..., l} satisfy the axiom σ when its quan-

tifiers are restricted only to {1, ..., a(l)m}. Clearly, this number is equal

to µT
σ
(a(l)m). And requiring σ to hold for all elements of {1, ..., l}

therefore results in a smaller proportion of structures: consequently,

µT
σ
(l) ≤ µTσ(a(l)m) ≤ pa(l). As a(l) increases with l, we conclude that

µT
σ
(l)→ 0, consequently µF (T )(l)→ 0. �

13Since our theories are closed under isomorphisms, what matters is that the uni-
verse of the structure has cardinality n.
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The result roughly states that any universally quantified revealed

preference theory will tend to have very few models for large universes.

The result is very general, but is perhaps unsurprising when thought

of dually. A universal quantifier is the negation of an existential quan-

tifier: therefore, universal quantification rules out existence of certain

objects. As we have larger and larger models, the likelihood that at

least one object exists which has been ruled out necessarily increases.

For example, the axiom of acyclicity (ruling out cycles of finite length

for binary relations) becomes harder and harder to satisfy: with large

universes, there are more and more possible cycles.

Some care is needed in interpreting the result, as it says nothing

of the probability of actually observing structures which are or are

not elements of F (T ). To discuss such issues, one would need to talk

about the process which generates structures. This interpretation is

only meaningful if we believe that structures are drawn according to a

uniform distribution.

7. Discussion and relation to previous literature

7.1. Philosophy of science. The type of issues we discuss here have

previously been studied by philosophers of science. Without going into

full detail, Ramsey (1931) was one of the first to discuss the elimination

of “theoretical” terms from scientific theories. Various authors give

different interpretation to the notion of “Ramsey elimination.” The

work of Sneed (1971) includes notions very similar to ours; in particular,

he defines a finitely axiomatized L- theory T to be Ramsey eliminable

if F (T ) is a finitely axiomatized F -theory. In particular, he includes an

example (attributed to Dana Scott) of a theory T which is first order

axiomatizable, but for which F (T ) is not first order axiomatizable. We

include here an adaptation of this example.

18. Example. Let F = 〈R〉, where R is a unary predicate, and let

L = 〈R,Q〉, where Q is a binary predicate. Consider the L-theory T

axiomatized by the following sentences:

(1) ∀x∀yQ(x, y)→ R(x) ∧ ¬R(y)
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(2) ∀xR(x)→ (∃yQ(x, y) ∧ (∀zQ(x, z)→ y = z))

(3) ∀x¬R(x)→ (∃yQ(y, x) ∧ (∀zQ(z, x)→ y = z))

T is the theory of all structures (X,RX , QX) for which there is a

one-to-one correspondence QX between the elements of RX and its

complement.

19. Proposition. F (T ) is not first order F-axiomatizable.

Proof. Suppose by means of contradiction that there is a first order

axiomatization of F (T ). Consider any F structure (X,RX) where |RX |
is infinite, |X\RX | is infinite, and the cardinalities of RX and X\RX

are distinct. Note that (X,RX) 6∈ F (T ).

By the Löwenheim-Skolem theorem, (see for example Marker (2002),

Theorem 2.3.7), there exists a countable structure (X ′, RX′) which sat-

isfies exactly the same first order sentences as (X,RX). But note in

particular that for each n > 0, the sentence

∃x1...∃xn
n∧
i=1

R(xi) ∧
∧
i 6=j

(¬(xi = xj))

is valid for (X,RX); in particular, then, it is valid for (X ′, RX′); con-

sequently, |RX′| is infinite. Similarly, since

∃x1...∃xn
n∧
i=1

¬R(xi) ∧
∧
i 6=j

(¬(xi = xj))

is valid for (X,RX), it is also valid for (X ′, RX′) and hence |X ′\RX′ |
is infinite. Since X ′ is countable, there is therefore a bijection between

RX′ and X\RX′ , so that (X ′, RX′) ∈ F (T ). But then (X,RX) satisfies

the sentences axiomatizing F (T ) (as it satisfies the same sentences as

(X ′, RX′) and (X ′, RX′) ∈ F (T )). So (X,RX) ∈ F (T ), a contradiction.

�

The preceding example is important in that it illustrates that the

problem of axiomatizability of F (T ) is non-trivial. To this end,

Van Benthem (1978) (Theorem 4.2) uncovers necessary and sufficient

conditions for F (T ) to be first order axiomatizable, given that T is first

order axiomatizable. His conditions are essentially an adaptation of a
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well-known theorem in model theory axiomatizing those theories which

are first order axiomatizable (see, for example Chang and Keisler (1990)

Theorem 4.1.12). The condition is a semantic condition requiring one

to verify, for any model of F (T ), whether any structure which satisfies

exactly the same F -sentences is also a model of F (T ). In practice, this

is nearly impossible to verify. Our condition; on the other hand, is a

syntactic condition which is trivial to verify.

7.2. Economics. The questions studied here belong, generally speak-

ing, in the realm of the philosphy of science, but we believe that the

formalism adopted here (and borrowed from model theory in math-

ematics) is particularly appealing to economic theorists. We have

demonstrated this fact by using familiar examples from both classi-

cal and recent research in economic theory. Our feeling is that few

other disciplines have embraced the axiomatic method as economics

has; our results are unlikely to have interesting applications in, say,

biology or chemistry.

That formal methodological questions are appealing to economists is

reflected in the interest taken by other economists in these questions.

Herbert Simon wrote a sequence of papers on falsifiability and empir-

ical content. For example, Simon (1985) discusses some of the issues

we discuss here: Simon argues that the theory of rational choice is fal-

sifiable, even though the RP formulation of the theory is existentially

quantified over unobservables. As Simon (1985) states, “although ex-

istential quantification of an observable is fatal to the falsifiability of a

theory, the same is not true when the existentially quantified term is a

theoretical one.”

While this may seem obvious to many, it has led to a large degree of

confusion among economists. For example Boland (1981) argued that

the theory of rational choice is not falsifiable precisely because of its

existential formulation over unobservables. In his words:

Given the premise–“All consumers maximize

something”–the critic can claim he has found a

consumer who is not maximizing anything. The
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person who assumed the premise is true can respond:

“You claim you have found a consumer who is not a

maximizer but how do you know there is not something

which he is maximizing?” In other words, the verifica-

tion of the counterexample requires the refutation of a

strictly existential statement; and as stated above, we

all agree that one cannot refute existential statements.

Mongin (1986) beautifully counters this argument. In this context,

he has already observed that all F -implications of T are F -implications

of F (T ). It follows from this that if T is universal, then F (T ) has

universal implications, and is hence falsifiable. As noted above, we

have gone further than this in showing that in fact, F (T ) is first-order

axiomatizable (indeed, universally axiomatizable). Hence all of its im-

plications are falsifiable.

Our work is related to the approach in Brown and Matzkin (1996),

and the general approach to testable implications discussed in Brown

and Kubler (2008). In these papers, as in ours, there is an operation

of projection to eliminate certain existential quantifications. The idea

in Brown-Matzkin and in Brown-Kubler is to exploit the property of

quantifier elimination in certain mathematical theories. Our work, on

the other hand, uses results from model theory on when a universal

axiomatization is possible. Our projection argument follows from the

verification that the universal axiomatization can be projected. We do

not exploit the property of quantifier elimination of the mathematical

theory underlying the economic model (indeed our results may apply

when quantifier elimination does not hold).

In our previous paper, Chambers, Echenique, and Shmaya (2010),

we dealt with theories which could be axiomatized by what we called

UNCAF formulas, for universal negation of conjunction of atomic for-

mulas.14 Under certain conditions, being UNCAF axiomatizable is

equivalent to being universally axiomatizable. And in fact, we show

there that a result akin to Theorem 5 is true for UNCAF sentences.

14The strong axiom of revealed preference described above is an example of a col-
lection of such formulas.
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This proof relies on drastically different techniques, as there are deep

differences between theories axiomatizable by UNCAF sentences and

those which are only universally axiomatizable. In particular, theories

which are UNCAF axiomatizable are closed under weak substructures

(and not just substructures), a property that plays a critical role in our

previous paper.

The reason Theorem 5 is useful is because, in general, the hypothe-

sized theory T is usually not axiomatizable by UNCAF sentences. For

example, the axioms of completeness and transitivity for binary rela-

tions have no UNCAF axiomatization. In general, then, it is impossi-

ble to obtain any results about the falsifiability of a revealed preference

theory without having some result about universality.

Appendix A. Basic definitions from Model Theory

The following definitions are taken, for the most part, quite literally

from (Marker, 2002), pp. 8-12. We refer readers to this excellent text

for more details; but present the basics here to keep the analysis self-

contained. The x notation is here used to denote a list, or vector, or

elements (x1, ..., xm).

20. Definition. M is a substructure of N if M ⊆ N and the inclusion

map ι : M → N defined by ι(m) = m for all m ∈M is an L-embedding.

The following definition gives us the basic building blocks of our

syntax. Note that we include a countable list of “variables” to be used

in this definition; these are not part of the language per se, but rather

part of a “meta language” in that they are present in all languages.

21. Definition. The set of L-terms is the smallest set T E such that

(1) c ∈ T E for each constant symbol c ∈ C
(2) each variable symbol vi ∈ T E for i = 1, 2, ...,

(3) if t1, ..., tnf ∈ T E and f ∈ F , then f(t1, ..., tnf ) ∈ T E .

22. Definition. Say that φ is an atomic L-formula if φ is one of the

following

(1) t1 = t2, where t1 and t2 are terms
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(2) R(t1, ..., tnR), where R ∈ R and t1, ..., tnR are terms

23. Definition. The set of L-formulas is the smallest setW containing

the atomic formulas such that

(1) if φ is in W , then ¬φ is in W
(2) if φ and ψ, then (φ ∧ ψ) and (φ ∨ ψ) are in W
(3) if φ is in W , then ∃viφ and ∀viφ are in W .

24. Definition. A variable v occurs freely in a formula φ if it is not

inside a ∃v or ∀v quantifier. It is bound in φ if it does not occur freely

in φ.

25. Definition. A sentence is a formula φ with no free variables.

We are now prepared to define a concept of “truth” relating syntax

and semantics. We want to define what it means for a sentence to be

true in a given structure.

26. Definition. Let φ be a formula with free variables from v =

(vi1 , ..., vim), and let a = (ai1 , ..., aim) ∈ Mm. We inductively define

M |= φ(a) as follows. The notation M 6|= ψ(a) means that M |= φ(a)

is not true.

(1) If φ is t1 = t2, then M |= φ(a) if tM1 (a) = tM2 (a)

(2) If φ is R(t1, ..., tnR), thenM |= φ(a) if (tM1 (a), ..., tMnR(a)) ∈ RM

(3) If φ is ¬ψ, then M |= φ(a) if M 6|= ψ(a)

(4) If φ is (ψ ∧ θ), then M |= φ(a) if M |= ψ(a) and M |= θ(a)

(5) If φ is (ψ ∨ θ), then M |= φ(a) if M |= ψ(a) or M |= θ(a)

(6) If φ is ∃vjψ(v, vj), then M |= φ(a) if there is b ∈ M such that

M |= ψ(a, b)

(7) If φ is ∀vjψ(v, vj), thenM |= φ(a) if for all b ∈M ,M |= ψ(a, b).

27. Definition. M satisfies φ(a) or φ(a) is true in M if M |= φ(a).

Lastly, for our purposes, it is useful to have a notion of a universal

sentence.

28. Definition. A universal sentence or universal formula is a sentence

of the form ∀vφ(v), where φ is quantifier free.
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