

Copyright ©2013 by NCEES [®] . All rights reserved.
All NCEES material is copyrighted under the laws of the United States. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the prior written permission of NCEES. Requests for permissions should be addressed in writing to permissions@ncees.org.
PO Box 1686 Clemson, SC 29633 800-250-3196 www.ncees.org
ISBN 978-1-932613-67-4

Printed in the United States of America First printing September 2013 Edition 9.0

PREFACE

About the Handbook

The Fundamentals of Engineering (FE) exam is computer-based, and the *FE Reference Handbook* is the only resource material you may use during the exam. Reviewing it before exam day will help you become familiar with the charts, formulas, tables, and other reference information provided. You won't be allowed to bring your personal copy of the *Handbook* into the exam room. Instead, the computer-based exam will include a PDF version of the *Handbook* for your use. No printed copies of the *Handbook* will be allowed in the exam room.

The PDF version of the *FE Reference Handbook* that you use on exam day will be very similar to the printed version. Pages not needed to solve exam questions—such as the cover, introductory material, and exam specifications—will not be included in the PDF version. In addition, NCEES will periodically revise and update the *Handbook*, and each FE exam will be administered using the updated version.

The FE Reference Handbook does not contain all the information required to answer every question on the exam. Basic theories, conversions, formulas, and definitions examinees are expected to know have not been included. Special material required for the solution of a particular exam question will be included in the question itself.

Updates on exam content and procedures

NCEES.org is our home on the Web. Visit us there for updates on everything exam-related, including specifications, exam-day policies, scoring, and practice tests. A PDF version of the *FE Reference Handbook* similar to the one you will use on exam day is also available there.

Errata

To report errata in this book, email your correction using our feedback form on NCEES.org. Examinees are not penalized for any errors in the *Handbook* that affect an exam question.

CONTENTS

Units	1
Conversion Factors	2
Ethics	3
Safety	5
Mathematics	18
Engineering Probability and Statistics	33
Chemistry	50
Materials Science/Structure of Matter	56
Statics	63
Dynamics	68
Mechanics of Materials	76
Thermodynamics	83
Fluid Mechanics	99
Heat Transfer	113
Instrumentation, Measurement, and Controls	120
Engineering Economics	127
Chemical Engineering	134
Civil Engineering	142
Environmental Engineering	174
Electrical and Computer Engineering	195
Industrial Engineering	215
Mechanical Engineering	224
Index	237
Appendix: FE Exam Specifications	261

UNITS

The FE exam and this handbook use both the metric system of units and the U.S. Customary System (USCS). In the USCS system of units, both force and mass are called pounds. Therefore, one must distinguish the pound-force (lbf) from the pound-mass (lbm).

The pound-force is that force which accelerates one pound-mass at 32.174 ft/sec². Thus, 1 lbf = 32.174 lbm-ft/sec². The expression 32.174 lbm-ft/(lbf-sec²) is designated as g_c and is used to resolve expressions involving both mass and force expressed as pounds. For instance, in writing Newton's second law, the equation would be written as $F = ma/g_c$, where F is in lbf, m in lbm, and a is in ft/sec².

Similar expressions exist for other quantities. Kinetic Energy, $KE = mv^2/2g_c$, with KE in (ft-lbf); Potential Energy, $PE = mgh/g_c$, with PE in (ft-lbf); Fluid Pressure, $PE = pgh/g_c$, with PE in (ft-lbf); Fluid Pressure, $PE = pgh/g_c$, with PE in (lbf/ft²); Specific Weight, $PE = pgh/g_c$, in (lbf/ft³); Shear Stress, $PE = pgh/g_c$, with PE in (ft-lbf); Fluid Pressure, $PE = pgh/g_c$, with PE in (lbf/ft²). In all these examples, PE should be regarded as a unit conversion factor. It is frequently not written explicitly in engineering equations. However, its use is required to produce a consistent set of units.

Note that the conversion factor g_c [lbm-ft/(lbf-sec²)] should not be confused with the local acceleration of gravity g, which has different units (m/s² or ft/sec²) and may be either its standard value (9.807 m/s² or 32.174 ft/sec²) or some other local value.

If the problem is presented in USCS units, it may be necessary to use the constant g_c in the equation to have a consistent set of units.

METRIC PREFIXES			COMMONI V HEED FOUN	AT ENTE
Multiple	Prefix	Symbol	COMMONLY USED EQUIV	ALENIS
10^{-18}	atto	a		
10^{-15}	femto	f	1 gallon of water weighs	8.34 lbf
10^{-12}	pico	p	1 cubic foot of water weighs	62.4 lbf
10^{-9}	nano	n	1 cubic inch of mercury weighs	0.491 lbf
10^{-6}	micro	μ	The mass of 1 cubic meter of water is	1,000 kilograms
10^{-3}	milli	m	1 mg/L is	8.34 lbf/Mgal
10^{-2}	centi	c		0.5 1 101/11/1941
10^{-1}	deci	d		
10 ¹	deka	da	TEMPERATURE CONVEI	RSIONS
10^2	hecto	h	TEMI ENTITORE CONVE	ASTONS
10^{3}	kilo	k	05 10 (05) + 22	
10^{6}	mega	M	$^{\circ}F = 1.8 \ (^{\circ}C) + 32$	
10 ⁹	giga	G	$^{\circ}\text{C} = (^{\circ}\text{F} - 32)/1.8$	
10^{12}	tera	T	$^{\circ}\text{R} = ^{\circ}\text{F} + 459.69$	
10 ¹⁵	peta	P	$K = {}^{\circ}C + 273.15$	
10 ¹⁸	exa	Е		

IDEAL GAS CONSTANTS

The universal gas constant, designated as \overline{R} in the table below, relates pressure, volume, temperature, and number of moles of an ideal gas. When that universal constant, \overline{R} , is divided by the molecular weight of the gas, the result, often designated as R, has units of energy per degree per unit mass $[kJ/(kg \cdot K) \text{ or ft-lbf/(lbm-°R)}]$ and becomes characteristic of the particular gas. Some disciplines, notably chemical engineering, often use the symbol R to refer to the universal gas constant \overline{R} .

FUNDAMENTAL CONSTANTS

Quantity		<u>Symbol</u>	<u>Value</u>	<u>Units</u>
electron charge		е	1.6022×10^{-19}	C (coulombs)
Faraday constant		F	96,485	coulombs/(mol)
gas constant	metric	\overline{R}	8,314	$J/(kmol \cdot K)$
gas constant	metric	\overline{R}	8.314	$kPa \cdot m^3/(kmol \cdot K)$
gas constant	USCS	\overline{R}	1,545	ft-lbf/(lb mole-°R)
		\overline{R}	0.08206	L-atm/(mole-K)
gravitation-Newtonian constant		G	6.673×10^{-11}	$m^3/(kg \cdot s^2)$
gravitation-Newtonian constant		G	6.673×10^{-11}	$N \cdot m^2 / kg^2$
gravity acceleration (standard)	metric	g	9.807	m/s^2
gravity acceleration (standard)	USCS	g	32.174	ft/sec ²
molar volume (ideal gas), $T = 273.15$ K, $p = 101.3$ kPa		V_{m}	22,414	L/kmol
speed of light in vacuum		c	299,792,000	m/s
Stefan-Boltzmann constant		σ	5.67×10^{-8}	$W/(m^2 \cdot K^4)$

CONVERSION FACTORS

Multiply	By	To Obtain	Multiply	By	To Obtain
acre	43,560	square feet (ft ²)	joule (J)	9.478×10^{-4}	Btu
mpere-hr (A-hr)	3,600	coulomb (C)	J	0.7376	ft-lbf
ngström (Å)	1×10^{-10}	meter (m)	l j	1	newton•m (N•m)
mosphere (atm)	76.0	cm, mercury (Hg)	J/s	1	watt (W)
m, std	29.92	in., mercury (Hg)	0,5	•	(, ,)
m, std	14.70	lbf/in ² abs (psia)	kilogram (kg)	2.205	pound (lbm)
tm, std	33.90	ft, water	kgf	9.8066	newton (N)
	1.013×10^5				. ,
m, std	1.013×10	pascal (Pa)	kilometer (km)	3,281	feet (ft)
	5	_	km/hr	0.621	mph
ar	1×10^5	Pa	kilopascal (kPa)	0.145	lbf/in ² (psi)
ar	0.987	atm	kilowatt (kW)	1.341	horsepower (hp)
arrels–oil	42	gallons–oil	kW	3,413	Btu/hr
tu	1,055	joule (J)	kW	737.6	(ft-lbf)/sec
tu	2.928×10^{-4}	kilowatt-hr (kWh)	kW-hour (kWh)	3,413	Btu
tu	778	ft-lbf	kWh	1.341	hp-hr
tu/hr	3.930×10^{-4}	horsepower (hp)	kWh	3.6×10^{6}	joule (J)
tu/hr	0.293	watt (W)	kip (K)	1,000	lbf
	0.216	ft-lbf/sec	Kip (K)		
tu/hr	0.216	It-Ibi/sec	K	4,448	newton (N)
alorie (g-cal)	3.968×10^{-3}	Btu	liter (L)	61.02	in^3
al	1.560×10^{-6}	hp-hr	L L	0.264	gal (U.S. Liq)
ıı ıl	4.186	-	L	10^{-3}	m ³
		joule (J)	1		
al/sec	4.184	watt (W)	L/second (L/s)	2.119	ft ³ /min (cfm)
entimeter (cm)	3.281×10^{-2}	foot (ft)	L/s	15.85	gal (U.S.)/min (gpm)
m	0.394	inch (in)			
entipoise (cP)	0.001	pascal•sec (Pa•s)	meter (m)	3.281	feet (ft)
entipoise (cP)	1	g/(m•s)	m	1.094	yard
entipoise (cP)	2.419	lbm/hr-ft	m/second (m/s)	196.8	feet/min (ft/min)
entistoke (cSt)	1×10^{-6}	$m^2/sec (m^2/s)$	mile (statute)	5,280	feet (ft)
ibic feet/second (cfs)	0.646317	million gallons/day (MGD)	mile (statute)	1.609	kilometer (km)
abic foot (ft ³)	7.481	gallon	mile/hour (mph)	88.0	ft/min (fpm)
abic note (nt) abic meters (m ³)	1,000	liters	mph	1.609	km/h
	1.602×10^{-19}			1.316×10^{-3}	
ectronvolt (eV)	1.602×10	joule (J)	mm of Hg		atm
oot (ft)	30.48	cm	mm of H ₂ O	9.678×10^{-5}	atm
ot (1t)	0.3048	meter (m)	Warner (NI)	0.225	11. C
	1.285×10^{-3}		newton (N)	0.225	lbf
-pound (ft-lbf)	1.285 × 10	Btu	newton (N)	1	kg•m/s ²
-lbf	3.766×10^{-7}	kilowatt-hr (kWh)	N∙m	0.7376	ft-lbf
-lbf	0.324	calorie (g-cal)	N∙m	1	joule (J)
-lbf	1.356	joule (J)			
	2		pascal (Pa)	9.869×10^{-6}	atmosphere (atm)
-lbf/sec	1.818×10^{-3}	horsepower (hp)	Pa	1	newton/m 2 (N/m 2)
			Pa•sec (Pa•s)	10	poise (P)
allon (U.S. Liq)	3.785	liter (L)	pound (lbm, avdp)	0.454	kilogram (kg)
allon (U.S. Liq)	0.134	ft^3	lbf	4.448	N
allons of water	8.3453	pounds of water	lbf-ft	1.356	N∙m
amma (γ, Γ)	1×10^{-9}	tesla (T)	lbf/in ² (psi)	0.068	atm
nuss	1×10^{-4} 1×10^{-4}	T	I	2.307	
ram (g)	2.205×10^{-3}	pound (lbm)	psi		ft of H ₂ O
an (g)	∠.∠∪J ∧ 1U	pouna (10111)	psi	2.036	in. of Hg
actora	1×10^4	square meters (m ²)	psi	6,895	Pa
ectare		•	ļ ".	1001	1
ectare	2.47104	acres	radian	180/π	degree
orsepower (hp)	42.4	Btu/min		4	2
p	745.7	watt (W)	stokes	1×10^{-4}	m^2/s
	33,000	(ft-lbf)/min		_	
	550	(ft-lbf)/sec	therm	1×10^{5}	Btu
o-hr	2,545	Btu	ton (metric)	1,000	kilogram (kg)
o-hr	1.98×10^{6}	ft-lbf	ton (short)	2,000	pound (lb)
o-hr	2.68×10^{6}	joule (J)		2,000	pound (10)
o-hr	0.746	kWh	west (W)	2.412	Dtu/be
h-III	0.740	V AA 11	watt (W)	3.413	Btu/hr
1 (2)	2.546		W	1.341×10^{-3}	horsepower (hp)
ch (in.)	2.540	centimeter (cm)	W	1	joule/s (J/s)
. of Hg	0.0334	atm	weber/m ² (Wb/m ²)	10,000	gauss
. of Hg	13.60	in. of H ₂ O		,	2
of H ₂ O	0.0361	lbf/in ² (psi)			
n. of H ₂ O	0.002458	atm			

ETHICS

Engineering is considered to be a "profession" rather than an "occupation" because of several important characteristics shared with other recognized learned professions, law, medicine, and theology: special knowledge, special privileges, and special responsibilities. Professions are based on a large knowledge base requiring extensive training. Professional skills are important to the well-being of society. Professions are self-regulating, in that they control the training and evaluation processes that admit new persons to the field. Professionals have autonomy in the workplace; they are expected to utilize their independent judgment in carrying out their professional responsibilities. Finally, professions are regulated by ethical standards.¹

The expertise possessed by engineers is vitally important to public welfare. In order to serve the public effectively, engineers must maintain a high level of technical competence. However, a high level of technical expertise without adherence to ethical guidelines is as much a threat to public welfare as is professional incompetence. Therefore, engineers must also be guided by ethical principles.

The ethical principles governing the engineering profession are embodied in codes of ethics. Such codes have been adopted by state boards of registration, professional engineering societies, and even by some private industries. An example of one such code is the NCEES Rules of Professional Conduct, found in Section 240 of the Model Rules and presented here. As part of his/her responsibility to the public, an engineer is responsible for knowing and abiding by the code. Additional rules of conduct are also included in the Model Rules.

The three major sections of the *Model Rules* address (1) Licensee's Obligation to Society, (2) Licensee's Obligation to Employers and Clients, and (3) Licensee's Obligation to Other Licensees. The principles amplified in these sections are important guides to appropriate behavior of professional engineers.

Application of the code in many situations is not controversial. However, there may be situations in which applying the code may raise more difficult issues. In particular, there may be circumstances in which terminology in the code is not clearly defined, or in which two sections of the code may be in conflict. For example, what constitutes "valuable consideration" or "adequate" knowledge may be interpreted differently by qualified professionals. These types of questions are called *conceptual issues*, in which definitions of terms may be in dispute. In other situations, factual issues may also affect ethical dilemmas. Many decisions regarding engineering design may be based upon interpretation of disputed or incomplete information. In addition, tradeoffs revolving around competing issues of risk vs. benefit, or safety vs. economics may require judgments that are not fully addressed simply by application of the code.

No code can give immediate and mechanical answers to all ethical and professional problems that an engineer may face. Creative problem solving is often called for in ethics, just as it is in other areas of engineering.

Model Rules, Section 240.15, Rules of Professional Conduct

A. LICENSEE'S OBLIGATION TO SOCIETY

- 1. Licensees, in the performance of their services for clients, employers, and customers, shall be cognizant that their first and foremost responsibility is to the public welfare.
- 2. Licensees shall approve and seal only those design documents and surveys that conform to accepted engineering and surveying standards and safeguard the life, health, property, and welfare of the public.
- 3. Licensees shall notify their employer or client and such other authority as may be appropriate when their professional judgment is overruled under circumstances where the life, health, property, or welfare of the public is endangered.
- Licensees shall be objective and truthful in professional reports, statements, or testimony. They shall include all relevant and pertinent information in such reports, statements, or testimony.
- Licensees shall express a professional opinion publicly only when it is founded upon an adequate knowledge of the facts and a competent evaluation of the subject matter.
- 6. Licensees shall issue no statements, criticisms, or arguments on technical matters which are inspired or paid for by interested parties, unless they explicitly identify the interested parties on whose behalf they are speaking and reveal any interest they have in the matters.
- Licensees shall not permit the use of their name or firm name by, nor associate in the business ventures with, any person or firm which is engaging in fraudulent or dishonest business or professional practices.
- 8. Licensees having knowledge of possible violations of any of these Rules of Professional Conduct shall provide the board with the information and assistance necessary to make the final determination of such violation.

Harris, C.E., M.S. Pritchard, & M.J. Rabins, Engineering Ethics: Concepts and Cases, Wadsworth Publishing Company, pages 27-28, 1995.

B. LICENSEE'S OBLIGATION TO EMPLOYER AND CLIENTS

- Licensees shall undertake assignments only when qualified by education or experience in the specific technical fields of engineering or surveying involved.
- Licensees shall not affix their signatures or seals to any plans or documents dealing with subject matter in which they lack competence, nor to any such plan or document not prepared under their direct control and personal supervision.
- Licensees may accept assignments for coordination of an entire project, provided that each design segment is signed and sealed by the licensee responsible for preparation of that design segment.
- 4. Licensees shall not reveal facts, data, or information obtained in a professional capacity without the prior consent of the client or employer except as authorized or required by law. Licensees shall not solicit or accept gratuities, directly or indirectly, from contractors, their agents, or other parties in connection with work for employers or clients.
- Licensees shall make full prior disclosures to their employers or clients of potential conflicts of interest or other circumstances which could influence or appear to influence their judgment or the quality of their service.
- Licensees shall not accept compensation, financial
 or otherwise, from more than one party for
 services pertaining to the same project, unless the
 circumstances are fully disclosed and agreed to by all
 interested parties.
- 7. Licensees shall not solicit or accept a professional contract from a governmental body on which a principal or officer of their organization serves as a member. Conversely, licensees serving as members, advisors, or employees of a government body or department, who are the principals or employees of a private concern, shall not participate in decisions with respect to professional services offered or provided by said concern to the governmental body which they serve.

C. LICENSEE'S OBLIGATION TO OTHER LICENSEES

- Licensees shall not falsify or permit misrepresentation
 of their, or their associates', academic or professional
 qualifications. They shall not misrepresent or
 exaggerate their degree of responsibility in prior
 assignments nor the complexity of said assignments.
 Presentations incident to the solicitation of
 employment or business shall not misrepresent
 pertinent facts concerning employers, employees,
 associates, joint ventures, or past accomplishments.
- 2. Licensees shall not offer, give, solicit, or receive, either directly or indirectly, any commission, or gift, or other valuable consideration in order to secure work, and shall not make any political contribution with the intent to influence the award of a contract by public authority.
- Licensees shall not attempt to injure, maliciously or falsely, directly or indirectly, the professional reputation, prospects, practice, or employment of other licensees, nor indiscriminately criticize other licensees' work.

SUSTAINABILITY

The codes of ethics of a number of professional societies emphasize the need to develop sustainably. Sustainable development is the challenge of meeting human needs for natural resources, industrial products, energy, food, transportation, shelter, and effective waste management while conserving and protecting environmental quality and the natural resource base essential for future development.

SAFETY

DEFINITION OF SAFETY

Safety is the condition of protecting people from threats or failures that could harm their physical, emotional, occupational, psychological, or financial well-being. Safety is also the control of known threats to attain an acceptable level of risk.

The United States relies on public codes and standards, engineering designs, and corporate policies to ensure that a structure or place does what it should do to maintain a steady state of safety—that is, long-term stability and reliability. Some *Safety/Regulatory Agencies* that develop codes and standards commonly used in the United States are shown in the table.

Acronym	Name	Jurisdiction
CSA	Canadian Standards Association	Nonprofit standards organization
FAA	Federal Aviation Administration	Federal regulatory agency
IEC	International Electrotechnical Commission	Nonprofit standards organization
ITSNA	Intertek Testing Services NA (formerly Edison Testing Labs)	Nationally recognized testing laboratory
MSHA	Mine Safety and Health Administration	Federal regulatory agency
NFPA	National Fire Protection Association	Nonprofit trade association
OSHA	Occupational Health and Safety Administration	Federal regulatory agency
UL	Underwriters Laboratories	Nationally recognized testing laboratory
USCG	United States Coast Guard	Federal regulatory agency
USDOT	United States Department of Transportation	Federal regulatory agency
USEPA	United States Environmental Protection Agency	Federal regulatory agency

SAFETY PREVENTION

A traditional preventive approach to both accidents and occupational illness involves recognizing, evaluating, and controlling hazards and work conditions that may cause physical or other injuries.

Hazard is the capacity to cause harm. It is an inherent quality of a material or a condition. For example, a rotating saw blade or an uncontrolled high-pressure jet of water has the capability (hazard) to slice through flesh. A toxic chemical or a pathogen has the capability (hazard) to cause illness.

Risk is the chance or probability that a person will experience harm and is not the same as a hazard. Risk always involves both probability and severity elements. The hazard associated with a rotating saw blade or the water jet continues to exist, but the probability of causing harm, and thus the risk, can be reduced by installing a guard or by controlling the jet's path. Risk is expressed by the equation:

 $Risk = Hazard \times Probability$

When people discuss the hazards of disease-causing agents, the term *exposure* is typically used more than *probability*. If a certain type of chemical has a toxicity hazard, the risk of illness rises with the degree to which that chemical contacts your body or enters your lungs. In that case, the equation becomes:

 $Risk = Hazard \times Exposure$

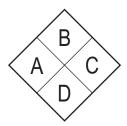
Organizations evaluate hazards using multiple techniques and data sources.

Job Safety Analysis

Job safety analysis (JSA) is known by many names, including activity hazard analysis (AHA), or job hazard analysis (JHA). Hazard analysis helps integrate accepted safety and health principles and practices into a specific task. In a JSA, each basic step of the job is reviewed, potential hazards identified, and recommendations documented as to the safest way to do the job. JSA techniques work well when used on a task that the analysts understand well. JSA analysts look for specific types of potential accidents and ask basic questions about each step, such as these:

Can the employee strike against or otherwise make injurious contact with the object?

Can the employee be caught in, on, or between objects?


Can the employee strain muscles by pushing, pulling, or lifting?

Is exposure to toxic gases, vapors, dust, heat, electrical currents, or radiation possible?

HAZARD ASSESSMENTS

Hazard Assessment

The fire/hazard diamond below summarizes common hazard data available on the MSDS and is frequently shown on chemical labels.

Position A – Health Hazard (Blue)

0 = normal material

1 = slightly hazardous

2 = hazardous

3 = extreme danger

4 = deadly

Position B – Flammability (Red)

0 = will not burn

1 = will ignite if preheated

2 = will ignite if moderately heated

3 = will ignite at most ambient temperature

4 = burns readily at ambient conditions

Position C – Reactivity (Yellow)

0 =stable and not reactive with water

1 = unstable if heated

2 = violent chemical change

3 =shock short may detonate

4 = may detonate

Position D - (White)

ALKALI = alkali

OXY = oxidizer

ACID = acid

Cor = corrosive

W = use no water

77

= radiation hazard

Flammability

Flammable describes any solid, liquid, vapor, or gas that will ignite easily and burn rapidly. A flammable liquid is defined by NFPA and USDOT as a liquid with a flash point below 100°F (38°C). Flammability is further defined with lower and upper limits:

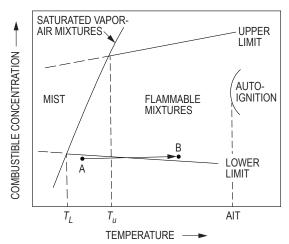
LFL = lower flammability limit (volume % in air)

UFL = upper flammability limit (volume % in air)

A vapor-air mixture will only ignite and burn over the range of concentrations between LFL and UFL. Examples are:

LFL	UFL
3.3	19
1.9	36
2.7	36
5	15
2.1	9.5
	3.3 1.9 2.7 5

♦ Predicting Lower Flammable Limits of Mixtures of Flammable Gases (Le Chatelier's Rule)


Based on an empirical rule developed by Le Chatelier, the lower flammable limit of mixtures of multiple flammable gases in air can be determined. A generalization of Le Chatelier's rule is

$$\sum_{i=1}^{n} (C_i/\mathrm{LFL}_i) \ge 1$$

where C_i is the volume percent of fuel gas, i, in the fuel/air mixture and LFL $_i$ is the volume percent of fuel gas, i, at its lower flammable limit in air alone. If the indicated sum is greater than unity, the mixture is above the lower flammable limit. This can be restated in terms of the lower flammable limit concentration of the fuel mixture, LFL $_m$, as follows:

$$\mathrm{LFL}_{\scriptscriptstyle{m}} = \frac{100}{\sum\limits_{\scriptscriptstyle{i=1}}^{\scriptscriptstyle{n}} (C_{\scriptscriptstyle{fi}}/\mathrm{LFL}_{\scriptscriptstyle{i}})}$$

where C_{ji} is the volume percent of fuel gas i in the fuel gas mixture.

 The SFPE Handbook of Fire Protection Engineering, National Fire Protection Association, 1988. With permission from the Society of Fire Protection Engineers.

Material Safety Data Sheets (MSDS)

An MSDS contains technical information on the product, including chemical source, composition, hazards and health effects, first aid, firefighting precautions, accidental-release measures, handling and storage, exposure controls and personal protection, physical and chemical properties, stability and reactivity, toxicological information, ecological hazards, disposal, transport, and other regulatory information.

The MSDS forms for all chemical compounds stored, handled, or used on-site should be filed by a designated site safety officer.

The MSDS form is provided by the supplier or must be developed when new chemicals are synthesized.

Signal Words. The signal word found on every product's label is based on test results from various oral, dermal, and inhalation toxicity tests, as well skin and eye corrosion assays in some cases. Signal words are placed on labels to convey a level of care that should be taken (especially personal protection) when handling and using a product, from purchase to disposal of the empty container, as demonstrated by the Pesticide Toxicity Table.

Pesticide Toxicity Categories

Signal Word on Label	Toxicity Category	Acute-Oral LD ₅₀ for Rats	Amount Needed to Kill an Average Size Adult	Notes
Danger-Poison	Highly Toxic	50 or less	Taste to a teaspoon	Skull and crossbones; Keep Out of Reach of Children
Warning	Moderately Toxic	50 to 500	One to six teaspoons	Keep Out of Reach of Children
Caution	Slightly Toxic	500 to 5,000	One ounce to a pint	Keep Out of Reach of Children
Caution	Relatively Non-Toxic	>5,000	More than a pint	Keep Out of Reach of Children

LD₅₀ - See Risk Assessment/Toxicology section on page 9.

From Regulating Pesticides, U.S. Environmental Protection Agency.

Granular Storage and Process Safety

Some materials that are not inherently hazardous can become hazardous during storage or processing. An example is the handling of grain in grain bins. Grain bins should not be entered when the grain is being removed since grains flow to the center of the emptying bin and create suffocation hazards. Bridging may occur at the top surface due to condensation and resulting spoilage creating a crust.

Organic vapors and dusts associated with grain handling often contain toxic yeasts or molds and have low oxygen contents. These organic vapors and dusts may also be explosive.

Confined Space Safety

Many workplaces contain spaces that are considered "confined" because their configurations hinder the activities of employees who must enter, work in, and exit them. A confined space has limited or restricted means for entry or exit and is not designed for continuous employee occupancy. Confined spaces include, but are not limited to, underground vaults, tanks, storage bins, manholes, pits, silos, process vessels, and pipelines. OSHA uses the term "permit-required confined spaces" (permit space) to describe a confined space that has one or more of the following characteristics: contains or has the potential to contain a hazardous atmosphere; contains a material that has the potential to engulf an entrant; has walls that converge inward or floors that slope downward and taper into a smaller area that could trap or asphyxiate an entrant; or contains any other recognized safety or health hazard such as unguarded machinery, exposed live wires or heat stress.

OSHA has developed OSHA standards, directives (instructions for compliance officers), standard interpretations (official letters of interpretation of the standards), and national consensus standards related to confined spaces. The following gases are often present in confined spaces:

Ammonia – irritating at 50 ppm and deadly above 1,000 ppm; sharp, cutting odor

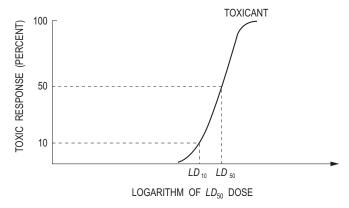
Hydrogen sulfide – irritating at 10 ppm and deadly at 500 ppm; accumulates at lower levels and in corners where circulation is minimal; rotten egg odor

Methane – explosive at levels above 50,000 ppm, lighter than air, odorless

Carbon dioxide – heavier than air, accumulates at lower levels and in corners where circulation is minimal, displaces air leading to asphyxiation

Electrical Safety

Current Level (Milliamperes)	Probable Effect on Human Body
1 mA	Perception level. Slight tingling sensation. Still dangerous under certain conditions.
5 mA	Slight shock felt; not painful but disturbing. Average individual can let go. However, strong involuntary reactions to shocks in this range may lead to injuries.
6 mA-16 mA	Painful shock, begin to lose muscular control. Commonly referred to as the freezing current or "let-go" range.
17 mA-99 mA	Extreme pain, respiratory arrest, severe muscular contractions. Individual cannot let go. Death is possible.
100 mA-2,000 mA	Ventricular fibrillation (uneven, uncoordinated pumping of the heart.) Muscular contraction and nerve damage begins to occur. Death is likely.
> 2,000 mA	Cardiac arrest, internal organ damage, and severe burns. Death is probable.


NIOSH [1998]. Worker Deaths by Electrocution; A Summary of NIOSH Surveillance and Investigative Findings. Ohio: U.S. Health and Human Services.

Greenwald E.K. [1991]. Electrical Hazards and Accidents-Their Cause and Prevention. New York: Van Nostrand Reinhold.

RISK ASSESSMENT/TOXICOLOGY

Dose-Response Curves

The dose-response curve relates toxic response (i.e., percentage of test population exhibiting a specified symptom or dying) to the logarithm of the dosage [i.e., mg/(kg•day) ingested]. A typical dose-response curve is shown below.

LC_{50}

Median lethal concentration in air that, based on laboratory tests, is expected to kill 50% of a group of test animals when administered as a single exposure over one or four hours.

LD_{50}

Median lethal single dose, based on laboratory tests, expected to kill 50% of a group of test animals, usually by oral or skin exposure.

Similar definitions exist for LC_{10} and LD_{10} , where the corresponding percentages are 10%.

The following table lists the probable effect on the human body of different current levels.

Comparative Acutely Lethal Doses

p		
Actual Ranking No.	<i>LD</i> ₅₀ (mg/kg)	Toxic Chemical
1	15,000	PCBs
2	10,000	Alcohol (ethanol)
3	4,000	Table salt—sodium chloride
4	1,500	Ferrous sulfate—an iron supplement
5	1,375	Malathion—pesticide
6	900	Morphine
7	150	Phenobarbital—a sedative
8	142	Tylenol (acetaminophen)
9	2	Strychnine—a rat poison
10	1	Nicotine
11	0.5	Curare—an arrow poison
12	0.001	2,3,7,8-TCDD (dioxin)
13	0.00001	Botulinum toxin (food poison)

Selected Chemical Interaction Effects

Effect	Relative toxicity (hypothetical)	Example
Additive	2+3=5	Organophosphate pesticides
Synergistic	2 + 3 = 20	Cigarette smoking + asbestos
Antagonistic	6+6=8	Toluene + benzene or caffeine + alcohol

Exposure Limits for Selected Compounds

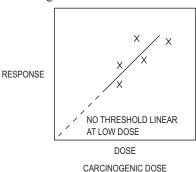
N	Allowable Workplace Exposure Level (mg/m³)	Chemical (use)
1	0.1	Iodine
2	5	Aspirin
3	10	Vegetable oil mists (cooking oil)
4	55	1,1,2-Trichloroethane (solvent/degreaser)
5	188	Perchloroethylene (dry-cleaning fluid)
6	170	Toluene (organic solvent)
7	269	Trichloroethylene (solvent/degreaser)
8	590	Tetrahydrofuran (organic solvent)
9	890	Gasoline (fuel)
10	1,590	Naphtha (rubber solvent)
11	1,910	1,1,1-Trichloroethane (solvent/degreaser)

Adapted from Loomis's Essentials of Toxicology, 4th ed., Loomis, T.A., and A.W. Hayes, Academic Press, San Diego, 1996.

Adapted from Williams, P.L., R.C. James, and S.M. Roberts, Principles of Toxicology: Environmental and Industrial Applications, 2nd ed., Wiley, 2000.

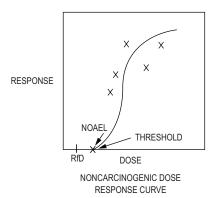
[■] American Conference of Government Industrial Hygienists (ACGIH) 1996.

Carcinogens


For carcinogens, the added risk of cancer is calculated as follows:

Risk = dose \times toxicity = $CDI \times CSF$

where


CDI = Chronic Daily Intake

CSF = Cancer Slope Factor. Slope of the dose-response curve for carcinogenic materials.

RESPONSE CURVE

Noncarcinogens

Dose is expressed

NOAEL = No Observable Adverse Effect Level. The dose below which there are no harmful effects

For noncarcinogens, a hazard index (HI) is calculated as follows:

HI = chronic daily intake/RfD

Reference Dose

Reference dose (*RfD*) is determined from the Noncarcinogenic Dose-Response Curve Using *NOAEL*.

$$RfD = \frac{NOAEL}{UF}$$

and

$$SHD = RfD \times W = \frac{NOAEL \times W}{UF}$$

where

SHD = safe human dose (mg/day)

NOAEL = threshold dose per kg test animal [mg/(kg•day)]

from the dose-response curve

UF = the total uncertainty factor, depending on nature and

reliability of the animal test data

W = the weight of the adult male (typically 70 kg)

Threshold Limit Value (TLV)

TLV is the highest dose (ppm by volume in the atmosphere) the body is able to detoxify without any detectable effects.

Examples are:

<u>Compound</u>	<u>TLV</u>
Ammonia	25
Chlorine	0.5
Ethyl Chloride	1,000
Ethyl Ether	400

Reactivity Group	dno																																							
No. Name																																								
Acid, Minerals, Non-Oxidizing		-																																						
Acids, Minerals, Oxidizing	vó.		2												KΕΥ	>-																								
Acids, Organic			9 =	е										ابد	Œ.	REACTIVITY	\(\)			<u> </u>	-	2	C L							ı										
Alcohols & Glycols	sloo	±	± ш	Ξd	4									ı	اد		ш		3		CONSEQUENCES		را ا ا	=						1										
Aldehydes		Ξů	± u	포스		2										ЕЩ			FIRE	- - ш	HEAL GENERALION FIRE	<u> </u>	⊇ :	2	i			,												
Amides		=	= E				9									ი ლ			Ĭĝ	ಶ ೪	INNOCUOUS & NON-FLAMMABLE GAS TOXIC GAS GENERATION	യ ഗ		₩ ₩ ₩	<u>ā</u> Ę	È,	9	<u>ග</u>	AS											
Amines, Aliphatic & Aromatic	tic &	=	± F5	Ŧ		=		_								유교			7 7	M S	FLAMMABLE GAS GENERATION EXPLOSION	ш –	AS	В	岜	₹	O													
Azo Compounds, Diazo Comp, Hydrazines	ds, lydrazines	Ξ9	± 15	т9	±Θ	Ŧ			∞							י ב נ					POLYMERIZATION	Ă.	8 2	پا	2	5	LVM	<u> </u>	=											
Carbamates		±Θ	± F5						±9	0						ი ⊃			5 E		MAY BE HAZARDOUS BUT UNKNOWN	₹Z	, RD	780	5 🗃	3 ≒	ŽŽ	28	Z Z											
Caustics		±	=	Ŧ		=				±Θ	9			I																I										
Cyanides		55	58	55					9			=													$\stackrel{\sim}{\sim}$	EXAMPLE:	ij													
Dithiocarbamates	tes	포썅╙	포썅ㄸ	ェ歩ち		95		>	±9			-	12												エロ		ĒĀ.	ნ გ	HEAT GENERATION,	RAT	<u>N</u> C	, ('								
Esters		±	± LL						т9		Ŧ		_	13											- D		H H	ER 2	GENERATION		2	5								
Ethers		±	± LL											14	4																									
Fluorides, Inorganic	ganic	E	ET	E											~	15																								
Hydrocarbons, Aromatic	Aromatic		т.													16	9																							
Halogenated Organics	rganics	Η	H T E					ΗÞ	т9		H H	±					17																							
Isocyanates		±9	포뜨등	±Θ	ェ싵			± a	±Θ		T d O	±9	n					18		ı																				
Ketones		Ŧ	ェ╙						±Θ		±	±							19		ı																			
Mercaptans & Other Organic Sulfides	Other 3S	_	H T F						н 9								Ξ.	Ξ	Ξ	20																				
Metal, Alkali & Alkaline Earth, Elemental	4/kaline al	병 포 또	告= 노	유 프 프	告= 노	F = r	능ェ	능ェ	5 ±	능ェ	5±	5±	55±	넁ェ			포띠	능=	₽±	유프	21		_																	
Oxidizing Agents, Strong	ıts,	± 15		± 15	± "	± "	± - 15	тБ±	±ω	± - 12		± 11 12	# T F	- Lu	Ξ		H H	E	- T-L	± - 15	포노병																104			
105 Reducing Agents, Strong	nts,	H H	포노병	H GF	포뜽ェ	유포노	유프	H GF	н 9			-0	H I	T T			H_	- GF	₽ H	GH H																	H T H	105		
106 Water & Mixtures Containing Water	es	±	Ξ						9									Η 9			유포																	GF 106	9	1
107 Water Reactive Substances	0		Ī	Ì	Ī	ļ	ŀ	ŀ	ŀ	ŀ	ш	EXTREMELY REACTIVE	EMEL	.≺ IR	EACT	INE!	ŀ	8	Not	, Wi	Mix With Any Chemical	Any	Cher	nical		or Waste Material	Ma	terial	ŀ	-				[ŀ	ŀ	ŀ	107	_
		-	2	က	4	2	9		· ∞	6	-0	=	12 1	13 14		15 16	9 17	7 18	9	8	21	22	23	24	25	26	27 :	7 8 7	29 30	33	32	33	怒	101	102	103	101 102 103 104 105 106 107)5 10	9 10.	_

U.S. Environmental Protection Agency, April 1980. EPA-600/2-80-076.

Exposure

Residential Exposure Equations for Various Pathways

Ingestion in drinking water

CDI = (CW)(IR)(EF)(ED)

(BW)(AT)

Ingestion while swimming

CDI = (CW)(CR)(ET)(EF)(ED)

(BW)(AT)

Dermal contact with water

AD = (CW)(SA)(PC)(ET)(EF)(ED)(CF)

(BW)(AT)

Ingestion of chemicals in soil

CDI = (CS)(IR)(CF)(FI)(EF)(ED)

(BW)(AT)

Dermal contact with soil

AD = (CS)(CF)(SA)(AF)(ABS)(EF)(ED)

(BW)(AT)

Inhalation of airborne (vapor phase) chemicals

CDI = (CA)(IR)(ET)(EF)(ED)

(BW)(AT)

Ingestion of contaminated fruits, vegetables, fish and shellfish

CDI = (CF)(IR)(FI)(EF)(ED)

(BW)(AT)

where ABS = absorption factor for soil contaminant (unitless)

AD = absorbed dose $(mg/[kg \cdot day])$

AF = soil-to-skin adherence factor (mg/cm^2)

AT = averaging time (days)

BW = body weight (kg)

CA = contaminant concentration in air (mg/m^3)

CDI = chronic daily intake (mg/[kg•day])

CF = volumetric conversion factor for water

 $= 1 L/1,000 cm^3$

= conversion factor for soil = 10^{-6} kg/mg

CR = contact rate (L/hr)

CS = chemical concentration in soil (mg/kg)

CW = chemical concentration in water (mg/L)

ED = exposure duration (years)

EF = exposure frequency (days/yr or events/year)

ET = exposure time (hr/day or hr/event)

FI = fraction ingested (unitless)

R = ingestion rate (L/day or mg soil/day or kg/meal)

= inhalation rate (m^3/hr)

PC = chemical-specific dermal permeability constant

(cm/hr)

SA = skin surface area available for contact (cm²)

Risk Assessment Guidance for Superfund. Volume 1, Human Health Evaluation Manual (part A). U.S. Environmental Protection Agency, EPA/540/1-89/002,1989.

Intake Rates

EPA Recommended Values for Estimating Intake

Parameter	Standard Value
Average body weight, female adult	65.4 kg
Average body weight, male adult	78 kg
Average body weight, child ^a	
6–11 months	9 kg
1–5 years	16 kg
6–12 years	33 kg
Amount of water ingested, adult	2.3 L/day
Amount of water ingested, child	1.5 L/day
Amount of air breathed, female adult	$11.3 \text{ m}^3/\text{day}$
Amount of air breathed, male adult	15.2 m ³ /day
Amount of air breathed, child (3–5 years)	$8.3 \text{ m}^3/\text{day}$
Amount of fish consumed, adult	6 g/day
Water swallowing rate, while swimming	50 mL/hr
Inhalation rates	
adult (6-hr day)	$0.98 \text{ m}^3/\text{hr}$
adult (2-hr day)	1.47 m ³ /hr
child	$0.46 \text{ m}^3/\text{hr}$
Skin surface available, adult male	$1.94~\mathrm{m}^2$
Skin surface available, adult female	$1.69~\mathrm{m}^2$
Skin surface available, child	
3–6 years (average for male and female)	0.720 m^2
6–9 years (average for male and female)	0.925 m^2
9–12 years (average for male and female)	1.16 m^2
12–15 years (average for male and female)	$1.49~\mathrm{m}^2$
15–18 years (female)	1.60 m^2
15–18 years (male)	1.75 m^2
Soil ingestion rate, child 1–6 years	>100 mg/day
Soil ingestion rate, persons > 6 years	50 mg/day
Skin adherence factor, gardener's hands	0.07 mg/cm^2
Skin adherence factor, wet soil	0.2 mg/cm^2
Exposure duration	-
Lifetime (carcinogens, for noncarcinogens use actual exposure duration)	75 years
At one residence, 90th percentile	30 years
National median	5 years
Averaging time	(ED)(365 days/year)
Exposure frequency (EF)	()() -))
Swimming	7 days/year
Eating fish and shellfish	48 days/year
Exposure time (ET)	
Shower, 90th percentile	12 min
Shower, 50th percentile	7 min

^a Data in this category taken from: Copeland, T., A. M. Holbrow, J. M. Otan, et al., "Use of probabilistic methods to understand the conservatism in California's approach to assessing health risks posed by air contaminants," *Journal of the Air and Waste Management Association*, vol. 44, pp. 1399-1413, 1994.

Risk Assessment Guidance for Superfund. Volume 1, Human Health Evaluation Manual (part A). U.S. Environmental Protection Agency, EPA/540/1-89/002, 1989.

Concentrations of Vaporized Liquids

Vaporization Rate (Q_m , mass/time) from a Liquid Surface

$$Q_m = [MKA_S P^{\text{sat}}/(R_g T_L)]$$

M = molecular weight of volatile substance

K =mass transfer coefficient

 A_S = area of liquid surface

 P^{sat} = saturation vapor pressure of the pure liquid at T_L

 R_{φ} = ideal gas constant

 T_L = absolute temperature of the liquid

Mass Flow Rate of Liquid from a Hole in the Wall of a Process Unit

$$Q_m = A_H C_0 (2\rho g_c P_g)^{1/2}$$

 A_H = area of hole

 C_0 = discharge coefficient

 ρ = density of the liquid

 g_c = gravitational constant

 P_g = gauge pressure within the process unit

Concentration (C_{ppm}) of Vaporized Liquid in Ventilated Space

$$C_{\text{ppm}} = [Q_m R_g T \times 10^6 / (kQ_V PM)]$$

T = absolute ambient temperature

k = non-ideal mixing factor

 Q_V = ventilation rate

P = absolute ambient pressure

Sweep-Through Concentration Change in a Vessel

$$Q_V t = V \ln[(C_1 - C_0)/(C_2 - C_0)]$$

 Q_V = volumetric flow rate

t = time

V = vessel volume

 C_0 = inlet concentration

 C_1 = initial concentration

 C_2 = final concentration

ERGONOMICS

NIOSH Formula

Recommended Weight Limit (RWL)

RWL = 51(10/H)(1 - 0.0075|V - 30|)(0.82 + 1.8/D)(1 - 0.0032A)(FM)(CM)

where

RWL= recommended weight limit, in pounds

H = horizontal distance of the hand from the midpoint of the line joining the inner ankle bones to a point projected on the floor directly below the load center, in inches

V = vertical distance of the hands from the floor, in inches

D = vertical travel distance of the hands between the origin and destination of the lift, in inches

A = asymmetry angle, in degrees

FM = frequency multiplier (see table)

CM = coupling multiplier (see table)

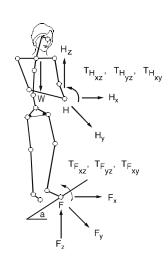
Frequency Multiplier Table

	≤ 8 h	r/day	≤ 2 h	r/day	≤ 1 hr	·/day
F, min ⁻¹	V< 30 in.	$V \ge 30$ in.	V < 30 in.	$V \ge 30$ in.	V < 30 in.	$V \ge 30$ in.
0.2	0.85		0.95		1.00	
0.5	0.81		0.92		0.97	
1	0.75		0.88		0.94	
2	0.65		0.84		0.91	
3	0.55		0.79		0.88	
4	0.45		0.72		0.84	
5	0.35		0.60		0.80	
6	0.27		0.50		0.75	
7	0.22		0.42		0.70	
8	0.18		0.35		0.60	
9		0.15	0.30		0.52	
10		0.13	0.26		0.45	
11				0.23	0.41	
12				0.21	0.37	
13		(0.00			0.34
14						0.31
15						0.28

Waters, Thomas R., Ph.D., et al, Applications Manual for the Revised NIOSH Lifting Equation, Table 5, U.S. Department of Health and Human Services (NIOSH), January 1994.

Coupling Multiplier (CM) Table (Function of Coupling of Hands to Load)

	Container		Loose Part / I	rreg. Object
Optimal	Design	Not	Comfort Grip	Not
Opt. Handles or Cut-outs	Not	POOR	GOOD	
GOOD	Flex Fingers FA	90 Degrees		ot OR


Coupling	V < 30 in. or 75 cm	$V \ge 30$ in. or 75 cm
GOOD	1.00	
FAIR	0.95	
POOR	0.90	

Waters, Thomas R., Ph.D., et al, Applications Manual for the Revised NIOSH Lifting Equation, Table 7, U.S. Department of Health and Human Services (NIOSH), January 1994.

Biomechanics of the Human Body

Basic Equations

$$\begin{split} H_x + F_x &= 0 \\ H_y + F_y &= 0 \\ H_z + W + F_z &= 0 \\ T_{Hxz} + T_{Wxz} + T_{Fxz} &= 0 \\ T_{Hyz} + T_{Wyz} + T_{Fyz} &= 0 \\ T_{Hxy} + T_{Fxy} &= 0 \end{split}$$

The coefficient of friction μ and the angle α at which the floor is inclined determine the equations at the foot.

$$F_x = \mu F_z$$

With the slope angle α

$$F_r = \alpha F_z \cos \alpha$$

Of course, when motion must be considered, dynamic conditions come into play according to Newton's Second Law. Force transmitted with the hands is counteracted at the foot. Further, the body must also react with internal forces at all points between the hand and the foot.

Incidence Rates

Two concepts can be important when completing OSHA forms. These concepts are *incidence rates* and *severity rates*. On occasion it is necessary to calculate the total injury/illness incident rate of an organization in order to complete OSHA forms. This calculation must include fatalities and all injuries requiring medical treatment beyond mere first aid. The formula for determining the total injury/illness incident rate is as follows:

$$IR = N \times 200,000 \div T$$

IR = Total injury/illness incidence rate

N = Number of injuries, illnesses, and fatalities

T =Total hours worked by all employees during the period in question

The number 200,000 in the formula represents the number of hours 100 employees work in a year (40 hours per week \times 50 weeks = 2,000 hours per year per employee). Using the same basic formula with only minor substitutions, safety managers can calculate the following types of incidence rates:

- 1. Injury rate
- 2. Illness rate
- 3. Fatality rate
- 4. Lost workday cases rate
- 5. Number of lost workdays rate
- 6. Specific hazard rate
- 7. Lost workday injuries rate

NOISE POLLUTION

SPL (dB) =
$$10 \log_{10} (P^2 / P_0^2)$$

$$SPL_{total} = 10 \ log_{10} \Sigma 10^{SPL/10}$$

Point Source Attenuation

$$\Delta$$
 SPL (dB) = 10 log₁₀ $(r_1/r_2)^2$

Line Source Attenuation

$$\Delta$$
 SPL (dB) = 10 log₁₀ (r_1/r_2)

where

SPL (dB) = sound pressure level, measured in decibels

P = sound pressure (Pa)

 P_0 = reference sound pressure (2 × 10⁻⁵ Pa)

 SPL_{total} = sum of multiple sources

 Δ SPL (dB) = change in sound pressure level with distance,

measured in decibels

 r_1 = distance from source to receptor at point 1 r_2 = distance from source to receptor at point 2

PERMISSIBLE NOISE EXPOSURE (OSHA)

Noise dose D should not exceed 100%.

$$D = 100\% \times \sum \frac{C_i}{T_i}$$

where C_i = time spent at specified sound pressure level, SPL, (hours)

 T_i = time permitted at SPL (hours)

 $\sum_{i} C_{i} = 8 \text{ (hours)}$

Noise Level	Permissible Time
(dBA)	(hr)
80	32
85	16
90	8
95	4
100	2
105	1
110	0.5
115	0.25
120	0.125
125	0.063
130	0.031

If D > 100%, noise abatement required.

If $50\% \le D \le 100\%$, hearing conservation program required.

Note: D = 100% is equivalent to 90 dBA time-weighted average (TWA). D = 50% equivalent to TWA of 85 dBA.

Hearing conservation program requires: (1) testing employee hearing, (2) providing hearing protection at employee's request, and (3) monitoring noise exposure.

Exposure to impulsive or impact noise should not exceed 140 dB sound pressure level (SPL).

MATHEMATICS

DISCRETE MATH

Symbols

$x \in X$	x is a member of X
{}, ♦	The empty (or null) set
$S \subseteq T$	S is a subset of T
$S \subset T$	S is a proper subset of T

$$\begin{array}{ll} \text{(a,b)} & \text{Ordered pair} \\ P^{\text{(s)}} & \text{Power set of S} \end{array}$$

$$(a_1, a_2, ..., a_n)$$
 n-tuple

$$A \cup B$$
 Union of A and B
 $A \cap B$ Intersection of A and B

$$\forall$$
 x Universal qualification for all x; for any x; for

$$\exists$$
 y Uniqueness qualification there exists y

A binary relation from A to B is a subset of $A \times B$.

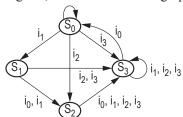
Matrix of Relation

If $A = \{a_1, a_2, ..., a_m\}$ and $B = \{b_1, b_2, ..., b_n\}$ are finite sets containing m and n elements, respectively, then a relation R from A to B can be represented by the $m \times n$ matrix $M_R < [m_{ij}]$, which is defined by:

$$m_{ij} = \{ 1 \text{ if } (a_i, b_j) \in R \\ 0 \text{ if } (a_i, b_i) \notin R \}$$

Directed Graphs or Digraphs of Relation

A directed graph or digraph, consists of a set V of vertices (or nodes) together with a set E of ordered pairs of elements of V called edges (or arcs). For edge (a, b), the vertex a is called the initial vertex and vertex b is called the terminal vertex. An edge of form (a, a) is called a loop.


Finite State Machine

A finite state machine consists of a finite set of states $S_i = \{s_0, s_1, ..., s_n\}$ and a finite set of inputs I; and a transition function f that assigns to each state and input pair a new state.

A state (or truth) table can be used to represent the finite state machine

		Inp	out	
State	i_0	i ₁	i ₂	i ₃
S_0 S_1	S_0	S_1	S_2	S_3
	S_2	S_2	S_3	S_3
S_2	S_3	S_3	S_3	S_3
S_3	S_0	S_3	S_3	S_3

Another way to represent a finite state machine is to use a state diagram, which is a directed graph with labeled edges.

The characteristic of how a function maps one set (X) to another set (Y) may be described in terms of being either injective, surjective, or bijective.

An injective (one-to-one) relationship exists if, and only if,

$$\forall x_1, x_2 \in X, \text{ if } f(x_1) = f(x_2), \text{ then } x_1 = x_2$$

A surjective (onto) relationship exists when $\forall y \in Y, \exists x \in X$ such that f(x) = y

A bijective relationship is both injective (one-to-one) and surjective (onto).

STRAIGHT LINE

The general form of the equation is

$$Ax + By + C = 0$$

The standard form of the equation is

$$y=mx+b,$$

which is also known as the *slope-intercept* form.

The *point-slope* form is $y - y_1 = m(x - x_1)$

Given two points: slope, $m = (y_2 - y_1)/(x_2 - x_1)$

The angle between lines with slopes m_1 and m_2 is

$$\alpha = \arctan [(m_2 - m_1)/(1 + m_2 \cdot m_1)]$$

Two lines are perpendicular if $m_1 = -1/m_2$

The distance between two points is

$$d = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}$$

OUADRATIC EQUATION

$$ax^{2} + bx + c = 0$$

$$x = \text{Roots} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

OUADRIC SURFACE (SPHERE)

The standard form of the equation is

$$(x-h)^2 + (y-k)^2 + (z-m)^2 = r^2$$

with center at (h, k, m).

In a three-dimensional space, the distance between two points is

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

LOGARITHMS

The logarithm of *x* to the Base *b* is defined by

$$\log_b(x) = c$$
, where $b^c = x$

Special definitions for b = e or b = 10 are:

$$\ln x$$
, Base = e

$$\log x$$
, Base = 10

To change from one Base to another:

$$\log_b x = (\log_a x)/(\log_a b)$$

e.g.,
$$\ln x = (\log_{10} x)/(\log_{10} e) = 2.302585 (\log_{10} x)$$

Identities

$$\log_b b^n = n$$

$$\log x^c = c \log x$$
; $x^c = \text{antilog}(c \log x)$

$$\log xy = \log x + \log y$$

$$\log_b b = 1$$
; $\log 1 = 0$

$$\log x/y = \log x - \log y$$

ALGEBRA OF COMPLEX NUMBERS

Complex numbers may be designated in rectangular form or polar form. In rectangular form, a complex number is written in terms of its real and imaginary components.

$$z = a + jb$$
, where

a =the real component,

b =the imaginary component, and

 $j = \sqrt{-1}$ (some disciplines use $i = \sqrt{-1}$)

In polar form $z = c \angle \theta$ where

$$c = \sqrt{a^2 + b^2}$$

$$\theta = \tan^{-1}(b/a)$$

 $a = c \cos \theta$, and

$$b = c \sin \theta$$
.

Complex numbers can be added and subtracted in rectangular form. If

$$z_1 = a_1 + jb_1 = c_1 (\cos \theta_1 + j\sin \theta_1)$$

= $c_1 \angle \theta_1$ and
 $z_2 = a_2 + jb_2 = c_2 (\cos \theta_2 + j\sin \theta_2)$
= $c_2 \angle \theta_2$, then
 $z_1 + z_2 = (a_1 + a_2) + j (b_1 + b_2)$ and

While complex numbers can be multiplied or divided in rectangular form, it is more convenient to perform these operations in polar form.

$$z_1 \times z_2 = (c_1 \times c_2) \angle (\theta_1 + \theta_2)$$

 $z_1/z_2 = (c_1/c_2) \angle (\theta_1 - \theta_2)$

 $z_1 - z_2 = (a_1 - a_2) + j(b_1 - b_2)$

The complex conjugate of a complex number $z_1 = (a_1 + jb_1)$ is defined as $z_1^* = (a_1 - jb_1)$. The product of a complex number and its complex conjugate is $z_1z_1^* = a_1^2 + b_1^2$.

Polar Coordinate System

$$x = r \cos \theta$$
; $y = r \sin \theta$; $\theta = \arctan (y/x)$

$$r = |x + jy| = \sqrt{x^2 + y^2}$$

$$x + jy = r(\cos \theta + j \sin \theta) = re^{j\theta}$$

$$[r_1(\cos\theta_1 + j\sin\theta_1)][r_2(\cos\theta_2 + j\sin\theta_2)] =$$

$$r_1 r_2 [\cos(\theta_1 + \theta_2) + j \sin(\theta_1 + \theta_2)]$$

$$(x+jy)^n = [r(\cos\theta + j\sin\theta)]^n$$

$$= r^n(\cos n\theta + j\sin n\theta)$$

$$\frac{r_1(\cos\theta_1 + j\sin\theta_1)}{r_2(\cos\theta_2 + j\sin\theta_2)} = \frac{r_1}{r_2} \left[\cos(\theta_1 - \theta_2) + j\sin(\theta_1 - \theta_2)\right]$$

Euler's Identity

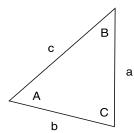
$$e^{j\theta} = \cos \theta + j \sin \theta$$

$$e^{-j\theta} = \cos \theta - j \sin \theta$$

$$\cos \theta = \frac{e^{j\theta} + e^{-j\theta}}{2}, \sin \theta = \frac{e^{j\theta} - e^{-j\theta}}{2i}$$

Roots

If k is any positive integer, any complex number (other than zero) has k distinct roots. The k roots of r (cos $\theta + j \sin \theta$) can be found by substituting successively n = 0, 1, 2, ..., (k - 1) in the formula


$$w = k\sqrt{r} \left[\cos\left(\frac{\theta}{k} + n\frac{360|}{k}\right) + j\sin\left(\frac{\theta}{k} + n\frac{360|}{k}\right) \right]$$

TRIGONOMETRY

Trigonometric functions are defined using a right triangle.

$$\sin \theta = y/r$$
, $\cos \theta = x/r$
 $\tan \theta = y/x$, $\cot \theta = x/y$

$$\csc \theta = r/y$$
, $\sec \theta = r/x$

Law of Sines

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Law of Cosines

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$b^2 = a^2 + c^2 - 2ac \cos B$$

$$c^2 = a^2 + b^2 - 2ab \cos C$$

Brink, R.W., A First Year of College Mathematics, D. Appleton-Century Co., Inc., Englewood Cliffs, NJ, 1937.

Identities

$$\cos\theta = \sin(\theta + \pi/2) = -\sin(\theta - \pi/2)$$

$$\sin \theta = \cos (\theta - \pi/2) = -\cos (\theta + \pi/2)$$

$$\csc \theta = 1/\sin \theta$$

$$\sec \theta = 1/\cos \theta$$

$$\tan \theta = \sin \theta / \cos \theta$$

$$\cot \theta = 1/\tan \theta$$

$$\sin^2\theta + \cos^2\theta = 1$$

$$\tan^2\theta + 1 = \sec^2\theta$$

$$\cot^2\theta + 1 = \csc^2\theta$$

$$\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

$$\sin 2\alpha = 2 \sin \alpha \cos \alpha$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 1 - 2\sin^2 \alpha = 2\cos^2 \alpha - 1$$

$$\tan 2\alpha = (2 \tan \alpha)/(1 - \tan^2 \alpha)$$

$$\cot 2\alpha = (\cot^2 \alpha - 1)/(2 \cot \alpha)$$

$$\tan (\alpha + \beta) = (\tan \alpha + \tan \beta)/(1 - \tan \alpha \tan \beta)$$

$$\cot (\alpha + \beta) = (\cot \alpha \cot \beta - 1)/(\cot \alpha + \cot \beta)$$

$$\sin (\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

$$\cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$\tan (\alpha - \beta) = (\tan \alpha - \tan \beta)/(1 + \tan \alpha \tan \beta)$$

$$\cot (\alpha - \beta) = (\cot \alpha \cot \beta + 1)/(\cot \beta - \cot \alpha)$$

$$\sin(\alpha/2) = \pm \sqrt{(1 - \cos\alpha)/2}$$

$$\cos(\alpha/2) = \pm \sqrt{(1 + \cos\alpha)/2}$$

$$\tan (\alpha/2) = \pm \sqrt{(1 - \cos \alpha)/(1 + \cos \alpha)}$$

$$\cot (\alpha/2) = \pm \sqrt{(1 + \cos \alpha)/(1 - \cos \alpha)}$$

$$\sin \alpha \sin \beta = (1/2)[\cos (\alpha - \beta) - \cos (\alpha + \beta)]$$

$$\cos \alpha \cos \beta = (1/2)[\cos (\alpha - \beta) + \cos (\alpha + \beta)]$$

$$\sin \alpha \cos \beta = (1/2)[\sin (\alpha + \beta) + \sin (\alpha - \beta)]$$

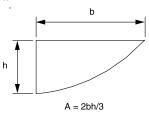
$$\sin \alpha + \sin \beta = 2 \sin \left[(1/2)(\alpha + \beta) \right] \cos \left[(1/2)(\alpha - \beta) \right]$$

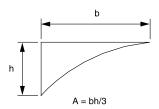
$$\sin \alpha - \sin \beta = 2 \cos \left[(1/2)(\alpha + \beta) \right] \sin \left[(1/2)(\alpha - \beta) \right]$$

$$\cos \alpha + \cos \beta = 2 \cos \left[(1/2)(\alpha + \beta) \right] \cos \left[(1/2)(\alpha - \beta) \right]$$

$$\cos \alpha - \cos \beta = -2 \sin \left[(1/2)(\alpha + \beta) \right] \sin \left[(1/2)(\alpha - \beta) \right]$$

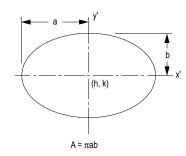
MENSURATION OF AREAS AND VOLUMES


Nomenclature


A = total surface area

P = perimeter

V = volume

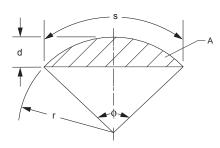

Parabola

Ellipse

♦

$$\begin{split} P_{approx} &= 2\pi \sqrt{(a^2 + b^2)/2} \\ P &= \pi (a + b) \begin{bmatrix} 1 + (1/2)^2 \lambda^2 + (1/2 \times 1/4)^2 \lambda^4 \\ + (1/2 \times 1/4 \times 3/6)^2 \lambda^6 + (1/2 \times 1/4 \times 3/6 \times 5/8)^2 \lambda^8 \\ + (1/2 \times 1/4 \times 3/6 \times 5/8 \times 7/10)^2 \lambda^{10} + \dots \end{bmatrix} \end{split}$$

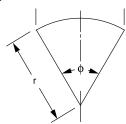
where


$$\lambda = (a-b)/(a+b)$$

• Gieck, K., and R. Gieck, Engineering Formulas, 6th ed., Gieck Publishing, 1967.

MENSURATION OF AREAS AND VOLUMES (continued)

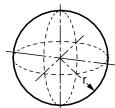
Circular Segment


•

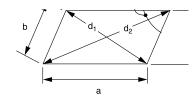
$$A = [r^{2}(\phi - \sin \phi)]/2$$

$$\phi = s/r = 2\{\arccos[(r - d)/r]\}$$

Circular Sector


♦

$$A = \phi r^2 / 2 = sr/2$$
$$\phi = s/r$$


Sphere

♦

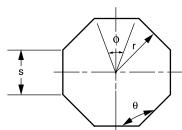
$$V = 4\pi r^3/3 = \pi d^3/6$$
$$A = 4\pi r^2 = \pi d^2$$

Parallelogram

$$P = 2(a + b)$$

$$d_1 = \sqrt{a^2 + b^2 - 2ab(\cos\phi)}$$

$$d_2 = \sqrt{a^2 + b^2 + 2ab(\cos\phi)}$$


$$d_1^2 + d_2^2 = 2(a^2 + b^2)$$

$$A = ah = ab(\sin\phi)$$

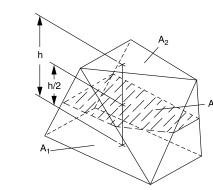
If a = b, the parallelogram is a rhombus.

Regular Polygon (*n* equal sides)

♦

$$\phi = 2\pi/n$$

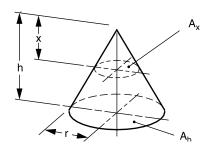
$$\theta = \left[\frac{\pi(n-2)}{n}\right] = \pi\left(1 - \frac{2}{n}\right)$$


$$P = ns$$

$$s = 2r\left[\tan(\phi/2)\right]$$

$$A = (nsr)/2$$

Prismoid



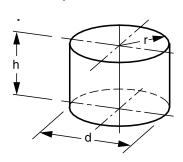
$$V = (h/6)(A_1 + A_2 + 4A)$$

Right Circular Cone

♦

$$V = (\pi r^2 h)/3$$

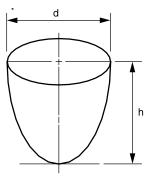
$$A = \text{side area} + \text{base area}$$


$$= \pi r (r + \sqrt{r^2 + h^2})$$

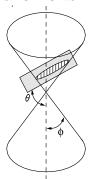
$$A_r : A_h = x^2 : h^2$$

• Gieck, K., and R. Gieck, Engineering Formulas, 6th ed., Gieck Publishing, 1967.

Right Circular Cylinder


•

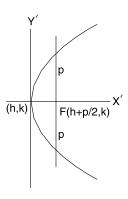
$$V = \pi r^{2} h = \frac{\pi d^{2} h}{4}$$


$$A = \text{side area} + \text{end areas} = 2\pi r(h + r)$$

Paraboloid of Revolution

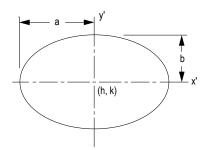
$$V = \frac{\pi d^2 h}{8}$$

CONIC SECTIONS



 $e = \text{eccentricity} = \cos \theta / (\cos \phi)$

[Note: X' and Y', in the following cases, are translated axes.]


Case 1. Parabola e = 1:

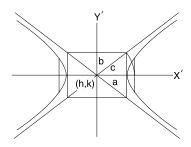
•

 $(y-k)^2 = 2p(x-h)$; Center at (h, k) is the standard form of the equation. When h = k = 0, Focus: (p/2, 0); Directrix: x = -p/2

Case 2. Ellipse e < 1:

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$
; Center at (h, k)

is the standard form of the equation. When h = k = 0,


Eccentricity:
$$e = \sqrt{1 - (b^2/a^2)} = c/a$$

$$b = a\sqrt{1 - e^2};$$

Focus: $(\pm ae, 0)$; Directrix: $x = \pm a/e$

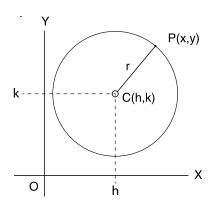
- Gieck, K., and R. Gieck, Engineering Formulas, 6th ed., Gieck Publishing, 1967.
- Brink, R.W., A First Year of College Mathematics, D. Appleton-Century Co., Inc., 1937.

Case 3. Hyperbola e > 1:

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$
; Center at (h, k)

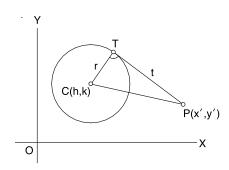
is the standard form of the equation. When h = k = 0,

Eccentricity:
$$e = \sqrt{1 + (b^2/a^2)} = c/a$$


$$b = a\sqrt{e^2 - 1};$$

Focus: $(\pm ae, 0)$; Directrix: $x = \pm a/e$

Case 4. Circle e = 0:


 $(x-h)^2 + (y-k)^2 = r^2$; Center at (h, k) is the standard form of the equation with radius

$$r = \sqrt{(x - h)^2 + (y - k)^2}$$

Length of the tangent line from a point on a circle to a point (x',y'):

$$t^2 = (x' - h)^2 + (y' - k)^2 - r^2$$

• Brink, R.W., A First Year of College Mathematics, D. Appleton-Century Co., Inc., 1937.

Conic Section Equation

The general form of the conic section equation is

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

where not both A and C are zero.

If $B^2 - 4AC < 0$, an *ellipse* is defined.

If $B^2 - 4AC > 0$, a hyperbola is defined.

If $B^2 - 4AC = 0$, the conic is a parabola.

If A = C and B = 0, a *circle* is defined.

If A = B = C = 0, a straight line is defined.

$$x^2 + y^2 + 2ax + 2by + c = 0$$

is the normal form of the conic section equation, if that conic section has a principal axis parallel to a coordinate axis.

$$h = -a; k = -b$$

$$r = \sqrt{a^2 + b^2 - c}$$

If $a^2 + b^2 - c$ is positive, a *circle*, center (-a, -b).

If $a^2 + b^2 - c$ equals zero, a *point* at (-a, -b).

If $a^2 + b^2 - c$ is negative, locus is *imaginary*.

DIFFERENTIAL CALCULUS

The Derivative

For any function y = f(x),

the derivative = $D_x y = dy/dx = y'$

$$y' = \lim_{\Delta x \to 0} \left[\left(\Delta y \right) / \left(\Delta x \right) \right]$$

$$= \lim_{\Delta x \to 0} \left\{ \left[f(x + \Delta x) - f(x) \right] / (\Delta x) \right\}$$

y' = the slope of the curve f(x).

Test for a Maximum

y = f(x) is a maximum for

$$x = a$$
, if $f'(a) = 0$ and $f''(a) < 0$.

Test for a Minimum

y = f(x) is a minimum for

$$x = a$$
, if $f'(a) = 0$ and $f''(a) > 0$.

Test for a Point of Inflection

y = f(x) has a point of inflection at x = a,

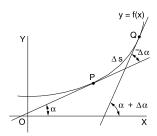
if f''(a) = 0, and

if f''(x) changes sign as x increases through

x = a.

The Partial Derivative

In a function of two independent variables x and y, a derivative with respect to one of the variables may be found if the other variable is *assumed* to remain constant. If y is kept fixed, the function


$$z = f(x, y)$$

becomes a function of the *single variable x*, and its derivative (if it exists) can be found. This derivative is called the *partial derivative of z with respect to x*. The partial derivative with respect to *x* is denoted as follows:

$$\frac{\partial z}{\partial x} = \frac{\partial f(x,y)}{\partial x}$$

The Curvature of Any Curve

The curvature K of a curve at P is the limit of its average curvature for the arc PQ as Q approaches P. This is also expressed as: the curvature of a curve at a given point is the rate-of-change of its inclination with respect to its arc length.

$$K = \lim_{\Delta s \to 0} \frac{\Delta \alpha}{\Delta s} = \frac{d\alpha}{ds}$$

Curvature in Rectangular Coordinates

$$K = \frac{y''}{\left[1 + (y')^2\right]^{\beta/2}}$$

When it may be easier to differentiate the function with respect to y rather than x, the notation x' will be used for the derivative.

$$x' = dx/dy$$

$$K = \frac{-x''}{\left[1 + (x')^2\right]^{3/2}}$$

The Radius of Curvature

The *radius of curvature R* at any point on a curve is defined as the absolute value of the reciprocal of the curvature *K* at that point.

$$R = \frac{1}{|K|} \qquad (K \neq 0)$$

$$R = \left| \frac{\left[1 + (y')^2 \right]^{3/2}}{|y''|} \right| \quad (y'' \neq 0)$$

L'Hospital's Rule (L'Hôpital's Rule)

If the fractional function f(x)/g(x) assumes one of the indeterminate forms 0/0 or ∞/∞ (where α is finite or infinite), then

$$\lim_{x \to a} f(x)/g(x)$$

is equal to the first of the expressions

$$\lim_{x \to a} \frac{f'(x)}{g'(x)}, \lim_{x \to a} \frac{f''(x)}{g''(x)}, \lim_{x \to a} \frac{f'''(x)}{g'''(x)}$$

which is not indeterminate, provided such first indicated limit exists.

INTEGRAL CALCULUS

The definite integral is defined as:

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x_i = \int_a^b f(x) dx$$

Also, $\Delta x_i \rightarrow 0$ for all *i*.

A table of derivatives and integrals is available in the Derivatives and Indefinite Integrals section. The integral equations can be used along with the following methods of integration:

- A. Integration by Parts (integral equation #6),
- B. Integration by Substitution, and
- C. Separation of Rational Fractions into Partial Fractions.
- ♦ Wade, Thomas L., Calculus, Ginn & Company/Simon & Schuster Publishers, 1953.

DERIVATIVES AND INDEFINITE INTEGRALS

In these formulas, u, v, and w represent functions of x. Also, a, c, and n represent constants. All arguments of the trigonometric functions are in radians. A constant of integration should be added to the integrals. To avoid terminology difficulty, the following definitions are followed: $\arcsin u = \sin^{-1} u$, $(\sin u)^{-1} = 1/\sin u$.

- 1. dc/dx = 0
- $2. \quad dx/dx = 1$
- 3. $d(cu)/dx = c \frac{du}{dx}$
- 4. d(u+v-w)/dx = du/dx + dv/dx dw/dx
- 5. $d(uv)/dx = u \frac{dv}{dx} + v \frac{du}{dx}$
- 6. d(uvw)/dx = uv dw/dx + uw dv/dx + vw du/dx
- 7. $\frac{d(u/v)}{dx} = \frac{v \, du/dx u \, dv/dx}{v^2}$
- 8. $d(u^n)/dx = nu^{n-1} du/dx$
- 9. $d[f(u)]/dx = \{d[f(u)]/du\} du/dx$
- 10. du/dx = 1/(dx/du)
- 11. $\frac{d(\log_a u)}{dx} = (\log_a e) \frac{1}{u} \frac{du}{dx}$
- $12. \ \frac{d(\ln u)}{dx} = \frac{1}{u} \frac{du}{dx}$
- 13. $\frac{d(a^u)}{dx} = (\ln a) a^u \frac{du}{dx}$
- 14. $d(e^u)/dx = e^u du/dx$
- 15. $d(u^{\nu})/dx = \nu u^{\nu-1} du/dx + (\ln u) u^{\nu} d\nu/dx$
- 16. $d(\sin u)/dx = \cos u \frac{du}{dx}$
- 17. $d(\cos u)/dx = -\sin u \, du/dx$
- 18. $d(\tan u)/dx = \sec^2 u \, du/dx$
- 19. $d(\cot u)/dx = -\csc^2 u \ du/dx$
- 20. $d(\sec u)/dx = \sec u \tan u \frac{du}{dx}$
- 21. $d(\csc u)/dx = -\csc u \cot u \frac{du}{dx}$

22.
$$\frac{d(\sin^{-1}u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx}$$
 $(-\pi/2 \le \sin^{-1}u \le \pi/2)$

23.
$$\frac{d(\cos^{-1}u)}{dx} = -\frac{1}{\sqrt{1-u^2}} \frac{du}{dx}$$
 $(0 \le \cos^{-1}u \le \pi)$

24.
$$\frac{d(\tan^{-1}u)}{dx} = \frac{1}{1+u^2} \frac{du}{dx}$$
 $(-\pi/2 < \tan^{-1}u < \pi/2)$

25.
$$\frac{d(\cot^{-1}u)}{dx} = -\frac{1}{1+u^2}\frac{du}{dx}$$
 $(0 < \cot^{-1}u < \pi)$

26.
$$\frac{d(\sec^{-1}u)}{dx} = \frac{1}{u\sqrt{u^2 - 1}} \frac{du}{dx}$$

$$\frac{d(\csc^{-1}u)}{dx} = \frac{e^{-1}u < \pi/2}{u\sqrt{u^2 - 1}} \frac{du}{dx} - \pi \le \sec^{-1}u < -\pi/2$$

27.
$$(0 < \csc^{-1} u \le \pi/2) (-\pi < \csc^{-1} u \le -\pi/2)$$

- 1. $\int df(x) = f(x)$
- 2. $\int dx = x$
- 3. $\int a f(x) dx = a \int f(x) dx$
- 4. $\int [u(x) \pm v(x)] dx = \int u(x) dx \pm \int v(x) dx$
- 5. $\int x^m dx = \frac{x^{m+1}}{m+1}$ $(m \neq -1)$
- 6. $\int u(x) dv(x) = u(x) v(x) \int v(x) du(x)$
- 7. $\int \frac{dx}{ax+b} = \frac{1}{a} \ln|ax+b|$
- 8. $\int \frac{dx}{\sqrt{x}} = 2\sqrt{x}$
- 9. $\int a^x dx = \frac{a^x}{\ln a}$
- 10. $\int \sin x \, dx = -\cos x$
- 11. $\int \cos x \, dx = \sin x$
- $12. \int \sin^2 x dx = \frac{x}{2} \frac{\sin 2x}{4}$
- $13. \int \cos^2 x dx = \frac{x}{2} + \frac{\sin 2x}{4}$
- 14. $\int x \sin x \, dx = \sin x x \cos x$
- 15. $\int x \cos x \, dx = \cos x + x \sin x$
- 16. $\int \sin x \cos x \, dx = (\sin^2 x)/2$
- 17. $\int \sin ax \cos bx \, dx = -\frac{\cos(a-b)x}{2(a-b)} \frac{\cos(a+b)x}{2(a+b)} \left(a^2 \neq b^2\right)$
- 18. $\int \tan x \, dx = -\ln|\cos x| = \ln|\sec x|$
- 19. $\int \cot x \, dx = -\ln \left| \csc x \right| = \ln \left| \sin x \right|$
- $20. \int \tan^2 x \, dx = \tan x x$
- $21. \int \cot^2 x \, dx = -\cot x x$
- 22. $\int e^{ax} dx = (1/a) e^{ax}$
- 23. $\int xe^{ax} dx = (e^{ax}/a^2)(ax 1)$
- 24. $\int \ln x \, dx = x \left[\ln (x) 1 \right]$ (x > 0)
- 25. $\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a}$ $(a \neq 0)$
- 26. $\int \frac{dx}{ax^2 + c} = \frac{1}{\sqrt{ac}} \tan^{-1} \left(x \sqrt{\frac{a}{c}} \right), \qquad (a > 0, c > 0)$

$$27a. \int \frac{dx}{ax^2 + bx + c} = \frac{2}{\sqrt{4ac - b^2}} tan^{-1} \frac{2ax + b}{\sqrt{4ac - b^2}}$$

$$(4ac - b^2 > 0)$$

$$27b. \int \frac{dx}{ax^2 + bx + c} = \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right|$$

$$(b^2 - 4ac > 0)$$

$$27c. \int \frac{dx}{ax^2 + bx + c} = -\frac{2}{2ax + b}, \qquad (b^2 - 4ac = 0)$$

CENTROIDS AND MOMENTS OF INERTIA

The *location of the centroid of an area*, bounded by the axes and the function y = f(x), can be found by integration.

$$x_{c} = \frac{\int x dA}{A}$$

$$y_{c} = \frac{\int y dA}{A}$$

$$A = \int f(x) dx$$

$$dA = f(x) dx = g(y) dy$$

The *first moment of area* with respect to the *y*-axis and the *x*-axis, respectively, are:

$$M_y = \int x \, dA = x_c A$$
$$M_x = \int y \, dA = y_c A$$

The *moment of inertia* (*second moment of area*) with respect to the *y*-axis and the *x*-axis, respectively, are:

$$I_y = \int x^2 dA$$
$$I_x = \int y^2 dA$$

The moment of inertia taken with respect to an axis passing through the area's centroid is the *centroidal moment of inertia*. The *parallel axis theorem* for the moment of inertia with respect to another axis parallel with and located *d* units from the centroidal axis is expressed by

$$I_{\text{parallel axis}} = I_c + Ad^2$$

In a plane, $J = \int r^2 dA = I_x + I_y$

PROGRESSIONS AND SERIES

Arithmetic Progression

To determine whether a given finite sequence of numbers is an arithmetic progression, subtract each number from the following number. If the differences are equal, the series is arithmetic.

- 1. The first term is a.
- 2. The common difference is d.
- 3. The number of terms is n.
- 4. The last or *n*th term is *l*.
- 5. The sum of *n* terms is *S*.

$$l = a + (n - 1)d$$

$$S = n(a + l)/2 = n [2a + (n - 1) d]/2$$

Geometric Progression

To determine whether a given finite sequence is a geometric progression (G.P.), divide each number after the first by the preceding number. If the quotients are equal, the series is geometric:

- 1. The first term is a.
- 2. The common ratio is r.
- 3. The number of terms is n.
- 4. The last or *n*th term is *l*.
- 5. The sum of *n* terms is *S*.

$$l = ar^{n-1}$$

$$S = a (1 - r^n)/(1 - r); r \neq 1$$

$$S = (a - rl)/(1 - r); r \neq 1$$

$$\lim_{n \to \infty} S_n = a/(1 - r); r < 1$$

A G.P. converges if |r| < 1 and it diverges if |r| > 1.

Properties of Series

$$\sum_{i=1}^{n} c = nc; \quad c = \text{constant}$$

$$\sum_{i=1}^{n} cx_{i} = c \sum_{i=1}^{n} x_{i}$$

$$\sum_{i=1}^{n} (x_{i} + y_{i} - z_{i}) = \sum_{i=1}^{n} x_{i} + \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} z_{i}$$

$$\sum_{i=1}^{n} x_{i} = (n + n^{2})/2$$

Power Series

$$\sum_{i=0}^{\infty} a_i (x-a)^i$$

- 1. A power series, which is convergent in the interval -R < x < R, defines a function of x that is continuous for all values of x within the interval and is said to represent the function in that interval.
- 2. A power series may be differentiated term by term within its interval of convergence. The resulting series has the same interval of convergence as the original series (except possibly at the end points of the series).
- 3. A power series may be integrated term by term provided the limits of integration are within the interval of convergence of the series.
- 4. Two power series may be added, subtracted, or multiplied, and the resulting series in each case is convergent, at least, in the interval common to the two series.
- 5. Using the process of long division (as for polynomials), two power series may be divided one by the other within their common interval of convergence.

Taylor's Series

$$f(x) = f(a) + \frac{f'(a)}{1!}(x - a) + \frac{f''(a)}{2!}(x - a)^{2} + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^{n} + \dots$$

is called *Taylor's series*, and the function f(x) is said to be expanded about the point a in a Taylor's series.

If a = 0, the Taylor's series equation becomes a *Maclaurin's series*.

DIFFERENTIAL EQUATIONS

A common class of ordinary linear differential equations is

$$b_n \frac{d^n y(x)}{dx^n} + \dots + b_1 \frac{dy(x)}{dx} + b_0 y(x) = f(x)$$

where $b_n, \ldots, b_i, \ldots, b_1, b_0$ are constants.

When the equation is a homogeneous differential equation, f(x) = 0, the solution is

$$y_h(x) = C_1 e^{r_1 x} + C_2 e^{r_2 x} + \dots + C_i e^{r_i x} + \dots + C_n e^{r_n x}$$

where r_n is the *n*th distinct root of the characteristic polynomial P(x) with

$$P(r) = b_n r^n + b_{n-1} r^{n-1} + \dots + b_1 r + b_0$$

If the root $r_1 = r_2$, then $C_2 e^{r_2 x}$ is replaced with $C_2 x e^{r_1 x}$.

Higher orders of multiplicity imply higher powers of x. The complete solution for the differential equation is

$$y(x) = y_h(x) + y_p(x),$$

where $y_p(x)$ is any particular solution with f(x) present. If f(x) has $e^{r_n x}$ terms, then resonance is manifested. Furthermore, specific f(x) forms result in specific $y_p(x)$ forms, some of which are:

If the independent variable is time t, then transient dynamic solutions are implied.

First-Order Linear Homogeneous Differential Equations with Constant Coefficients

y'+ay=0, where a is a real constant: Solution, $y=Ce^{-at}$

where C = a constant that satisfies the initial conditions.

First-Order Linear Nonhomogeneous Differential Equations

$$\tau \frac{dy}{dt} + y = Kx(t) \qquad x(t) = \begin{cases} A & t < 0 \\ B & t > 0 \end{cases}$$
$$y(0) = KA$$

 τ is the time constant

K is the gain

The solution is

$$y(t) = KA + (KB - KA) \left(1 - \exp\left(\frac{-t}{\tau}\right) \right) \text{ or }$$

$$\frac{t}{\tau} = \ln\left[\frac{KB - KA}{KB - y}\right]$$

Second-Order Linear Homogeneous Differential Equations with Constant Coefficients

An equation of the form

$$y'' + ay' + by = 0$$

can be solved by the method of undetermined coefficients where a solution of the form $y = Ce^{rx}$ is sought. Substitution of this solution gives

$$(r^2 + ar + b) Ce^{rx} = 0$$

and since Ce^{rx} cannot be zero, the characteristic equation must vanish or

$$r^2 + ar + b = 0$$

The roots of the characteristic equation are

$$r_{1,2} = \frac{-a \pm \sqrt{a^2 - 4b}}{2}$$

and can be real and distinct for $a^2 > 4b$, real and equal for $a^2 = 4b$, and complex for $a^2 < 4b$.

If $a^2 > 4b$, the solution is of the form (overdamped)

$$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$$

If $a^2 = 4b$, the solution is of the form (critically damped)

$$y = (C_1 + C_2 x)e^{r_1 x}$$

If $a^2 < 4b$, the solution is of the form (underdamped)

$$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$$
, where

$$\alpha = -a/2$$

$$\beta = \frac{\sqrt{4b - a^2}}{2}$$

FOURIER TRANSFORM

The Fourier transform pair, one form of which is

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$

$$f(t) = [1/(2\pi)] \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

can be used to characterize a broad class of signal models in terms of their frequency or spectral content. Some useful transform pairs are:

f(t)	$F(\omega)$
$\delta(t)$	1
u(t)	$\pi\delta(\omega) + 1/j\omega$
$u\left(t+\frac{\tau}{2}\right)-u\left(t-\frac{\tau}{2}\right)=r_{rect}\frac{t}{\tau}$	$\tau \frac{\sin(\omega \tau/2)}{\omega \tau/2}$
$e^{j\omega_o t}$	$2\pi\delta(\omega-\omega_{o})$

Some mathematical liberties are required to obtain the second and fourth form. Other Fourier transforms are derivable from the Laplace transform by replacing s with $j\omega$ provided

$$f(t) = 0, t < 0$$

$$\int_0^\infty |f(t)| dt < \infty$$

FOURIER SERIES

Every periodic function f(t) which has the period $T = 2\pi/\omega_0$ and has certain continuity conditions can be represented by a series plus a constant

$$f(t) = a_0 + \sum_{n=1}^{\infty} \left[a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right]$$

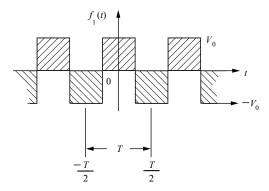
The above holds if f(t) has a continuous derivative f'(t) for all t. It should be noted that the various sinusoids present in the series are orthogonal on the interval 0 to T and as a result the coefficients are given by

$$a_0 = (1/T) \int_0^T f(t) dt$$

$$a_n = (2/T) \int_0^T f(t) \cos(n\omega_0 t) dt \qquad n = 1, 2, ...$$

$$b_n = (2/T) \int_0^T f(t) \sin(n\omega_0 t) dt \qquad n = 1, 2, ...$$

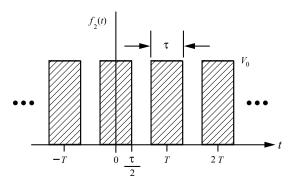
The constants a_n and b_n are the Fourier coefficients of f(t) for the interval 0 to T and the corresponding series is called the Fourier series of f(t) over the same interval.


The integrals have the same value when evaluated over any interval of length T.

If a Fourier series representing a periodic function is truncated after term n = N the mean square value F_N^2 of the truncated series is given by Parseval's relation. This relation says that the mean-square value is the sum of the mean-square values of the Fourier components, or

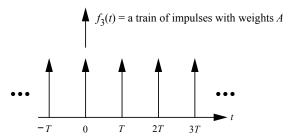
$$F_N^2 = a_0^2 + (1/2) \sum_{n=1}^N (a_n^2 + b_n^2)$$

and the RMS value is then defined to be the square root of this quantity or F_N .


Three useful and common Fourier series forms are defined in terms of the following graphs (with $\omega_0 = 2\pi/T$). Given:

then

$$f_1(t) = \sum_{\substack{n=1\\ \text{(n odd)}}}^{\infty} (-1)^{(n-1)/2} (4V_0/n\pi) \cos(n\omega_0 t)$$


Given:

then

$$f_{2}(t) = \frac{V_{0}\tau}{T} + \frac{2V_{0}\tau}{T} \sum_{n=1}^{\infty} \frac{\sin(n\pi\tau/T)}{(n\pi\tau/T)} \cos(n\omega_{0}t)$$
$$f_{2}(t) = \frac{V_{0}\tau}{T} \sum_{n=-\infty}^{\infty} \frac{\sin(n\pi\tau/T)}{(n\pi\tau/T)} e^{jn\omega_{0}t}$$

Given:

then

$$f_3(t) = \sum_{n = -\infty}^{\infty} A\delta(t - nT)$$

$$f_3(t) = (A/T) + (2A/T) \sum_{n = 1}^{\infty} \cos(n\omega_0 t)$$

$$f_3(t) = (A/T) \sum_{n = -\infty}^{\infty} e^{jn\omega_0 t}$$

The Fourier Transform and its Inverse

$$X(f) = \int_{-\infty}^{+\infty} x(t) e^{-j2\pi f t} dt$$

$$x(t) = \int_{-\infty}^{+\infty} X(f) e^{j2\pi f t} df$$

We say that x(t) and X(t) form a Fourier transform pair: $x(t) \leftrightarrow X(t)$

Fourier Transform Pairs

x(t)	X(f)	
1	$\delta(f)$	
$\delta(t)$	1	
u(t)	$\frac{1}{2}\delta(f) + \frac{1}{j2\pi f}$	
$\Pi(t/ au)$	$\tau \operatorname{sinc}(\tau f)$	
sinc(Bt)	$\frac{1}{B}\Pi(f/B)$	
$\Lambda(t/ au)$	$\tau \operatorname{sinc}^2(\tau f)$	
$e^{-at}u(t)$	$\frac{1}{a+j2\pi f} \qquad a > 0$	
$te^{-at}u(t)$	$\frac{1}{\left(a+j2\pi f\right)^2} a>0$	
$e^{-a t }$	$\frac{2a}{a^2 + (2\pi f)^2} \qquad a > 0$	
$e^{-(at)^2}$	$\frac{\sqrt{\pi}}{a}e^{-(\pi f/a)^2}$	
$\cos(2\pi f_0 t + \theta)$	$\frac{1}{2}[e^{j\theta}\delta(f-f_0)+e^{-j\theta}\delta(f+f_0)]$	
$\sin(2\pi f_0 t + \theta)$	$\frac{1}{2j} \left[e^{j\theta} \delta(f - f_0) - e^{-j\theta} \delta(f + f_0) \right]$	
$\sum_{n=-\infty}^{n=+\infty} \delta(t-nT_s)$	$f_s \sum_{k=-\infty}^{k=+\infty} \delta(f - kf_s) f_s = \frac{1}{T_s}$	

Fourier Transform Theorems

Linearity	ax(t) + by(t)	aX(f) + bY(f)
Scale change	x(at)	$\frac{1}{ a }X\left(\frac{f}{a}\right)$
Time reversal	x(-t)	X(-f)
Duality	X(t)	x(-f)
Time shift	$x(t-t_0)$	$X(f)e^{-j2\pi ft_0}$
Frequency shift	$x(t)e^{j2\pi f_0t}$	$X(f-f_0)$
Modulation	$x(t)\cos 2\pi f_0 t$	$\frac{1}{2}X(f - f_0) + \frac{1}{2}X(f + f_0)$
Multiplication	x(t)y(t)	X(f) * Y(f)
Convolution	x(t) * y(t)	X(f)Y(f)
Differentiation	$\frac{d^n x(t)}{dt^n}$	$(j2\pi f)^n X(f)$
Integration	$\int_{-\infty}^{t} x(\lambda) d\lambda$	$\frac{1}{j2\pi f}X(f) + \frac{1}{2}X(0)\delta(f)$

LAPLACE TRANSFORMS

The unilateral Laplace transform pair

$$F(s) = \int_{0^{-}}^{\infty} f(t)e^{-st}dt$$

$$f(t) = \frac{1}{2\pi j} \int_{-j\infty}^{\sigma+j\infty} F(s)e^{st}dt$$
where $s = \sigma + j\omega$

represents a powerful tool for the transient and frequency response of linear time invariant systems. Some useful Laplace transform pairs are:

f(t)	F(s)
$\delta(t)$, Impulse at $t = 0$	1
u(t), Step at $t = 0$	1/s
t[u(t)], Ramp at $t = 0$	$1/s^2$
$e^{-\alpha t}$	$1/(s+\alpha)$
$te^{-\alpha t}$	$1/(s+\alpha)^2$
$e^{-\alpha t} \sin \beta t$	$\beta/[(s+\alpha)^2+\beta^2]$
$e^{-\alpha t}\cos\beta t$	$(s+\alpha)/[(s+\alpha)^2+\beta^2]$
$\frac{d^n f(t)}{dt^n}$	$s^{n}F(s) - \sum_{m=0}^{n-1} s^{n-m-1} \frac{d^{m}f(0)}{dt^{m}}$
$\int_0^t f(\tau)d\tau$	(1/s)F(s)
$\int_0^t x(t-\tau)h(\tau)d\tau$	H(s)X(s)
$f(t-\tau)\ u(t-\tau)$	$e^{-\tau s}F(s)$
$ \lim_{t\to\infty} f(t) $	$ \lim_{s\to 0} t s F(s) $
$\lim_{t\to 0} f(t)$	$ \lim_{s\to\infty} sF(s) $

The last two transforms represent the Final Value Theorem (F.V.T.) and Initial Value Theorem (I.V.T.), respectively. It is assumed that the limits exist.

MATRICES

A matrix is an ordered rectangular array of numbers with m rows and n columns. The element a_{ij} refers to row i and column j.

Multiplication of Two Matrices

$$A = \begin{bmatrix} A & B \\ C & D \\ E & F \end{bmatrix} \quad A_{2,3} \text{ is a 3-row, 2-column matrix}$$

$$\mathbf{B} = \begin{bmatrix} \mathbf{H} & \mathbf{I} \\ \mathbf{J} & \mathbf{K} \end{bmatrix} \;\; \mathbf{B}_{2,2} \; \text{is a 2-row, 2-column matrix}$$

In order for multiplication to be possible, the number of columns in A must equal the number of rows in B.

Multiplying matrix B by matrix A occurs as follows:

$$C = \begin{bmatrix} A & B \\ C & D \\ E & F \end{bmatrix} \cdot \begin{bmatrix} H & I \\ J & K \end{bmatrix}$$

$$C = \begin{bmatrix} (A \cdot H + B \cdot J) & (A \cdot I + B \cdot K) \\ (C \cdot H + D \cdot J) & (C \cdot I + D \cdot K) \\ (E \cdot H + F \cdot J) & (E \cdot I + F \cdot K) \end{bmatrix}$$

Matrix multiplication is not commutative.

Addition

$$\begin{bmatrix} A & B & C \\ D & E & F \end{bmatrix} + \begin{bmatrix} G & H & I \\ J & K & L \end{bmatrix} = \begin{bmatrix} A+G & B+H & C+I \\ D+J & E+K & F+L \end{bmatrix}$$

Identity Matrix

The matrix $\mathbf{I} = (a_{ij})$ is a square $n \times n$ matrix with 1's on the diagonal and 0's everywhere else.

Matrix Transpose

Rows become columns. Columns become rows.

$$A = \begin{bmatrix} A & B & C \\ D & E & F \end{bmatrix} \quad A^{T} = \begin{bmatrix} A & D \\ B & E \\ C & F \end{bmatrix}$$

Inverse []⁻¹

The inverse **B** of a square $n \times n$ matrix **A** is

$$\boldsymbol{B} = \boldsymbol{A}^{-1} = \frac{\operatorname{adj}(\boldsymbol{A})}{|\boldsymbol{A}|}$$
, where

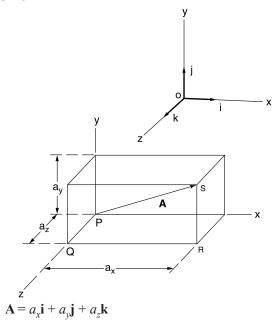
adj(A) = adjoint of A (obtained by replacing A^T elements with their cofactors) and |A| = determinant of A.

 $[A][A]^{-1} = [A]^{-1}[A] = [I]$ where I is the identity matrix.

DETERMINANTS

A determinant of order n consists of n^2 numbers, called the *elements* of the determinant, arranged in n rows and n columns and enclosed by two vertical lines.

In any determinant, the *minor* of a given element is the determinant that remains after all of the elements are struck out that lie in the same row and in the same column as the given element. Consider an element which lies in the *j*th column and the *i*th row. The *cofactor* of this element is the value of the minor of the element (if i + j is *even*), and it is the negative of the value of the minor of the element (if i + j is *odd*).


If *n* is greater than 1, the *value* of a determinant of order *n* is the sum of the *n* products formed by multiplying each element of some specified row (or column) by its cofactor. This sum is called the *expansion of the determinant* [according to the elements of the specified row (or column)]. For a second-order determinant:

$$\begin{vmatrix} a_1 a_2 \\ b_1 b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1$$

For a third-order determinant:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2 - a_3b_2c_1 - a_2b_1c_3 - a_1b_3c_2$$

VECTORS

Addition and subtraction:

$$\mathbf{A} + \mathbf{B} = (a_x + b_x)\mathbf{i} + (a_y + b_y)\mathbf{j} + (a_z + b_z)\mathbf{k}$$

$$\mathbf{A} - \mathbf{B} = (a_y - b_y)\mathbf{i} + (a_y - b_y)\mathbf{j} + (a_z - b_z)\mathbf{k}$$

The *dot product* is a *scalar product* and represents the projection of **B** onto **A** times |A|. It is given by

$$\mathbf{A} \cdot \mathbf{B} = a_x b_x + a_y b_y + a_z b_z$$
$$= |\mathbf{A}| |\mathbf{B}| \cos \theta = \mathbf{B} \cdot \mathbf{A}$$

The *cross product* is a *vector product* of magnitude $|\mathbf{B}| |\mathbf{A}| \sin \theta$ which is perpendicular to the plane containing \mathbf{A} and \mathbf{B} . The product is

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = - \mathbf{B} \times \mathbf{A}$$

The sense of $\mathbf{A} \times \mathbf{B}$ is determined by the right-hand rule.

 $\mathbf{A} \times \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \mathbf{n} \sin \theta$, where

 \mathbf{n} = unit vector perpendicular to the plane of \mathbf{A} and \mathbf{B} .

Gradient, Divergence, and Curl

$$\nabla \Phi = \left(\frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}\right)\Phi$$

$$\nabla \cdot \mathbf{V} = \left(\frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}\right) \cdot \left(V_1\mathbf{i} + V_2\mathbf{j} + V_3\mathbf{k}\right)$$

$$\nabla \times \mathbf{V} = \left(\frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}\right) \times \left(V_1\mathbf{i} + V_2\mathbf{j} + V_3\mathbf{k}\right)$$

The Laplacian of a scalar function ϕ is

$$\nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}$$

Identities

$$\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}; \ \mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$$

 $\mathbf{A} \cdot \mathbf{A} = |\mathbf{A}|^2$
 $\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1$
 $\mathbf{i} \cdot \mathbf{j} = \mathbf{i} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0$

If $\mathbf{A} \cdot \mathbf{B} = 0$, then either $\mathbf{A} = 0$, $\mathbf{B} = 0$, or \mathbf{A} is perpendicular to \mathbf{B} .

$$\mathbf{A} \times \mathbf{B} = -\mathbf{B} \times \mathbf{A}$$

$$\mathbf{A} \times (\mathbf{B} + \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) + (\mathbf{A} \times \mathbf{C})$$

$$(\mathbf{B} + \mathbf{C}) \times \mathbf{A} = (\mathbf{B} \times \mathbf{A}) + (\mathbf{C} \times \mathbf{A})$$

$$\mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = \mathbf{0}$$

$$\mathbf{i} \times \mathbf{j} = \mathbf{k} = -\mathbf{j} \times \mathbf{i}; \ \mathbf{j} \times \mathbf{k} = \mathbf{i} = -\mathbf{k} \times \mathbf{j}$$

$$\mathbf{k} \times \mathbf{i} = \mathbf{i} = -\mathbf{i} \times \mathbf{k}$$

If $\mathbf{A} \times \mathbf{B} = \mathbf{0}$, then either $\mathbf{A} = \mathbf{0}$, $\mathbf{B} = \mathbf{0}$, or \mathbf{A} is parallel to \mathbf{B} . $\nabla^2 \phi = \nabla \cdot (\nabla \phi) = (\nabla \cdot \nabla) \phi$

$$\nabla \times \nabla \phi = \mathbf{0}$$

$$\nabla \cdot (\nabla \times \mathbf{A}) = \mathbf{0}$$

$$\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$

DIFFERENCE EQUATIONS

Any system whose input v(t) and output y(t) are defined only at the equally spaced intervals

$$f(t) = y' = \frac{y_{i+1} - y_i}{t_{i+1} - t_i}$$

can be described by a difference equation.

First-Order Linear Difference Equation

$$\Delta t = t_{i+1} - t_i$$

$$y_{i+1} = y_i + y'(\Delta t)$$

NUMERICAL METHODS

Newton's Method for Root Extraction

Given a function f(x) which has a simple root of f(x) = 0 at x = a an important computational task would be to find that root. If f(x) has a continuous first derivative then the (j+1)st estimate of the root is

$$a^{j+1} = a^{j} - \frac{f(x)}{\frac{df(x)}{dx}} \bigg|_{x = a^{j}}$$

The initial estimate of the root a^0 must be near enough to the actual root to cause the algorithm to converge to the root.

Newton's Method of Minimization

Given a scalar value function

$$h(\mathbf{x}) = h(x_1, x_2, ..., x_n)$$

find a vector $x^* \in R_n$ such that

$$h(x^*) \le h(x)$$
 for all x

Newton's algorithm is

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \left[\frac{\partial^2 h}{\partial x^2} \bigg|_{\mathbf{x} = \mathbf{x}_k} \right]^{-1} \frac{\partial h}{\partial x} \bigg|_{\mathbf{x} = \mathbf{x}_k}$$
, where

$$\frac{\partial h}{\partial x} = \begin{vmatrix} \frac{\partial h}{\partial x_1} \\ \frac{\partial h}{\partial x_2} \\ \dots \\ \frac{\partial h}{\partial x_n} \end{vmatrix}$$

and

$$\frac{\partial^2 h}{\partial x^2} = \begin{bmatrix} \frac{\partial^2 h}{\partial x_1^2} & \frac{\partial^2 h}{\partial x_1 \partial x_2} & \dots & \dots & \frac{\partial^2 h}{\partial x_1 \partial x_n} \\ \frac{\partial^2 h}{\partial x^2} & \frac{\partial^2 h}{\partial x_1 \partial x_2} & \frac{\partial^2 h}{\partial x_2^2} & \dots & \dots & \frac{\partial^2 h}{\partial x_2 \partial x_n} \\ \dots & \dots & \dots & \dots & \dots \\ \frac{\partial^2 h}{\partial x_1 \partial x_n} & \frac{\partial^2 h}{\partial x_2 \partial x_n} & \dots & \dots & \frac{\partial^2 h}{\partial x_n^2} \end{bmatrix}$$

Numerical Integration

Three of the more common numerical integration algorithms used to evaluate the integral

$$\int_a^b f(x) dx$$

are:

Euler's or Forward Rectangular Rule

$$\int_{a}^{b} f(x) dx \approx \Delta x \sum_{k=0}^{n-1} f(a + k\Delta x)$$

Trapezoidal Rule

for n = 1

$$\int_{a}^{b} f(x) dx \approx \Delta x \left[\frac{f(a) + f(b)}{2} \right]$$

for n > 1

$$\int_{a}^{b} f(x) dx \approx \frac{\Delta x}{2} \left[f(a) + 2 \sum_{k=1}^{n-1} f(a + k \Delta x) + f(b) \right]$$

Simpson's Rule/Parabolic Rule (n must be an even integer) for n = 2

$$\int_{a}^{b} f(x) dx \approx \left(\frac{b-a}{6}\right) \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

for $n \ge 4$

$$\int_{a}^{b} f(x) dx \approx \frac{\Delta x}{3} \begin{bmatrix} f(a) + 2 \sum_{k=2,4,6,...}^{n-2} f(a+k\Delta x) \\ + 4 \sum_{k=1,3,5,...}^{n-1} f(a+k\Delta x) + f(b) \end{bmatrix}$$

with $\Delta x = (b - a)/n$

n = number of intervals between data points

Numerical Solution of Ordinary Differential Equations

Euler's Approximation

Given a differential equation

$$dx/dt = f(x, t)$$
 with $x(0) = x_0$

At some general time $k\Delta t$

$$x[(k+1)\Delta t] \cong x(k\Delta t) + \Delta t f[x(k\Delta t), k\Delta t]$$

which can be used with starting condition x_o to solve recursively for $x(\Delta t)$, $x(2\Delta t)$, ..., $x(n\Delta t)$.

The method can be extended to *n*th order differential equations by recasting them as *n* first-order equations.

In particular, when dx/dt = f(x)

$$x[(k+1)\Delta t] \cong x(k\Delta t) + \Delta t f[x(k\Delta t)]$$

which can be expressed as the recursive equation

$$x_{k+1} = x_k + \Delta t \left(\frac{dx_k}{dt} \right)$$

$$x_{k+1} = x + \Delta t \left[f(x(k), t(k)) \right]$$

ENGINEERING PROBABILITY AND STATISTICS

DISPERSION, MEAN, MEDIAN, AND MODE VALUES

If X_1, X_2, \dots, X_n represent the values of a random sample of nitems or observations, the arithmetic mean of these items or observations, denoted X, is defined as

$$\overline{X} = (1/n)(X_1 + X_2 + \dots + X_n) = (1/n)\sum_{i=1}^{n} X_i$$

 $\overline{X} \to \mu$ for sufficiently large values of n.

The weighted arithmetic mean is

$$\overline{X}_{w} = \frac{\sum w_{i} X_{i}}{\sum w_{i}}$$
, where

 X_i = the value of the *i*th observation, and w_i = the weight applied to X_i .

The variance of the population is the arithmetic mean of the squared deviations from the population mean. If μ is the arithmetic mean of a discrete population of size N, the population variance is defined by

$$\sigma^{2} = (1/N) \left[(X_{1} - \mu)^{2} + (X_{2} - \mu)^{2} + \dots + (X_{N} - \mu)^{2} \right]$$
$$= (1/N) \sum_{i=1}^{N} (X_{i} - \mu)^{2}$$

Standard deviation formulas are

$$\sigma_{\text{population}} = \sqrt{(1/N)\Sigma(X_i - \mu)^2}$$

$$\sigma_{\text{sum}} = \sqrt{\sigma_1^2 + \sigma_2^2 + \dots + \sigma_n^2}$$

$$\sigma_{\text{series}} = \sigma\sqrt{n}$$

$$\sigma_{\text{mean}} = \frac{\sigma}{\sqrt{n}}$$

$$\sigma_{\text{product}} = \sqrt{A^2 \sigma_b^2 + B^2 \sigma_a^2}$$

The sample variance is

$$s^{2} = [1/(n-1)] \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

The sample standard deviation is

$$s = \sqrt{\left[1/(n-1)\right]\sum_{i=1}^{n} \left(X_i - \overline{X}\right)^2}$$

The sample coefficient of variation = $CV = s/\overline{X}$

The sample geometric mean = $n\sqrt{X_1X_2X_3...X_n}$

The sample root-mean-square value = $\sqrt{(1/n)} \sum X_i^2$

When the discrete data are rearranged in increasing order and nis odd, the median is the value of the $\left(\frac{n+1}{2}\right)^{\text{th}}$ item

When *n* is even, the median is the average of the $\left(\frac{n}{2}\right)^{\text{th}}$ and $\left(\frac{n}{2}+1\right)^{\text{th}}$ items.

The mode of a set of data is the value that occurs with greatest frequency.

The *sample range R* is the largest sample value minus the smallest sample value.

PERMUTATIONS AND COMBINATIONS

A permutation is a particular sequence of a given set of objects. A combination is the set itself without reference to order.

The number of different *permutations* of *n* distinct objects taken r at a time is

$$P(n,r) = \frac{n!}{(n-r)!}$$

nPr is an alternative notation for P(n,r)

2. The number of different *combinations* of *n* distinct objects taken r at a time is

$$C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{[r!(n-r)!]}$$

nCr and $\binom{n}{r}$ are alternative notations for C(n,r)

The number of different *permutations* of *n* objects *taken n at a time*, given that n_i are of type i, where i = 1, 2, ...,k and $\sum n_i = n$, is

$$P(n; n_1, n_2, ..., n_k) = \frac{n!}{n_1! n_2! ... n_k!}$$

SETS

De Morgan's Law

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Associative Law

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

Distributive Law

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

LAWS OF PROBABILITY

Property 1. General Character of Probability

The probability P(E) of an event E is a real number in the range of 0 to 1. The probability of an impossible event is 0 and that of an event certain to occur is 1.

Property 2. Law of Total Probability

$$P(A + B) = P(A) + P(B) - P(A, B)$$
, where

P(A + B) = the probability that either A or B occur alone or that both occur together

P(A) =the probability that A occurs

P(B) =the probability that B occurs

P(A, B) =the probability that both A and B occur simultaneously

Property 3. Law of Compound or Joint Probability

If neither P(A) nor P(B) is zero,

$$P(A, B) = P(A)P(B | A) = P(B)P(A | B)$$
, where

 $P(B \mid A) =$ the probability that B occurs given the fact that A has occurred

 $P(A \mid B) =$ the probability that A occurs given the fact that B has occurred

If either P(A) or P(B) is zero, then P(A, B) = 0.

Bayes' Theorem

$$P(B_j|A) = \frac{P(B_j)P(A|B_j)}{\sum_{i=1}^{n} P(A|B_i)P(B_i)}$$

where $P(A_j)$ is the probability of event A_j within the population of A

 $P(B_j)$ is the probability of event B_j within the population of B

PROBABILITY FUNCTIONS, DISTRIBUTIONS, AND EXPECTED VALUES

A random variable X has a probability associated with each of its possible values. The probability is termed a discrete probability if X can assume only discrete values, or

$$X = x_1, x_2, x_3, ..., x_n$$

The discrete probability of any single event, $X = x_i$, occurring is defined as $P(x_i)$ while the probability mass function of the random variable X is defined by

$$f(x_k) = P(X = x_k), k = 1, 2, ..., n$$

Probability Density Function

If *X* is continuous, the *probability density function*, *f*, is defined such that

$$P(a \le X \le b) = \int_{a}^{b} f(x) dx$$

Cumulative Distribution Functions

The *cumulative distribution function*, F, of a discrete random variable X that has a probability distribution described by $P(x_i)$ is defined as

$$F(x_m) = \sum_{k=1}^{m} P(x_k) = P(X \le x_m), m = 1, 2, ..., n$$

If X is continuous, the *cumulative distribution function*, F, is defined by

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

which implies that F(a) is the probability that $X \le a$.

Expected Values

Let *X* be a discrete random variable having a probability mass function

$$f(x_k), k = 1, 2, ..., n$$

The expected value of X is defined as

$$\mu = E[X] = \sum_{k=1}^{n} x_k f(x_k)$$

The variance of X is defined as

$$\sigma^2 = V[X] = \sum_{k=1}^{n} (x_k - \mu)^2 f(x_k)$$

Let X be a continuous random variable having a density function f(X) and let Y = g(X) be some general function. The expected value of Y is:

$$E[Y] = E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x) dx$$

The mean or expected value of the random variable *X* is now defined as

$$\mu = E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

while the variance is given by

$$\sigma^2 = V[X] = E[(X - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

The standard deviation is given by

$$\sigma = \sqrt{V[X]}$$

The coefficient of variation is defined as σ/μ .

Sums of Random Variables

$$Y = a_1 X_1 + a_2 X_2 + ... + a_n X_n$$

The expected value of *Y* is:

$$\mu_{v} = E(Y) = a_1 E(X_1) + a_2 E(X_2) + \dots + a_n E(X_n)$$

If the random variables are statistically *independent*, then the variance of *Y* is:

$$\sigma_y^2 = V(Y) = a_1^2 V(X_1) + a_2^2 V(X_2) + \dots + a_n^2 V(X_n)$$

= $a_1^2 \sigma_1^2 + a_2^2 \sigma_2^2 + \dots + a_n^2 \sigma_n^2$

Also, the standard deviation of *Y* is:

$$\sigma_y = \sqrt{\sigma_y^2}$$

Binomial Distribution

P(x) is the probability that x successes will occur in n trials. If p = probability of success and q = probability of failure = 1-p, then

$$P_n(x) = C(n,x)p^xq^{n-x} = \frac{n!}{x!(n-x)!}p^xq^{n-x},$$

where

$$x = 0, 1, 2, ..., n$$

C(n, x) = the number of combinations

$$n, p = parameters$$

The variance is given by the form:

$$\sigma^2 = p(1-q)/n$$

Normal Distribution (Gaussian Distribution)

This is a unimodal distribution, the mode being $x = \mu$, with two points of inflection (each located at a distance σ to either side of the mode). The averages of *n* observations tend to become normally distributed as n increases. The variate x is said to be normally distributed if its density function f(x) is given by an expression of the form

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$
, where

 μ = the population mean

 σ = the standard deviation of the population

$$-\infty \le x \le \infty$$

When $\mu = 0$ and $\sigma^2 = \sigma = 1$, the distribution is called a standardized or unit normal distribution. Then

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
, where $-\infty \le x \le \infty$.

It is noted that $Z = \frac{x - \mu}{\sigma}$ follows a standardized normal distribution function.

A unit normal distribution table is included at the end of this section. In the table, the following notations are utilized:

F(x) = the area under the curve from $-\infty$ to x

R(x) = the area under the curve from x to ∞

W(x) = the area under the curve between -x and x

F(-x) = 1 - F(x)

The Central Limit Theorem

Let $X_1, X_2, ..., X_n$ be a sequence of independent and identically distributed random variables each having mean μ and variance σ^2 . Then for large n, the Central Limit Theorem asserts that the sum

$$Y = X_1 + X_2 + ... X_n$$
 is approximately normal.

$$\mu_{\overline{\nu}} = \mu$$

and the standard deviation

$$\sigma_{\overline{y}} = \frac{\sigma}{\sqrt{n}}$$

t-Distribution

Student's t-distribution has the probability density function given by:

$$f(t) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

where

v = number of degrees of freedom

n =sample size

$$v = n - 1$$

 Γ = gamma function

$$t = \frac{\bar{x} - \mu}{S/\sqrt{n}}$$

$$-\infty \le t \le \infty$$

A table later in this section gives the values of $t_{\alpha, \nu}$ for values of α and ν . Note that, in view of the symmetry of the t-distribution, $t_{1-\alpha,\nu} = -t_{\alpha,\nu}$

The function for α follows:

$$\alpha = \int_{t_{\alpha,r}}^{\infty} f(t) dt$$

χ^2 - Distribution

If $Z_1, Z_2, ..., Z_n$ are independent unit normal random

$$\chi^2 = Z_1^2 + Z_2^2 + \dots + Z_n^2$$

is said to have a chi-square distribution with n degrees of freedom.

A table at the end of this section gives values of $\chi^2_{\alpha,n}$ for selected values of α and n.

Gamma Function

$$\Gamma(n) = \int_0^\infty t^{n-1} e^{-t} dt, \ n > 0$$

LINEAR REGRESSION AND GOODNESS OF FIT

Least Squares

$$y = \hat{a} + \hat{b}x, \text{ where}$$

$$y\text{-intercept, } \hat{a} = \overline{y} - \hat{b}\overline{x}$$
and slope, $\hat{b} = S_{xy}/S_{xx}$

$$S_{xy} = \sum_{i=1}^{n} x_i y_i - (1/n) \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)$$

$$S_{xx} = \sum_{i=1}^{n} x_i^2 - (1/n) \left(\sum_{i=1}^{n} x_i\right)^2$$

$$\overline{y} = (1/n) \left(\sum_{i=1}^{n} y_i\right)$$

$$\overline{x} = (1/n) \left(\sum_{i=1}^{n} x_i\right)$$

where

n =sample size

 $S_{xx} = \text{sum of squares of } x$ $S_{yy} = \text{sum of squares of } y$ $S_{xy} = \text{sum of } x-y \text{ products}$

Standard Error of Estimate (S_e^2) :

$$S_e^2 = \frac{S_{xx}S_{yy} - S_{xy}^2}{S_{yy}(n-2)} = MSE$$
, where

$$S_{yy} = \sum_{i=1}^{n} y_i^2 - (1/n) \left(\sum_{i=1}^{n} y_i \right)^2$$

Confidence Interval for Intercept (â):

$$\hat{a} \pm t_{\alpha/2, n-2} \sqrt{\left(\frac{1}{n} + \frac{\overline{x}^2}{S_{xx}}\right) MSE}$$

Confidence Interval for Slope (\hat{b}) :

$$\hat{b} \pm t_{\alpha/2, n-2} \sqrt{\frac{MSE}{S_{xx}}}$$

Sample Correlation Coefficient (R) and Coefficient of Determination (R^2) :

$$R = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$$

$$R^2 = \frac{S_{xy}^2}{S_{xx}S_{yy}}$$

HYPOTHESIS TESTING

One-Way Analysis of Variance (ANOVA)

Given independent random samples of size n_i from kpopulations, then:

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} \left(x_{ij} - \overline{x} \right)^2$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{n_i} \left(x_{ij} - \overline{x}_i \right)^2 + \sum_{i=1}^{k} n_i \left(\overline{x}_i - \overline{x} \right)^2 \text{ or }$$

$$SS_{\text{total}} = SS_{\text{error}} + SS_{\text{treatments}}$$

Let T be the grand total of all $N = \sum_i n_i$ observations and T_i be the total of the n_i observations of the *i*th sample.

$$C = T^{2}/N$$

$$SS_{\text{total}} = \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} x_{ij}^{2} - C$$

$$SS_{\text{treatments}} = \sum_{i=1}^{k} (T_{i}^{2}/n_{i}) - C$$

$$SS_{\text{error}} = SS_{\text{total}} - SS_{\text{treatments}}$$

One-Way ANOVA Table

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F
Between Treatments	<i>k</i> – 1	SS _{treatments}	$MST = \frac{SS_{\text{treatments}}}{k-1}$	$\frac{MST}{MSE}$
Error	N-k	$SS_{ m error}$	$MSE = \frac{SS_{\text{error}}}{N - k}$	
Total	<i>N</i> – 1	$SS_{ ext{total}}$		

Two-Way ANOVA Table

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F
Between Treatments	<i>k</i> – 1	$SS_{ ext{treatments}}$	$MST = \frac{SS_{\text{treatments}}}{k - 1}$	$\frac{MST}{MSE}$
Between Blocks	n-1	$SS_{ m blocks}$	$MSB = \frac{SS_{\text{blocks}}}{n-1}$	$\frac{MSB}{MSE}$
Error	(k-1)(n-1)	$SS_{ m error}$	$MSE = \frac{SS_{\text{error}}}{(k-1)(n-1)}$	
Total	N-1	$SS_{ ext{total}}$		

Consider an unknown parameter θ of a statistical distribution. Let the null hypothesis be

$$H_0$$
: $\mu = \mu_0$

and let the alternative hypothesis be

$$H_1$$
: $\mu = \mu_1$

Rejecting H_0 when it is true is known as a type I error, while accepting H_0 when it is wrong is known as a type II error. Furthermore, the probabilities of type I and type II errors are usually represented by the symbols α and β , respectively:

 α = probability (type I error)

 β = probability (type II error)

The probability of a type I error is known as the level of significance of the test.

Table A. Tests on Means of Normal Distribution—Variance Known

Hypothesis	Test Statistic	Criteria for Rejection
H_0 : $\mu = \mu_0$ H_1 : $\mu \neq \mu_0$		$ m{Z_0} > m{Z_{lpha/2}}$
H_0 : $\mu = \mu_0$ H_1 : $\mu < \mu_0$	$oldsymbol{Z_0} \equiv rac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	$oldsymbol{Z_0}<-oldsymbol{Z_lpha}$
H_0 : $\mu = \mu_0$ H_1 : $\mu > \mu_0$		$Z_0 > Z_{\alpha}$
H_0 : $\mu_1 - \mu_2 = \gamma$ H_1 : $\mu_1 - \mu_2 \neq \gamma$		$ m{Z_0} > m{Z_{lpha/2}}$
H_0 : $\mu_1 - \mu_2 = \gamma$ H_1 : $\mu_1 - \mu_2 < \gamma$	$\mathbf{Z_0} \equiv \frac{\overline{X_1} - \overline{X_2} - \gamma}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$Z_0 <\!\!- Z_{lpha}$
<i>H</i> ₀ : $\mu_1 - \mu_2 = \gamma$ <i>H</i> ₁ : $\mu_1 - \mu_2 > \gamma$		$Z_0 > Z_{\alpha}$

Table B. Tests on Means of Normal Distribution—Variance Unknown

Hypothesis	Test Statistic	Criteria for Rejection
H_0 : $\mu = \mu_0$ H_1 : $\mu \neq \mu_0$		$ t_0 > t_{\alpha/2, n-1}$
H_0 : $\mu = \mu_0$ H_1 : $\mu < \mu_0$	$t_0 = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$	$t_0 < -t_{\alpha, n-1}$
H_0 : $\mu = \mu_0$ H_1 : $\mu > \mu_0$		$t_0 > t_{\alpha, n-1}$
H_0 : $μ_1 - μ_2 = γ$ H_1 : $μ_1 - μ_2 \neq γ$	$t_0 = \frac{\overline{X_1} - \overline{X_2} - \gamma}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ Variances equal $v = n_1 + n_2 - 2$	$ t_0 > t_{\alpha/2, \nu}$
H_0 : $μ_1 - μ_2 = γ$ H_1 : $μ_1 - μ_2 < γ$	$\begin{cases} $	$t_0 < -t_{\alpha, \nu}$
H_0 : $μ_1 - μ_2 = γ$ H_1 : $μ_1 - μ_2 > γ$	$v = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{\left(S_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(S_2^2/n_2\right)^2}{n_2 - 1}}$	$t_0 > t_{lpha, u}$

In Table B, $S_p^2 = [(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2]/v$

Table C. Tests on Variances of Normal Distribution with Unknown Mean

Hypothesis	Test Statistic	Criteria for Rejection
$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 \neq \sigma_0^2$		$\chi_0^2 > \chi_{\alpha/2, n-1}^2$ or $\chi_0^2 < \chi_{1-\alpha/2, n-1}^2$
$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 < \sigma_0^2$	$\chi_0^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$\chi_0^2 < \chi^2_{1-\alpha/2, n-1}$
$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 > \sigma_0^2$		$\chi_0^2 > \chi_{\alpha, n-1}^2$
$H_0: \sigma_1^2 = \sigma_2^2$ $H_1: \sigma_1^2 \neq \sigma_2^2$	$F_0 = \frac{S_1^2}{S_2^2}$	$egin{aligned} m{F_0} &> m{F_{lpha/2,\;n_1-1,n_2-1}} \ m{F_0} &< m{F_{1-lpha/2,\;n_1-1,n_2-1}} \end{aligned}$
$H_0: \sigma_1^2 = \sigma_2^2$ $H_1: \sigma_1^2 < \sigma_2^2$	$F_0 = \frac{S_2^2}{S_1^2}$	$F_0 > F_{\alpha, n_2-1, n_1-1}$
$H_0: \sigma_1^2 = \sigma_2^2$ $H_1: \sigma_1^2 > \sigma_2^2$	$F_0 = \frac{S_1^2}{S_2^2}$	$F_0 > F_{\alpha, n_1-1, n_2-1}$

Assume that the values of α and β are given. The sample size can be obtained from the following relationships. In (A) and (B), μ_1 is the value assumed to be the true mean.

(A)
$$H_0: \mu = \mu_0; H_1: \mu \neq \mu_0$$

$$\beta = \Phi\left(\frac{\mu_0 - \mu}{\sigma/\sqrt{n}} + Z_{\alpha/2}\right) - \Phi\left(\frac{\mu_0 - \mu}{\sigma/\sqrt{n}} - Z_{\alpha/2}\right)$$

An approximate result is

$$n \simeq \frac{\left(Z_{\alpha/2} + Z_{\beta}\right)^2 \sigma^2}{\left(\mu_1 - \mu_0\right)^2}$$

(B)
$$H_0: \mu = \mu_0; H_1: \mu > \mu_0$$

$$\beta = \Phi\left(\frac{\mu_0 - \mu}{\sigma/\sqrt{n}} + Z_\alpha\right)$$

$$n = \frac{\left(Z_\alpha + Z_\beta\right)^2 \sigma^2}{\left(\mu_1 - \mu_0\right)^2}$$

CONFIDENCE INTERVALS, SAMPLE DISTRIBUTIONS AND SAMPLE SIZE

Confidence Interval for the Mean μ of a Normal Distribution

(A) Standard deviation σ is known

$$\overline{X} - Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

(B) Standard deviation σ is not known

$$\overline{X} - t_{\alpha/2} \frac{s}{\sqrt{n}} \le \mu \le \overline{X} + t_{\alpha/2} \frac{s}{\sqrt{n}}$$

where $t_{\alpha/2}$ corresponds to n-1 degrees of freedom.

Confidence Interval for the Difference Between Two Means μ_1 and μ_2

(A) Standard deviations σ_1 and σ_2 known

$$\overline{X_1} - \overline{X_2} - Z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \leq \mu_1 - \mu_2 \leq \overline{X_1} - \overline{X_2} + Z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

(B) Standard deviations σ_1 and σ_2 are not known

$$\overline{X_1} - \overline{X_2} - t_{\alpha/2} \sqrt{\frac{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\left[(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2\right]}{n_1 + n_2 - 2}} \leq \mu_1 - \mu_2 \leq \overline{X_1} - \overline{X_2} + t_{\alpha/2} \sqrt{\frac{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\left[(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2\right]}{n_1 + n_2 - 2}}$$

where $t_{\alpha/2}$ corresponds to $n_1 + n_2 - 2$ degrees of freedom.

Confidence Intervals for the Variance σ^2 of a Normal Distribution

$$\frac{(n-1)s^2}{x_{\alpha/2,n-1}^2} \le \sigma^2 \le \frac{(n-1)s^2}{x_{1-\alpha/2,n-1}^2}$$

Sample Size

$$z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$
 $n = \left[\frac{z_{\alpha/2} \sigma}{\overline{x} - \mu}\right]^2$

TEST STATISTICS

The following definitions apply.

$$Z_{\text{var}} = \frac{\overline{X} - \mu_{\text{o}}}{\frac{v}{\sqrt{n}}}$$
$$t_{\text{var}} = \frac{\overline{X} - \mu_{\text{o}}}{\frac{S}{\sqrt{n}}}$$

where

 $Z_{\rm var}$ is the standard normal Z score

 $t_{\rm var}$ is the sample distribution test statistic

σ is known standard deviation

 μ_0 is population mean

 \overline{X} is hypothesized mean or sample mean

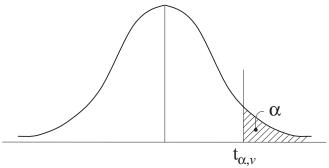
n is sample size

s is computed sample standard deviation

The Z score is applicable when the standard deviation(s) is known. The test statistic is applicable when the standard deviation(s) is computed at time of sampling.

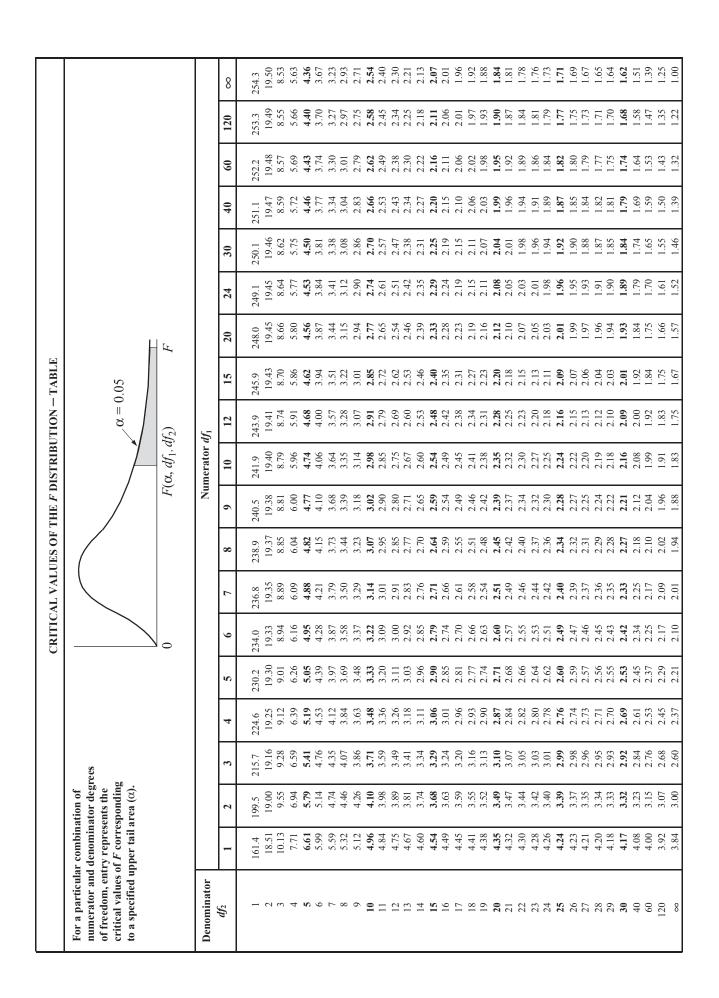
 Z_{α} corresponds to the appropriate probability under the normal probability curve for a given Z_{var} .

 t_{α} , $_{n-1}$ corresponds to the appropriate probability under the tdistribution with n-1 degrees of freedom for a given t_{var} .


Values of $Z_{\alpha/2}$

Confidence Interval	$Z_{lpha/2}$
80%	1.2816
90%	1.6449
95%	1.9600
96%	2.0537
98%	2.3263
99%	2.5758

Unit Normal Distribution


	T	T	T	T	<u> </u>
	f x		X X	-x x	-x x
x	f(x)	F(x)	R(x)	2R(x)	W(x)
0.0	0.3989	0.5000	0.5000	1.0000	0.0000
0.1	0.3970	0.5398	0.4602	0.9203	0.0797
0.2	0.3910	0.5793	0.4207	0.8415	0.1585
0.3	0.3814	0.6179	0.3821	0.7642	0.2358
0.4	0.3683	0.6554	0.3446	0.6892	0.3108
***				******	
0.5	0.3521	0.6915	0.3085	0.6171	0.3829
0.6	0.3332	0.7257	0.2743	0.5485	0.4515
0.7	0.3123	0.7580	0.2420	0.4839	0.5161
0.8	0.2897	0.7881	0.2119	0.4237	0.5763
0.9	0.2661	0.8159	0.1841	0.3681	0.6319
1.0	0.2420	0.8413	0.1587	0.3173	0.6827
1.1	0.2179	0.8643	0.1357	0.2713	0.7287
1.2	0.1942	0.8849	0.1151	0.2301	0.7699
1.3	0.1714	0.9032	0.0968	0.1936	0.8064
1.4	0.1497	0.9192	0.0808	0.1615	0.8385
1.5	0.1295	0.9332	0.0668	0.1336	0.8664
1.6	0.1109	0.9452	0.0548	0.1096	0.8904
1.7	0.0940	0.9554	0.0446	0.0891	0.9109
1.8	0.0790	0.9641	0.0359	0.0719	0.9281
1.9	0.0656	0.9713	0.0287	0.0574	0.9426
2.0	0.0540	0.9772	0.0228	0.0455	0.9545
2.1	0.0440	0.9821	0.0179	0.0357	0.9643
2.2	0.0355	0.9861	0.0139	0.0278	0.9722
2.3	0.0283	0.9893	0.0107	0.0214	0.9786
2.4	0.0224	0.9918	0.0082	0.0164	0.9836
2.5	0.0175	0.9938	0.0062	0.0124	0.9876
2.6	0.0136	0.9953	0.0047	0.0093	0.9907
2.7	0.0104	0.9965	0.0035	0.0069	0.9931
2.8	0.0079	0.9974	0.0026	0.0051	0.9949
2.9	0.0060	0.9981	0.0019	0.0037	0.9963
3.0	0.0044	0.9987	0.0013	0.0027	0.9973
Fractiles	0.1555	0.000	0.4000	0.000	0.000
1.2816	0.1755	0.9000	0.1000	0.2000	0.8000
1.6449	0.1031	0.9500	0.0500	0.1000	0.9000
1.9600	0.0584	0.9750	0.0250	0.0500	0.9500
2.0537	0.0484	0.9800	0.0200	0.0400	0.9600
2.3263	0.0267	0.9900	0.0100	0.0200	0.9800
2.5758	0.0145	0.9950	0.0050	0.0100	0.9900

Student's t-Distribution

VALUES OF $t_{\alpha,\nu}$

11					α				11
v	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	v
1	1.000	1.376	1.963	3.078	6.314	12.706	31.821	63.657	1
2	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	2
3	0.765	0.978	1.350	1.638	2.353	3.182	4.541	5.841	3
4	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	4
5	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5
6	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	6
7	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	7
8	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	8
9	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	9
10	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	10
11	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	11
12	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	12
13	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	13
14	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	14
15	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	15
16	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	16
17	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	17
18	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	18
19	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	19
20	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	20
21	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	21
22	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	22
23	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	23
24	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	24
25	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	25
26	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	26
27	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	27
28	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	28
29	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	29
30	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	30
∞	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	∞

$f(X^2)$ 0 $X^2_{0,\text{in}}$ 0 0.0000393 0.0001571 0.0100251 0.0100271 0.0114832 4 0.0717212 0.0114832 4 0.0717212 0.0114832 0.0717212 0.0114832 0.0717212 0.0114832 0.0717212 0.0114832 0.0777212 0.0114832 0.0777212 0.0114832 0.0777212 0.0114832 0.0777212 0.114832 0.0872085 0.087208 0.0872085 0.0872085 0.0872085 0.0872085 0.0872085 0.0872085 0.0872085 0.0872085 0.0872085 0.0872085 0.0872085 0.0872085 0.0872085 0.0872085 0.0872085 0.087208 0.0872085 0.0982065 0.173308 0.0001571 0.10991 0.087308 0.0001571 0.10991 0.087308 0.0001571 0.10991 0.087308 0.0001571 0.10991 0.0001571 0.10991 0.000197 0.000197 0.000197 0.000197 0.000197 0.000197 0.000197 0.000197 0.000197 0.000197 0.000197 0.000197 0.000197 0.000197 0.000197 0.000197 0.00019 0.00	X ² yrs 0.0009821 0.0506356 0.215795 0.484419 0.831211 1.237347 1.68987 2.17973 2.17973 2.17973 2.17973 3.24697 3.81575 4.40379 5.00874 5.62872 6.7614	X ² ₂₅₀ 0.0039321 0.102587 0.351846 0.710721 1.145476 1.63539 2.16735 2.73264 3.32511 3.94030 4.57481	X ² ₉₀₀ 0.0157908 0.210720 0.584375 1.063623 1.61031 2.20413 2.20413 2.83311 3.48954 4.16816 4.86518 5.57779 6.30380	X ² .100 2.70554 4.60517 6.25139 7.77944 9.23635 10.6446 12.0170 13.3616 14.6837 15.9871 15.9871 15.9871 15.9871 18.5494	$X^{2}_{.050}$ 3.84146 5.99147 7.81473 9.48773 11.0705 12.5916 14.0671 15.5073 16.9190 18.3070	$X^2_{.025}$ 5.02389 7.37776 9.34840 11.1433 12.8325 14.4494 16.0128 17.5346 19.0228 20.4831	X^{2} 010 6.63490 9.21034 11.3449 13.2767 15.0863 16.8119 18.4753 20.0902 21.6660 23.2093	X ² 005 7.87944 10.5966 12.8381 14.8602 16.7496 18.5476 20.2777 21.9550 23.5893 25.1882 26.7569
X ² α,n X ² γ,s 0.0000393 0.0100251 0.0717212 0.206990 0.411740 0.675727 0.989265 1.344419 1.734926 2.15385 2.15385 2.15385 2.15385 2.15385 2.15386 4.60094 5.14224 5.69724 6.26481 6.84398 7.43386 8.03366 8.03366 8.03366 8.03366 8.03366 8.03366 8.03366 8.03366 8.03366 8.03366 8.03369	2.17973 2.17973 2.17973 2.17973 2.17973 3.24697 3.34697 3.34697 3.34697 5.00874 5.00874 6.56187	X ² ,850 0,0039321 0,102587 0,351846 0,710721 1,145476 1,63539 2,16735 2,73264 3,32511 3,94030 4,57481	X ² ₉₀₀ 0.0157908 0.210720 0.584375 1.063623 1.61031 2.20413 2.20413 2.83311 3.48954 4.16816 4.86518 5.57779 6.30380	X ² .100 2.70554 4.60517 6.25139 7.77944 9.23635 10.6446 12.0170 13.3616 14.6837 15.9871 18.5494	X ² _{.050} 3.84146 5.99147 7.81473 9.48773 11.0705 12.5916 14.0671 15.5073 16.9190 18.3070	X ² ₀₂₅ 5.02389 7.37776 9.34840 11.1433 12.8325 14.4494 16.0128 17.5346 19.0228 20.4831	X ² ₀₁₀ 6.63490 9.21034 11.3449 13.2767 15.0863 16.8119 18.4753 20.0902 21.6660 23.2093	X ² 0005 7.87944 10.5966 12.8381 14.8602 16.7496 18.5476 20.2777 21.9550 23.5893 25.1882 26.7569
X ² α _{c,n} (0.000393 0.0000393 0.0000393 0.0100251 0.0717212 0.206990 0.411740 0.675727 0.989265 1.34419 1.734926 2.15885 2.60321 3.07382 3.56503 4.07468 4.60094 6.26481 6.843386 8.03366 8.64272 9.26042 11.1603 11.1603	X^{2} X	X ² ,550 0,0039321 0,102587 0,351846 0,710721 1,145476 1,63539 2,16735 2,73264 3,32511 3,94030 4,57481	X ² ,900 0.0157908 0.210720 0.584375 1.063623 1.61031 2.20413 2.20413 2.83311 3.48954 4.16816 4.86518 5.57779 6.30380	X ² ₁₀₀ 2.70554 4.60517 6.25139 7.77944 9.23635 10.6446 12.0170 13.3616 14.6837 15.9871 17.2750	X ² _{.050} 3.84146 5.99147 7.81473 9.48773 11.0705 12.5916 14.0671 15.5073 16.9190 18.3070	X ² ,025 5.02389 7.37776 9.34840 11.1433 12.8325 14.4494 16.0128 17.5346 19.0228 20.4831	X ² ₀₁₀ 6.63490 9.21034 11.3449 13.2767 15.0863 16.8119 18.4753 20.0902 21.6660 23.2093	X ² 00s 7.87944 10.5966 12.8381 14.8602 16.7496 18.5476 20.2777 21.9550 23.5893 25.1882 26.7569
2.0000393 0.0000393 0.0100251 0.0717212 0.206990 0.411740 0.675727 0.989265 1.344419 1.734926 2.15885 2.60321 3.07382 3.56503 4.07468 4.07094 5.69724 6.26481	X ² 975 0.0009821 0.0506356 0.215795 0.484419 0.831211 1.237347 1.68987 2.17973 2.17973 2.70039 3.24697 3.81575 4.40379 5.00874 5.62872	X ² ₅₅₀ 0.0039321 0.102587 0.351846 0.710721 1.145476 1.63539 2.16735 2.73264 3.32511 3.94030 4.57481	X ² 900 0.0157908 0.210720 0.584375 1.063623 1.61031 2.20413 2.83311 3.48954 4.16816 4.86518 5.57779 6.30380	X ² .100 2.70554 4.60517 6.25139 7.77944 9.23635 10.6446 12.0170 13.3616 14.6837 15.9871 17.2750	X ² ₀₅₀ 3.84146 5.99147 7.81473 9.48773 11.0705 12.5916 14.0671 15.5073 16.9190 18.3070 19.6751	X ² 025 5.02389 7.37776 9.34840 11.1433 12.8325 14.4494 16.0128 17.5346 19.0228 20.4831	X ² 010 6.63490 9.21034 11.3449 13.2767 15.0863 16.8119 18.4753 20.0902 21.6660 23.2093	X ² ₀₀₅ 7.87944 10.5966 12.8381 14.8602 16.7496 18.5476 20.2777 21.9550 23.5893 25.1882 26.7569
0.0000393 0.0100251 0.0717212 0.206990 0.411740 0.689265 1.344419 1.7344419 1.7344419 1.7344419 1.7344419 1.7344419 1.7344419 1.73426 2.15585 2.60321 3.07382 3.6503 4.07468 4.60094 5.14224 5.69724 6.26481	0.0009821 0.0506356 0.215795 0.484419 0.831211 1.237347 1.68987 2.17973 2.17973 2.17973 2.17973 2.17973 2.17973 2.17973 5.00874 5.00874 6.7614	0.0039321 0.102587 0.351846 0.710721 1.145476 1.63539 2.16735 2.73264 3.32511 3.94030 4.57481	0.0157908 0.210720 0.584375 1.063623 1.61031 2.20413 2.20413 3.48954 4.16816 4.86518 5.57779 6.30380	2.70554 4.60517 6.25139 7.77944 9.23635 10.6446 12.0170 13.3616 14.6837 15.9871 17.2750	3.84146 5.99147 7.81473 9.48773 11.0705 12.5916 14.0671 15.5073 16.9190 18.3070	5.02389 7.3776 9.34840 11.1433 12.8325 14.4494 16.0128 17.5346 19.0228	6.63490 9.21034 11.3449 13.2767 15.0863 16.8119 18.4753 20.0902 21.6660 23.2093	7.87944 10.5966 12.8381 14.8602 16.7496 18.5476 20.2777 21.9550 23.5893 25.1882 26.7569
0.0717212 0.206990 0.411740 0.675727 0.989265 1.344419 1.734926 2.15585 2.60321 3.07382 3.56503 4.07084 4.60094 5.14224 5.69724 6.26481 6.84398 7.43386 8.64272 9.26042 11.1603	0.2000530 0.215795 0.484419 0.831211 1.237347 1.68987 2.17973 2.70039 3.24697 3.81575 4.40379 5.00874 6.7614	0.702397 0.7351846 0.710721 1.145476 1.63539 2.16735 2.73264 3.32511 3.94030 4.57481	0.54375 0.584375 1.063623 1.61031 2.20413 2.83311 3.48954 4.16816 4.86518 5.57779 6.30380	6.25139 7.77944 9.23635 10.6446 12.0170 13.3616 14.6837 15.9871 17.2750 18.5494	7.81473 9.48773 11.0705 12.5916 14.0671 15.5073 16.9190 18.3070	11.1433 12.8325 14.4494 16.0128 17.5346 19.0228	11.3449 13.2767 15.0863 16.8119 18.4753 20.0902 21.6660 23.2093	10.2900 12.8381 14.8602 16.7496 18.5476 20.2777 21.9550 23.5893 25.1882 26.7569
0.206990 0.411740 0.675727 0.989265 1.344419 1.734926 2.15585 2.60321 3.07382 3.6503 4.07468 4.60094 5.14224 5.69724 6.26481	0.484419 0.831211 1.237347 1.68987 2.17973 2.17973 2.24697 3.24697 3.81575 4.40379 5.00874 5.62872	0.710721 1.145476 1.63539 2.16735 2.73264 3.32511 3.94030 4.57481 5.22603	1.063623 1.61031 2.20413 2.83311 3.48954 4.16816 4.86518 5.57779 6.30380	7.77944 9.23635 10.6446 12.0170 13.3616 14.6837 15.9871 17.2750 18.5494	9.48773 11.0705 12.5916 14.0671 15.5073 16.9190 18.3070	11.1433 12.8325 14.4494 16.0128 17.5346 19.0228 20.4831	13.2767 15.0863 16.8119 18.4753 20.0902 21.6660 23.2093	14.8602 16.7496 18.5476 20.2777 21.9550 23.5893 25.1882 26.7569
0.411740 0.675727 0.989265 1.344419 1.734926 2.15585 2.60321 3.07382 3.6503 4.07468 4.60094 5.69724 6.26481 6.26481 6.26481 6.26481 6.84338 7.43386 8.03366 8.03366 8.03366 8.03366 8.03366 8.03366 10.5197 11.1603	0.831211 1.237347 1.68987 2.17973 2.70039 3.24697 3.81575 4.40379 5.00874 5.62872	1.145476 1.63539 2.16735 2.73264 3.32511 3.94030 4.57481 5.22603	1.61031 2.20413 2.83311 3.48954 4.16816 4.86518 5.57779 6.30380	9.23635 10.6446 12.0170 13.3616 14.6837 15.9871 17.2750 18.5494	11.0705 12.5916 14.0671 15.5073 16.9190 18.3070	12.8325 14.4494 16.0128 17.5346 19.0228	15.0863 16.8119 18.4753 20.0902 21.6660 23.2093	16.7496 18.5476 20.2777 21.9550 23.5893 25.1882 26.7569
0.03727 0.089265 1.344419 1.73426 2.1588 2.60321 3.05382 4.07468 4.07468 4.07468 4.60094 5.69724 6.26481 6.84398 7.43386 8.03366 8.03366 8.03366 8.03366 8.03367 10.5197	1.28/34/ 1.68987 2.17973 2.70039 3.24697 3.81575 4.40379 5.00874 5.62872	2.16735 2.16735 2.73264 3.32511 3.94030 4.57481 5.22603	2.83311 3.48954 4.16816 4.86518 5.57779 6.30380	12.0170 12.0170 13.3616 14.6837 15.9871 17.2750 18.5494	14.0671 15.5073 16.9190 18.3070	16.0128 17.5346 19.0228 20.4831	18.4753 20.0902 21.6660 23.2093	16.2470 20.2777 21.9550 23.5893 25.1882 26.7569
1.34419 1.734926 2.15585 2.60321 3.07382 3.56503 4.07468 4.60094 5.14224 5.69724 6.26481 6.84398 7.43386 8.03366 8.03366 8.03366 10.5197 11.1603	2.17973 2.70039 3.24697 3.81575 4.40379 5.00874 5.62872	2.73264 3.32511 3.94030 4.57481 5.22603	3.48954 4.16816 4.86518 5.57779 6.30380	13.3616 14.6837 15.9871 17.2750 18.5494	15.5073 16.9190 18.3070 19.6751	17.5346 19.0228 20.4831	20.0902 21.6660 23.2093	21.9550 23.5893 25.1882 26.7569
1.734926 2.15585 2.60321 3.07382 3.56503 4.070468 4.60094 5.14224 5.14224 5.64381 6.26481 6.84398 7.4336 8.03366 8.03366 8.03409 10.5197 11.1603	2.70039 3.24697 3.81575 4.40379 5.00874 5.62872 6.7614	3.32511 3.94030 4.57481 5.22603	4.16816 4.86518 5.57779 6.30380	14.6837 15.9871 17.2750 18.5494	16.9190 18.3070 19.6751	19.0228	21.6660 23.2093	23.5893 25.1882 26.7569
2.60321 3.07382 3.56503 4.07468 4.60094 5.14224 5.69724 6.26481 6.26481 6.84398 7.43386 8.64272 9.26042 10.5197 11.1603	5.2469/ 3.81575 4.40379 5.00874 5.62872 6.7614	5.94030 4.57481 5.22603	4.86518 5.57779 6.30380	15.98/1 17.2750 18.5494	18.30/0 19.6751	20.4831	23.2093	25.1882 26.7569
3.07382 3.56503 4.07468 4.60094 5.14224 5.69724 6.26481 6.84398 7.43386 8.03366 8.03366 8.03366 10.5197 11.1603	5.00874 5.02872 5.62872 6.26214	5.22603	6.30380	18.5494	10.01	21 9200	111 // 11/	
3.56503 4.07468 4.07468 5.14224 5.6481 6.26481 6.84398 7.43386 8.03366 8.64272 9.26042 10.5197 11.1603	5.00874 5.62872 6.26214		1 041 00	10 0110	21.0261	23.3367	26.2170	28.2995
4.07468 4.60094 5.14224 5.69724 6.26481 6.84398 7.43366 8.03366 8.64272 9.26042 10.5197 11.1603	5.62872	5.89186	7.04150	19.0115	22.3621	24.7356	27.6883	29.8194
4.60094 5.14224 5.69724 6.26481 6.84398 7.43366 8.03366 8.64272 9.26042 10.5197 11.1603	6 262 14	6.57063	7.78953	21.0642	23.6848	26.1190	29.1413	31.3193
5.69724 5.6481 6.26481 6.84398 7.43386 8.03366 8.64272 9.26042 9.88623 10.5197	772007	7.26094	8.54675	22.3072	24.9958	27.4884	30.5779	32.8013
6.26481 6.84398 7.43386 8.03366 8.64272 9.26042 10.5197 11.1603	7.56418	8.67176	9.51223	24.7690	27.5871	30.1910	33.4087	35.7185
6.84398 7.43386 8.03366 8.64272 9.26042 10.5197 11.1603	8.23075	9.39046	10.8649	25.9894	28.8693	31.5264	34.8053	37.1564
7,43386 8,03366 8,64272 9,26042 10,5197 11,1603	8.90655	10.1170	11.6509	27.2036	30.1435	32.8523	36.1908	38.5822
9.26042 9.26042 9.88623 10.5197 11.1603	9.59083	10.8508	12.4426	28.4120	31.4104	34.1696	37.5662	39.9968
9.26042 9.88623 10.5197 11.1603	10.9823	12.3380	13.2396	30.8133	33.9244	36.7807	40.2894	41.4010
9.88623 10.5197 11.1603	11.6885	13.0905	14.8479	32.0069	35.1725	38.0757	41.6384	44.1813
11.1603	12.4011	13.8484	15.6587	33.1963	36.4151	39.3641	42.9798	45.5585
	13.1197	14.6114	16.4/34	34.3816 35.5631	37.6525	40.6465	44.3141	46.92/8
11.8076	14.5733	16.1513	18.1138	36.7412	40.1133	43.1944	46.9630	49.6449
	15.3079	16.9279	18.9392	37.9159	41.3372	44.4607	48.2782	50.9933
13.1211	16.0471	17.7083	19.7677	39.0875	42.5569	45.7222	49.5879	52.3356
13.7867	16.7908	18.4926	20.5992	40.2560	43.7729	46.9792	50.8922	53.6720
20.7065 22.1643	24.4331	26.5093	29.0505	51.8050	55.7585	59.3417	63.6907	66.7659
35.5346	40 4817	43.1879	46 4589	74 3970	79 0819	83 2976	88 3794	91 9517
43.2752	48.7576	51.7393	55.3290	85.5271	90.5312	95.0231	100.425	104.215
51.1720	57.1532	60.3915	64.2778	96.5782	101.879	106.629	112.329	116.321
59.1963	65.6466	69.1260	73.2912	107.565	113.145	118.136	124.116	128.299
100 67.3276 70.0648 74		77.9295	2219 77.9295 82.3581 118.498	118.498	124.342	129.561	135.807	140.169

Cumulative Binomial Probabilities $P(X \le x)$

							P					
n	x	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.95	0.99
1	0	0.9000	0.8000	0.7000	0.6000	0.5000	0.4000	0.3000	0.2000	0.1000	0.0500	0.0100
2	0	0.8100	0.6400	0.4900	0.3600	0.2500	0.1600	0.0900	0.0400	0.0100	0.0025	0.0001
	1	0.9900	0.9600	0.9100	0.8400	0.7500	0.6400	0.5100	0.3600	0.1900	0.0975	0.0199
3	0	0.7290	0.5120	0.3430	0.2160	0.1250	0.0640	0.0270	0.0080	0.0010	0.0001	0.0000
	1	0.9720	0.8960	0.7840	0.6480	0.5000	0.3520	0.2160	0.1040	0.0280	0.0073	0.0003
	2	0.9990	0.9920	0.9730	0.9360	0.8750	0.7840	0.6570	0.4880	0.2710	0.1426	0.0297
4	0	0.6561	0.4096	0.2401	0.1296	0.0625	0.0256	0.0081	0.0016	0.0001	0.0000	0.0000
	1	0.9477	0.8192	0.6517	0.4752	0.3125	0.1792	0.0837	0.0272	0.0037	0.0005	0.0000
	2	0.9963	0.9728	0.9163	0.8208	0.6875	0.5248	0.3483	0.1808	0.0523	0.0140	0.0006
	3	0.9999	0.9984	0.9919	0.9744	0.9375	0.8704	0.7599	0.5904	0.3439	0.1855	0.0394
5	0	0.5905	0.3277	0.1681	0.0778	0.0313	0.0102	0.0024	0.0003	0.0000	0.0000	0.0000
	1	0.9185	0.7373	0.5282	0.3370	0.1875	0.0870	0.0308	0.0067	0.0005	0.0000	0.0000
	2	0.9914	0.9421	0.8369	0.6826	0.5000	0.3174	0.1631	0.0579	0.0086	0.0012	0.0000
	3	0.9995	0.9933	0.9692	0.9130	0.8125	0.6630	0.4718	0.2627	0.0815	0.0226	0.0010
	4	1.0000	0.9997	0.9976	0.9898	0.6988	0.9222	0.8319	0.6723	0.4095	0.2262	0.0490
6	0	0.5314	0.2621	0.1176	0.0467	0.0156	0.0041	0.0007	0.0001	0.0000	0.0000	0.0000
	1	0.8857	0.6554	0.4202	0.2333	0.1094	0.0410	0.0109	0.0016	0.0001	0.0000	0.0000
	2	0.9842	0.9011	0.7443	0.5443	0.3438	0.1792	0.0705	0.0170	0.0013	0.0001	0.0000
	3	0.9987	0.9830	0.9295	0.8208	0.6563	0.4557	0.2557	0.0989	0.0159	0.0022	0.0000
	4	0.9999	0.9984	0.9891	0.9590	0.9806	0.7667	0.5798	0.3446	0.1143	0.0328	0.0015
	5	1.0000	0.9999	0.9993	0.9959	0.9844	0.9533	0.8824	0.7379	0.4686	0.2649	0.0585
7	0	0.4783	0.2097	0.0824	0.0280	0.0078	0.0106	0.0002	0.0000	0.0000	0.0000	0.0000
	1	0.8503	0.5767	0.3294	0.1586	0.0625	0.0188	0.0038	0.0004	0.0000	0.0000	0.0000
	2	0.9743	0.8520	0.6471	0.4199	0.2266	0.0963	0.0288	0.0047	0.0002	0.0000	0.0000
	3	0.9973	0.9667	0.8740	0.7102	0.5000	0.2898	0.1260	0.0333	0.0027	0.0002	0.0000
	4	0.9998	0.9953	0.9712	0.9037	0.7734	0.5801	0.3529	0.1480	0.0257	0.0038	0.0000
	5	1.0000	0.9996	0.9962	0.9812	0.9375	0.8414	0.6706	0.4233	0.1497	0.0444	0.0020
	6	1.0000	1.0000	0.9998	0.9984	0.9922	0.9720	0.9176	0.7903	0.5217	0.3017	0.0679
8	0	0.4305	0.1678	0.0576	0.0168	0.0039	0.0007	0.0001	0.0000	0.0000	0.0000	0.0000
	1	0.8131	0.5033	0.2553	0.1064	0.0352	0.0085	0.0013	0.0001	0.0000	0.0000	0.0000
	2	0.9619	0.7969	0.5518	0.3154	0.1445	0.0498	0.0113	0.0012	0.0000	0.0000	0.0000
	3	0.9950	0.9437	0.8059	0.5941	0.3633	0.1737	0.0580	0.0104	0.0004	0.0000	0.0000
	4	0.9996	0.9896	0.9420	0.8263	0.6367	0.4059	0.1941	0.0563	0.0050	0.0004	0.0000
	5	1.0000	0.9988	0.9887	0.9502	0.8555	0.6846	0.4482	0.2031	0.0381	0.0058	0.0001
	6	1.0000	0.9999	0.9987	0.9915	0.9648	0.8936	0.7447	0.4967	0.1869	0.0572	0.0027
0	7	1.0000	1.0000	0.9999	0.9993	0.9961	0.9832	0.9424	0.8322	0.5695	0.3366	0.0773
9	0	0.3874	0.1342	0.0404	0.0101	0.0020	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000
	1	0.7748	0.4362	0.1960	0.0705	0.0195	0.0038	0.0004	0.0000	0.0000	0.0000	0.0000
	2	0.9470	0.7382	0.4628	0.2318	0.0889	0.0250	0.0043	0.0003	0.0000	0.0000	0.0000
	3	0.9917 0.9991	0.9144	0.7297	0.4826	0.2539	0.0994	0.0253		0.0001	0.0000	0.0000
	4	0.9991	0.9804 0.9969	0.9012	0.7334 0.9006	0.5000	0.2666	0.0988	0.0196 0.0856	0.0009	0.0000	0.0000
	5	1.0000	0.9969	0.9747 0.9957	0.9006	0.7461 0.9102	0.5174 0.7682	0.2703 0.5372	0.0836	0.0083 0.0530	0.0006 0.0084	0.0000 0.0001
	6 7	1.0000	1.0000	0.9937	0.9750	0.9102	0.7682	0.8040	0.2618	0.0330	0.0084	0.0001
	8	1.0000	1.0000	1.0000	0.9962	0.9803	0.9293	0.8040	0.8658		0.0712	
	0	1.0000	1.0000	1.0000	0.777/	0.5500	0.7899	0.9390	0.0038	0.6126	0.3098	0.0865

Montgomery, Douglas C., and George C. Runger, Applied Statistics and Probability for Engineers, 4th ed. Reproduced by permission of John Wiley & Sons, 2007.

Cumulative Binomial Probabilities $P(X \le x)$ (continued)

							P					
n	х	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.95	0.99
10	0	0.3487	0.1074	0.0282	0.0060	0.0010	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
	1	0.7361	0.3758	0.1493	0.0464	0.0107	0.0017	0.0001	0.0000	0.0000	0.0000	0.0000
	2	0.9298	0.6778	0.3828	0.1673	0.0547	0.0123	0.0016	0.0001	0.0000	0.0000	0.0000
	3	0.9872	0.8791	0.6496	0.3823	0.1719	0.0548	0.0106	0.0009	0.0000	0.0000	0.0000
	4	0.9984	0.9672	0.8497	0.6331	0.3770	0.1662	0.0473	0.0064	0.0001	0.0000	0.0000
	5	0.9999	0.9936	0.9527	0.8338	0.6230	0.3669	0.1503	0.0328	0.0016	0.0001	0.0000
	6	1.0000	0.9991	0.9894	0.9452	0.8281	0.6177	0.3504	0.1209	0.0128	0.0010	0.0000
	7	1.0000	0.9999	0.9984	0.9877	0.9453	0.8327	0.6172	0.3222	0.0702	0.0115	0.0001
	8	1.0000	1.0000	0.9999	0.9983	0.9893	0.9536	0.8507	0.6242	0.2639	0.0861	0.0043
1.5	9	1.0000	1.0000	1.0000	0.9999	0.9990	0.9940	0.9718	0.8926	0.6513	0.4013	0.0956
15	0	0.2059	0.0352	0.0047	0.0005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	1	0.4590	0.1671	0.0353	0.0052	0.0005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	2	0.8159	0.3980	0.1268	0.0271	0.0037	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000
	3	0.9444	0.6482	0.2969	0.0905	0.0176	0.0019	0.0001	0.0000	0.0000	0.0000	0.0000
	4	0.9873	0.8358	0.5155	0.2173	0.0592	0.0093	0.0007	0.0000	0.0000	0.0000	0.0000
	5	0.9978 0.9997	0.9389	0.7216	0.4032	0.1509	0.0338	0.0037	0.0001	0.0000	0.0000	0.0000
	6		0.9819	0.8689	0.6098	0.3036 0.5000	0.0950 0.2131	0.0152 0.0500	0.0008	0.0000	0.0000	0.0000
	7 8	1.0000 1.0000	0.9958 0.9992	0.9500 0.9848	0.7869 0.9050	0.3000	0.2131	0.0300	0.0042 0.0181	0.0000 0.0003	0.0000 0.0000	0.0000
	9	1.0000	0.9992	0.9848	0.9662	0.8491	0.5968	0.1311	0.0181	0.0003	0.0001	0.0000
	10	1.0000	1.0000	0.9903	0.9002	0.8491	0.3908	0.2784	0.0611	0.0022	0.0001	0.0000
	11	1.0000	1.0000	0.9999	0.9981	0.9408	0.7827	0.7031	0.1042	0.0127	0.0055	0.0000
	12	1.0000	1.0000	1.0000	0.9997	0.9824	0.9093	0.7031	0.6020	0.0330	0.0033	0.0004
	13	1.0000	1.0000	1.0000	1.0000	0.9995	0.9729	0.8732	0.8329	0.4510	0.0302	0.0004
	14	1.0000	1.0000	1.0000	1.0000	1.0000	0.9995	0.9953	0.8525	0.7941	0.5367	0.1399
20		0.1216	0.0115	0.0008	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
20	1	0.3917	0.0692	0.0076	0.0005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	2	0.6769	0.2061	0.0355	0.0036	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	3	0.8670	0.4114	0.1071	0.0160	0.0013	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	4	0.9568	0.6296	0.2375	0.0510	0.0059	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000
	5	0.9887	0.8042	0.4164	0.1256	0.0207	0.0016	0.0000	0.0000	0.0000	0.0000	0.0000
	6	0.9976	0.9133	0.6080	0.2500	0.0577	0.0065	0.0003	0.0000	0.0000	0.0000	0.0000
	7	0.9996	0.9679	0.7723	0.4159	0.1316	0.0210	0.0013	0.0000	0.0000	0.0000	0.0000
	8	0.9999	0.9900	0.8867	0.5956	0.2517	0.0565	0.0051	0.0001	0.0000	0.0000	0.0000
	9	1.0000	0.9974	0.9520	0.7553	0.4119	0.1275	0.0171	0.0006	0.0000	0.0000	0.0000
	10	1.0000	0.9994	0.9829	0.8725	0.5881	0.2447	0.0480	0.0026	0.0000	0.0000	0.0000
	11	1.0000	0.9999	0.9949	0.9435	0.7483	0.4044	0.1133	0.0100	0.0001	0.0000	0.0000
	12	1.0000	1.0000	0.9987	0.9790	0.8684	0.5841	0.2277	0.0321	0.0004	0.0000	0.0000
	13	1.0000	1.0000	0.9997	0.9935	0.9423	0.7500	0.3920	0.0867	0.0024	0.0000	0.0000
	14	1.0000	1.0000	1.0000	0.9984	0.9793	0.8744	0.5836	0.1958	0.0113	0.0003	0.0000
	15	1.0000	1.0000	1.0000	0.9997	0.9941	0.9490	0.7625	0.3704	0.0432	0.0026	0.0000
	16	1.0000	1.0000	1.0000	1.0000	0.9987	0.9840	0.8929	0.5886	0.1330	0.0159	0.0000
	17	1.0000	1.0000	1.0000	1.0000	0.9998	0.9964	0.9645	0.7939	0.3231	0.0755	0.0010
	18	1.0000	1.0000	1.0000	1.0000	1.0000	0.9995	0.9924	0.9308	0.6083	0.2642	0.0169
	19	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9992	0.9885	0.8784	0.6415	0.1821

Montgomery, Douglas C., and George C. Runger, Applied Statistics and Probability for Engineers, 4th ed. Reproduced by permission of John Wiley & Sons, 2007.

STATISTICAL QUALITY CONTROL

Average and Range Charts

n	A_2	D_3	D_4
2	1.880	0	3.268
3	1.023	0	2.574
4	0.729	0	2.282
5	0.577	0	2.114
6	0.483	0	2.004
7	0.419	0.076	1.924
8	0.373	0.136	1.864
9	0.337	0.184	1.816
10	0.308	0.223	1.777

 X_i = an individual observation

n =the sample size of a group

k =the number of groups

R =(range) the difference between the largest and smallest observations in a sample of size n.

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

$$\overline{\overline{X}} = \frac{\overline{X}_1 + \overline{X}_2 + \dots + \overline{X}_k}{k}$$

$$\overline{R} = \frac{R_1 + R_2 + \dots + R_k}{k}$$

The *R* Chart formulas are:

$$CL_R = \overline{R}$$

$$UCL_R = D_4\overline{R}$$

$$LCL_R = D_3\overline{R}$$

The \overline{X} Chart formulas are:

$$CL_X = \overline{\overline{X}}$$

$$UCL_X = \overline{\overline{X}} + A_2 \overline{R}$$

$$LCL_X = \overline{\overline{X}} - A_2 \overline{R}$$

Standard Deviation Charts

n	A_3	B ₃	B_4
2	2.659	0	3.267
3	1.954	0	2.568
4	1.628	0	2.266
5	1.427	0	2.089
6	1.287	0.030	1.970
7	1.182	0.119	1.882
8	1.099	0.185	1.815
9	1.032	0.239	1.761
10	0.975	0.284	1.716

$$UCL_{X} = \overline{X} + A_{3}\overline{S}$$

$$CL_{X} = \overline{X}$$

$$LCL_{X} = \overline{X} - A_{3}\overline{S}$$

$$UCL_{S} = B_{4}\overline{S}$$

$$CL_{S} = \overline{S}$$

$$LCL_{S} = B_{3}\overline{S}$$

Approximations

The following table and equations may be used to generate initial approximations of the items indicated.

n	c_4	d_2	d_3
2	0.7979	1.128	0.853
3	0.8862	1.693	0.888
4	0.9213	2.059	0.880
5	0.9400	2.326	0.864
6	0.9515	2.534	0.848
7	0.9594	2.704	0.833
8	0.9650	2.847	0.820
9	0.9693	2.970	0.808
10	0.9727	3.078	0.797

$$\hat{\sigma} = \overline{R}/d_2$$

$$\hat{\sigma} = \overline{S}/c_4$$

$$\sigma_R = d_3 \hat{\sigma}$$

$$\sigma_S = \hat{\sigma} \sqrt{1 - c_4^2}$$
, where

 $\hat{\sigma}$ = an estimate of σ

 σ_R = an estimate of the standard deviation of the ranges of the

 σ_s = an estimate of the standard deviation of the standard deviations of the samples

Tests for Out of Control

- 1. A single point falls outside the (three sigma) control limits.
- 2. Two out of three successive points fall on the same side of and more than two sigma units from the center line.
- 3. Four out of five successive points fall on the same side of and more than one sigma unit from the center line.
- 4. Eight successive points fall on the same side of the center

Probability and Density Functions: Means and Variances

Variable	Equation	Mean	Variance
Binomial Coefficient	$\binom{n}{x} = \frac{n!}{x!(n-x)!}$		
Binomial	$b(x;n,p) = {n \choose x} p^x (1-p)^{n-x}$	пр	np(1-p)
Hyper Geometric	$h(x; n, r, N) = {r \choose x} \frac{{N-r \choose n-x}}{{N \choose n}}$	$\frac{nr}{N}$	$\frac{r(N-r)n(N-n)}{N^2(N-1)}$
Poisson	$f(x;\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$	λ	λ
Geometric	$g(x; p) = p (1-p)^{x-1}$	1/ <i>p</i>	$(1-p)/p^2$
Negative Binomial	$f(y;r,p) = {y+r-1 \choose r-1} p^{r} (1-p)^{y}$	r/p	$r(1-p)/p^2$
Multinomial	$f(x_1,,x_k) = \frac{n!}{x_1!,,x_k!} p_1^{x_1} p_k^{x_k}$	np _i	$np_i(1-p_i)$
Uniform	f(x) = 1/(b-a)	(a+b)/2	$(b-a)^2/12$
Gamma	$f(x) = \frac{x^{\alpha - 1}e^{-x/\beta}}{\beta^{\alpha}\Gamma(\alpha)}; \alpha > 0, \beta > 0$	αβ	$\alpha\beta^2$
Exponential	$f(x) = \frac{1}{\beta} e^{-x/\beta}$	β	β^2
Weibull	$f(x) = \frac{\alpha}{\beta} x^{\alpha - 1} e^{-x^{\alpha}/\beta}$	$\beta^{1/\alpha}\Gamma[(\alpha+1)/\alpha]$	$\beta^{2/\alpha} \left[\Gamma \left(\frac{\alpha + 1}{\alpha} \right) - \Gamma^2 \left(\frac{\alpha + 1}{\alpha} \right) \right]$
Normal	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	μ	σ^2
Triangular	$f(x) = \begin{cases} \frac{2(x-a)}{(b-a)(m-a)} & \text{if } a \le x \le m \\ \frac{2(b-x)}{(b-a)(b-m)} & \text{if } m < x \le b \end{cases}$	$\frac{a+b+m}{3}$	$\frac{a^2+b^2+m^2-ab-am-bm}{18}$

CHEMISTRY

DEFINITIONS

Avogadro's Number – The number of elementary particles in a mol of a substance.

1 mol = 1 gram mole
1 mol =
$$6.02 \times 10^{23}$$
 particles

Mol – The amount of a substance that contains as many particles as 12 grams of 12 C (carbon 12).

Molarity of Solutions – The number of gram moles of a substance dissolved in a liter of solution.

Molality of Solutions – The number of gram moles of a substance per 1,000 grams of solvent.

Normality of Solutions – The product of the molarity of a solution and the number of valence changes taking place in a reaction.

Molar Volume of an Ideal Gas [at 0°C (32°F) and 1 atm (14.7 psia)]; 22.4 L/(g mole) [359 ft³/(lb mole)].

Mole Fraction of a Substance – The ratio of the number of moles of a substance to the total moles present in a mixture of substances.

Equilibrium Constant of a Chemical Reaction

$$aA + bB \rightleftharpoons cC + dD$$
$$K_{eq} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[R]^{b}}$$

Le Chatelier's Principle for Chemical Equilibrium – When a stress (such as a change in concentration, pressure, or temperature) is applied to a system in equilibrium, the equilibrium shifts in such a way that tends to relieve the stress.

Heats of Reaction, Solution, Formation, and Combustion – Chemical processes generally involve the absorption or evolution of heat. In an endothermic process, heat is absorbed (enthalpy change is positive). In an exothermic process, heat is evolved (enthalpy change is negative).

Solubility Product of a slightly soluble substance AB:

$$A_m B_n \rightarrow m A^{n+} + n B^{m-}$$

Solubility Product Constant = $K_{SP} = [A^+]^m [B^-]^n$

Faraday's Law – One gram equivalent weight of matter is chemically altered at each electrode for 96,485 coulombs, or 1 Faraday, of electricity passed through the electrolyte.

A *catalyst* is a substance that alters the rate of a chemical reaction. The catalyst does not affect the position of equilibrium of a reversible reaction.

The *atomic number* is the number of protons in the atomic nucleus.

Boiling Point Elevation – The presence of a nonvolatile solute in a solvent raises the boiling point of the resulting solution.

Freezing Point Depression – The presence of a solute lowers the freezing point of the resulting solution.

ACIDS, BASES, and pH (aqueous solutions)

$$pH = log_{10} \left(\frac{1}{[H^+]} \right)$$
, where

 $[H^+]$ = molar concentration of hydrogen ion, in gram moles per liter. *Acids* have pH < 7. *Bases* have pH > 7.

126.90 18.998 35.453 35 **Br** 79.904 174.97 85 **At** (210) 103 Lr (260)71 **Lu** 17 C1 53 I 16 S 32.066 127.60 **O** 15.999 173.04 34 Se 78.96 84 **Po** (209) 102 No (259) 52 Te 70 **Yb** 30.974 121.75 14.007 208.98 168.93 33 **As** 74.921 101 **Md** (258) 15 **P** Tm 51 Sb 83 **Bi** 28.086 167.26 12.011 118.71 32 **Ge** 72.61 207.2 100 **Fm** (257) 2 1. 2. **S** 68 Er $^{\circ}$ 50 **Sn** 82 **Pb** 114.82 204.38 10.811 26.981 69.723 164.93 99 **Es** (252) \equiv 13 **A**I 31 Сa 49 In 67 **Ho** 81 T B 80 **Hg** 200.59 162.50 65.39 112.41 (251) 30 **Zn** 48 Cd 66 Dy 98 Cf 63.546 **Ag** 107.87 158.92 97 **Bk** (247) 29 **Cu** 79 **Au** 65 Tb 47 Periodic Table of Elements 106.42 195.08 157.25 58.69 (247) **z** 58 46 **Pd** 78 Pt 64 Gd 96 Cm Atomic Number Atomic Weight Symbol 58.933 102.91 192.22 151.96 (243) 45 **Rh** 95 **Am** 63 **Eu** 27 Co 77 **Ir** 55.847 101.07 50.36 76 **Os** 190.2 62 **Sm** (244) **₽** 44 26 Fe 94 **Pu** 54.938 237.05 25 Mn 43 Tc (98) 186.21 61 **Pm** (145) 93 **Np** 75 **Re** 51.996 42 **Mo** 95.94 183.85 144.24 238.03 24 Cr 47 **X** 9**9** 92 U 50.941 41 **Nb** 92.906 180.95 231.04 140.91 (262) 73 **Ta** 105 **Ha** 59 Pr 91 **Pa** 178.49 140.12 91.224 47.88 104 **Rf** (261) 58 Ce 40 **Zr** 72 **Hf** 90 **Th** 22 **Ti** 44.956 88.906 227.03 138.91 **68 57* La Ac 21 Sc 39 Y 137.33 226.02 9.0122 12 **Mg** 24.305 40.078 87.62 *Lanthanide Series 20 Ca Be 38 Sr 56 **Ba** 88 **Ra** \equiv 4 **Actinide Series 1.0079 11 **Na** 22.990 39.098 85.468 132.91 **Li** 6.941 19 **X** 37 **Rb** 55 Cs 1 H 87 Fr

131.29

54 Xe 86 **Rn** (222)

18 **Ar** 39.948 36 **Kr** 83.80

20.179

10 **N**

VIII

4.0026

He

51 CHEMISTRY

SELECTED RULES OF NOMENCLATURE IN ORGANIC CHEMISTRY

Alcohols

Three systems of nomenclature are in general use. In the first, the alkyl group attached to the hydroxyl group is named and the separate word *alcohol* is added. In the second system, the higher alcohols are considered as derivatives of the first member of the series, which is called *carbinol*. The third method is the modified Geneva system in which (1) the longest carbon chain containing the hydroxyl group determines the surname, (2) the ending e of the corresponding saturated hydrocarbon is replaced by ol, (3) the carbon chain is numbered from the end that gives the hydroxyl group the smaller number, and (4) the side chains are named and their positions indicated by the proper number. Alcohols in general are divided into three classes. In *primary* alcohols the hydroxyl group is united to a primary carbon atom, that is, a carbon atom united directly to only one other carbon atom. Secondary alcohols have the hydroxyl group united to a secondary carbon atom, that is, one united to two other carbon atoms. Tertiary alcohols have the hydroxyl group united to a tertiary carbon atom, that is, one united to three other carbon atoms.

Ethers

Ethers are generally designated by naming the alkyl groups and adding the word *ether*. The group RO is known as an *alkoxyl group*. Ethers may also be named as alkoxy derivatives of hydrocarbons.

Carboxylic Acids

The name of each linear carboxylic acid is unique to the number of carbon atoms it contains. 1: (one carbon atom)
Formic. 2: Acetic. 3: Propionic. 4: Butyric. 5: Valeric.
6: Caproic. 7: Enanthic. 8: Caprylic. 9: Pelargonic. 10: Capric.

Aldehydes

The common names of aldehydes are derived from the acids that would be formed on oxidation, that is, the acids having the same number of carbon atoms. In general the *ic acid* is dropped and *aldehyde* added.

Ketones

The common names of ketones are derived from the acid which on pyrolysis would yield the ketone. A second method, especially useful for naming mixed ketones, simply names the alkyl groups and adds the word *ketone*. The name is written as three separate words.

Unsaturated Acyclic Hydrocarbons

The simplest compounds in this class of hydrocarbon chemicals are olefins or alkenes with a single carbon-carbon double bond, having the general formula of C_nH_{2n} . The simplest example in this category is ethylene, C_2H_4 .

Dienes are acyclic hydrocarbons with two carbon-carbon double bonds, having the general formula of C_nH_{2n-2} ; butadiene (C_4H_6) is an example of such.

Similarly, trienes have three carbon-carbon double bonds with the general formula of C_nH_{2n-4} ; hexatriene (C_6H_8) is such an example.

The simplest alkynes have a single carbon-carbon triple bond with the general formula of C_nH_{2n-2} . This series of compounds begins with acetylene, or C_2H_2 .

Important Families of Organic Compounds

						FAMILY	Y					
	Alkane	Alkene	Alkyne	Arene	Haloalkane	Alcohol	Ether	Amine	Aldehyde	Ketone	Carboxylic Acid	Ester
Specific Example	СН3СН3	$H_2C=CH_2$	НС≡СН		CH3CH2CI	СН ₃ СН ₂ ОН	СН3ОСН3	CH ₃ NH ₂	O CH3CH	O O O O O O O O O O O O O O O O O O O	0 CH3COH	O CH3COCH3
IUPAC Name	Ethane	Ethene or Ethylene	Ethyne or Acetylene	Benzene	Chloroethane	Ethanol	Methoxy- methane	Methan- amine	Ethanal	Acetone	Ethanoic Acid	Methyl ethanoate
Common Name	Ethane	Ethylene	Acetylene	Benzene	Ethyl chloride	Ethyl alcohol	Dimethyl ether	Methyl- amine	Acetal- dehyde	Dimethyl ketone	Acetic Acid	Methyl acetate
General Formula	RH	$RCH = CH_2$ $RCH = CHR$ $R_2C = CHR$ $R_2C = CR_2$	RC ≡ CH RC ≡ CR	ArH	RX	ROH	ROR	RNH ₂ R ₂ NH R ₃ N	O = RCH	0 	0 	O= RCOR
Functional Group	C–H and C–C) = 0	_ C ≡ C _	Aromatic Ring	- C - X	НО —] —	-N23	- C - N	0 	0=0	O O O	

Common Names and Molecular Formulas of Some Industrial (Inorganic and Organic) Chemicals

Common Name	Chemical Name	Molecular Formula
Muriatic acid	Hydrochloric acid	HCl
Cumene	Isopropyl benzene	$C_6H_5CH(CH_3)_2$
Styrene	Vinyl benzene	$C_6H_5CH=CH_2$
	Hypochlorite ion	OCl ⁻¹
	Chlorite ion	ClO_2^{-1}
	Chlorate ion	ClO_3^{-1}
_	Perchlorate ion	ClO_4^{-1}
Gypsum	Calcium sulfate	CaSO ₄
Limestone	Calcium carbonate	CaCO ₃
Dolomite	Magnesium carbonate	MgCO ₃
Bauxite	Aluminum oxide	Al_2O_3
Anatase	Titanium dioxide	TiO ₂
Rutile	Titanium dioxide	TiO_2
	Vinyl chloride	CH ₂ =CHCl
_	Ethylene oxide	C_2H_4O
Pyrite	Ferrous sulfide	FeS
Epsom salt	Magnesium sulfate	MgSO ₄
Hydroquinone	p-Dihydroxy benzene	$C_6H_4(OH)_2$
Soda ash	Sodium carbonate	Na ₂ CO ₃
Salt	Sodium chloride	NaCl
Potash	Potassium carbonate	K ₂ CO ₃
Baking soda	Sodium bicarbonate	NaHCO ₃
Lye	Sodium hydroxide	NaOH
Caustic soda	Sodium hydroxide	NaOH
	Vinyl alcohol	CH ₂ =CHOH
Carbolic acid	Phenol	C ₆ H ₅ OH
Aniline	Aminobenzene	$C_6H_5NH_2$
_	Urea	$(NH_2)_2CO$
Toluene	Methyl benzene	C ₆ H ₅ CH ₃
Xylene	Dimethyl benzene	$C_6H_4(CH_3)_2$
_	Silane	SiH ₄
_	Ozone	O_3
Neopentane	2,2-Dimethylpropane	$CH_3C(CH_3)_2CH_3$
Magnetite	Ferrous/ferric oxide	Fe ₃ O ₄
Quicksilver	Mercury	Hg
Heavy water	Deuterium oxide	$(H^2)_2O$
_	Borane	BH_3
Eyewash	Boric acid (solution)	H_3BO_3
	Deuterium	H^2
_	Tritium	H^3
Laughing gas	Nitrous oxide	N ₂ O
	Phosgene	COCl ₂
Wolfram	Tungsten	W
	Permanganate ion	MnO_4^{-1}
_	Dichromate ion	$\operatorname{Cr_2O_7}^{-2}$
	Hydronium ion	H_3O^{+1}
Brine	Sodium chloride	NaCl
Dillic	(solution)	INACI
Battery acid	Sulfuric acid	H ₂ SO ₄
Danci y aciu	Bullulle acid	112004

ELECTROCHEMISTRY

Cathode - The electrode at which reduction occurs.

Anode – The electrode at which oxidation occurs.

Oxidation – The loss of electrons.

Reduction – The gaining of electrons.

Cation – Positive ion

Anion - Negative ion

G 1 D 1	Potential, E _o , Volts
Corrosion Reaction	vs. Normal Hydrogen Electrode
$Au \rightarrow Au^{3+} + 3e^{-}$	-1.498
$2H_2O \rightarrow O_2 + 4H^+ + 4e^-$	-1.229
$Pt \rightarrow Pt^{2+} + 2e^{-}$	-1.200
$Pd \rightarrow Pd^{2+} + 2e^{-}$	-0.987
$Ag \to Ag^+ + e^-$	-0.799
$2 \text{Hg} \rightarrow \text{Hg}_2^{2+} + 2 \text{e}^-$	-0.788
$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$	-0.771
$4(OH)^{-} \rightarrow O_2 + 2H_2O + 4e^{-}$	-0.401
$Cu \rightarrow Cu^{2+} + 2e^{-}$	-0.337
$\mathrm{Sn}^{2+} \longrightarrow \mathrm{Sn}^{4+} + 2\mathrm{e}^{-}$	-0.150
$\mathrm{H_2} \rightarrow \mathrm{2H}^+ + \mathrm{2e}^-$	0.000
$Pb \rightarrow Pb^{2+} + 2e^{-}$	+0.126
$Sn \rightarrow Sn^{2+} + 2e^-$	+0.136
$Ni \rightarrow Ni^{2+} + 2e^{-}$	+0.250
$Co \rightarrow Co^{2+} + 2e^{-}$	+0.277
$Cd \rightarrow Cd^{2+} + 2e^{-}$	+0.403
$Fe \rightarrow Fe^{2+} + 2e^{-}$	+0.440
$Cr \rightarrow Cr^{3+} + 3e^{-}$	+0.744
$Zn \rightarrow Zn^{2+} + 2e^{-}$	+0.763
$Al \rightarrow Al^{3+} + 3e^{-}$	+1.662
$Mg \rightarrow Mg^{2+} + 2e^{-}$	+2.363
$Na \rightarrow Na^+ + e^-$	+2.714
$K \rightarrow K^+ + e^-$	+2.925

Flinn, Richard A., and Paul K. Trojan, Engineering Materials and Their Applications, 4th ed., Houghton Mifflin Company, 1990.

Arrows are reversed for cathode half-cells.

NOTE: In some chemistry texts, the reactions and the signs of the values (in this table) are reversed; for example, the half-cell potential of zinc is given as -0.763 volt for the reaction $Zn^{2+} + 2e^- \rightarrow Zn$. When the potential E_0 is positive, the reaction proceeds spontaneously as written.

MATERIALS SCIENCE/STRUCTURE OF MATTER

ATOMIC BONDING

Primary Bonds

Ionic (e.g., salts, metal oxides)

Covalent (e.g., within polymer molecules)

Metallic (e.g., metals)

CORROSION

A table listing the standard electromotive potentials of metals is shown on the previous page.

For corrosion to occur, there must be an anode and a cathode in electrical contact in the presence of an electrolyte.

Anode Reaction (Oxidation) of a Typical Metal, M

 $M^o \rightarrow M^{n+} + ne^-$

Possible Cathode Reactions (Reduction)

$$^{1/2}$$
 $O_2 + 2$ $e^- + H_2O \rightarrow 2$ OH^-
 $^{1/2}$ $O_2 + 2$ $e^- + 2$ $H_3O^+ \rightarrow 3$ H_2O
 2 $e^- + 2$ $H_3O^+ \rightarrow 2$ $H_2O + H_2$

When dissimilar metals are in contact, the more electropositive one becomes the anode in a corrosion cell. Different regions of carbon steel can also result in a corrosion reaction: e.g., cold-worked regions are anodic to noncold-worked; different oxygen concentrations can cause oxygen-deficient regions to become cathodic to oxygen-rich regions; grain boundary regions are anodic to bulk grain; in multiphase alloys, various phases may not have the same galvanic potential.

DIFFUSION

Diffusion Coefficient

$$D = D_0 e^{-Q/(RT)}$$
, where

D = diffusion coefficient

 D_0 = proportionality constant

Q = activation energy

 $R = \text{gas constant} [8.314 \text{ J/(mol} \cdot \text{K})]$

T = absolute temperature

THERMAL AND MECHANICAL PROCESSING

Cold working (plastically deforming) a metal increases strength and lowers ductility.

Raising temperature causes (1) recovery (stress relief), (2) recrystallization, and (3) grain growth. *Hot working* allows these processes to occur simultaneously with deformation.

Quenching is rapid cooling from elevated temperature, preventing the formation of equilibrium phases.

In steels, quenching austenite [FCC (γ) iron] can result in martensite instead of equilibrium phases—ferrite [BCC (α) iron] and cementite (iron carbide).

PROPERTIES OF MATERIALS

Electrical

Capacitance: The charge-carrying capacity of an insulating material

Charge held by a capacitor

$$q = CV$$

q = charge

C = capacitance

V = voltage

Capacitance of a parallel plate capacitor

$$C = \frac{\varepsilon A}{d}$$

C = capacitance

 ε = permittivity of material

A =cross-sectional area of the plates

d = distance between the plates

 ϵ is also expressed as the product of the dielectric constant (κ) and the permittivity of free space ($\epsilon_0 = 8.85 \times 10^{-12} \text{ F/m}$)

Resistivity: The material property that determines the resistance of a resistor

Resistivity of a material within a resistor

$$\rho = \frac{RA}{L}$$

 ρ = resistivity of the material

R = resistance of the resistor

A =cross-sectional area of the resistor

L =length of the resistor

Conductivity is the reciprocal of the resistivity

Photoelectric effect—electrons are emitted from matter (metals and nonmetallic solids, liquids or gases) as a consequence of their absorption of energy from electromagnetic radiation of very short wavelength and high frequency.

Piezoelectric effect—the electromechanical and the electrical state in crystalline materials.

Mechanical

Strain is defined as change in length per unit length; for pure tension the following apply:

Engineering strain

$$\varepsilon = \frac{\Delta L}{L_0}$$

 ε = engineering strain

 ΔL = change in length

 L_0 = initial length

True strain

$$\varepsilon_T = \frac{dL}{L}$$

 ε_{T} = engineering strain

dL = differential change in length

L = initial length

$$\varepsilon_{x} = \ln(1 + \varepsilon)$$

56 MATERIALS SCIENCE/STRUCTURE OF MATTER

Properties of Metals

Metal	Symbol	Atomic Weight	Density ρ (kg/m³) Water = 1000	Melting Point (°C)	Melting Point (°F)	Specific Heat [J/(kg·K)]	Electrical Resistivity (10 ⁻⁸ Ω·m) at 0°C (273.2 K)	Heat Conductivity λ[W/(m·K)] at 0°C (273.2 K)
Aluminum	Al	26.98	2,698	660	1,220	895.9	2.5	236
Antimony	Sb	121.75	6,692	630	1,166	209.3	39	25.5
Arsenic	As	74.92	5,776	subl. 613	subl. 1,135	347.5	26	_
Barium	Ba	137.33	3,594	710	1,310	284.7	36	_
Beryllium	Be	9.012	1,846	1,285	2,345	2,051.5	2.8	218
Bismuth	Bi	208.98	9,803	271	519	125.6	107	8.2
Cadmium	Cd	112.41	8,647	321	609	234.5	6.8	97
Caesium	Cs	132.91	1,900	29	84	217.7	18.8	36
Calcium	Ca	40.08	1,530	840	1,544	636.4	3.2	_
Cerium	Ce	140.12	6,711	800	1,472	188.4	7.3	11
Chromium	Cr	52	7,194	1,860	3,380	406.5	12.7	96.5
Cobalt	Co	58.93	8,800	1,494	2,721	431.2	5.6	105
Copper	Cu	63.54	8,933	1,084	1,983	389.4	1.55	403
Gallium	Ga	69.72	5,905	30	86	330.7	13.6	41
Gold	Au	196.97	19,281	1,064	1,947	129.8	2.05	319
Indium	In	114.82	7,290	156	312	238.6	8	84
Iridium	Ir	192.22	22,550	2,447	4,436	138.2	4.7	147
Iron	Fe	55.85	7,873	1,540	2,804	456.4	8.9	83.5
Lead	Pb	207.2	11,343	327	620	129.8	19.2	36
Lithium	Li	6.94	533	180	356	4,576.2	8.55	86
Magnesium	Mg	24.31	1,738	650	1,202	1,046.7	3.94	157
Manganese	Mn	54.94	7,473	1,250	2,282	502.4	138	8
Mercury	Hg	200.59	13,547	-39	-38	142.3	94.1	7.8
Molybendum	Mo	95.94	10,222	2,620	4,748	272.1	5	139
Nickel	Ni	58.69	8,907	1,455	2,651	439.6	6.2	94
Niobium	Nb	92.91	8,578	2,425	4,397	267.9	15.2	53
Osmium	Os	190.2	22,580	3,030	5,486	129.8	8.1	88
Palladium	Pd	106.4	11,995	1,554	2,829	230.3	10	72
Platinum	Pt	195.08	21,450	1,772	3,221	134	9.81	72
Potassium	K	39.09	862	63	145	753.6	6.1	104
Rhodium	Rh	102.91	12,420	1,963	3,565	242.8	4.3	151
Rubidium	Rb	85.47	1,533	38.8	102	330.7	11	58
Ruthenium	Ru	101.07	12,360	2,310	4,190	255.4	7.1	117
Silver	Ag	107.87	10,500	961	1,760	234.5	1.47	428
Sodium	Na	22.989	966	97.8	208	1,235.1	4.2	142
Strontium	Sr	87.62	2,583	770	1,418	_	20	_
Tantalum	Та	180.95	16,670	3,000	5,432	150.7	12.3	57
Thallium	T1	204.38	11,871	304	579	138.2	10	10
Thorium	Th	232.04	11,725	1,700	3,092	117.2	14.7	54
Tin	Sn	118.69	7,285	232	449	230.3	11.5	68
Titanium	Ti	47.88	4,508	1,670	3,038	527.5	39	22
Tungsten	W	183.85	19,254	3,387	6,128	142.8	4.9	177
Uranium	U	238.03	19,050	1,135	2,075	117.2	28	27
Vanadium	V	50.94	6,090	1,920	3,488	481.5	18.2	31
Zinc	Zn	65.38	7,135	419	786	393.5	5.5	117
Zirconium	Zr	91.22	6,507	1,850	3,362	284.7	40	23

Some Extrinsic, Elemental Semiconductors

Element	Dopant	Periodic table group of dopant	Maximum solid solubility of dopant (atoms/m ³)
Si	В	III A	600×10^{24}
	AI	III A	20×10^{24}
	Ga	III A	40×10^{24}
	P	VA	$1,000 \times 10^{24}$
	As	VA	$2,000 \times 10^{24}$
	Sb	VA	70×10^{24}
Ge	Al	III A	400×10^{24}
	Ga	III A	500×10^{24}
	In	III A	4×10^{24}
	As	VA	80×10^{24}
	Sb	VA	10×10^{24}

Impurity Energy Levels for Extrinsic Semiconductors

Semiconductor	Dopant	$E_g - E_d$ (eV)	E _a (eV)
Si	P	0.044	
	As	0.049	_
	Sb	0.039	_
	Bi	0.069	_
	В	_	0.045
	Al	_	0.057
	Ga	_	0.065
	In	_	0.160
	T1	_	0.260
Ge	P	0.012	_
Ge	As	0.013	_
	Sb	0.096	_
	В	_	0.010
	Al	_	0.010
	Ga	_	0.010
	In	_	0.011
	T1	_	0.01
GaAs	Se	0.005	_
	Te	0.003	_
	Zn	_	0.024
	Cd	_	0.021

Stress is defined as force per unit area; for pure tension the following apply:

Engineering stress

$$\sigma = \frac{F}{A_0}$$

 σ = engineering stress

F = applied force

 A_0 = initial cross-sectional area

True stress

$$\sigma_T = \frac{F}{A}$$

 σ_{τ} = true stress

F = applied force

A = actual cross-sectional area

The Elastic Modulus (also called Modulus, Modulus of Elasticity, Young's Modulus) describes the relationship between engineering and engineering strain during elastic loading. Hooke's Law applies in such a case.

 $\sigma = E\varepsilon$ where E is the elastic modulus.

Key mechanical properties obtained from a tensile test curve: $\sigma(\epsilon)$

Elastic modulus

Ductility (also called percent elongation) permanent engineering strain after failure

Ultimate tensile strength (also called tensile strength) maximum engineering stress

Yield strength: engineering stress at which permanent deformation is first observed, calculated by 0.2% offset method.

Other mechanical properties:

Creep: time dependent deformation under load. Usually measured by strain rate. For steady-state creep this is:

$$\frac{d\varepsilon}{dt} = A\sigma^n e^{-\frac{Q}{RT}}$$

A =pre-exponential constant

n = stress sensitivity

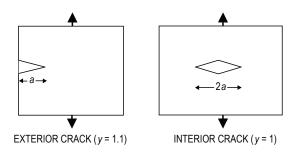
Q = activation energy for creep

R = ideal gas law constant

T = absolute temperature

Fatigue: time dependent failure under cyclic load. Fatigue life is the number of cycles to failure. The endurance limit is the stress below which fatigue failure is unlikely.

Fracture toughness: the combination of applied stress and the crack length in a brittle material. It is the stress intensity when the material will fail.


$$K_{IC} = Y_{\mathcal{O}} \sqrt{\pi a}$$

 K_{IC} = fracture toughness

 σ = applied engineering stress

 $a = \operatorname{crack} \operatorname{length}$

Y = geometrical factor

The critical value of stress intensity at which catastrophic crack propagation occurs, K_{Ic} , is a material property.

 W.R. Runyan and S.B. Watelski, in Handbook of Materials and Processes for Electronics, C.A. Harper, ed., McGraw-Hill, 1970.

Representative Values of Fracture Toughness

Material	$K_{\rm Ic}$ (MPa•m ^{1/2})	$K_{\rm Ic}$ (ksi•in ^{1/2})
A1 2014-T651	24.2	22
A1 2024-T3	44	40
52100 Steel	14.3	13
4340 Steel	46	42
Alumina	4.5	4.1
Silicon Carbide	3.5	3.2

RELATIONSHIP BETWEEN HARDNESS AND TENSILE STRENGTH

For plain carbon steels, there is a general relationship between Brinell hardness and tensile strength as follows:

$$TS(psi) \simeq 500 BHN$$

 $TS(MPa) \simeq 3.5 BHN$

ASTM GRAIN SIZE

$$S_V = 2P_L$$

$$N_{(0.0645\,\mathrm{mm}^2)}=\,2^{(n\,-\,1)}$$

$$\frac{N_{\text{actual}}}{\text{Actual Area}} = \frac{N}{(0.0645 \text{ mm}^2)}, \text{ where}$$

grain-boundary surface per unit volume

number of points of intersection per unit length between the line and the boundaries

N =number of grains observed in a area of 0.0645 mm²

grain size (nearest integer > 1)

COMPOSITE MATERIALS

$$\rho_c = \sum f_i \rho_i
C_c = \sum f_i c_i
\left[\sum \frac{f_i}{E_i}\right]^{-1} \le E_c \le \sum f_i E_i
\sigma_c = \sum f_i \sigma_i$$

 ρ_c = density of composite

 C_c = heat capacity of composite per unit volume

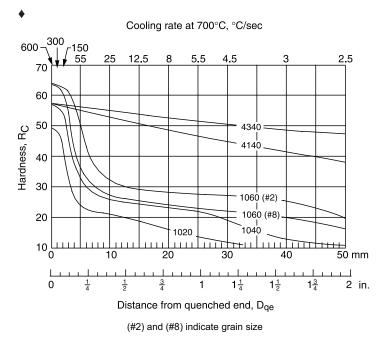
 E_c = Young's modulus of composite

= volume fraction of individual material

= heat capacity of individual material per unit volume

= Young's modulus of individual material

= strength parallel to fiber direction


Also, for axially oriented, long, fiber-reinforced composites, the strains of the two components are equal.

$$(\Delta L/L)_1 = (\Delta L/L)_2$$

 ΔL = change in length of the composite

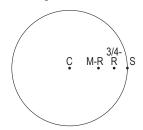
L = original length of the composite

Hardness: Resistance to penetration: Measured by denting a material under known load and measuring the size of the dent. Hardenability: The "ease" with which hardness can be obtained.

JOMINY HARDENABILITY CURVES FOR SIX STEELS

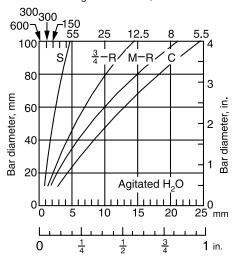
♦ Van Vlack, L., Elements of Materials Science & Engineering, Addison-Wesley, 1989.

The following two graphs show cooling curves for four different positions in the bar.


C = Center

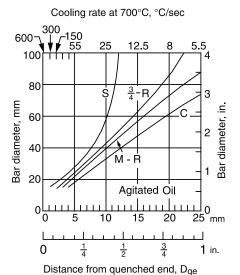
M-R = Halfway between center and surface

3/4-R = 75% of the distance between the center and the surface


S = Surface

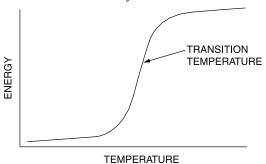
These positions are shown in the following figure.

•


Cooling rate at 700°C, °C/sec

Distance from quenched end, Dqe

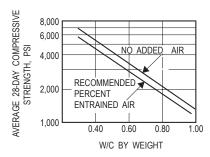
COOLING RATES FOR BARS QUENCHED IN AGITATED WATER


•

COOLING RATES FOR BARS QUENCHED IN AGITATED OIL

Impact Test

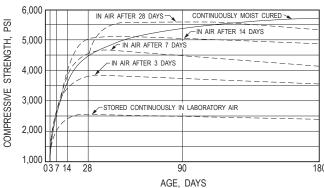
The *Charpy Impact Test* is used to find energy required to fracture and to identify ductile to brittle transition.



Impact tests determine the amount of energy required to cause failure in standardized test samples. The tests are repeated over a range of temperatures to determine the *ductile to brittle transition temperature*.

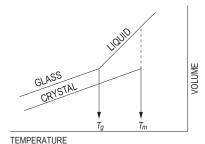
♦ Van Vlack, L., Elements of Materials Science & Engineering, Addison-Wesley, 1989.

Concrete



Concrete strength decreases with increases in water-cement ratio for concrete with and without entrained air.

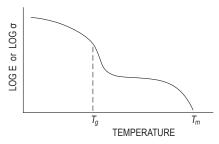
Water-cement (W/C) ratio is the primary factor affecting the strength of concrete. The figure above shows how W/C expressed as a ratio of weight of water and cement by weight of concrete mix affects the compressive strength of both airentrained and non air-entrained concrete.


Concrete compressive strength varies with moist-curing conditions. Mixes tested had a water-cement ratio of 0.50, a slump of 3.5 in., cement content of 556 lb/yd³, sand content of 36%, and air content of 4%.

Water content affects workability. However, an increase in water without a corresponding increase in cement reduces the concrete strength. Superplasticizers are the most typical way to increase workability. Air entrainment is used to improve durability.

Amorphous Materials

Amorphous materials such as glass are non-crystalline solids. Thermoplastic polymers are either semicrystalline or amorphous.


Below the glass transition temperature (T_{α}) the amorphous material will be a brittle solid.

The volume temperature curve as shown above is often used to show the difference between amorphous and crystalline solids.

Polymers

Polymers are classified as thermoplastics that can be melted and reformed. Thermosets cannot be melted and reformed.

The above curve shows the temperature dependent strength (σ) or modulus (E) for a thermoplastic polymer.

Polymer Additives

Chemicals and compounds are added to polymers to improve properties for commercial use. These substances, such as plasticizers, improve formability during processing, while others increase strength or durability.

Examples of common additives are:

Plasticizers: vegetable oils, low molecular weight polymers or monomers

Fillers: talc, chopped glass fibers

Flame retardants: halogenated paraffins, zinc borate, chlorinated phosphates

Ultraviolet or visible light resistance: carbon black

Oxidation resistance: phenols, aldehydes

Thermal Properties

The thermal expansion coefficient is the ratio of engineering strain to the change in temperature.

$$\alpha = \frac{\varepsilon}{\Delta T}$$

 α = thermal expansion coefficient

 ε = engineering strain

 ΔT = change in temperature

Specific heat (also called heat capacity) is the amount of heat required to raise the temperature of something or an amount of something by 1 degree.

At constant pressure the amount of heat (Q) required to increase the temperature of something by ΔT is $C_{p}\Delta T$, where C_p is the constant pressure heat capacity.

At constant volume the amount of heat (Q) required to increase the temperature of something by ΔT is C, ΔT , where C_i is the constant volume heat capacity.

An object can have a heat capacity that would be expressed as energy/degree.

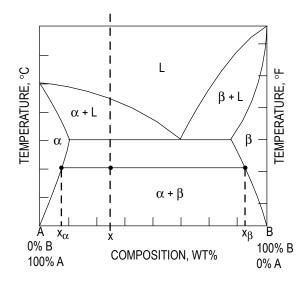
The heat capacity of a material can be reported as energy/ degree per unit mass or per unit volume.

- ◆ Concrete Manual, 8th ed., U.S. Bureau of Reclamation, 1975.
- Merritt, Frederick S., Standard Handbook for Civil Engineers, 3rd ed., McGraw-Hill, 1983.

BINARY PHASE DIAGRAMS

Allows determination of (1) what phases are present at equilibrium at any temperature and average composition, (2) the compositions of those phases, and (3) the fractions of those phases.

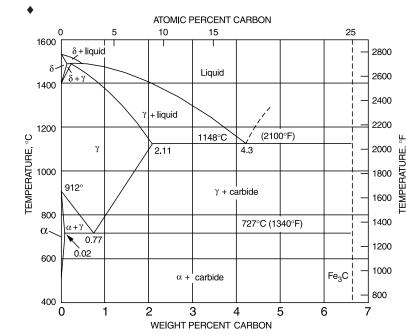
Eutectic reaction (liquid \rightarrow two solid phases)


Eutectoid reaction (solid \rightarrow two solid phases)

Peritectic reaction (liquid + solid \rightarrow solid)

Peritectoid reaction (two solid phases → solid)

Lever Rule


The following phase diagram and equations illustrate how the weight of each phase in a two-phase system can be determined:

(In diagram, L = liquid.) If x = the average composition at temperature T, then

$$\begin{split} &wt\% \, \alpha = \frac{\textbf{x}_{\beta} - \textbf{x}}{\textbf{x}_{\beta} - \textbf{x}_{\alpha}} \times 100 \\ &wt\% \, \beta = \frac{\textbf{x} - \textbf{x}_{\alpha}}{\textbf{x}_{\beta} - \textbf{x}_{\alpha}} \times 100 \end{split}$$

Iron-Iron Carbide Phase Diagram

♦ Van Vlack, L., Elements of Materials Science & Engineering, Addison-Wesley, Boston, 1989.

STATICS

FORCE

A force is a vector quantity. It is defined when its (1) magnitude, (2) point of application, and (3) direction are known.

The vector form of a force is

$$\mathbf{F} = F_{x}\mathbf{i} + F_{y}\mathbf{j}$$

RESULTANT (TWO DIMENSIONS)

The resultant, F, of n forces with components $F_{x,i}$ and $F_{y,i}$ has the magnitude of

$$F = \left[\left(\sum_{i=1}^{n} F_{x,i} \right)^{2} + \left(\sum_{i=1}^{n} F_{y,i} \right)^{2} \right]^{1/2}$$

The resultant direction with respect to the x-axis is

$$\theta = \arctan\left(\sum_{i=1}^{n} F_{y,i} / \sum_{i=1}^{n} F_{x,i}\right)$$

RESOLUTION OF A FORCE

$$F_x = F \cos \theta_x; F_y = F \cos \theta_y; F_z = F \cos \theta_z$$
$$\cos \theta_x = F_x/F; \cos \theta_y = F_y/F; \cos \theta_z = F_z/F$$

Separating a force into components when the geometry of force is known and $R = \sqrt{x^2 + y^2 + z^2}$

$$F_x = (x/R)F;$$
 $F_y = (y/R)F;$ $F_z = (z/R)F$

MOMENTS (COUPLES)

A system of two forces that are equal in magnitude, opposite in direction, and parallel to each other is called a *couple*. A moment M is defined as the cross product of the radius vector r and the force F from a point to the line of action of the force.

$$M = r \times F;$$
 $M_x = yF_z - zF_y,$
 $M_y = zF_x - xF_z,$ and
 $M_z = xF_y - yF_x.$

SYSTEMS OF FORCES

$$\mathbf{F} = \sum \mathbf{F}_n$$
$$\mathbf{M} = \sum (\mathbf{r}_n \times \mathbf{F}_n)$$

Equilibrium Requirements

$$\sum \mathbf{F}_n = 0$$
$$\sum \mathbf{M}_n = 0$$

CENTROIDS OF MASSES, AREAS, LENGTHS, AND **VOLUMES**

The following formulas are for discrete masses, areas, lengths, and volumes:

$$\mathbf{r}_c = \sum m_n \mathbf{r}_n / \sum m_n$$
, where

 m_n = the mass of each particle making up the system,

 r_n = the *radius vector* to each particle from a selected reference point, and

 \mathbf{r}_{c} = the radius vector to the centroid of the total mass from the selected reference point.

The moment of area (M_a) is defined as

$$M_{ay} = \sum x_n a_n$$
$$M_{ax} = \sum y_n a_n$$

The centroid of area is defined as

$$x_{ac} = M_{ay}/A = \sum x_n a_n/A$$

$$y_{ac} = M_{ax}/A = \sum y_n a_n/A$$
 where $A = \sum a_n$

MOMENT OF INERTIA

The moment of inertia, or the second moment of area, is defined as

$$I_y = \int x^2 dA$$
$$I_x = \int y^2 dA$$

The polar moment of inertia J of an area about a point is equal to the sum of the moments of inertia of the area about any two perpendicular axes in the area and passing through the same point.

$$I_z = J = I_y + I_x = \int (x^2 + y^2) dA$$

= $r_p^2 A$, where

Moment of Inertia Parallel Axis Theorem

The moment of inertia of an area about any axis is defined as the moment of inertia of the area about a parallel centroidal axis plus a term equal to the area multiplied by the square of the perpendicular distance d from the centroidal axis to the axis in question.

$$I'_{x} = I_{x_{c}} + d_{x}^{2} A$$

 $I'_{y} = I_{y_{c}} + d_{y}^{2} A$, where

 d_{y}, d_{y} = distance between the two axes in question,

 I_{x_c} , I_{y_c} = the moment of inertia about the centroidal axis, and

 I'_{x} , I'_{y} = the moment of inertia about the new axis.

Radius of Gyration

The radius of gyration r_p , r_x , r_y is the distance from a reference axis at which all of the area can be considered to be concentrated to produce the moment of inertia.

$$r_x = \sqrt{I_x/A}; \quad r_y = \sqrt{I_y/A}; \quad r_p = \sqrt{J/A}$$

Product of Inertia

The *product of inertia* (*Ixy*, etc.) is defined as:

 $I_{xy} = \int xy dA$, with respect to the xy-coordinate system,

The parallel-axis theorem also applies:

 $I'_{xy} = I_{x_c y_c} + d_x d_y A$ for the xy-coordinate system, etc. where

 $d_x = x$ -axis distance between the two axes in question, and $d_y = y$ -axis distance between the two axes in question.

FRICTION

The largest frictional force is called the *limiting friction*. Any further increase in applied forces will cause motion.

$$F \leq \mu_{s} N$$
, where

F = friction force,

 μ_s = coefficient of static friction, and

N = normal force between surfaces in contact.

SCREW THREAD

For a screw-jack, square thread,

$$M = Pr \tan (\alpha \pm \phi)$$
, where

+ is for screw tightening,

- is for screw loosening,

M = external moment applied to axis of screw,

P = load on jack applied along and on the line of the axis,

r = the mean thread radius,

 α = the *pitch angle* of the thread, and

 $\mu = \tan \phi =$ the appropriate coefficient of friction.

BELT FRICTION

$$F_1 = F_2 e^{\mu \theta}$$
, where

 F_1 = force being applied in the direction of impending motion,

 F_2 = force applied to resist impending motion,

 μ = coefficient of static friction, and

 θ = the total *angle of contact* between the surfaces expressed in radians.

STATICALLY DETERMINATE TRUSS

Plane Truss: Method of Joints

The method consists of solving for the forces in the members by writing the two equilibrium equations for each joint of the truss.

$$\Sigma F = 0$$
 and $\Sigma F = 0$, where

F = horizontal forces and member components and F = vertical forces and member components.

Plane Truss: Method of Sections

The method consists of drawing a free-body diagram of a portion of the truss in such a way that the unknown truss member force is exposed as an external force.

CONCURRENT FORCES

A concurrent-force system is one in which the lines of action of the applied forces all meet at one point.

A *two-force* body in static equilibrium has two applied forces that are equal in magnitude, opposite in direction, and collinear.

Figure	Area & Centroid	Area Moment of Inertia	(Radius of Gyration) ²	Product of Inertia
$\begin{bmatrix} y \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	$A = bh/2$ $x_c = 2b/3$ $y_c = h/3$	$I_{x_c} = bh^3/36$ $I_{y_c} = b^3h/36$ $I_x = bh^3/12$ $I_y = b^3h/4$	$r_{x_c}^2 = h^2/18$ $r_{y_c}^2 = b^2/18$ $r_{y_c}^2 = h^2/6$ $r_{y}^2 = b^2/2$	$I_{x_c,y_c} = Abh/36 = b^2 h^2/72$ $I_{xy} = Abh/4 = b^2 h^2/8$
C_{\bullet}	$A = bh/2$ $x_c = b/3$ $y_c = h/3$		$r_{x_c}^2 = h^2/18$ $r_{y_c}^2 = b^2/18$ $r_{y_c}^2 = h^2/6$ $r_{y}^2 = b^2/6$	$I_{x_c, y_c} = -Abh/36 = -b^2 h^2/72$ $I_{xy} = Abh/12 = b^2 h^2/24$
y C y	$A = bh/2$ $x_c = (a+b)/3$ $y_c = h/3$	$I_{x_{\rm e}} = bh^3/36$ $I_{y_{\rm e}} = [bh(b^2 - ab + a^2)]/36$ $I_x = bh^3/12$ $I_y = [bh(b^2 + ab + a^2)]/12$	$r_{x_c}^2 = h^2/18$ $r_{y_c}^2 = (b^2 - ab + a^2)/18$ $r_x^2 = h^2/6$ $r_y^2 = (b^2 + ab + a^2)/6$	$I_{x_c,y_c} = [Ah(2a-b)]/36$ $= [bh^2(2a-b)]/72$ $I_{xy} = [Ah(2a+b)]/12$ $= [bh^2(2a+b)]/24$
$\begin{array}{c c} & & & \\ & & &$	$A = bh$ $x_c = b/2$ $y_c = h/2$		$r_{x_c}^2 = h^2/12$ $r_{y_c}^2 = b^2/12$ $r_{x_c}^2 = h^2/3$ $r_{y_c}^2 = b^2/3$ $r_{p}^2 = (b^2 + h^2)/12$	$I_{x,y_c} = 0$ $I_{xy} = Abh/4 = b^2 h^2/4$
$\begin{array}{c c} y & & \\ \hline \\ C_{\bullet} & h \\ \hline \\ & - b \\ \end{array}$	$A = h(a+b)/2$ $y_c = \frac{h(2a+b)}{3(a+b)}$	b^2	$r_{x_c}^2 = \frac{h^2(a^2 + 4ab + b^2)}{18(a+b)}$ $r_x^2 = \frac{h^2(3a+b)}{6(a+b)}$	
$\begin{array}{c c} y \\ \hline \begin{pmatrix} \theta \\ C \\ \hline \end{pmatrix} \\ \hline \begin{pmatrix} a \\ b \\ \hline \end{pmatrix} \\ \end{array}$	$A = ab \sin \theta$ $x_c = (b + a \cos \theta)/2$ $y_c = (a \sin \theta)/2$	$I_{x_c} = (a^3b \sin^3\theta)/12$ $I_{y_c} = [ab \sin\theta(b^2 + a^2\cos^2\theta)]/12$ $I_x = (a^3b \sin^3\theta)/3$ $I_y = [ab \sin\theta(b + a\cos\theta)^2]/3$ $-(a^2b^2\sin\theta\cos\theta)/6$	$r_{x_c}^2 = (a \sin \theta)^2 / 12$ $r_{y_c}^2 = (b^2 + a^2 \cos^2 \theta) / 12$ $r_x^2 = (a \sin \theta)^2 / 3$ $r_y^2 = (b + a \cos \theta)^2 / 3$ $-(ab \cos \theta) / 6$	$I_{x_c, v_c} = \left(a^3 b \sin^2 \theta \cos \theta\right) / 12$
Housner, George W., and Donald E. Hudson,	Applied Mechanics Dynamics, D. Van	Housner, George W., and Donald E. Hudson, Applied Mechanics, D. Van Nostrand Company, Inc., Princeton, NJ, 1959. Table reprinted by permission of G.W. Housner & D.E. Hudson	inted by permission of G.W. Housner & D.E. Hudson.	

Product of Inertia					
Product	$I_{x_{\mathcal{Y}^c}} = 0$ $I_{x_{\mathcal{Y}}} = Aa^2$	$I_{x_c y_c} = 0$ $I_{xy} = Aa^2$ $= \pi a^2 \left(a^2 - b^2\right)$	$I_{x_c y_c} = 0$ $I_{xy} = 2a^4/3$	$I_{x_{c}y_{c}} = 0$ $I_{xy} = 0$	$I_{x_c,\nu_c} = 0$ $I_{xy} = 0$
(Radius of Gyration) ²	$r_{x_c}^2 = r_{y_c}^2 = a^2/4$ $r_x^2 = r_y^2 = 5a^2/4$ $r_p^2 = a^2/2$	$r_{x_c}^2 = r_{y_c}^2 = (a^2 + b^2)/4$ $r_x^2 = r_y^2 = (5a^2 + b^2)/4$ $r_p^2 = (a^2 + b^2)/2$	$r_{x_c}^2 = \frac{a^2 (9\pi^2 - 64)}{36\pi^2}$ $r_{y_c}^2 = a^2 / 4$ $r_{y}^2 = a^2 / 4$ $r_{y}^2 = 5a^2 / 4$	$r_x^2 = \frac{a^2}{4} \frac{(\theta - \sin\theta \cos\theta)}{\theta}$ $r_y^2 = \frac{a^2}{4} \frac{(\theta + \sin\theta \cos\theta)}{\theta}$	$A = a^{2} \begin{bmatrix} \theta - \frac{\sin 2\theta}{2} \end{bmatrix} \qquad I_{x} = \frac{Aa^{2}}{4} \begin{bmatrix} 1 - \frac{2\sin^{3}\theta \cos\theta}{3\theta - 3\sin\theta \cos\theta} \end{bmatrix} \qquad r_{x}^{2} = \frac{a^{2}}{4} \begin{bmatrix} 1 - \frac{2\sin^{3}\theta \cos\theta}{3\theta - 3\sin\theta \cos\theta} \end{bmatrix}$ $R_{x} = \frac{2a}{3} \frac{\sin^{3}\theta}{\theta - \sin\theta \cos\theta} \qquad I_{y} = \frac{Aa^{2}}{4} \begin{bmatrix} 1 + \frac{2\sin^{3}\theta \cos\theta}{\theta - \sin\theta \cos\theta} \end{bmatrix}$ $R_{y}^{2} = \frac{a^{2}}{3} \begin{bmatrix} 1 - \frac{2\sin^{3}\theta \cos\theta}{3\theta - 3\sin\theta \cos\theta} \end{bmatrix}$ $R_{y}^{2} = \frac{a^{2}}{4} \begin{bmatrix} 1 + \frac{2\sin^{3}\theta \cos\theta}{\theta - \sin\theta \cos\theta} \end{bmatrix}$ $R_{y}^{2} = \frac{a^{2}}{4} \begin{bmatrix} 1 + \frac{2\sin^{3}\theta \cos\theta}{\theta - \sin\theta \cos\theta} \end{bmatrix}$ $R_{y}^{2} = \frac{a^{2}}{4} \begin{bmatrix} 1 + \frac{2\sin^{3}\theta \cos\theta}{\theta - \sin\theta \cos\theta} \end{bmatrix}$
Area Moment of Inertia	$I_{x_c} = I_{y_c} = \pi a^4/4$ $I_x = I_y = 5\pi a^4/4$ $J = \pi a^4/2$	$I_{x_c} = I_{y_c} = \pi \left(a^4 - b^4 \right) / 4$ $I_x = I_y = \frac{5\pi a^4}{4} - \pi a^2 b^2 - \frac{\pi b^4}{4}$ $J = \pi \left(a^4 - b^4 \right) / 2$	$I_{x_c} = \frac{a^4 (9\pi^2 - 64)}{72\pi}$ $I_{y_c} = \pi a^4 / 8$ $I_x = \pi a^4 / 8$ $I_y = 5\pi a^4 / 8$	$I_{\rm x} = a^4(\theta - \sin\theta \cos\theta)/4$ $I_{\rm y} = a^4(\theta + \sin\theta \cos\theta)/4$	$I_{x} = \frac{Aa^{2}}{4} \left[1 - \frac{2\sin^{3}\theta \cos\theta}{3\theta - 3\sin\theta \cos\theta} \right]$ $I_{y} = \frac{Aa^{2}}{4} \left[1 + \frac{2\sin^{3}\theta \cos\theta}{\theta - \sin\theta \cos\theta} \right]$
Area & Centroid	$A = \pi a^2$ $x_c = a$ $y_c = a$	$A = \pi(a^2 - b^2)$ $x_c = a$ $y_c = a$	$A = \pi a^2/2$ $x_c = a$ $y_c = 4a/(3\pi)$	$A = a^{2}\theta$ $x_{c} = \frac{2a}{3}\frac{\sin\theta}{\theta}$ $y_{c} = 0$	$A = a^{2} \left[\theta - \frac{\sin 2\theta}{2} \right]$ $x_{c} = \frac{2a}{3} \frac{\sin^{3}\theta}{\theta - \sin\theta \cos\theta}$ $y_{c} = 0$
Figure		X P P P P P P P P P P P P P P P P P P P	y	y d C A C A C A C A C A C A C A C A C A C	SIRCULAR SEGMENT

Figure	Area & Centroid	Area Moment of Inertia	(Radius of Gyration) ²	Product of Inertia
C b x x PARABOLA	$A = 4ab/3$ $x_c = 3a/5$ $y_c = 0$	$I_{x_c} = I_x = 4ab^3/15$ $I_{y_c} = 16a^3b/175$ $I_y = 4a^3b/7$	$r_{x_c}^2 = r_x^2 = b^2/5$ $r_{y_c}^2 = 12a^2/175$ $r_y^2 = 3a^2/7$	$I_{x_c,y_c} = 0$ $I_{xy} = 0$
$ \begin{array}{c c} C & b \\ \hline & x \\ \hline & x \\ \hline & A \\ & A \\ \hline & A \\ & A \\ \hline & A $	$A = 2ab/3$ $x_c = 3a/5$ $y_c = 3b/8$	$I_x = 2ab^3/15$ $I_y = 2ba^3/7$	$r_x^2 = b^2/5$ $r_y^2 = 3a^2/7$	$I_{xy} = Aab/4 = a^2b^2$
$y = (h/b^n)x^n$ $y = $	$A = bh/(n+1)$ $x_c = \frac{n+1}{n+2}b$ $y_c = \frac{h}{2} \frac{n+1}{2n+1}$	$I_x = \frac{bh^3}{3(3n+1)}$ $I_y = \frac{hb^3}{n+3}$	$r_x^2 = \frac{h^2(n+1)}{3(3n+1)}$ $r_y^2 = \frac{n+1}{n+3}b^2$	
$y = (h/b^{1/n})x^{1/n}$ $C \qquad h$	$A = \frac{n}{n+1}bh$ $x_c = \frac{n+1}{2n+1}b$ $y_c = \frac{n+1}{2(n+2)}h$	$I_x = \frac{n}{3(n+3)}bh^3$ $I_y = \frac{n}{3n+1}b^3h$	$r_x^2 = \frac{n+1}{3(n+1)}h^2$ $r_y^2 = \frac{n+1}{3n+1}b^2$	
ge W., and Donald E. Hudson,	Applied Mechanics Dynamics, D. Van l	Housner, George W., and Donald E. Hudson, Applied Mechanics, Dynamics, D. Van Nostrand Company, Inc., Princeton, NJ, 1959. Table reprinted by permission of G.W. Housner & D.E. Hudson.	nted by permission of G.W. Housner & D.E. Hudson.	

DYNAMICS

COMMON NOMENCLATURE

t = time

s = position

v = velocity

a = acceleration

 a_n = normal acceleration

 a_{t} = tangential acceleration

 $\theta = angle$

 ω = angular velocity

 α = angular acceleration

 Ω = angular velocity of x,y,z reference axis

 $\dot{\Omega}$ = angular acceleration of reference axis

 $r_{A/B}$ = relative position of "A" with respect to "B"

 $v_{A/B}$ = relative velocity of "A" with respect to "B"

 $a_{A/B}$ = relative acceleration of "A" with respect to "B"

PARTICLE KINEMATICS

Kinematics is the study of motion without consideration of the mass of, or the forces acting on, the system. For particle motion, let r(t) be the position vector of the particle in an inertial reference frame. The velocity and acceleration of the particle are defined, respectively, as

 $\mathbf{v} = d\mathbf{r}/dt$

a = dv/dt, where

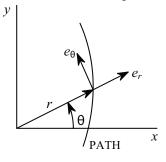
v = the instantaneous velocity

a = the instantaneous acceleration

t = time

Cartesian Coordinates

$$r = xi + yj + zk$$


$$\mathbf{v} = \dot{x}\mathbf{i} + \dot{y}\mathbf{j} + \dot{z}\mathbf{k}$$

$$a = \ddot{x}i + \ddot{y}j + \ddot{z}k$$
, where

$$\dot{x} = dx/dt = v_r$$
, etc.

$$\ddot{x} = d^2x/dt^2 = a_x$$
, etc.

Radial and Transverse Components for Planar Motion

Unit vectors e_{θ} and e_r are, respectively, normal to and collinear with the position vector \mathbf{r} . Thus:

$$r = re_r$$

$$\mathbf{v} = \dot{r}\mathbf{e}_r + r\dot{\theta}\mathbf{e}_{\theta}$$

$$\mathbf{a} = (\ddot{r} - r\dot{\theta}^2)\mathbf{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\mathbf{e}_{\theta}$$
, where

r = the radial distance

 θ = the angle between the x axis and e_r

$$\dot{r} = dr/dt$$
, etc., $\ddot{r} = d^2r/dt^2$, etc.

♦ Particle Rectilinear Motion

Variable a

Constant
$$a = a_0$$

$$a = \frac{dv}{dt}$$

$$v = v_0 + a_c$$

$$v = \frac{ds}{dt}$$

$$a = \frac{dv}{dt}$$

$$v = v_0 + a_c t$$

$$v = \frac{ds}{dt}$$

$$s = s_0 + v_0 t + \frac{1}{2} a_c t^2$$

$$a ds = v dv$$

$$v^2 = v_0^2 + 2a_c(s - s_0)$$

♦ Particle Curvilinear Motion

x,y,z Coordinates

$$r, \theta, z$$
 Coordinates

$$v_y = \dot{y} \quad a_y = \ddot{y}$$

$$\begin{array}{lll} v_x = \dot{x} & a_x = \ddot{x} & v_r = \dot{r} & a_r = \ddot{r} - r\dot{\theta}^2 \\ v_y = \dot{y} & a_y = \ddot{y} & v_\theta = r\dot{\theta} & a_\theta = r\ddot{\theta} + 2\dot{r}\dot{\theta} \\ v_z = \dot{z} & a_z = \ddot{z} & v_z = \ddot{z} & v_z = \ddot{z} \end{array}$$

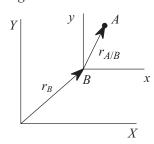
$$v_y = \dot{z} \qquad a_y = \dot{z}$$
 $v_z = \dot{z} \qquad a_z = \ddot{z}$

$$v_{\alpha} = \dot{z}$$
 $a_{\alpha} = \ddot{z}$

$$v = \dot{s} \qquad a_t = \dot{v} = \frac{dv}{ds}$$

$$v = \dot{s} \qquad a_t = \dot{v} = \frac{dv}{ds}$$

$$a_n = \frac{v^2}{\rho} \qquad \rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}{\left|\frac{d^2y}{dx^2}\right|}$$


♦ Relative Motion

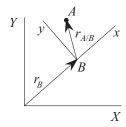
$$\mathbf{v}_{B} = \mathbf{v}_{A} + \mathbf{v}_{B/A} \qquad \mathbf{a}_{B} = \mathbf{a}_{A} + \mathbf{a}_{B/A}$$

Relative Motion

The equations for the relative position, velocity, and acceleration may be written as

Translating Axis

$$\mathbf{r}_A = \mathbf{r}_B + \mathbf{r}_{A/B}$$

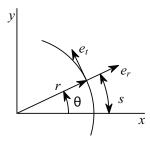

$$\mathbf{v}_A = \mathbf{v}_B + \mathbf{\omega} \times \mathbf{r}_{A/B} = \mathbf{v}_B + \mathbf{v}_{A/B}$$

$$\mathbf{a}_A = \mathbf{a}_B + \alpha \times \mathbf{r}_{A/B} + \omega \times (\omega \times \mathbf{r}_{A/B}) = \mathbf{a}_B + \mathbf{a}_{A/B}$$

where ω and α are, respectively, the angular velocity and angular acceleration of the relative position vector $\mathbf{r}_{A/B}$.

♦ Adapted from Hibbeler, R.C., Engineering Mechanics, 10th ed., Prentice Hall, 2003.

Rotating Axis



$$\begin{aligned} & \mathbf{r}_A = \mathbf{r}_B + \mathbf{r}_{A/B} \\ & \mathbf{v}_A = \mathbf{v}_B + \mathbf{\omega} \times \mathbf{r}_{A/B} + \mathbf{v}_{A/B} \\ & \mathbf{a}_A = \mathbf{a}_B + \mathbf{\omega} \times \mathbf{r}_{A/B} + \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r}_{A/B}) + 2\mathbf{\omega} \times \mathbf{v}_{A/B} + \mathbf{a}_{A/B} \end{aligned}$$

where ω and α are, respectively, the total angular velocity and acceleration of the relative position vector $\mathbf{r}_{A/B}$.

Plane Circular Motion

A special case of transverse and radial components is for constant radius rotation about the origin, or plane circular motion.

Here the vector quantities are defined as

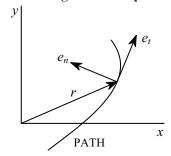
$$r = re_r$$

 $v = r\omega e_t$
 $a = (-r\omega^2)e_r + r\alpha e_t$, where $r =$ the radius of the circle

 θ = the angle between the *x* and e_r axes

The magnitudes of the angular velocity and acceleration, respectively, are defined as

$$\begin{split} \omega &= \dot{\theta} \\ \alpha &= \dot{\omega} = \ddot{\theta} \end{split}$$


Arc length, tangential velocity, and tangential acceleration, respectively, are

$$s = r\theta$$
$$v_t = r\omega$$
$$a_t = r\alpha$$

The normal acceleration is given by

$$a_n = -r\omega^2$$
 (towards the center of the circle)

Normal and Tangential Components

Unit vectors e_t and e_n are, respectively, tangent and normal to the path with e_n pointing to the center of curvature. Thus

$$\mathbf{v} = \mathbf{v}(t)\mathbf{e}_t$$

 $\mathbf{a} = a(t)\mathbf{e}_t + (\mathbf{v}_t^2/\rho)\mathbf{e}_n$, where
 $\rho = \text{instantaneous radius of curvature}$

Constant Acceleration

The equations for the velocity and displacement when acceleration is a constant are given as

$$a(t) = a_0$$

 $v(t) = a_0 (t - t_0) + v_0$
 $s(t) = a_0 (t - t_0)^2/2 + v_0 (t - t_0) + s_0$, where
 $s =$ distance along the line of travel
 $s_0 =$ displacement at time t_0
 $v =$ velocity along the direction of travel
 $v_0 =$ velocity at time t_0
 $a_0 =$ constant acceleration
 $t =$ time
 $t_0 =$ some initial time

For a free-falling body, $a_0 = -g$ (downward). An additional equation for velocity as a function of position may be written as

$$v^2 = v_0^2 + 2a_0(s - s_0)$$

For constant angular acceleration, the equations for angular velocity and displacement are

$$\alpha(t) = \alpha_0$$
 $\omega(t) = \alpha_0 (t - t_0) + \omega_0$
 $\theta(t) = \alpha_0 (t - t_0)^2 / 2 + \omega_0 (t - t_0) + \theta_0$, where

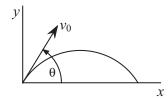
 θ = angular displacement

 θ_0 = angular displacement at time t_0

 ω = angular velocity

 ω_0 = angular velocity at time t_0

 α_0 = constant angular acceleration


t = time

 t_0 = some initial time

An additional equation for angular velocity as a function of angular position may be written as

$$\omega^2 = \omega_0^2 + 2\alpha_0(\theta - \theta_0)$$

Projectile Motion

The equations for common projectile motion may be obtained from the constant acceleration equations as

$$a_x = 0$$

$$v_x = v_0 \cos(\theta)$$

$$x = v_0 \cos(\theta)t + x_0$$

$$a_y = -g$$

$$v_y = -gt + v_0 \sin(\theta)$$

$$y = -gt^2/2 + v_0 \sin(\theta)t + y_0$$

Non-constant Acceleration

When non-constant acceleration, a(t), is considered, the equations for the velocity and displacement may be obtained from

$$v(t) = \int_{t_0}^t \alpha(\tau) d\tau + v_{t_0}$$
$$s(t) = \int_{t_0}^t v(\tau) d\tau + s_{t_0}$$

For variable angular acceleration

$$\omega(t) = \int_{t_0}^{t} \alpha(\tau) d\tau + \omega_{t_0}$$

$$\theta(t) = \int_{t_0}^{t} \omega(\tau) d\tau + \theta_{t_0}$$

CONCEPT OF WEIGHT

W = mg, where

W = weight, N (lbf)

 $m = \text{mass}, \text{kg (lbf-sec}^2/\text{ft)}$

g = local acceleration of gravity, m/s² (ft/sec²)

PARTICLE KINETICS

Newton's second law for a particle is

 $\Sigma \mathbf{F} = d(m\mathbf{v})/dt$, where

 ΣF = the sum of the applied forces acting on the particle

m =the mass of the particle

v = the velocity of the particle

For constant mass,

$$\Sigma \mathbf{F} = m \, d\mathbf{v}/dt = m\mathbf{a}$$

One-Dimensional Motion of a Particle (Constant Mass)

When motion exists only in a single dimension then, without loss of generality, it may be assumed to be in the *x* direction, and

$$a_r = F_r/m$$
, where

 F_x = the resultant of the applied forces, which in general can depend on t, x, and v_x .

If F_x only depends on t, then

$$a_x(t) = F_x(t)/m$$

$$v_x(t) = \int_{t_0}^t a_x(\tau)d\tau + v_{xt_0}$$

$$x(t) = \int_{t_0}^t v_x(\tau)d\tau + x_{t_0}$$

If the force is constant (i.e. independent of time, displacement, and velocity) then

$$a_x = F_x/m$$

$$v_x = a_x(t - t_0) + v_{xt_0}$$

$$x = a_x(t - t_0)^2/2 + v_{xt_0}(t - t_0) + x_{t_0}$$

Normal and Tangential Kinetics for Planar Problems

When working with normal and tangential directions, the scalar equations may be written as

$$\Sigma F_t = ma_t = mdv_t/dt$$
 and
 $\Sigma F_n = ma_n = m(v_t^2/\rho)$

♦ Principle of Work and Energy

$$T_1 + U_{1-2} = T_2$$

♦ Kinetic Energy

Particle	$T = \frac{1}{2}mv^2$	
Rigid Body	1 1	
$(Plane\ Motion)$	$T = \frac{1}{2} m v_G^2 + \frac{1}{2}$	$I_G \omega^2$

♦ Work

$$\begin{aligned} \textit{Variable force} & U_F = \int F \cos \theta \, ds \\ \textit{Constant force} & U_F = \left(F_c \cos \theta \right) \Delta s \\ \textit{Weight} & U_W = -W \Delta y \\ \textit{Spring} & U_s = -\left(\frac{1}{2} k s_2^2 - k s_1^2 \right) \\ \textit{Couple moment} & U_M = M \Delta \theta \end{aligned}$$

♦ Power and Efficiency

$$P = \frac{dU}{dt} = \mathbf{F} \cdot \mathbf{v} \qquad \mathbf{\varepsilon} = \frac{P_{\text{out}}}{P_{\text{in}}} = \frac{U_{\text{out}}}{U_{\text{in}}}$$

♦ Conservation of Energy Theorem

$$T_1 + V_1 = T_2 + V_2$$

♦ Adapted from Hibbeler, R.C., Engineering Mechanics, 10th ed., Prentice Hall, 2003.

♦ Potential Energy

$$V = V_g + V_e$$
, where $V_g = \pm Wy$, $V_e = + 1/2 ks^2$

Work and Energy

Work W is defined as

$$W = \int \mathbf{F} \cdot d\mathbf{r}$$

Kinetic Energy

The kinetic energy of a particle is the work done by an external agent in accelerating the particle from rest to a velocity v. Thus

$$T = mv^2/2$$

In changing the velocity from v_1 to v_2 , the change in kinetic energy is

$$T_2 - T_1 = m(v_2^2 - v_1^2)/2$$

Potential Energy

The work done by an external agent in the presence of a conservative field is termed the change in potential energy.

Potential Energy in Gravity Field

$$U = mgh$$
, where

h = the elevation above some specified datum.

Elastic Potential Energy

For a linear elastic spring with modulus, stiffness, or spring constant, the force in the spring is

$$F_s = k x$$
, where

x = the change in length of the spring from the undeformed length of the spring.

The potential energy stored in the spring when compressed or extended by an amount *x* is

$$U = k x^2/2$$

In changing the deformation in the spring from position x_1 to x_2 , the change in the potential energy stored in the spring is

$$U_2 - U_1 = k(x_2^2 - x_1^2)/2$$

Principle of Work and Energy

If T_i and U_i are, respectively, the kinetic and potential energy of a particle at state i, then for conservative systems (no energy dissipation or gain), the law of conservation of energy is

$$T_2 + U_2 = T_1 + U_1$$

If nonconservative forces are present, then the work done by these forces must be accounted for. Hence

$$T_2 + U_2 = T_1 + U_1 + W_{1 \to 2}$$
, where

 $W_{1\rightarrow 2}$ = the work done by the nonconservative forces in moving between state 1 and state 2. Care must be exercised during computations to correctly compute the algebraic sign of the work term. If the forces serve to increase the energy of the system, $W_{1\rightarrow 2}$ is positive. If the forces, such as friction, serve to dissipate energy, $W_{1\rightarrow 2}$ is negative.

Impulse and Momentum

Linear

Assuming constant mass, the equation of motion of a particle may be written as

$$md\mathbf{v}/dt = \mathbf{F}$$

$$mdv = Fd$$

For a system of particles, by integrating and summing over the number of particles, this may be expanded to

$$\sum m_i (\mathbf{v}_i)_{t_2} = \sum m_i (\mathbf{v}_i)_{t_1} + \sum_{t_1}^{t_2} \mathbf{F}_i dt$$

The term on the left side of the equation is the linear momentum of a system of particles at time t_2 . The first term on the right side of the equation is the linear momentum of a system of particles at time t_1 . The second term on the right side of the equation is the impulse of the force F from time t_1 to t_2 . It should be noted that the above equation is a vector equation. Component scalar equations may be obtained by considering the momentum and force in a set of orthogonal directions.

Angular Momentum or Moment of Momentum

The angular momentum or the moment of momentum about point 0 for a particle is defined as

$$\mathbf{H}_0 = \mathbf{r} \times m\mathbf{v}$$
, or

$$\mathbf{H}_0 = I_0 \mathbf{\omega}$$

Taking the time derivative of the above, the equation of motion may be written as

$$\dot{\mathbf{H}}_0 = d(I_0 \omega)/dt = \mathbf{M}$$
, where

M is the moment applied to the particle. Now by integrating and summing over a system of any number of particles, this may be expanded to

$$\Sigma(\mathbf{H}_{0i})_{t_2} = \Sigma(\mathbf{H}_{0i})_{t_1} + \sum_{t_1} \int_{t_1}^{t_2} \mathbf{M}_{0i} dt$$

The term on the left side of the equation is the angular momentum of a system of particles at time t_2 . The first term on the right side of the equation is the angular momentum of a system of particles at time t_1 . The second term on the right side of the equation is the angular impulse of the moment M from time t_1 to t_2 .

♦ Adapted from Hibbeler, R.C., Engineering Mechanics, 10th ed., Prentice Hall, 2003.

Impact

During an impact, momentum is conserved while energy may or may not be conserved. For direct central impact with no external forces

$$m_1 v_1 + m_2 v_2 = m_1 v'_1 + m_2 v'_2$$
, where

 m_1, m_2 = the masses of the two bodies

 v_1, v_2 = the velocities of the bodies just before impact

 v_1', v_2' = the velocities of the bodies just after impact

For impacts, the relative velocity expression is

$$e = \frac{(v_2')_n - (v_1')_n}{(v_1)_n - (v_2)_n}$$
, where

e = coefficient of restitution

 $(v_i)_n$ = the velocity normal to the plane of impact just **before** impact

 $(v_i)_n$ = the velocity normal to the plane of impact just after impact

The value of *e* is such that

 $0 \le e \le 1$, with limiting values

e = 1, perfectly elastic (energy conserved)

e = 0, perfectly plastic (no rebound)

Knowing the value of e, the velocities after the impact are given as

$$(v'_1)_n = \frac{m_2(v_2)_n(1+e) + (m_1 - em_2)(v_1)_n}{m_1 + m_2}$$

$$(v_2')_n = \frac{m_1(v_1)_n(1+e) - (em_1 - m_2)(v_2)_n}{m_1 + m_2}$$

Friction

The Laws of Friction are

- 1. The total friction force *F* that can be developed is independent of the magnitude of the area of contact.
- 2. The total friction force *F* that can be developed is proportional to the normal force *N*.
- 3. For low velocities of sliding, the total frictional force that can be developed is practically independent of the velocity, although experiments show that the force *F* necessary to initiate slip is greater than that necessary to maintain the motion.

The formula expressing the Laws of Friction is

$$F \le \mu N$$
, where

 μ = the coefficient of friction.

In general

 $F < \mu_{\rm s} N$, no slip occurring

 $F = \mu_s N$, at the point of impending slip

 $F = \mu_k N$, when slip is occurring

Here.

 μ_s = the coefficient of static friction

 μ_k = the coefficient of kinetic friction

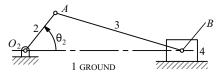
The coefficient of kinetic friction is often approximated as 75% of the coefficient of static friction.

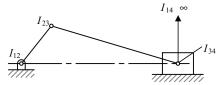
PLANE MOTION OF A RIGID BODY

Kinematics of a Rigid Body

Rigid Body Rotation

For rigid body rotation θ

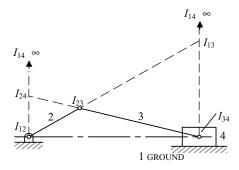

 $\omega = d\theta/dt$


 $\alpha = d\omega/dt$

 $\alpha d\theta = \omega d\omega$

Instantaneous Center of Rotation (Instant Centers)

An instantaneous center of rotation (instant center) is a point, common to two bodies, at which each has the same velocity (magnitude and direction) at a given instant. It is also a point in space about which a body rotates, instantaneously.



The figure shows a fourbar slider-crank. Link 2 (the crank) rotates about the fixed center, O_2 . Link 3 couples the crank to the slider (link 4), which slides against ground (link 1). Using the definition of an instant center (IC), we see that the pins at O_2 . A, and B are ICs that are designated I_{12} , I_{23} , and I_{34} . The easily observable IC is I_{14} , which is located at infinity with its direction perpendicular to the interface between links 1 and 4 (the direction of sliding). To locate the remaining two ICs (for a fourbar) we must make use of Kennedy's rule.

Kennedy's Rule: When three bodies move relative to one another they have three instantaneous centers, all of which lie on the same straight line.

To apply this rule to the slider-crank mechanism, consider links 1, 2, and 3 whose ICs are I_{12} , I_{23} , and I_{13} , all of which lie on a straight line. Consider also links 1, 3, and 4 whose ICs are I_{13} , I_{34} , and I_{14} , all of which lie on a straight line. Extending the line through I_{12} and I_{23} and the line through I_{34} and I_{14} to their intersection locates I_{13} , which is common to the two groups of links that were considered.

Similarly, if body groups 1, 2, 4 and 2, 3, 4 are considered, a line drawn through known $ICs\ I_{12}$ and I_{14} to the intersection of a line drawn through known $ICs\ I_{23}$ and I_{34} locates I_{24} .

The number of ICs, c, for a given mechanism is related to the number of links, n, by

$$c = \frac{n(n-1)}{2}$$

Kinetics of a Rigid Body

In general, Newton's second law for a rigid body, with constant mass and mass moment of inertia, in plane motion may be written in vector form as

$$\Sigma F = ma_c$$

 $\Sigma M_c = I_c \alpha$
 $\Sigma M_p = I_c \alpha + \rho_{pc} \times ma_c$, where

 ${\pmb F}$ are forces and ${\pmb a}_c$ is the acceleration of the body's mass center both in the plane of motion, ${\pmb M}_c$ are moments and α is the angular acceleration both about an axis normal to the plane of motion, I_c is the mass moment of inertia about the normal axis through the mass center, and ${\pmb \rho}_{pc}$ is a vector from point p to point c.

♦ Mass Moment of Inertia $I = \int r^2 dm$

Parallel-Axis Theorem $I = I_G + md^2$

Radius of Gyration
$$k = \sqrt{\frac{I}{m}}$$

♦ Equations of Motion

Rigid Body
$$(Plane \ Motion) \qquad \Sigma F_{x} = m(a_{G})_{x}$$

$$\Sigma F_{y} = m(a_{G})_{y}$$

$$\Sigma M_{G} = I_{G} \alpha \text{ or } \Sigma M_{P} = \Sigma (M_{k})_{P}$$

Mass Moment of Inertia

The definitions for the mass moments of inertia are

$$I_x = \int (y^2 + z^2) dm$$

$$I_y = \int (x^2 + z^2) dm$$

$$I_z = \int (x^2 + y^2) dm$$

A table listing moment of inertia formulas for some standard shapes is at the end of this section.

Parallel-Axis Theorem

The mass moments of inertia may be calculated about any axis through the application of the above definitions. However, once the moments of inertia have been determined about an axis passing through a body's mass center, it may be transformed to another parallel axis. The transformation equation is

$$I_{new} = I_c + md^2$$
, where

 I_{new} = the mass moment of inertia about any specified axis

 I_c = the mass moment of inertia about an axis that is parallel to the above specified axis but passes through the body's mass center

m =the mass of the body

d = the normal distance from the body's mass center to the above-specified axis

Mass Radius of Gyration

The mass radius of gyration is defined as

$$r_m = \sqrt{I/m}$$

Without loss of generality, the body may be assumed to be in the *x-y* plane. The scalar equations of motion may then be written as

$$\Sigma F_x = ma_{xc}$$

 $\Sigma F_y = ma_{yc}$
 $\Sigma M_{zc} = I_{zc} \alpha$, where

zc indicates the z axis passing through the body's mass center, a_{xc} and a_{yc} are the acceleration of the body's mass center in the x and y directions, respectively, and α is the angular acceleration of the body about the z axis.

Rotation about an Arbitrary Fixed Axis

♦ Rigid Body Motion About a Fixed Axis

<i>Variable</i> α	Constant $\alpha = \alpha_c$
$\alpha = \frac{d\omega}{dt}$	$\omega = \omega_0 + \alpha_{c}t$
$\omega = \frac{d\theta}{dt}$	$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha_c t^2$
$\omega d\omega = \alpha d\theta$	$\omega^2 = \omega_0^2 + 2\alpha_c(\theta - \theta_0)$

For rotation about some arbitrary fixed axis q

$$\sum M_a = I_a \alpha$$

If the applied moment acting about the fixed axis is constant then integrating with respect to time, from t = 0 yields

$$\alpha = M_q/I_q$$

$$\omega = \omega_0 + \alpha t$$

$$\theta = \theta_0 + \omega_0 t + \alpha t^2/2$$

where ω_0 and θ_0 are the values of angular velocity and angular displacement at time t = 0, respectively.

◆ Adapted from Hibbeler, R.C., Engineering Mechanics, 10th ed., Prentice Hall, 2003.

The change in kinetic energy is the work done in accelerating the rigid body from ω_0 to ω

$$I_q \omega^2/2 = I_q \omega_0^2/2 + \int_{\theta_0}^{\theta} M_q d\theta$$

Principles of Work Energy

In general the kinetic energy for a rigid body may be written as

$$T = mv^2/2 + I_c \omega^2/2$$

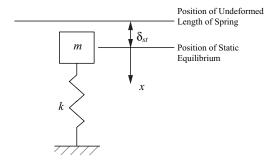
For motion in the xy plane this reduces to

$$T = m(v_{cx}^2 + v_{cy}^2)/2 + I_c \omega_z^2/2$$

For motion about an instant center,

$$T = I_{IC}\omega^2/2$$

♦ Principle of Angular Impulse and Momentum


Rigid Body
$$(\mathbf{H}_{G})_{1} + \sum \int \mathbf{M}_{G} dt = (\mathbf{H}_{G})_{2}$$
 where $\mathbf{H}_{G} = I_{G} \omega$
$$(\mathbf{H}_{O})_{1} + \sum \int \mathbf{M}_{O} dt = (\mathbf{H}_{O})_{2}$$
 where $\mathbf{H}_{O} = I_{O} \omega$

♦ Conservation of Angular Momentum

$$\Sigma(\text{syst. }\mathbf{H})_1 = \Sigma(\text{syst. }\mathbf{H})_2$$

Free Vibration

The figure illustrates a single degree-of-freedom system.

The equation of motion may be expressed as

$$m\ddot{x} = mg - k(x + \delta_{st})$$

where m is mass of the system, k is the spring constant of the system, δ_{st} is the static deflection of the system, and x is the displacement of the system from static equilibrium.

From statics it may be shown that

$$mg = k\delta_{st}$$

thus the equation of motion may be written as

$$m\ddot{x} + kx = 0$$
, or $\ddot{x} + (k/m)x = 0$

The solution of this differential equation is

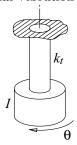
$$x(t) = C_1 \cos(\omega_n t) + C_2 \sin(\omega_n t)$$

where $\omega_n = \sqrt{k/m}$ is the undamped natural circular frequency and C_1 and C_2 are constants of integration whose values are determined from the initial conditions.

If the initial conditions are denoted as $x(0) = x_0$ and

$$\dot{x}(0) = v_0$$
, then

$$x(t) = x_0 \cos(\omega_n t) + (v_0/\omega_n) \sin(\omega_n t)$$


It may also be shown that the undamped natural frequency may be expressed in terms of the static deflection of the system as

$$\omega_n = \sqrt{g/\delta_{st}}$$

The undamped natural period of vibration may now be written as

$$\tau_n = 2\pi/\omega_n = \frac{2\pi}{\sqrt{\frac{k}{m}}} = \frac{2\pi}{\sqrt{\frac{g}{\delta_{ct}}}}$$

Torsional Vibration

For torsional free vibrations it may be shown that the differential equation of motion is

$$\ddot{\theta} + (k_t/I)\theta = 0$$
, where

 θ = the angular displacement of the system

 k_t = the torsional stiffness of the massless rod

I = the mass moment of inertia of the end mass

The solution may now be written in terms of the initial conditions $\theta(0) = \theta_0$ and $\dot{\theta}(0) = \dot{\theta}_0$ as

$$\theta(t) = \theta_0 \cos(\omega_n t) + (\dot{\theta}_0/\omega_n) \sin(\omega_n t)$$

where the undamped natural circular frequency is given by

$$\omega_n = \sqrt{k_t/I}$$

The torsional stiffness of a solid round rod with associated polar moment-of-inertia J, length L, and shear modulus of elasticity G is given by

$$k_t = GJ/L$$

Thus the undamped circular natural frequency for a system with a solid round supporting rod may be written as

$$\omega_n = \sqrt{GJ/IL}$$

Similar to the linear vibration problem, the undamped natural period may be written as

$$\tau_n = 2\pi/\omega_n = \frac{2\pi}{\sqrt{\frac{k_t}{I}}} = \frac{2\pi}{\sqrt{\frac{GJ}{IL}}}$$

◆ Adapted from Hibbeler, R.C., Engineering Mechanics, 10th ed., Prentice Hall, 2003.

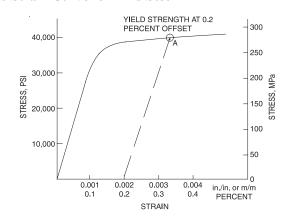

74 DYNAMICS

Figure	Mass & Centroid	Mass Moment of Inertia	(Radius of Gyration) ²	Product of Inertia
	$M = \rho LA$ $x_c = L/2$ $y_c = 0$ $z_c = 0$ $A = \text{cross-sectional area of } rod$ $\rho = \text{mass/vol.}$	$I_x = I_{x_c} = 0$ $I_{y_c} = I_{z_c} = ML^2/12$ $I_y = I_z = ML^2/3$	$r_x^2 = r_{x_c}^2 = 0$ $r_y^2 = r_{z_c}^2 = L^2/12$ $r_y^2 = r_z^2 = L^2/3$	$I_{x_{\rm c}, \nu_c}$, etc. = 0 $I_{x_{\rm y}}$, etc. = 0
	$M = 2\pi R \rho A$ $x_c = R = \text{mean radius}$ $y_c = R = \text{mean radius}$ $z_c = 0$ $A = \text{cross-sectional area of}$ $ring$ $\rho = \text{mass/vol.}$	$I_{x_c} = I_{y_c} = MR^2/2$ $I_{z_c} = MR^2$ $I_x = I_y = 3MR^2/2$ $I_z = 3MR^2$	$r_{x_c}^2 = r_{y_c}^2 = R^2/2$ $r_{z_c}^2 = R^2$ $r_x^2 = r_y^2 = 3R^2/2$ $r_z^2 = 3R^2$	I_{x_c, y_c} , etc. = 0 $I_{z_c z_c} = MR^2$ $I_{xz} = I_{yz} = 0$
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	$M = \pi R^{2} \rho h$ $x_{c} = 0$ $y_{c} = h/2$ $z_{c} = 0$ $\rho = \text{mass/vol.}$	$I_{x_c} = I_{z_c} = M(3R^2 + h^2)/12$ $I_{y_c} = I_y = MR^2/2$ $I_x = I_z = M(3R^2 + 4h^2)/12$	$r_{x_c}^2 = r_{z_c}^2 = (3R^2 + h^2)/12$ $r_{y_c}^2 = r_y^2 = R^2/2$ $r_x^2 = r_z^2 = (3R^2 + 4h^2)/12$	$I_{x_{\rm c} \nu_{ m c}}$, etc. = 0 $I_{x_{ m p}}$, etc. = 0
R_1	$M = \pi \left(R_1^2 - R_2^2\right) \rho h$ $x_c = 0$ $y_c = h/2$ $z_c = 0$ $\rho = \text{mass/vol.}$	$I_{X_c} = I_{z_c}$ $= M (3R_1^2 + 3R_2^2 + h^2)/12$ $I_{y_c} = I_y = M (R_1^2 + R_2^2)/2$ $I_x = I_z$ $= M (3R_1^2 + 3R_2^2 + 4h^2)/12$	$r_{x_c}^2 = r_{z_c}^2 = (3R_1^2 + 3R_2^2 + h^2)/12$ $r_{y_c}^2 = r_y^2 = (R_1^2 + R_2^2)/2$ $r_x^2 = r_z^2$ $= (3R_1^2 + 3R_2^2 + 4h^2)/12$	$I_{x_{\rm c},y_{\rm c}}$, etc. = 0 $I_{x_{\rm p}}$, etc. = 0
	$M = \frac{4}{3}\pi R^{3} \rho$ $x_{c} = 0$ $y_{c} = 0$ $z_{c} = 0$ $\rho = \text{mass/vol.}$	$I_{x_c} = I_x = 2MR^2/5$ $I_{y_c} = I_y = 2MR^2/5$ $I_{z_c} = I_z = 2MR^2/5$	$r_{x_c}^2 = r_x^2 = 2R^2/5$ $r_{y_c}^2 = r_y^2 = 2R^2/5$ $r_{z_c}^2 = r_z^2 = 2R^2/5$	I_{X_c, V_c} , etc. = 0
Housner, George W., and Donald E. Hudson, Ap	pplied Mechanics Dynamics, D. Van Nostrand C	Company, Inc., Princeton, NJ, 1959. Table reprint	Housner, George W., and Donald E. Hudson, Applied Mechanics Dynamics, D. Van Nostrand Company, Inc., Princeton, NJ, 1959. Table reprinted by permission of G.W. Housner & D.E. Hudson.	

MECHANICS OF MATERIALS

UNIAXIAL STRESS-STRAIN

Stress-Strain Curve for Mild Steel

The slope of the linear portion of the curve equals the modulus of elasticity.

DEFINITIONS

Engineering Strain

$$\varepsilon = \Delta L/L_o$$
, where

 ε = engineering strain (units per unit)

 ΔL = change in length (units) of member

 L_o = original length (units) of member

Percent Elongation

% Elongation =
$$\left(\frac{\Delta L}{L_o}\right) \times 100$$

Percent Reduction in Area (RA)

The % reduction in area from initial area, A_i , to final area, A_f , is:

$$\%RA = \left(\frac{A_i - A_f}{A_i}\right) \times 100$$

Shear Stress-Strain

$$\gamma = \tau/G$$
, where

 γ = shear strain

 τ = shear stress

G = shear modulus (constant in linear torsion-rotation relationship)

$$G = \frac{E}{2(1+v)}$$
, where

E = modulus of elasticity (Young's modulus)

v = Poisson's ratio

= - (lateral strain)/(longitudinal strain)

Uniaxial Loading and Deformation

 $\sigma = P/A$, where

 σ = stress on the cross section

P = loading

A = cross-sectional area

 $\varepsilon = \delta/L$, where

 δ = elastic longitudinal deformation

L = length of member

$$E = \sigma/\epsilon = \frac{P/A}{\delta/L}$$

$$\delta = \frac{PL}{AE}$$

True stress is load divided by actual cross-sectional area whereas engineering stress is load divided by the initial area.

THERMAL DEFORMATIONS

$$\delta_t = \alpha L(T - T_o)$$
, where

 δ_t = deformation caused by a change in temperature

 α = temperature coefficient of expansion

L = length of member

T = final temperature

 T_{o} = initial temperature

CYLINDRICAL PRESSURE VESSEL

Cylindrical Pressure Vessel

For internal pressure only, the stresses at the inside wall are:

$$\sigma_t = P_i \frac{r_o^2 + r_i^2}{r_o^2 - r_i^2}$$
 and $\sigma_r = -P_i$

For external pressure only, the stresses at the outside wall are:

$$\sigma_t = -P_o \frac{r_o^2 + r_i^2}{r_o^2 - r_i^2}$$
 and $\sigma_r = -P_o$, where

 $\sigma_t = \text{tangential (hoop) stress}$

 $\sigma_r = \text{radial stress}$

 P_i = internal pressure

 $P_o = \text{external pressure}$

 r_i = inside radius

 r_o = outside radius

For vessels with end caps, the axial stress is:

$$\sigma_a = P_i \frac{r_i^2}{r_o^2 - r_i^2}$$

 σ_t , σ_r , and σ_a are principal stresses.

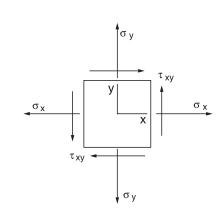
 Flinn, Richard A., and Paul K. Trojan, Engineering Materials & Their Applications, 4th ed., Houghton Mifflin Co., Boston, 1990. When the thickness of the cylinder wall is about one-tenth or less of inside radius, the cylinder can be considered as thin-walled. In which case, the internal pressure is resisted by the hoop stress and the axial stress.

$$\sigma_t = \frac{P_i r}{t}$$
 and $\sigma_a = \frac{P_i r}{2t}$

where t = wall thickness and $r = \frac{r_i + r_o}{2}$.

STRESS AND STRAIN

Principal Stresses


For the special case of a *two-dimensional* stress state, the equations for principal stress reduce to

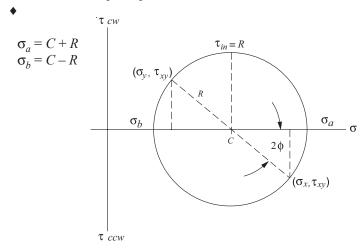
$$\sigma_a, \sigma_b = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

$$\sigma_c = 0$$

The two nonzero values calculated from this equation are temporarily labeled σ_a and σ_b and the third value σ_c is always zero in this case. Depending on their values, the three roots are then labeled according to the convention:

algebraically largest = σ_1 , algebraically smallest = σ_3 , other = σ_2 . A typical 2D stress element is shown below with all indicated components shown in their positive sense.

Mohr's Circle - Stress, 2D


To construct a Mohr's circle, the following sign conventions are used.

- Tensile normal stress components are plotted on the horizontal axis and are considered positive. Compressive normal stress components are negative.
- 2. For constructing Mohr's circle only, shearing stresses are plotted above the normal stress axis when the pair of shearing stresses, acting on opposite and parallel faces of an element, forms a clockwise couple. Shearing stresses are plotted below the normal axis when the shear stresses form a counterclockwise couple.

The circle drawn with the center on the normal stress (horizontal) axis with center, C, and radius, R, where

$$C = \frac{\sigma_x + \sigma_y}{2}, \quad R = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

The two nonzero principal stresses are then:

The maximum *inplane* shear stress is $\tau_{in} = R$. However, the maximum shear stress considering three dimensions is always

$$\tau_{max} = \frac{\sigma_1 - \sigma_3}{2}.$$

Hooke's Law

Three-dimensional case:

$$\begin{aligned} \varepsilon_{x} &= (1/E)[\sigma_{x} - \nu(\sigma_{y} + \sigma_{z})] & \gamma_{xy} &= \tau_{xy}/G \\ \varepsilon_{y} &= (1/E)[\sigma_{y} - \nu(\sigma_{z} + \sigma_{x})] & \gamma_{yz} &= \tau_{yz}/G \\ \varepsilon_{z} &= (1/E)[\sigma_{z} - \nu(\sigma_{x} + \sigma_{y})] & \gamma_{zx} &= \tau_{zx}/G \end{aligned}$$

Plane stress case $(\sigma_z = 0)$: $\begin{aligned}
\varepsilon_x &= (1/E)(\sigma_x - v\sigma_y) \\
\varepsilon_y &= (1/E)(\sigma_y - v\sigma_x) \\
\varepsilon_z &= - (1/E)(v\sigma_x + v\sigma_y)
\end{aligned} \quad \begin{cases}
\sigma_x \\ \sigma_y \\ \tau_{xy}
\end{cases} = \frac{E}{1 - v^2} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{1 - v}{2} \end{bmatrix} \begin{Bmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{Bmatrix}$

Uniaxial case ($\sigma_y = \sigma_z = 0$): $\sigma_x = E\varepsilon_x$ or $\sigma = E\varepsilon$, where ε_x , ε_y , $\varepsilon_z =$ normal strain ε_x , ε_y , $\varepsilon_z =$ normal stress ε_x , ε_y , $\varepsilon_z =$ shear strain ε_x , ε_y , ε_z , ε_z , ε_z = shear stress ε_z = modulus of elasticity ε_z = shear modulus ε_z = Poisson's ratio

 Crandall, S.H., and N.C. Dahl, An Introduction to Mechanics of Solids, McGraw-Hill, New York, 1959.

TORSION

Torsion stress in circular solid or thick-walled (t > 0.1 r) shafts:

$$\tau = \frac{Tr}{J}$$

where J = polar moment of inertia

TORSIONAL STRAIN

$$\gamma_{\Phi z} = \lim_{\Delta z \to 0} r(\Delta \phi / \Delta z) = r(d\phi / dz)$$

The shear strain varies in direct proportion to the radius, from zero strain at the center to the greatest strain at the outside of the shaft. $d\phi/dz$ is the twist per unit length or the rate of twist.

$$\tau_{\phi z} = G\gamma_{\phi z} = Gr(d\phi/dz)$$

$$T = G(d\phi/dz) \int_{A} r^{2} dA = GJ(d\phi/dz)$$

$$\phi = \int_{0}^{L} \frac{T}{GI} dz = \frac{TL}{GI}, \text{ where}$$

 ϕ = total angle (radians) of twist

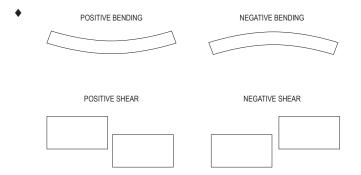
T = torque

L = length of shaft

 T/ϕ gives the twisting moment per radian of twist. This is called the torsional stiffness and is often denoted by the symbol k or c.

For Hollow, Thin-Walled Shafts

$$\tau = \frac{T}{2A_{m}t}$$
, where


= thickness of shaft wall

= the total mean area enclosed by the shaft measured to the midpoint of the wall.

BEAMS

Shearing Force and Bending Moment Sign Conventions

- The bending moment is *positive* if it produces bending of the beam *concave upward* (compression in top fibers and tension in bottom fibers).
- The shearing force is *positive* if the *right portion of the* beam tends to shear downward with respect to the left.

The relationship between the load (w), shear (V), and moment (M) equations are:

$$w(x) = -\frac{dV(x)}{dx}$$

$$V = \frac{dM(x)}{dx}$$

$$V_2 - V_1 = \int_{x_1}^{x_2} [-w(x)] dx$$

$$M_2 - M_1 = \int_{x_1}^{x_2} V(x) dx$$

Stresses in Beams

The normal stress in a beam due to bending:

$$\sigma_r = -My/I$$
, where

M =the moment at the section

= the *moment of inertia* of the cross section

= the distance from the neutral axis to the fiber location above or below the neutral axis

The maximum normal stresses in a beam due to bending:

$$\sigma_r = \pm Mc/I$$
, where

= distance from the neutral axis to the outermost fiber of a symmetrical beam section.

$$\sigma_x = -M/s$$
, where

= I/c: the elastic section modulus of the beam.

Transverse shear stress:

$$\tau_{xy} = VQ/(Ib)$$
, where

V =shear force

 $Q = A' \overline{y'}$, where

A' = area above the layer (or plane) upon which the desired transverse shear stress acts

 \overline{y}' = distance from neutral axis to area centroid

B =width or thickness or the cross-section

Transverse shear flow:

$$q = VO/I$$

Timoshenko, S., and Gleason H. MacCullough, Elements of Strengths of Materials, K. Van Nostrand Co./Wadsworth Publishing Co., 1949.

Deflection of Beams

Using $1/\rho = M/(EI)$,

$$EI\frac{d^2y}{dx^2} = M$$
, differential equation of deflection curve

$$EI\frac{d^3y}{dx^3} = dM(x)/dx = V$$

$$EI\frac{d^4y}{dx^4} = dV(x)/dx = -w$$

Determine the deflection curve equation by double integration (apply boundary conditions applicable to the deflection and/or slope).

$$EI\left(dy/dx\right) =\int\!\!M(x)\;dx$$

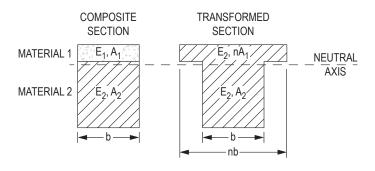
$$EIy = \iint M(x) dx dx$$

The constants of integration can be determined from the physical geometry of the beam.

Composite Sections

The bending stresses in a beam composed of dissimilar materials (material 1 and material 2) where $E_1 > E_2$ are:

$$\sigma_1 = -nMy/I_T$$
 $\sigma_2 = -My/I_T$, where


 $I_{\scriptscriptstyle
m T}$ = the moment of intertia of the transformed section

 $n = \text{the modular ratio } E_1/E_2$

 E_1 = elastic modulus of material 1

 E_2 = elastic modulus of material 2

The composite section is transformed into a section composed of a single material. The centroid and then the moment of inertia are found on the transformed section for use in the bending stress equations.

COLUMNS

Critical axial load for long column subject to buckling: Euler's Formula

$$P_{cr} = \frac{\pi^2 EI}{(K\ell)^2}$$
, where

unbraced column length

effective-length factor to account for end supports

Theoretical effective-length factors for columns include:

Pinned-pinned, K = 1.0

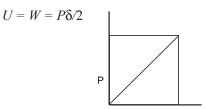
Fixed-fixed, K = 0.5

Fixed-pinned, K = 0.7

Fixed-free, K = 2.0

Critical buckling stress for long columns:

$$\sigma_{cr} = \frac{P_{cr}}{A} = \frac{\pi^2 E}{(K \ell / r)^2}$$
, where


radius of gyration $\sqrt{I/A}$

 $K\ell/r$ = effective slenderness ratio for the column

ELASTIC STRAIN ENERGY

If the strain remains within the elastic limit, the work done during deflection (extension) of a member will be transformed into potential energy and can be recovered.

If the final load is P and the corresponding elongation of a tension member is δ , then the total energy U stored is equal to the work W done during loading.

The strain energy per unit volume is

$$u = U/AL = \sigma^2/2E$$

(for tension)

MATERIAL PROPERTIES

Table 1 - Typical Material Properties (Use these values if the specific alloy and temper are not listed on Table 2 below)

Material	Modulus of Elasticity, E [Mpsi (GPa)]	Modulus of Rigity, G [Mpsi (GPa)]	Poisson's Ratio, v	Coefficient of Thermal Expansion, α [10 ⁻⁶ /°F (10 ⁻⁶ /°C)]	Density, ρ [lb/in ³ (Mg/m ³)]
Steel	29.0 (200.0)	11.5 (80.0)	0.30	6.5 (11.7)	0.282 (7.8)
Aluminum	10.0 (69.0)	3.8 (26.0)	0.33	13.1 (23.6)	0.098 (2.7)
Cast Iron	14.5 (100.0)	6.0 (41.4)	0.21	6.7 (12.1)	0.246-0.282 (6.8-7.8)
Wood (Fir)	1.6 (11.0)	0.6 (4.1)	0.33	1.7 (3.0)	-
Brass	14.8-18.1 (102-125)	5.8 (40)	0.33	10.4 (18.7)	0.303-0.313 (8.4-8.7)
Copper	17 (117)	6.5 (45)	0.36	9.3 (16.6)	0.322 (8.9)
Bronze	13.9-17.4 (96-120)	6.5 (45)	0.34	10.0 (18.0)	0.278-0.314 (7.7-8.7)
Magnesium	6.5 (45)	2.4 (16.5)	0.35	14 (25)	0.061 (1.7)
Glass	10.2 (70)	_	0.22	5.0 (9.0)	0.090 (2.5)
Polystyrene	0.3(2)	_	0.34	38.9 (70.0)	0.038 (1.05)
Polyvinyl Chloride (PVC)	<0.6 (<4)	_	_	28.0 (50.4)	0.047 (1.3)
Alumina Fiber	58 (400)	_	_	_	0.141 (3.9)
Aramide Fiber	18.1 (125)	_	_	_	0.047 (1.3)
Boron Fiber	58 (400)	_	_	_	0.083 (2.3)
Beryllium Fiber	43.5 (300)	_	_	_	0.069 (1.9)
BeO Fiber	58 (400)	_	_	_	0.108 (3.0)
Carbon Fiber	101.5 (700)	_	_	_	0.083 (2.3)
Silicon Carbide Fiber	58 (400)	_	_	_	0.116 (3.2)

Table 2 - Average Mechanical Properties of Typical Engineering Materials (U.S. Customary Units) (Use these values for the specific alloys and temperature listed. For all other materials refer to Table 1 above.)

Materials	Specific Weight γ (lb/in ³)	Modulus of Elasticity E (10 ³ ksi)	Modulus of Rigidity G (10 ³ ksi)	Yie Tens.	ld Strength	(ksi) Shear	Ultim Tens.	ate Streng σ _u Comp.	th (ksi) Shear	% Elongation in 2 in. specimen	Poisson's Ratio <i>v</i>	Coef. of Therm. Expansion α (10 ⁻⁶)/°F
Metallic												
Aluminum 2014-T6	0.101	10.6	3.9	60	60	25	68	68	42	10	0.35	12.8
Wrought Alloys L 6061-T6	0.098	10.0	3.7	37	37	19	42	42	27	12	0.35	13.1
Cast Iron Gray ASTM 20	0.260	10.0	3.9	-	_	_	26	97	-	0.6	0.28	6.70
Alloys L Malleable ASTM A-197	0.263	25.0	9.8	-	_	-	40	83	-	5	0.28	6.60
Copper Red Brass C83400	0.316	14.6	5.4	11.4	11.4	-	35	35	-	35	0.35	9.80
Alloys Bronze C86100	0.319	15.0	5.6	50	50	-	95	95	-	20	0.34	9.60
Magnesium Alloy [Am 1004-T611]	0.066	6.48	2.5	22	22	-	40	40	22	1	0.30	14.3
Steel Alloys Structural A36 Stainless 304 Tool L2	0.284 0.284 0.295	29.0 28.0 29.0	11.0 11.0 11.0	36 30 102	36 30 102	- - -	58 75 116	58 75 116	- - -	30 40 22	0.32 0.27 0.32	6.60 9.60 6.50
Titanium [Ti-6Al-4V] Alloy	0.160	17.4	6.4	134	134	-	145	145	-	16	0.36	5.20
Nonmetallic												
Concrete Low Strength High Strength	0.086 0.086	3.20 4.20	<u>-</u>	_ _	_ _	1.8 5.5	- -	_ _	- -	_ 	0.15 0.15	6.0 6.0
Plastic	0.0524	19.0	_	_	_	_	104	70	10.2	2.8	0.34	_
Reinforced30% Glass	0.0524	10.5	_	_	-	_	13	19	-	_	0.34	_
Wood Select Structural Douglas Fir Grade White Spruce	0.017 0.130	1.90 1.40	_ _	_ _	_ _	- -	0.30 ^c 0.36 ^c	3.78 ^d 5.18 ^d	0.90 ^d 0.97 ^d	- -	0.29 ^c 0.31 ^c	-

a SPECIFIC VALUES MAY VARY FOR A PARTICULAR MATERIAL DUE TO ALLOY OR MINERAL COMPOSITION, MECHANICAL WORKING OF THE SPECIMEN, OR HEAT TREATMENT. FOR A MORE EXACT VALUE REFERENCE BOOKS FOR THE MATERIAL SHOULD BE CONSULTED.

Hibbeler, R.C., Mechanics of Materials, 4th ed., Prentice Hall, 2000.

 $^{^{\}mathrm{b}}$ THE YIELD AND ULTIMATE STRENGTHS FOR DUCTILE MATERIALS CAN BE ASSUMED EQUAL FOR BOTH TENSION AND COMPRESSION.

C MEASURED PERPENDICULAR TO THE GRAIN.

 $^{^{\}rm d}\,$ MEASURED PARALLEL TO THE GRAIN.

 $^{^{\}rm e}\,$ Deformation measured Perpendicular to the grain when the load is applied along the grain.

Simply Supported Beam Slopes and Deflections

BEAM	SLOPE	DEFLECTION	ELASTIC CURVE
$\frac{L}{2}$ $\frac{L}{2}$ $\frac{L}{2}$ $\frac{L}{2}$ $\frac{L}{2}$ $\frac{L}{2}$	$\theta_{\text{max}} = \frac{-PL^2}{16EI}$	$v_{\text{max}} = \frac{-PL^3}{48EI}$	$v = \frac{-Px}{48EI}(3L^2 - 4x^2)$ $0 \le x \le L/2$
θ_1 θ_2 A	$\theta_1 = \frac{-Pab(L+b)}{6EIL}$ $\theta_2 = \frac{Pab(L+a)}{6EIL}$	$v\Big _{x=a} = \frac{-Pba}{6EIL}(L^2 - b^2 - a^2)$	$v = \frac{-Pbx}{6EIL} (L^2 - b^2 - x^2)$ $0 \le x \le a$
V M_0 θ_1 θ_2 x	$\theta_1 = \frac{-M_0 L}{3 EI}$ $\theta_2 = \frac{M_0 L}{6 EI}$	$v_{\text{max}} = \frac{-M_0 L^2}{\sqrt{243}EI}$	$v = \frac{-M_0 x}{6EIL} (x^2 - 3Lx + 2L^2)$
v L w v d	$\theta_{\text{max}} = \frac{-wL^3}{24EI}$	$v_{\text{max}} = \frac{-5wL^4}{384EI}$	$v = \frac{-wx}{24EI}(x^3 - 3Lx^2 + L^3)$
$\frac{V}{V}$ $\frac{W}{V}$ \frac{W}	$\theta_1 = \frac{-3wL^3}{128EI}$ $\theta_2 = \frac{7wL^3}{384EI}$	$v\Big _{x=L/2} = \frac{-5wL^4}{768EI}$ $v_{\text{max}} = -0.006563 \frac{wL^4}{EI}$ at $x = 0.4598L$	$v = \frac{-wx}{384EI} (16x^3 - 24Lx^2 + 9L^3)$ $0 \le x \le L/2$ $v = \frac{-wL}{384EI} (8x^3 - 24Lx^2 + 17L^2x - L^3)$ $L/2 \le x < L$
θ_1 L θ_2	$\theta_1 = \frac{-7w_0 L^3}{360EI}$ $\theta_2 = \frac{w_0 L^3}{45EI}$	$v_{\text{max}} = -0.00652 \frac{w_0 L^4}{EI}$ at $x = 0.5193$	$v = \frac{-w_0 x}{360 EIL} (3x^4 - 10L^2 x^2 + 7L^4)$

Hibbeler, R.C., Mechanics of Materials, 4th ed., Prentice Hall, 2000.

Cantilevered Beam Slopes and Deflections

BEAM	SLOPE	DEFLECTION	ELASTIC CURVE
$\begin{array}{c c} V & P \\ \hline & V \\ \hline & V \\ \hline & V \\ \hline & D \\ \hline & D$	$\theta_{\text{max}} = \frac{-PL^2}{2EI}$	$v_{\text{max}} = \frac{-PL^3}{3EI}$	$v = \frac{-Px^2}{6EI}(3L - x)$
$\begin{array}{c c} V & P \\ \hline & V \\ & V \\ $	$\theta_{\text{max}} = \frac{-PL^2}{8EI}$	$v_{\text{max}} = \frac{-5PL^3}{48EI}$	$v = \frac{-Px^2}{6EI} \left(\frac{3}{2}L - x\right) \qquad 0 \le x \le L/2$ $v = \frac{-PL^2}{24EI} \left(3x - \frac{1}{2}L\right) \qquad L/2 \le x \le L$
v v v v v v v v v v	$ \theta_{\text{max}} = \frac{-wL^3}{6EI} $	$v_{\text{max}} = \frac{-wL^4}{8EI}$	$v = \frac{-wx^2}{24EI}(x^2 - 4Lx + 6L^2)$
v θ_{max} v V V V V V V M_0	$ \theta_{\text{max}} = \frac{M_0 L}{EI} $	$v_{\text{max}} = \frac{M_0 L^2}{2EI}$	$v = \frac{M_0 x^2}{2EI}$
v v v x v d	$\theta_{\text{max}} = \frac{-wL^3}{48EI}$	$v_{\text{max}} = \frac{-7wL^4}{384EI}$	$v = \frac{-wx^{2}}{24EI} \left(x^{2} - 2Lx + \frac{3}{2}L^{2}\right)$ $0 \le x \le L/2$ $v = \frac{-wL^{3}}{192EI} (4x - L/2)$ $L/2 \le x \le L$
v w_0 v v v d	$\theta_{\text{max}} = \frac{-w_0 L^3}{24EI}$	$v_{\text{max}} = \frac{-w_0 L^4}{30EI}$	$v = \frac{-w_0 x^2}{120EIL} (10L^3 - 10L^2 x + 5Lx^2 - x^3)$

Hibbeler, R.C., Mechanics of Materials, 4th ed., Prentice Hall, 2000.

THERMODYNAMICS

PROPERTIES OF SINGLE-COMPONENT SYSTEMS

Nomenclature

- 1. Intensive properties are independent of mass.
- 2. Extensive properties are proportional to mass.
- Specific properties are lowercase (extensive/mass).

State Functions (properties)

(lbf/in² or Pa) Absolute Pressure, P (°R or K) Absolute Temperature, T $(ft^3 \text{ or } m^3)$ Volume, V Specific Volume, v = V/m $(ft^3/lbm or m^3/kg)$ (Btu or kJ) Internal Energy, U

Specific Internal Energy,

$$u = U/m$$
 (Btu/lbm or kJ/kg)

(Btu or kJ) Enthalpy, H

Specific Enthalpy,

$$h = u + Pv = H/m$$
 (Btu/lbm or kJ/kg)

(Btu/°R or kJ/K) Entropy, S

Specific Entropy,
$$s = S/m$$
 [Btu/(lbm- $^{\circ}$ R) or kJ/(kg•K)]

(Btu/lbm or kJ/kg) Gibbs Free Energy, g = h - Ts

Helmholtz Free Energy,

$$a = u - Ts$$
 (Btu/lbm or kJ/kg)

For a single-phase pure component, specification of any two intensive, independent properties is sufficient to fix all the rest.

Heat Capacity at Constant Pressure,

$$c_p = \left(\frac{\partial h}{\partial T}\right)_P$$
 [Btu/(lbm-°R) or kJ/(kg•K)]

Heat Capacity at Constant Volume,

$$c_v = \left(\frac{\partial u}{\partial T}\right)_v$$
 [Btu/(lbm-°R) or kJ/(kg•K)]

The steam tables in this section provide T, P, v, u, h, and s data for saturated and superheated water.

A P-h diagram for refrigerant HFC-134a providing T, P, v, h, and s data in a graphical format is included in this section.

Thermal and physical property tables for selected gases, liquids, and solids are included in this section.

Properties for Two-Phase (vapor-liquid) Systems

Quality x (for liquid-vapor systems at saturation) is defined as the mass fraction of the vapor phase:

$$x = m_g / (m_g + m_f)$$
, where

 $m_{\varphi} = \text{mass of vapor}$

 $m_f = \text{mass of liquid}$

Specific volume of a two-phase system can be written:

$$v = xv_g + (1 - x)v_f$$
 or $v = v_f + xv_{fg}$, where

 v_f = specific volume of saturated liquid

 v_g = specific volume of saturated vapor

 v_{fg} = specific volume change upon vaporization

$$= v_g - v_f$$

Similar expressions exist for u, h, and s:

$$u = xu_g + (1 - x) u_f \text{ or } u = u_f + xu_{fg}$$

 $h = xh_g + (1 - x) h_f \text{ or } h = h_f + xh_{fg}$

$$s = xs_g + (1 - x) s_f \text{ or } s = s_f + xs_{fg}$$

PVT BEHAVIOR

Ideal Gas

For an ideal gas, Pv = RT or PV = mRT, and $P_1 v_1 / T_1 = P_2 v_2 / T_2$, where

P = pressure

v = specific volume

m = mass of gas

R = gas constant

T = absolute temperature

V = volume

R is specific to each gas but can be found from

$$R = \frac{\overline{R}}{(mol. wt)}$$
, where

 \overline{R} = the universal gas constant

= $1,545 \text{ ft-lbf/(lbmol-}^{\circ}\text{R}) = 8,314 \text{ J/(kmol}^{\bullet}\text{K}).$

= $8.314 \text{ kPa} \cdot \text{m}^3/(\text{kmol} \cdot \text{K}) = 0.08206 \text{ L} \cdot \text{atm}/(\text{mole} \cdot \text{K})$

For ideal gases, $c_p - c_v = R$

Ideal gas behavior is characterized by:

- no intermolecular interactions
- · molecules occupy zero volume

The properties of an ideal gas reflect those of a single molecule and are attributable entirely to the structure of the molecule and the system T.

For ideal gases:

$$\left(\frac{\partial h}{\partial P}\right)_T = 0$$
 $\left(\frac{\partial u}{\partial v}\right)_T = 0$

For cold air standard, heat capacities are assumed to be constant at their room temperature values. In that case, the following are true:

$$\Delta u = c_v \Delta T; \quad \Delta h = c_p \Delta T$$

 $\Delta s = c_p \ln (T_2/T_1) - R \ln (P_2/P_1)$
 $\Delta s = c_v \ln (T_2/T_1) + R \ln (v_2/v_1)$

Also, for *constant entropy* processes:

$$\frac{P_2}{P_1} = \left(\frac{v_1}{v_2}\right)^k; \qquad \frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{k-1}{k}}$$

$$\frac{T_2}{T_1} = \left(\frac{v_1}{v_2}\right)^{k-1}$$
, where $k = c_p/c_v$

Ideal Gas Mixtures

i = 1, 2, ..., n constituents. Each constituent is an ideal gas. Mole Fraction:

$$x_i = N_i/N$$
; $N = \sum N_i$; $\sum x_i = 1$

where N_i = number of moles of component i

N = total moles in the mixture

Mass Fraction: $y_i = m_i/m$; $m = \sum m_i$; $\sum y_i = 1$

Molecular Weight: $M = m/N = \sum x_i M_i$

To convert mole fractions x_i to mass fractions y_i :

$$y_i = \frac{x_i M_i}{\sum (x_i M_i)}$$

To convert *mass fractions* to *mole fractions*:

$$x_i = \frac{y_i / M_i}{\sum (y_i / M_i)}$$

Partial Pressures: $P_i = \frac{m_i R_i T}{V}$ and $P = \sum P_i$

Partial Volumes: $V_i = \frac{m_i R_i T}{P}$ and $V = \sum V_i$

where P, V, T = the pressure, volume, and temperature of the mixture and $R_i = R/M_i$

Combining the above generates the following additional expressions for mole fraction.

$$x_i = P_i/P = V_i/V$$

Other Properties:

 $u = \sum (y_i u_i)$; $h = \sum (y_i h_i)$; $s = \sum (y_i s_i)$ u_i and h_i are evaluated at T s_i is evaluated at T and P_i

Real Gas

Most gases exhibit ideal gas behavior when the system pressure is less than 3 atm since the distance between molecules is large enough to produce negligible molecular interactions. The behavior of a real gas deviates from that of an ideal gas at higher pressures due to molecular interactions.

For a real gas, Pv = ZRT where Z = compressibility factor.

Z = 1 for an ideal gas; $Z \neq 1$ for a real gas

Equations of State (EOS)

EOS are used to quantify *PvT* behavior <u>Ideal Gas EOS</u> (applicable only to ideal gases)

$$P = \left(\frac{RT}{V}\right)$$

<u>Generalized Compressibility EOS</u> (applicable to all systems as gases, liquids, and/or solids)

$$P = \left(\frac{RT}{v}\right)Z$$

Virial EOS (applicable only to gases)

$$P = \left(\frac{RT}{v}\right)\left(1 + \frac{B}{v} + \frac{C}{v^2} + \dots\right) \text{ where } B, C, \dots$$

are virial coefficients obtained from PvT measurements or statistical mechanics.

<u>Cubic EOS</u> (theoretically motivated with intent to predict gas and liquid thermodynamic properties)

$$P = \frac{RT}{v - b} - \frac{a(T)}{(v + c_1 b)(v + c_2 b)}$$

where a(T), b, and c_1 and c_2 are species specific.

An example of a cubic EOS is the Van der Waals equation with constants based on the critical point:

$$\left(P + \frac{a}{\bar{v}^2}\right)(\bar{v} - b) = \bar{R}T$$

where
$$a = \left(\frac{27}{64}\right)\left(\frac{\bar{R}^2 T_c^2}{P_c}\right)$$
, $b = \frac{\bar{R}T_c}{8P_c}$

where P_c and T_c are the pressure and temperature at the critical point, respectively, and \bar{v} is the molar specific volume.

EOS are used to predict:

- P, v, or T when two of the three are specified
- other thermodynamic properties based on analytic manipulation of the EOS
- mixture properties using appropriate mixing rules to create a pseudo-component that mimics the mixture properties

The Theorem of Corresponding States asserts that all normal fluids have the same value of Z at the same reduced temperature T_r and pressure P_r .

$$T_r = \frac{T}{T_c}$$
 $P_r = \frac{P}{P_c}$

where T_c and P_c are the critical temperature and pressure, respectively, expressed in absolute units. This is captured in the Generalized Compressibility Factor chart.

FIRST LAW OF THERMODYNAMICS

The *First Law of Thermodynamics* is a statement of conservation of energy in a thermodynamic system. The net energy crossing the system boundary is equal to the change in energy inside the system.

Heat Q(q = Q/m) is energy transferred due to temperature difference and is considered positive if it is inward or added to the system.

Work W(w = W/m) is considered positive if it is outward or work done by the system.

Closed Thermodynamic System

No mass crosses system boundary

$$Q - W = \Delta U + \Delta KE + \Delta PE$$

where ΔU = change in internal energy

 ΔKE = change in kinetic energy

 ΔPE = change in potential energy

Energy can cross the boundary only in the form of heat or work. Work can be boundary work, w_b , or other work forms (electrical work, etc.)

Reversible boundary work is given by $w_b = \int P dv$.

Special Cases of Closed Systems (with no change in kinetic or potential energy)

Constant System Pressure process (*Charles' Law*):

$$w_{\rm b} = P\Delta v$$

(ideal gas) T/v = constant

Constant Volume process:

$$w_{\rm b} = 0$$

(ideal gas) T/P = constant

Isentropic process (ideal gas):

$$Pv^k = \text{constant}$$

$$w = (P_2 v_2 - P_1 v_1)/(1 - k)$$

= $R(T_2 - T_1)/(1 - k)$

Constant Temperature process (*Boyle's Law*):

(ideal gas)
$$Pv = constant$$

$$w_{\rm b} = RT \ln (v_2/v_1) = RT \ln (P_1/P_2)$$

Polytropic process (ideal gas):

$$Pv^n = constant$$

$$w = (P_2 v_2 - P_1 v_1)/(1 - n), n \neq 1$$

Open Thermodynamic System

Mass crosses the system boundary.

There is flow work (Pv) done by mass entering the system.

The reversible flow work is given by:

$$w_{\text{rev}} = -\int v \, dP + \Delta KE + \Delta PE$$

First Law applies whether or not processes are reversible.

Open System First Law (energy balance)

$$\Sigma \dot{m}_i \Big[h_i + V_i^2 / 2 + g Z_i \Big] - \Sigma \dot{m}_e \Big[h_e + V_e^2 / 2 + g Z_e \Big]$$

$$+ \dot{Q}_{in} - \dot{W}_{net} = d(m_s u_s) / dt, \text{ where}$$

 \dot{W}_{net} = rate of net or shaft work

 \dot{m} = mass flow rate (subscripts *i* and *e* refer to inlet and exit states of system)

= acceleration of gravity

Z = elevation

V = velocity

 $m_{\rm s} = {\rm mass}$ of fluid within the system

= specific internal energy of system

 \dot{Q}_{in} = rate of heat transfer (neglecting kinetic and potential energy of the system)

Special Cases of Open Systems (with no change in kinetic or potential energy)

Constant Volume process:

$$w_{rev} = -v (P_2 - P_1)$$

Constant System Pressure process:

$$w_{rev} = 0$$

Constant Temperature process:

(ideal gas) Pv = constant

$$W_{rev} = RT \ln (v_2/v_1) = RT \ln (P_1/P_2)$$

Isentropic process (ideal gas):

 $Pv^k = constant$

$$w_{rev} = k (P_2 v_2 - P_1 v_1)/(1 - k)$$

$$= kR (T_2 - T_1)/(1 - k)$$

$$w_{rev} = \frac{k}{k-1} RT_1 \left[1 - \left(\frac{P_2}{P_1} \right)^{(k-1)/k} \right]$$

Polytropic process (ideal gas):

$$Pv^n = constant$$

$$w_{rev} = n (P_2 v_2 - P_1 v_1)/(1 - n)$$

Steady-Flow Systems

The system does not change state with time. This assumption is valid for steady operation of turbines, pumps, compressors, throttling valves, nozzles, and heat exchangers, including boilers and condensers.

$$\sum \dot{m}(h_i + V_i^2/2 + gZ_i) - \sum \dot{m}_e(h_e + V_e^2/2 + gZ_e) + \dot{Q}_{in} - \dot{W}_{out} = 0$$

$$\Sigma \dot{m}_i = \Sigma \dot{m}_o$$

where

 \dot{m} = mass flow rate (subscripts i and e refer to inlet and exit states of system)

= acceleration of gravity

Z = elevation

V = velocity

 \dot{Q} = rate of heat transfer

 \dot{W} = rate of work

Special Cases of Steady-Flow Energy Equation Nozzles, Diffusers: Velocity terms are significant. No elevation change, no heat transfer, and no work. Single mass stream.

$$h_i + V_i^2/2 = h_e + V_e^2/2$$

Isentropic Efficiency (nozzle) = $\frac{V_e^2 - V_i^2}{2(h_i - h_i)}$, where

 h_{as} = enthalpy at isentropic exit state.

Turbines, Pumps, Compressors: Often considered adiabatic (no heat transfer). Velocity terms usually can be ignored. There are significant work terms and a single mass stream.

$$h_i = h_o + w$$

Isentropic Efficiency (turbine) = $\frac{h_i - h_e}{h_i - h_{ee}}$

Isentropic Efficiency (compressor, pump) = $\frac{h_{es} - h_i}{h - h_i}$

For pump only, $h_{es} - h_i = v_i(p_e - p_i)$

Throttling Valves and Throttling Processes: No work, no heat transfer, and single-mass stream. Velocity terms are often insignificant.

$$h_i = h_e$$

Boilers, Condensers, Evaporators, One Side in a Heat Exchanger: Heat transfer terms are significant. For a singlemass stream, the following applies:

$$h_i + q = h_e$$

Heat Exchangers: No heat loss to the surroundings or work. Two separate flow rates \dot{m}_1 and \dot{m}_2 :

$$\dot{m}_1(h_{1i}-h_{1e})=\dot{m}_2(h_{2e}-h_{2i})$$

Mixers, Separators, Open or Closed Feedwater Heaters:

$$\Sigma \dot{m}_i h_i = \Sigma \dot{m}_e h_e$$
 and $\Sigma \dot{m}_i = \Sigma \dot{m}_e$

BASIC CYCLES

Heat engines take in heat Q_H at a high temperature T_H , produce a net amount of work W, and reject heat Q_L at a low temperature T_L . The efficiency η of a heat engine is given by:

$$\eta = W/Q_H = (Q_H - Q_I)/Q_H$$

The most efficient engine possible is the Carnot Cycle. Its efficiency is given by:

$$\eta_c = (T_H - T_L)/T_H$$
, where

 T_H and T_L = absolute temperatures (Kelvin or Rankine).

The following heat-engine cycles are plotted on P-v and T-s diagrams in this section:

Carnot, Otto, Rankine

Refrigeration cycles are the reverse of heat-engine cycles. Heat is moved from low to high temperature requiring work, W. Cycles can be used either for refrigeration or as heat pumps.

Coefficient of Performance (COP) is defined as:

 $COP = Q_H/W$ for heat pumps, and as

COP = Q_I/W for refrigerators and air conditioners.

Upper limit of COP is based on reversed Carnot Cycle:

$$COP_c = T_H/(T_H - T_L)$$
 for heat pumps and

$$COP_c = T_L/(T_H - T_L)$$
 for refrigeration.

1 ton refrigeration = 12,000 Btu/hr = 3,516 W

The following refrigeration cycles are plotted on *T-s* diagrams in this section:

reversed rankine, two-stage refrigeration, air refrigeration

PSYCHROMETRICS

Properties of an air-water vapor mixture at a fixed pressure are given in graphical form on a psychrometric chart as provided in this section. When the system pressure is 1 atm, an idealgas mixture is assumed.

The definitions that follow use subscript a for dry air and v for water vapor.

P =pressure of the air-water mixture, normally 1 atm

T = dry-bulb temp (air/water mixture temperature)

 P_a = partial pressure of dry air

 P_{y} = partial pressure of water vapor

$$P = P_a + P_v$$

Specific Humidity (absolute humidity, humidity ratio) ω:

$$\omega = m_v/m_q$$
, where

 $m_y = \text{mass of water vapor}$

 $m_a = \text{mass of dry air}$

$$\omega = 0.622 P_{y}/P_{a} = 0.622 P_{y}/(P - P_{y})$$

Relative Humidity (rh) ϕ :

$$\phi = P_v/P_g$$
, where

 P_{σ} = saturation pressure of water at T.

Enthalpy h: $h = h_a + \omega h_v$

Dew-Point Temperature T_{dn} :

$$T_{dp} = T_{sat}$$
 at $P_g = P_v$

Wet-bulb temperature T_{wb} is the temperature indicated by a thermometer covered by a wick saturated with liquid water and in contact with moving air.

Humid Volume: Volume of moist air/mass of dry air.

SECOND LAW OF THERMODYNAMICS

Thermal Energy Reservoirs

$$\Delta S_{\text{reservoir}} = Q/T_{\text{reservoir}}$$
, where

Q is measured with respect to the reservoir.

Kelvin-Planck Statement of Second Law

No heat engine can operate in a cycle while transferring heat with a single heat reservoir.

COROLLARY to Kelvin-Planck: No heat engine can have a higher efficiency than a Carnot Cycle operating between the same reservoirs.

Clausius' Statement of Second Law

No refrigeration or heat pump cycle can operate without a net work input.

COROLLARY: No refrigerator or heat pump can have a higher COP than a Carnot Cycle refrigerator or heat pump.

Entropy

$$ds = (1/T)\delta q_{\text{rev}}$$
$$s_2 - s_1 = \int_1^2 (1/T)\delta q_{\text{rev}}$$

Inequality of Clausius

$$\oint (1/T) \delta q_{\text{rev}} \le 0$$

$$\int_{1}^{2} (1/T) \delta q \le s_{2} - s_{1}$$

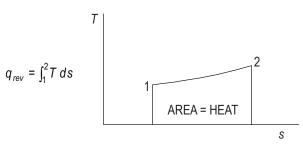
Isothermal, Reversible Process

$$\Delta s = s_2 - s_1 = q/T$$

Isentropic Process

$$\Delta s = 0$$
: $ds = 0$

A reversible adiabatic process is isentropic.


Adiabatic Process

$$\delta q = 0$$
; $\Delta s \ge 0$

Increase of Entropy Principle

$$\Delta s_{\text{total}} = \Delta s_{\text{system}} + \Delta s_{\text{surroundings}} \ge 0$$

$$\Delta \dot{s}_{\text{total}} = \Sigma \dot{m}_{\text{out}} s_{\text{out}} - \Sigma \dot{m}_{\text{in}} s_{\text{in}} - \Sigma (\dot{q}_{\text{external}} / T_{\text{external}}) \ge 0$$

Temperature-Entropy (*T-s*) Diagram

Entropy Change for Solids and Liquids

$$ds = c (dT/T)$$

$$s_2 - s_1 = \int c (dT/T) = c_{\text{mean}} \ln (T_2/T_1),$$

where c equals the heat capacity of the solid or liquid.

Exergy (Availability)

Exergy (also known as availability) is the maximum possible work that can be obtained from a cycle of a heat engine. The maximum possible work is obtained in a reversible process.

Closed-System Exergy (Availability)

(no chemical reactions)

$$\phi = (u - u_I) - T_I(s - s_I) + p_I(v - v_I)$$

where the subscript L designates environmental conditions and ϕ is availability function.

$$W_{max} = W_{rev} = \phi_i - \phi_2$$

Open-System Exergy (Availability)

$$\Psi = (h - h_1) - T_1(s - s_1) + V^2/2 + gZ$$

where V is velocity, g is acceleration of gravity, Z is elevation and Ψ is availability function.

$$W_{max} = W_{rev} = \Psi_{i} - \Psi_{2}$$

Gibbs Free Energy, ΔG

Energy released or absorbed in a reaction occurring reversibly at constant pressure and temperature.

Helmholtz Free Energy, ΔA

Energy released or absorbed in a reaction occurring reversibly at constant volume and temperature.

Irreversibility, I

$$I = w_{rev} - w_{actual} = T_L \Delta s_{total}$$

HEATS OF REACTION

For a chemical reaction the associated energy can be defined in terms of heats of formation of the individual species ΔH_f° at the standard state

$$\left(\Delta\boldsymbol{H}_{r}^{\circ}\right) = \sum_{\text{products}} \upsilon_{i} \left(\Delta\boldsymbol{H}_{f}^{\circ}\right)_{i} - \sum_{\text{reactants}} \upsilon_{i} \left(\Delta\boldsymbol{H}_{f}^{\circ}\right)_{i}$$

 v_i = stoichiometric coefficient for species "i"

The standard state is 25°C and 1 bar.

The heat of formation is defined as the enthalpy change associated with the formation of a compound from its atomic species as they normally occur in nature [i.e., $O_2(g)$, $H_2(g)$, C(solid), etc.]

The heat of reaction varies with the temperature as follows:

$$\Delta H_r^{\circ}(T) = \Delta H_r^{\circ}(T_{\text{ref}}) + \int_{T_{\text{ref}}}^{T} \Delta c_p dT$$

where T_{ref} is some reference temperature (typically 25°C or 298 K), and:

$$\Delta c_p = \sum\limits_{\mathrm{products}} \upsilon_i c_{p,i} - \sum\limits_{\mathrm{reactants}} \upsilon_i c_{p,i}$$

and $c_{n,i}$ is the molar heat capacity of component i.

The heat of reaction for a combustion process using oxygen is also known as the heat of combustion. The principal products are $CO_2(g)$ and $H_2O(l)$.

87 THERMODYNAMICS

Combustion Processes

First, the combustion equation should be written and balanced. For example, for the stoichiometric combustion of methane in oxygen:

$$CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$$

Combustion in Air

For each mole of oxygen, there will be 3.76 moles of nitrogen. For stoichiometric combustion of methane in air:

$$CH_4 + 2 O_2 + 2(3.76) N_2 \rightarrow CO_2 + 2 H_2O + 7.52 N_2$$

Combustion in Excess Air

The excess oxygen appears as oxygen on the right side of the combustion equation.

Incomplete Combustion

Some carbon is burned to create carbon monoxide (CO).

Molar Air-Fuel Ratio,
$$\overline{A/F} = \frac{\text{No. of moles of air}}{\text{No. of moles of fuel}}$$

Air-Fuel Ratio,
$$A/F = \frac{\text{Mass of air}}{\text{Mass of fuel}} = \left(\frac{A/F}{A/F}\right) \left(\frac{M_{\text{air}}}{M_{\text{fuel}}}\right)$$

Stoichiometric (theoretical) air-fuel ratio is the air-fuel ratio calculated from the stoichiometric combustion equation.

Percent Theoretical Air =
$$\frac{(A/F)_{\text{actual}}}{(A/F)_{\text{stoichiometric}}} \times 100$$

Percent Excess Air =
$$\frac{(A/F)_{\text{actual}} - (A/F)_{\text{stoichiometric}}}{(A/F)_{\text{stoichiometric}}} \times 100$$

VAPOR-LIQUID EQUILIBRIUM (VLE)

Henry's Law at Constant Temperature

At equilibrium, the partial pressure of a gas is proportional to its concentration in a liquid. Henry's Law is valid for low concentrations; i.e., $x \approx 0$.

$$P_i = Py_i = hx_i$$
, where

h = Henry's Law constant

 P_i = partial pressure of a gas in contact with a liquid

 x_i = mol fraction of the gas in the liquid

 y_i = mol fraction of the gas in the vapor

P = total pressure

Raoult's Law for Vapor-Liquid Equilibrium

Valid for concentrations near 1; i.e., $x_i \approx 1$ at low pressure (ideal gas behavior)

$$P_i = x_i P_i^*$$
, where

 P_i = partial pressure of component i

 x_i = mol fraction of component i in the liquid

 P_i^* = vapor pressure of pure component *i* at the temperature of the mixture

Rigorous Vapor-Liquid Equilibrium

For a multicomponent mixture at equilibrium

$$\hat{f}_{i}^{V} = \hat{f}_{i}^{L}$$
, where

 \hat{f}_{i}^{V} = fugacity of component *i* in the vapor phase

 \hat{f}_i^L = fugacity of component *i* in the liquid phase

Fugacities of component *i* in a mixture are commonly calculated in the following ways:

For a liquid $\hat{f}_i^L = x_i \gamma_i f_i^L$, where

 x_i = mole fraction of component i

 γ_i = activity coefficient of component *i*

 f_i^L = fugacity of pure liquid component i

For a vapor $\hat{f}_i^V = y_i \hat{\Phi}_i P$, where

 y_i = mole fraction of component i in the vapor

 $\hat{\Phi}_i$ = fugacity coefficient of component *i* in the vapor

P =system pressure

The activity coefficient γ_i is a correction for liquid phase non-ideality. Many models have been proposed for γ_i such as the Van Laar model:

$$\ln \gamma_1 = A_{12} \left(1 + \frac{A_{12} x_1}{A_{21} x_2} \right)^{-2}$$

$$\ln \gamma_2 = A_{21} \left(1 + \frac{A_{21} x_2}{A_{12} x_1} \right)^{-2}, \text{ where}$$

 γ_1 = activity coefficient of component 1 in a two-component system

 γ_2 = activity coefficient of component 2 in a two-component system

 A_{12} , A_{21} = constants, typically fitted from experimental data The pure component fugacity is calculated as:

$$f_i^L = \Phi_i^{\text{sat}} P_i^{\text{sat}} \exp \left\{ v_i^L \left(P - P_i^{\text{sat}} \right) / (RT) \right\}, \text{ where}$$

 Φ_i^{sat} = fugacity coefficient of pure saturated i

 P_i^{sat} = saturation pressure of pure i

 v_i^L = specific volume of pure liquid *i*

R = Ideal Gas Law Constant

T = absolute temperature

Often at system pressures close to atmospheric:

$$f_i^L \cong P_i^{\text{sat}}$$

The fugacity coefficient $\hat{\Phi}_i$ for component i in the vapor is calculated from an equation of state (e.g., Virial). Sometimes it is approximated by a pure component value from a correlation. Often at pressures close to atmospheric, $\hat{\Phi}_i = 1$. The fugacity coefficient is a correction for vapor phase non-ideality.

For sparingly soluble gases the liquid phase is sometimes represented as:

$$\hat{f}_i^L = x_i k_i$$

where k_i is a constant set by experiment (Henry's constant). Sometimes other concentration units are used besides mole fraction with a corresponding change in k_i .

PHASE RELATIONS

Clapeyron Equation for phase transitions:

$$\left(\frac{dP}{dT}\right)_{sat} = \frac{h_{fg}}{Tv_{fg}} = \frac{s_{fg}}{v_{fg}}, \text{ where}$$

 h_{fg} = enthalpy change for phase transitions

 v_{fg} = volume change

 s_{fg} = entropy change

T = absolute temperature

 $(dP/dT)_{sat}$ = slope of phase transition (e.g., vapor-liquid) saturation line

Clausius-Clapeyron Equation

This equation results if it is assumed that (1) the volume change (v_{f_0}) can be replaced with the vapor volume (v_{g}) , (2) the latter can be replaced with $P/\overline{R}T$ from the ideal gas law, and (3) h_{f_0} is independent of the temperature (T).

$$\ln_e\!\left(\frac{P_2}{P_1}\right) = \frac{h_{fg}}{\overline{R}} \bullet \frac{T_2 - T_1}{T_1 T_2}$$

Gibbs Phase Rule (non-reacting systems)

P + F = C + 2, where

P = number of phases making up a system

F = degrees of freedom

C = number of components in a system

CHEMICAL REACTION EQUILIBRIA

Definitions

Conversion: moles reacted/moles fed

Extent – For each species in a reaction, the mole balance may be written:

$$moles_{i,out} = moles_{i,in} + v_i \xi$$
 where

 ξ is the extent in moles and v_i is the stoichiometric coefficient of the *i*th species, the sign of which is negative for reactants and positive for products.

Limiting reactant – Reactant that would be consumed first if the reaction proceeded to completion. Other reactants are excess reactants.

Selectivity – Moles of desired product formed/moles of undesired product formed.

Yield – Moles of desired product formed/moles that would have been formed if there were no side reactions and the limiting reactant had reacted completely.

Chemical Reaction Equilibrium

For the reaction

$$aA + bB = cC + dD$$

$$\Delta G^{\circ} = -RT \ln K_{a}$$

$$K_{a} = \frac{\left(\hat{a}_{C}^{c}\right)\left(\hat{a}_{D}^{d}\right)}{\left(\hat{a}_{A}^{d}\right)\left(\hat{a}_{B}^{b}\right)} = \prod_{i} \left(\hat{a}_{i}\right)^{v_{i}}, \text{ where }$$

$$\hat{a}_i$$
 = activity of component $i = \frac{\hat{f}_i}{\hat{f}_i}$

 f_i = fugacity of pure *i* in its standard state at the equilibrium reaction temperature, T

= stoichiometric coefficient of component i

 ΔG° = standard Gibbs energy change of reaction

 K_a = chemical equilibrium constant

For mixtures of ideal gases:

f = unit pressure, often 1 bar

$$\hat{f}_i = y_i P = p_i$$

where p_i = partial pressure of component i.

Then
$$K_a = K_p = \frac{\left(p_C^c\right)\left(p_D^d\right)}{\left(p_A^a\right)\left(p_B^b\right)} = P^{c+d-a-b} \frac{\left(y_C^c\right)\left(y_D^d\right)}{\left(y_A^a\right)\left(y_B^b\right)}$$

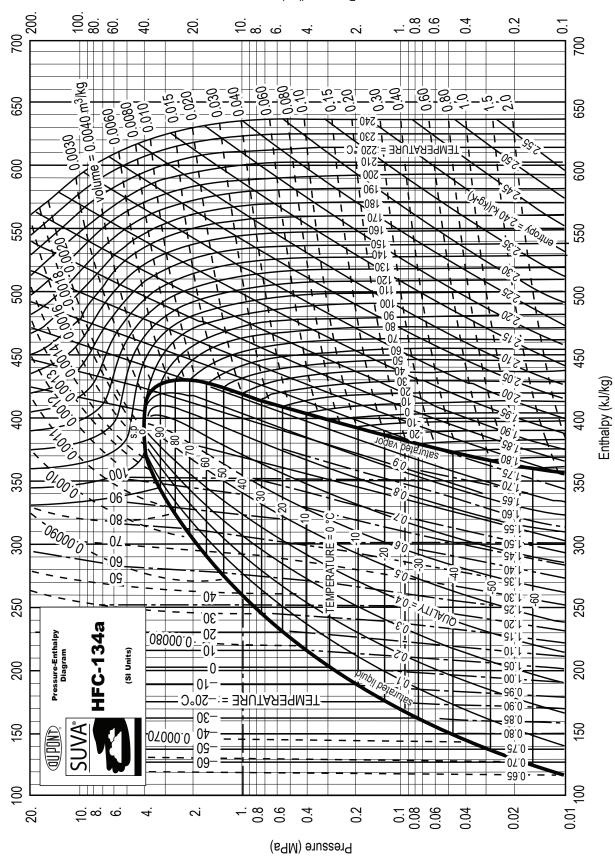
For solids $\hat{a}_i = 1$

For liquids $\hat{a}_i = x_i \gamma_i$

The effect of temperature on the equilibrium constant is

$$\frac{d\ln K}{dT} = \frac{\Delta H^{\circ}}{RT^2}$$

where ΔH° = standard enthalpy change of reaction.

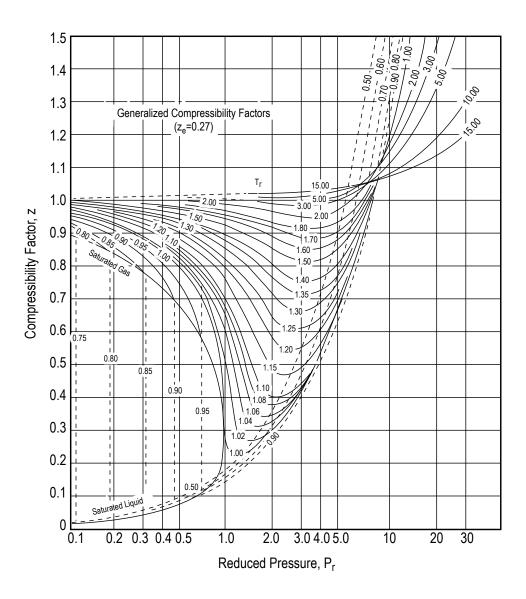

			s	Saturate		M TABL	ES erature T	able				
Temp.	Sat.	Specific V m ³ /k		Inte	ernal Ene kJ/kg	ergy		Enthalpy kJ/kg	,		Entropy kJ/(kg·K)	
°C T	Press. kPa	Sat. liquid	Sat. vapor	Sat. liquid	Evap.	Sat. vapor	Sat. liquid	Evap.	Sat. vapor	Sat.	Evap.	Sat. vapor
	p_{sat}	v_f	v_g	u_f	u_{fg}	u_g	h_f	h_{fg}	h_g	S_f	S_{fg}	S_g
0.01	0.6113	0.001 000	206.14	0.00	2375.3	2375.3	0.01	2501.3	2501.4	0.0000	9.1562	9.1562
5 10	0.8721 1.2276	0.001 000 0.001 000	147.12 106.38	20.97 42.00	2361.3 2347.2	2382.3 2389.2	20.98 42.01	2489.6 2477.7	2510.6 2519.8	0.0761 0.1510	8.9496 8.7498	9.0257 8.9008
15	1.7051	0.001 000	77.93	62.99	2333.1	2396.1	62.99	2465.9	2528.9	0.1310	8.5569	8.7814
20	2.339	0.001 002	57.79	83.95	2319.0	2402.9	83.96	2454.1	2538.1	0.2966	8.3706	8.6672
25	3.169	0.001 003	43.36	104.88	2304.9	2409.8	104.89	2442.3	2547.2	0.3674	8.1905	8.5580
30 35	4.246 5.628	0.001 004 0.001 006	32.89 25.22	125.78 146.67	2290.8 2276.7	2416.6 2423.4	125.79 146.68	2430.5 2418.6	2556.3 2565.3	0.4369 0.5053	8.0164 7.8478	8.4533 8.3531
40	7.384	0.001 008	19.52	167.56	2262.6	2430.1	167.57	2406.7	2574.3	0.5725	7.6845	8.2570
45	9.593	0.001 010	15.26	188.44	2248.4	2436.8	188.45	2394.8	2583.2	0.6387	7.5261	8.1648
50	12.349	0.001 012	12.03	209.32	2234.2	2443.5	209.33	2382.7	2592.1	0.7038	7.3725	8.0763
55 60	15.758 19.940	0.001 015 0.001 017	9.568 7.671	230.21 251.11	2219.9 2205.5	2450.1 2456.6	230.23 251.13	2370.7 2358.5	2600.9 2609.6	0.7679 0.8312	7.2234 7.0784	7.9913 7.9096
65	25.03	0.001 017	6.197	272.02	2191.1	2463.1	272.06	2346.2	2618.3	0.8935	6.9375	7.8310
70	31.19	0.001 023	5.042	292.95	2176.6	2569.6	292.98	2333.8	2626.8	0.9549	6.8004	7.7553
75	38.58	0.001 026	4.131	313.90	2162.0	2475.9	313.93	2321.4	2635.3	1.0155	6.6669	7.6824
80 85	47.39 57.83	0.001 029 0.001 033	3.407 2.828	334.86 355.84	2147.4 2132.6	2482.2 2488.4	334.91 355.90	2308.8 2296.0	2643.7 2651.9	1.0753 1.1343	6.5369 6.4102	7.6122 7.5445
90	70.14	0.001 036	2.361	376.85	2117.7	2494.5	376.92	2283.2	2660.1	1.1925	6.2866	7.4791
95	84.55	0.001 040	1.982	397.88	2102.7	2500.6	397.96	2270.2	2668.1	1.2500	6.1659	7.4159
	MPa											
100	0.101 35	0.001 044	1.6729	418.94	2087.6	2506.5	419.04	2257.0	2676.1	1.3069	6.0480	7.3549
105	0.120 82	0.001 048	1.4194	440.02	2072.3	2512.4	440.15	2243.7	2683.8	1.3630	5.9328	7.2958
110 115	0.143 27 0.169 06	0.001 052 0.001 056	1.2102 1.0366	461.14 482.30	2057.0 2041.4	2518.1 2523.7	461.30 482.48	2230.2 2216.5	2691.5 2699.0	1.4185 1.4734	5.8202 5.7100	7.2387 7.1833
120	0.198 53	0.001 060	0.8919	503.50	2025.8	2529.3	503.71	2202.6	2706.3	1.5276	5.6020	7.1296
125	0.2321	0.001 065	0.7706	524.74	2009.9	2534.6	524.99	2188.5	2713.5	1.5813	5.4962	7.0775
130	0.2701	0.001 070	0.6685	546.02	1993.9	2539.9	546.31	2174.2	2720.5	1.6344	5.3925	7.0269
135 140	0.3130 0.3613	0.001 075 0.001 080	0.5822 0.5089	567.35 588.74	1977.7 1961.3	2545.0 2550.0	567.69 589.13	2159.6 2144.7	2727.3 2733.9	1.6870 1.7391	5.2907 5.1908	6.9777 6.9299
145	0.4154	0.001 085	0.4463	610.18	1944.7	2554.9	610.63	2129.6	2733.9 2740.3	1.7907	5.0926	6.8833
150	0.4758	0.001 091	0.3928	631.68	1927.9	2559.5	632.20	2114.3	2746.5	1.8418	4.9960	6.8379
155	0.5431	0.001 096	0.3468	653.24	1910.8	2564.1	653.84	2098.6	2752.4	1.8925	4.9010	6.7935
160 165	0.6178 0.7005	0.001 102 0.001 108	0.3071 0.2727	674.87 696.56	1893.5 1876.0	2568.4 2572.5	675.55 697.34	2082.6 2066.2	2758.1 2763.5	1.9427 1.9925	4.8075 4.7153	6.7502 6.7078
170	0.7917	0.001 108	0.2428	718.33	1858.1	2576.5	719.21	2049.5	2763.3 2768.7	2.0419	4.6244	6.6663
175	0.8920	0.001 121	0.2168	740.17	1840.0	2580.2	741.17	2032.4	2773.6	2.0909	4.5347	6.6256
180	1.0021	0.001 127	0.194 05	762.09	1821.6	2583.7	763.22	2015.0	2778.2	2.1396	4.4461	6.5857
185 190	1.1227 1.2544	0.001 134 0.001 141	0.174 09 0.156 54	784.10 806.19	1802.9 1783.8	2587.0 2590.0	785.37 807.62	1997.1 1978.8	2782.4 2786.4	2.1879 2.2359	4.3586 4.2720	6.5465 6.5079
195	1.3978	0.001 149	0.141 05	828.37	1764.4	2592.8	829.98	1960.0	2790.0	2.2835	4.1863	6.4698
200	1.5538	0.001 157	0.127 36	850.65	1744.7	2595.3	852.45	1940.7	2793.2	2.3309	4.1014	6.4323
205	1.7230	0.001 164	0.115 21	873.04	1724.5	2597.5	875.04	1921.0	2796.0	2.3780	4.0172	6.3952
210 215	1.9062 2.104	0.001 173 0.001 181	0.104 41 0.094 79	895.53 918.14	1703.9 1682.9	2599.5 2601.1	897.76 920.62	1900.7 1879.9	2798.5 2800.5	2.4248 2.4714	3.9337 3.8507	6.3585 6.3221
220	2.318	0.001 190	0.086 19	940.87	1661.5	2602.4	943.62	1858.5	2802.1	2.5178	3.7683	6.2861
225	2.548	0.001 199	0.078 49	963.73	1639.6	2603.3	966.78	1836.5	2803.3	2.5639	3.6863	6.2503
230	2.795	0.001 209	0.071 58	986.74	1617.2	2603.9	990.12	1813.8	2804.0	2.6099	3.6047	6.2146
235 240	3.060 3.344	0.001 219 0.001 229	0.065 37 0.059 76	1009.89 1033.21	1594.2 1570.8	2604.1 2604.0	1013.62 1037.32	1790.5 1766.5	2804.2 2803.8	2.6558 2.7015	3.5233 3.4422	6.1791 6.1437
245	3.648	0.001 240	0.054 71	1056.71	1546.7	2603.4	1061.23	1741.7	2803.0	2.7472	3.3612	6.1083
250	3.973	0.001 251	0.050 13	1080.39	1522.0	2602.4	1085.36	1716.2	2801.5	2.7927	3.2802	6.0730
255 260	4.319 4.688	0.001 263 0.001 276	0.045 98 0.042 21	1104.28 1128.39	1596.7 1470.6	2600.9 2599.0	1109.73 1134.37	1689.8 1662.5	2799.5 2796.9	2.8383 2.8838	3.1992 3.1181	6.0375 6.0019
265	5.081	0.001 276	0.042 21	1152.74	1443.9	2596.6	1154.57	1634.4	2790.9	2.9294	3.0368	5.9662
270	5.499	0.001 302	0.035 64	1177.36	1416.3	2593.7	1184.51	1605.2	2789.7	2.9751	2.9551	5.9301
275	5.942	0.001 317	0.032 79	1202.25	1387.9	2590.2	1210.07	1574.9	2785.0	3.0208	2.8730	5.8938
280 285	6.412 6.909	0.001 332 0.001 348	0.030 17 0.027 77	1227.46 1253.00	1358.7 1328.4	2586.1 2581.4	1235.99 1262.31	1543.6 1511.0	2779.6 2773.3	3.0668 3.1130	2.7903 2.7070	5.8571 5.8199
290	7.436	0.001 348	0.027 77	1278.92	1297.1	2576.0	1289.07	1477.1	27/5.3	3.1130	2.6227	5.7821
295	7.993	0.001 384	0.023 54	1305.2	1264.7	2569.9	1316.3	1441.8	2758.1	3.2062	2.5375	5.7437
300	8.581	0.001 404	0.021 67	1332.0	1231.0	2563.0	1344.0	1404.9	2749.0	3.2534	2.4511	5.7045
305 310	9.202 9.856	0.001 425 0.001 447	0.019 948 0.018 350	1359.3 1387.1	1195.9 1159.4	2555.2 2546.4	1372.4 1401.3	1366.4 1326.0	2738.7 2727.3	3.3010 3.3493	2.3633 2.2737	5.6643 5.6230
310	9.856	0.001 447	0.018 350	1387.1	1139.4	2546.4 2536.6	1401.3	1326.0	2727.3 2714.5	3.3493	2.2737	5.5804
320	11.274	0.001 499	0.015 488	1444.6	1080.9	2525.5	1461.5	1238.6	2700.1	3.4480	2.0882	5.5362
330	12.845	0.001 561	0.012 996	1505.3	993.7	2498.9	1525.3	1140.6	2665.9	3.5507	1.8909	5.4417
340	14.586	0.001 638	0.010 797	1570.3	894.3	2464.6	1594.2	1027.9	2622.0	3.6594	1.6763	5.3357
350 360	16.513 18.651	0.001 740 0.001 893	0.008 813 0.006 945	1641.9 1725.2	776.6 626.3	2418.4 2351.5	1670.6 1760.5	893.4 720.3	2563.9 2481.0	3.7777 3.9147	1.4335 1.1379	5.2112 5.0526
370	21.03	0.002 213	0.004 925	1844.0	384.5	2228.5	1890.5	441.6	2332.1	4.1106	0.6865	4.7971
374.14	22.09	0.003 155	0.003 155	2029.6	0	2029.6	2099.3	0	2099.3	4.4298	0	4.4298

			Superl	heated Water	Tables			
T	v	и	h	S S	v	и	h	S
Temp.	m ³ /kg	kJ/kg	kJ/kg	kJ/(kg·K)	m ³ /kg	kJ/kg	kJ/kg	kJ/(kg·K)
°C	III / Kg	p = 0.01 M		KJ/(Kg·K)	III / Kg			KJ/(Kg·K)
Sat.	14.674	p = 0.01 NH 2437.9	2584.7	8.1502	3.240	p = 0.05 MI	2645.9	7.5939
50 50	14.869	2437.9	2592.6	8.1302 8.1749	3.240	2483.9	2043.9	7.3939
100	17.196	2515.5	2687.5	8.4479	3.418	2511.6	2682.5	7.6947
150	19.512	2587.9	2783.0	8.6882	3.889	2585.6	2780.1	7.9401
200	21.825	2661.3	2879.5	8.9038	4.356	2659.9	2877.7	8.1580
250	24.136	2736.0	2977.3	9.1002	4.820	2735.0	2976.0	8.3556
300 400	26.445 31.063	2812.1 2968.9	3076.5 3279.6	9.2813 9.6077	5.284 6.209	2811.3 2968.5	3075.5 3278.9	8.5373 8.8642
500	35.679	3132.3	3489.1	9.8978	7.134	3132.0	3488.7	9.1546
600	40.295	3302.5	3705.4	10.1608	8.057	3302.2	3705.1	9.4178
700	44.911	3479.6	3928.7	10.4028	8.981	3479.4	3928.5	9.6599
800	49.526	3663.8	4159.0	10.6281	9.904	3663.6	4158.9	9.8852
900	54.141	3855.0	4396.4	10.8396	10.828	3854.9	4396.3	10.0967
1000	58.757	4053.0	4640.6	11.0393	11.751	4052.9	4640.5	10.2964
1100 1200	63.372 67.987	4257.5 4467.9	4891.2 5147.8	11.2287 11.4091	12.674 13.597	4257.4 4467.8	4891.1 5147.7	10.4859 10.6662
1300	72.602	4683.7	5409.7	11.5811	14.521	4683.6	5409.6	10.8382
1500	72.002		Pa (99.63°C)	11.0011	11.021	p = 0.20 MP		10.0502
Sat.	1.6940	2506.1	2675.5	7.3594	0.8857	2529.5	2706.7	7.1272
100	1.6958	2506.7	2676.2	7.3614				
150	1.9364	2582.8	2776.4	7.6134	0.9596	2576.9	2768.8	7.2795
200	2.172	2658.1	2875.3	7.8343	1.0803	2654.4	2870.5	7.5066
250 300	2.406 2.639	2733.7 2810.4	2974.3 3074.3	8.0333 8.2158	1.1988 1.3162	2731.2	2971.0 3071.8	7.7086
400	3.103	2967.9	3074.3	8.5435	1.5493	2808.6 2966.7	30/1.8	7.8926 8.2218
500	3.565	3131.6	3488.1	8.8342	1.7814	3130.8	3487.1	8.5133
600	4.028	3301.9	3704.4	9.0976	2.013	3301.4	3704.0	8.7770
700	4.490	3479.2	3928.2	9.3398	2.244	3478.8	3927.6	9.0194
800	4.952	3663.5	4158.6	9.5652	2.475	3663.1	4158.2	9.2449
900	5.414	3854.8	4396.1	9.7767	2.705	3854.5	4395.8	9.4566
1000 1100	5.875 6.337	4052.8 4257.3	4640.3 4891.0	9.9764 10.1659	2.937 3.168	4052.5 4257.0	4640.0 4890.7	9.6563 9.8458
1200	6.799	4237.3 4467.7	5147.6	10.1639	3.399	4237.0 4467.5	5147.5	10.0262
1300	7.260	4683.5	5409.5	10.5183	3.630	4683.2	5409.3	10.1982
		p = 0.40 MF	Pa (143.63°C)			p = 0.60 MP	a (158.85°C)	
Sat.	0.4625	2553.6	2738.6	6.8959	0.3157	2567.4	2756.8	6.7600
150	0.4708	2564.5	2752.8	6.9299				
200	0.5342	2646.8	2860.5	7.1706	0.3520	2638.9	2850.1	6.9665
250 300	0.5951 0.6548	2726.1 2804.8	2964.2 3066.8	7.3789 7.5662	0.3938 0.4344	2720.9 2801.0	2957.2 3061.6	7.1816 7.3724
350	0.7137	2884.6	3170.1	7.7324	0.4742	2881.2	3165.7	7.5464
400	0.7726	2964.4	3273.4	7.8985	0.5137	2962.1	3270.3	7.7079
500	0.8893	3129.2	3484.9	8.1913	0.5920	3127.6	3482.8	8.0021
600	1.0055	3300.2	3702.4	8.4558	0.6697	3299.1	3700.9	8.2674
700	1.1215	3477.9	3926.5	8.6987	0.7472	3477.0	3925.3	8.5107
800 900	1.2372 1.3529	3662.4 3853.9	4157.3 4395.1	8.9244 9.1362	0.8245 0.9017	3661.8 3853.4	4156.5 4394.4	8.7367 8.9486
1000	1.3329	4052.0	4639.4	9.1362	0.9017	4051.5	4638.8	9.1485
1100	1.5840	4256.5	4890.2	9.5256	1.0559	4256.1	4889.6	9.3381
1200	1.6996	4467.0	5146.8	9.7060	1.1330	4466.5	5146.3	9.5185
1300	1.8151	4682.8	5408.8	9.8780	1.2101	4682.3	5408.3	9.6906
			Pa (170.43°C)	T		p = 1.00 MP		·
Sat.	0.2404	2576.8	2769.1	6.6628	0.194 44	2583.6	2778.1	6.5865
200 250	0.2608 0.2931	2630.6 2715.5	2839.3 2950.0	6.8158 7.0384	0.2060 0.2327	2621.9 2709.9	2827.9 2942.6	6.6940 6.9247
300	0.2931	2797.2	3056.5	7.0384	0.2579	2709.9	3051.2	7.1229
350	0.3544	2878.2	3161.7	7.4089	0.2825	2875.2	3157.7	7.3011
400	0.3843	2959.7	3267.1	7.5716	0.3066	2957.3	3263.9	7.4651
500	0.4433	3126.0	3480.6	7.8673	0.3541	3124.4	3478.5	7.7622
600	0.5018	3297.9	3699.4	8.1333	0.4011	3296.8	3697.9	8.0290
700	0.5601	3476.2	3924.2	8.3770	0.4478	3475.3	3923.1	8.2731
800 900	0.6181 0.6761	3661.1 3852.8	4155.6	8.6033 8.8153	0.4943 0.5407	3660.4 3852.2	4154.7 4392.9	8.4996 8.7118
1000	0.6761	3852.8 4051.0	4393.7 4638.2	9.0153	0.5407	3852.2 4050.5	4637.6	8.7118 8.9119
1100	0.7919	4255.6	4889.1	9.2050	0.6335	4255.1	4888.6	9.1017
1200	0.8497	4466.1	5145.9	9.3855	0.6798	4465.6	5145.4	9.2822
1300	0.9076	4681.8	5407.9	9.5575	0.7261	4681.3	5407.4	9.4543

P-h Diagram for Refrigerant HFC-134a

(metric units)

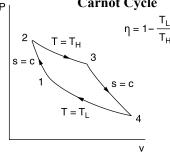
Pressure (bar)

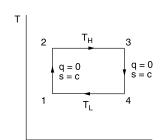

Data provided by DuPont Refrigerants, a division of E.I. duPont de Nemours and Co., Inc.

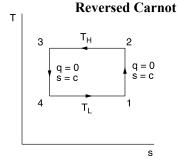
Thermal and Physical Property Tables

(at room temperature)

			GASES				
Substance	Mol		c_p		c_v	k	R
Substance	wt	kJ/(kg·K)	Btu/(lbm-°R)	kJ/(kg·K)	Btu/(lbm-°R)	, K	kJ/(kg·K)
Gases							
Air	29	1.00	0.240	0.718	0.171	1.40	0.2870
Argon	40	0.520	0.125	0.312	0.0756	1.67	0.2081
Butane	58	1.72	0.415	1.57	0.381	1.09	0.1430
Carbon dioxide	44	0.846	0.203	0.657	0.158	1.29	0.1889
Carbon monoxide	28	1.04	0.249	0.744	0.178	1.40	0.2968
Ethane	30	1.77	0.427	1.49	0.361	1.18	0.2765
Helium	4	5.19	1.25	3.12	0.753	1.67	2.0769
Hydrogen	2	14.3	3.43	10.2	2.44	1.40	4.1240
Methane	16	2.25	0.532	1.74	0.403	1.30	0.5182
Neon	20	1.03	0.246	0.618	0.148	1.67	0.4119
Nitrogen	28	1.04	0.248	0.743	0.177	1.40	0.2968
Octane vapor	114	1.71	0.409	1.64	0.392	1.04	0.0729
Oxygen	32	0.918	0.219	0.658	0.157	1.40	0.2598
Propane	44	1.68	0.407	1.49	0.362	1.12	0.1885
Steam	18	1.87	0.445	1.41	0.335	1.33	0.4615

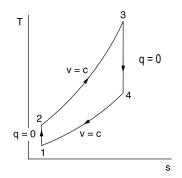

S	SELECTED L	IQUIDS AND	SOLIDS	
C. L. A.	•	c_p	Den	isity
Substance	kJ/(kg·K)	Btu/(lbm-°R)	kg/m ³	lbm/ft ³
Liquids				
Ammonia	4.80	1.146	602	38
Mercury	0.139	0.033	13,560	847
Water	4.18	1.000	997	62.4
Solids				
Aluminum	0.900	0.215	2,700	170
Copper	0.386	0.092	8,900	555
Ice (0°C; 32°F)	2.11	0.502	917	57.2
Iron	0.450	0.107	7,840	490
Lead	0.128	0.030	11,310	705

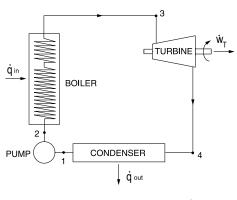


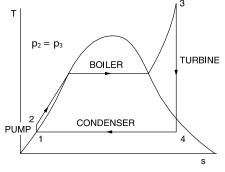

de Nevers, Noel, *Physical and Chemical Equilibrium for Chemical Engineers*, 2nd ed., Wiley, p. 308, © 2012.

COMMON THERMODYNAMIC CYCLES

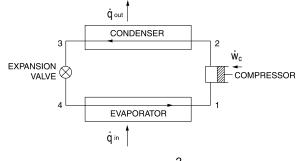
Carnot Cycle

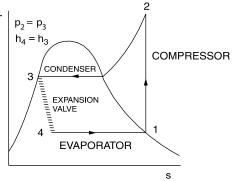



Otto Cycle (Gasoline Engine)


$$\eta = 1 - r^{1-k}$$

$$r = v_1/v_2$$

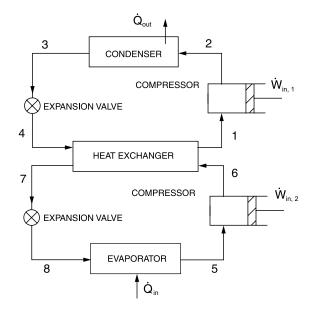

Rankine Cycle

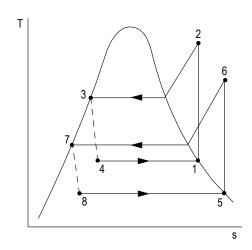


$$\eta = \frac{\left(h_3 - h_4\right) - \left(h_2 - h_1\right)}{h_3 - h_2}$$

Refrigeration

$$COP_{ref} = \frac{h_1 - h_4}{h_2 - h_1}$$
 $COP_{HP} = \frac{h_2 - h_3}{h_2 - h_1}$

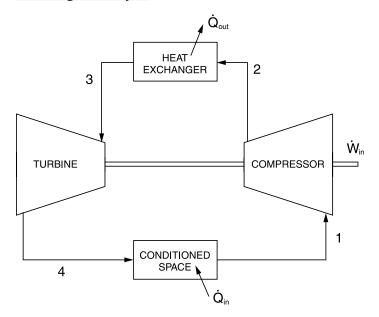

$$COP_{HP} = \frac{h_2 - h_3}{h_2 - h_1}$$

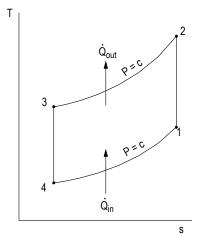

REFRIGERATION AND HVAC

Cycles

Refrigeration and HVAC

Two-Stage Cycle

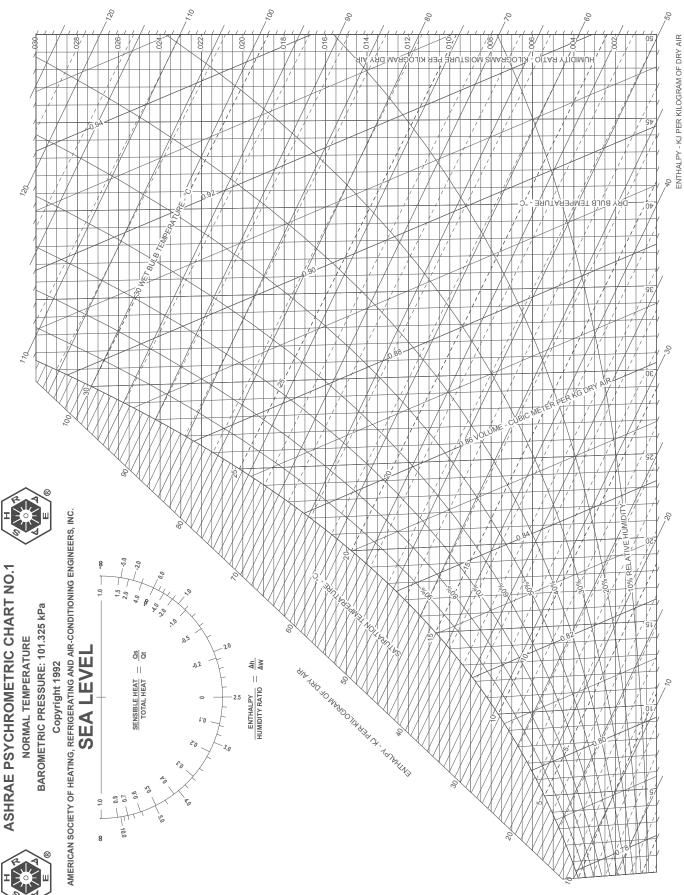



The following equations are valid if the mass flows are the same in each stage.

$$COP_{\text{ref}} = \frac{\dot{Q}_{\text{in}}}{\dot{W}_{\text{in},1} + \dot{W}_{\text{in},2}} = \frac{h_5 - h_8}{h_2 - h_1 + h_6 - h_5}$$

$$COP_{\text{HP}} = \frac{\dot{Q}_{\text{out}}}{\dot{W}_{\text{in},1} + \dot{W}_{\text{in},2}} = \frac{h_2 - h_3}{h_2 - h_1 + h_6 - h_5}$$

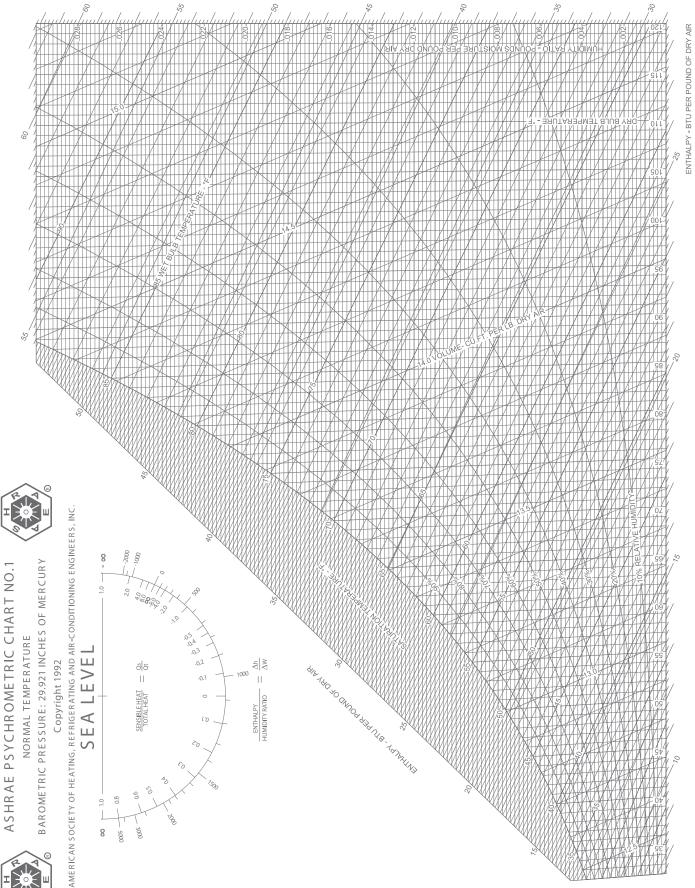
Air Refrigeration Cycle


$$COP_{ref} = \frac{h_1 - h_4}{(h_2 - h_1) - (h_3 - h_4)}$$

$$COP_{HP} = \frac{h_2 - h_3}{(h_2 - h_1) - (h_3 - h_4)}$$

ASHRAE Psychrometric Chart No. 1

(metric units)


© 2013 ASHRAE Psychrometric Chart No. 1

ASHRAE Psychrometric Chart No. 1

(English units)
© 2013 ASHRAE Psychrometric Chart No. 1

FLUID MECHANICS

DEFINITIONS

Density, Specific Volume, Specific Weight, and Specific Gravity

The definitions of density, specific weight, and specific gravity follow:

$$\rho = \lim_{\Delta V \to 0} \Delta m / \Delta V$$

$$\gamma = \lim_{\Delta V \to 0} \Delta W / \Delta V$$

$$\gamma = \lim_{\Delta V \to 0} g \cdot \Delta m / \Delta V = \rho g$$

also $SG = \gamma/\gamma_w = \rho/\rho_w$, where

= density (also called mass density)

= mass of infinitesimal volume Δm

= volume of infinitesimal object considered ΔV

= specific weight γ $= \rho g$

= weight of an infinitesimal volume ΔW

SG= specific gravity

= density of water at standard conditions ρ_w

 $= 1,000 \text{ kg/m}^3 (62.4 \text{ lbm/ft}^3)$

= specific weight of water at standard conditions γ_{ω}

 $= 9.810 \text{ N/m}^3 (62.4 \text{ lbf/ft}^3)$

 $= 9.810 \text{ kg/(m}^2 \cdot \text{s}^2)$

Stress, Pressure, and Viscosity

Stress is defined as

$$\tau(1) = \lim_{\Delta A \to 0} \Delta F/\Delta A$$
, where

 $\tau(1)$ = surface stress vector at point 1

= force acting on infinitesimal area ΔA ΛF

= infinitesimal area at point 1 ΔA

 $\tau_n = -P$

 $\tau_t = \mu(dv/dy)$ (one-dimensional; i.e., y), where

 τ_n and τ_t = normal and tangential stress components at point 1, respectively

P = pressure at point 1

= absolute dynamic viscosity of the fluid μ $N \cdot s/m^2 [lbm/(ft-sec)]$

= differential velocity dv

= differential distance, normal to boundary dy

= velocity at boundary condition v

= normal distance, measured from boundary y

= kinematic viscosity; m²/s (ft²/sec) where $v = \mu/\rho$

For a thin Newtonian fluid film and a linear velocity profile,

 $v(y) = vy/\delta$; $dv/dy = v/\delta$, where

= velocity of plate on film

δ = thickness of fluid film

For a power law (non-Newtonian) fluid

 $\tau_t = K (dv/dv)^n$, where

K = consistency index

= power law index

 $n < 1 \equiv pseudo plastic$

 $n > 1 \equiv \text{dilatant}$

Surface Tension and Capillarity

Surface tension σ is the force per unit contact length

 $\sigma = F/L$, where

= surface tension, force/length σ

F = surface force at the interface

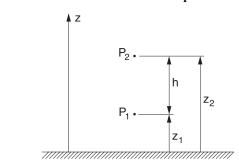
= length of interface

The *capillary rise h* is approximated by

 $h = (4\sigma \cos \beta)/(\gamma d)$, where

= height of the liquid in the vertical tube h

= surface tension σ


= angle made by the liquid with the wetted tube wall β

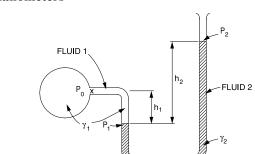
= specific weight of the liquid γ

= the diameter of the capillary tube

CHARACTERISTICS OF A STATIC LIQUID

The Pressure Field in a Static Liquid

The difference in pressure between two different points is


$$P_2 - P_1 = -\gamma (z_2 - z_1) = -\gamma h = -\rho g h$$

Absolute pressure = atmospheric pressure + gage pressure reading

Absolute pressure = atmospheric pressure – vacuum gage pressure reading

♦ Bober, W., and R.A. Kenyon, Fluid Mechanics, Wiley, 1980. Diagrams reprinted by permission of William Bober and Richard A. Kenyon.

Manometers

For a simple manometer,

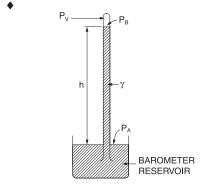
$$P_0 = P_2 + \gamma_2 h_2 - \gamma_1 h_1 = P_2 + g (\rho_2 h_2 - \rho_1 h_1)$$
If $h_1 = h_2 = h$

$$P_0 = P_2 + (\gamma_2 - \gamma_1)h = P_2 + (\rho_2 - \rho_1)gh$$

Note that the difference between the two densities is used.

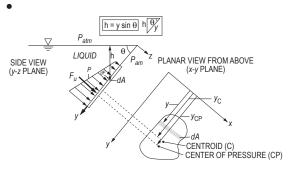
P = pressure

γ = specific weight of fluid


h = height

g = acceleration of gravity

 ρ = fluid density


Another device that works on the same principle as the manometer is the simple barometer.

$$P_{\text{atm}} = P_A = P_v + \gamma h = P_B + \gamma h = P_B + \rho g h$$

 P_{v} = vapor pressure of the barometer fluid

Forces on Submerged Surfaces and the Center of Pressure

SUBMERGED PLANE SURFACE

The pressure on a point at a vertical distance *h* below the surface is:

$$P = P_0 + \rho g h$$
, for $h \ge 0$

- Bober, W., and R.A. Kenyon, Fluid Mechanics, Wiley, 1980. Diagrams reprinted by permission of William Bober and Richard A. Kenyon.
- Elger, Donald F., et al, Engineering Fluid Mechanics, 10th ed., 2012. Reproduced with permission of John Wiley & Sons, Inc.

P = pressure

 $P_0 = \text{atmospheric pressure}$

 $P_{\rm C}$ = pressure at the centroid of area

 $P_{\rm CP}$ = pressure at center of pressure

 $y_{\rm C}$ = slant distance from liquid surface to the centroid of area

 $y_{\rm C} = h_{\rm C}/\sin\alpha$

 $h_{\rm C}$ = vertical distance from liquid surface to centroid of area

 $y_{\rm CP}$ = slant distance from liquid surface to center of pressure

 $h_{\rm CP}$ = vertical distance from liquid surface to center of pressure

θ = angle between liquid surface and edge of submerged surface

 I_{xC} = moment of inertia about the centroidal x-axis

If atmospheric pressure acts above the liquid surface and on the non-wetted side of the submerged surface.

$$y_{\rm CP} = y_{\rm C} + I_{\rm xC}/y_{\rm C}$$
A

 $y_{\rm CP} = y_{\rm C} + \rho g \sin \alpha I_{xC} / P_{\rm C} A$

Wetted side: $F_R = (P_0 + \rho g y_C \sin \theta) A$

 P_0 acting both sides: $F_{R_{\text{net}}} = (\rho g y_C \sin \theta) A$

Archimedes Principle and Buoyancy

- The buoyant force exerted on a submerged or floating body is equal to the weight of the fluid displaced by the body.
- 2. A floating body displaces a weight of fluid equal to its own weight; i.e., a floating body is in equilibrium.

The *center of buoyancy* is located at the centroid of the displaced fluid volume.

In the case of a body lying at the *interface of two immiscible fluids*, the buoyant force equals the sum of the weights of the fluids displaced by the body.

PRINCIPLES OF ONE-DIMENSIONAL FLUID FLOW The Continuity Equation

So long as the flow Q is continuous, the *continuity equation*, as applied to one-dimensional flows, states that the flow passing two points (1 and 2) in a stream is equal at each point,

$$A_1 \mathbf{v}_1 = A_2 \mathbf{v}_2.$$

$$Q = A \mathbf{v}_1$$

$$\dot{m} = \rho Q = \rho A v$$
, where

O = volumetric flow rate

 \dot{m} = mass flow rate

A = cross-sectional area of flow

v = average flow velocity

 ρ = the fluid density

For steady, one-dimensional flow, m is a constant. If, in addition, the density is constant, then Q is constant.

The Energy Equation

The energy equation for steady incompressible flow with no shaft device is

$$\frac{P_1}{\gamma} + z_1 + \frac{v_1^2}{2g} = \frac{P_2}{\gamma} + z_2 + \frac{v_2^2}{2g} + h_f \text{ or}$$

$$\frac{P_1}{\rho g} + z_1 + \frac{v_1^2}{2g} = \frac{P_2}{\rho g} + z_2 + \frac{v_2^2}{2g} + h_f$$

 h_f = the head loss, considered a friction effect, and all remaining terms are defined above.

If the cross-sectional area and the elevation of the pipe are the same at both sections (1 and 2), then $z_1 = z_2$ and $v_1 = v_2$.

The pressure drop $P_1 - P_2$ is given by the following:

$$P_1 - P_2 = \gamma h_f = \rho g h_f$$

The Field Equation

The field equation is derived when the energy equation is applied to one-dimensional flows. Assuming no friction losses and that no pump or turbine exists between sections 1 and 2 in the system,

$$\frac{P_2}{\gamma} + \frac{v_2^2}{2g} + z_2 = \frac{P_1}{\gamma} + \frac{v_1^2}{2g} + z_1 \text{ or}$$

$$\frac{P_2}{\rho} + \frac{v_2^2}{2} + z_2 g = \frac{P_1}{\rho} + \frac{v_1^2}{2} + z_1 g, \text{ where}$$

 P_1 , P_2 = pressure at sections 1 and 2

 v_1, v_2 = average velocity of the fluid at the sections

 z_1, z_2 = the vertical distance from a datum to the sections (the potential energy)

 γ = the specific weight of the fluid (ρg)

g = the acceleration of gravity

 ρ = fluid density

Hydraulic Gradient (Grade Line)

Hydraulic grade line is the line connecting the sum of pressure and elevation heads at different points in conveyance systems. If a row of piezometers were placed at intervals along the pipe, the grade line would join the water levels in the piezometer water columns.

Energy Line (Bernoulli Equation)

The Bernoulli equation states that the sum of the pressure, velocity, and elevation heads is constant. The energy line is this sum or the "total head line" above a horizontal datum. The difference between the hydraulic grade line and the energy line is the $\rm v^2/2g$ term.

FLUID FLOW CHARACTERIZATION

Reynolds Number

$$Re = vD\rho/\mu = vD/\upsilon$$

Re' =
$$\frac{v^{(2-n)}D^n \rho}{K(\frac{3n+1}{4n})^n 8^{(n-1)}}$$
, where

 ρ = the mass density

D = the diameter of the pipe, dimension of the fluid streamline, or characteristic length

 μ = the dynamic viscosity

v = the kinematic viscosity

Re = the Reynolds number (Newtonian fluid)

Re' = the Reynolds number (Power law fluid)

K and *n* are defined in the Stress, Pressure, and Viscosity section.

The critical Reynolds number $(Re)_c$ is defined to be the minimum Reynolds number at which a flow will turn turbulent.

Flow through a pipe is generally characterized as laminar for Re < 2,100 and fully turbulent for Re > 10,000, and transitional flow for 2,100 < Re < 10,000.

The velocity distribution for *laminar flow* in circular tubes or between planes is

$$v(r) = v_{\text{max}} \left[1 - \left(\frac{r}{R} \right)^2 \right]$$
, where

r = the distance (m) from the centerline

R = the radius (m) of the tube or half the distance between the parallel planes

v = the local velocity (m/s) at r

 v_{max} = the velocity (m/s) at the centerline of the duct

 $v_{\text{max}} = 1.18\overline{v}$, for fully turbulent flow

 $v_{\text{max}} = 2\overline{v}$, for circular tubes in laminar flow and

 $v_{max} = 1.5 \overline{v}$, for parallel planes in laminar flow, where

 \overline{v} = the average velocity (m/s) in the duct

The shear stress distribution is

$$\frac{\tau}{\tau_{...}} = \frac{r}{R}$$
, where

 τ and τ_w are the shear stresses at radii r and R respectively.

CONSEQUENCES OF FLUID FLOW

Head Loss Due to Flow

The Darcy-Weisbach equation is

$$h_f = f \frac{L}{D} \frac{v^2}{2g}$$
, where

 $f = f(\text{Re}, \varepsilon/D)$, the Moody, Darcy, or Stanton friction factor

D = diameter of the pipe

L = length over which the pressure drop occurs

 ε = roughness factor for the pipe, and other symbols are defined as before

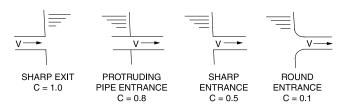
An alternative formulation employed by chemical engineers is

$$h_f = \left(4f_{\text{Fanning}}\right) \frac{Lv^2}{D2g} = \frac{2f_{\text{Fanning}} Lv^2}{Dg}$$

Fanning friction factor, $f_{\text{Fanning}} = \frac{f}{4}$

A chart that gives f versus Re for various values of ε/D , known as a *Moody, Darcy,* or *Stanton diagram*, is available in this section.

Minor Losses in Pipe Fittings, Contractions, and Expansions


Head losses also occur as the fluid flows through pipe fittings (i.e., elbows, valves, couplings, etc.) and sudden pipe contractions and expansions.

$$\begin{split} \frac{P_1}{\gamma} + z_1 + \frac{\mathbf{v}_1^2}{2g} &= \frac{P_2}{\gamma} + z_2 + \frac{\mathbf{v}_2^2}{2g} + h_f + h_{f, \, \text{fitting}} \\ \frac{P_1}{\rho g} + z_1 + \frac{\mathbf{v}_1^2}{2g} &= \frac{P_2}{\rho g} + z_2 + \frac{\mathbf{v}_2^2}{2g} + h_f + h_{f, \, \text{fitting}}, \, \, \text{where} \\ h_{f, \, \text{fitting}} &= C \frac{\mathbf{v}^2}{2g}, \, \text{and} \, \frac{\mathbf{v}^2}{2g} &= 1 \, \text{velocity head} \end{split}$$

Specific fittings have characteristic values of *C*, which will be provided in the problem statement. A generally accepted *nominal value* for head loss in *well-streamlined gradual contractions* is

$$h_{f, \text{ fitting}} = 0.04 \text{ v}^2 / 2g$$

The *head loss* at either an *entrance* or *exit* of a pipe from or to a reservoir is also given by the $h_{f, \text{ fitting}}$ equation. Values for C for various cases are shown as follows.

Bober, W., and R.A. Kenyon, *Fluid Mechanics*, Wiley, 1980. Diagrams reprinted by permission of William Bober and Richard A. Kenyon.

Pressure Drop for Laminar Flow

The equation for Q in terms of the pressure drop ΔP_f is the Hagen-Poiseuille equation. This relation is valid only for flow in the laminar region.

$$Q = \frac{\pi R^4 \Delta P_f}{8\mu L} = \frac{\pi D^4 \Delta P_f}{128\mu L}$$

Flow in Noncircular Conduits

Analysis of flow in conduits having a noncircular cross section uses the *hydraulic radius* R_H , or the *hydraulic diameter* D_H , as follows:

$$R_H = \frac{\text{cross-sectional area}}{\text{wetted perimeter}} = \frac{D_H}{4}$$

Drag Force

The drag force F_D on objects immersed in a large body of flowing fluid or objects moving through a stagnant fluid is

$$F_D = \frac{C_D \rho v^2 A}{2}$$
, where

 C_D = the drag coefficient,

v = the velocity (m/s) of the flowing fluid or moving object, and

A = the *projected area* (m²) of blunt objects such as spheres, ellipsoids, disks, and plates, cylinders, ellipses, and air foils with axes perpendicular to the flow.

 ρ = fluid density

For flat plates placed parallel with the flow:

$$C_D = 1.33/\text{Re}^{0.5} (10^4 < \text{Re} < 5 \times 10^5)$$

$$C_D = 0.031/\text{Re}^{1/7} (10^6 < \text{Re} < 10^9)$$

The characteristic length in the Reynolds Number (Re) is the length of the plate parallel with the flow. For blunt objects, the characteristic length is the largest linear dimension (diameter of cylinder, sphere, disk, etc.) that is perpendicular to the flow.

CHARACTERISTICS OF SELECTED FLOW CONFIGURATIONS

Open-Channel Flow and/or Pipe Flow of Water

Manning's Equation

$$v = (K/n)R_H^{2/3}S^{1/2}$$
, where

v = velocity (m/s, ft/sec)

K = 1.0 for SI units, 1.486 for USCS units

n = roughness coefficient

 R_H = hydraulic radius (m, ft)

S = slope of energy grade line (m/m, ft/ft)

Hazen-Williams Equation

$$v = k_1 C R_H^{0.63} S^{0.54}$$
, where

 $k_1 = 0.849$ for SI units, 1.318 for USCS units

 C = roughness coefficient, as tabulated in the Civil Engineering section. Other symbols are defined as before.

Flow Through a Packed Bed

A porous, fixed bed of solid particles can be characterized by

L = length of particle bed (m)

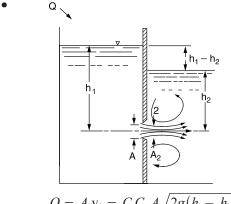
 D_n = average particle diameter (m)

 Φ_s = sphericity of particles, dimensionless (0–1)

ε = porosity or void fraction of the particle bed, dimensionless (0–1)

The Ergun equation can be used to estimate pressure loss through a packed bed under laminar and turbulent flow conditions.

$$\frac{\Delta P}{L} = \frac{150 v_o \mu (1 - \varepsilon)^2}{\Phi_s^2 D_p^2 \varepsilon^3} + \frac{1.75 \rho v_o^2 (1 - \varepsilon)}{\Phi_s D_p \varepsilon^3}$$

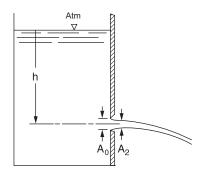

 ΔP = pressure loss across packed bed (Pa)

v_o = superficial (flow through empty vessel) fluid velocity (m/s)

 ρ = fluid density (kg/m³)

 μ = fluid viscosity [kg/(m·s)]

Submerged Orifice operating under steady-flow conditions:


$$Q = A_2 v_2 = C_c C_v A \sqrt{2g(h_1 - h_2)}$$

= $CA \sqrt{2g(h_1 - h_2)}$

in which the product of C_c and C_v is defined as the *coefficient* of discharge of the orifice.

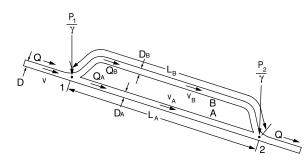
 v_2 = velocity of fluid exiting orifice

Orifice Discharging Freely into Atmosphere

•

$$Q = CA_0 \sqrt{2gh}$$

in which h is measured from the liquid surface to the centroid of the orifice opening.


Q = volumetric flow

 $A_0 =$ cross-sectional area of flow

g = acceleration of gravity

h = height of fluid above orifice

Multipath Pipeline Problems

For pipes in parallel, the head loss is the same in each pipe.

$$h_{L} = f_{A} \frac{L_{A}}{D_{A}} \frac{v_{A}^{2}}{2g} = f_{B} \frac{L_{B}}{D_{B}} \frac{v_{B}^{2}}{2g}$$
$$(\pi D^{2}/4) v = (\pi D_{A}^{2}/4) v_{A} + (\pi D_{B}^{2}/4) v_{B}$$

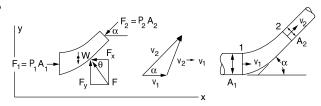
The total flow rate Q is the sum of the flow rates in the parallel pipes.

THE IMPULSE-MOMENTUM PRINCIPLE

The resultant force in a given direction acting on the fluid equals the rate of change of momentum of the fluid.

$$\Sigma \mathbf{F} = \Sigma Q_2 \rho_2 \mathbf{v}_2 - \Sigma Q_1 \rho_1 \mathbf{v}_1$$
, where

 ΣF = the resultant of all external forces acting on the control volume


 $\Sigma Q_1 \rho_1 v_1$ = the rate of momentum of the fluid flow entering the control volume in the same direction of the force

 $\Sigma Q_2 \rho_2 v_2$ = the rate of momentum of the fluid flow leaving the control volume in the same direction of the force

· Vennard, J.K., Elementary Fluid Mechanics, 6th ed., J.K. Vennard, 1954.

Pipe Bends, Enlargements, and Contractions

The force exerted by a flowing fluid on a bend, enlargement, or contraction in a pipeline may be computed using the impulse-momentum principle.

$$P_1A_1 - P_2A_2\cos\alpha - F_x = Q\rho \ (v_2\cos\alpha - v_1)$$

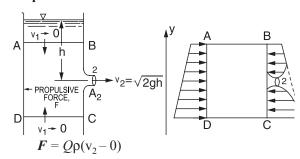
 $F_v - W - P_2A_2\sin\alpha = Q\rho \ (v_2\sin\alpha - 0), \text{ where}$

F = the force exerted by the bend on the fluid (the force exerted by the fluid on the bend is equal in magnitude and opposite in sign), F_x and F_y are the x-component and y-component of the force $F = \sqrt{F_x^2 + F_y^2}$ and $\theta = \tan^{-1}\left(\frac{F_y}{F_x}\right)$.

P = the internal pressure in the pipe line

A = the cross-sectional area of the pipe line

W= the weight of the fluid


v =the velocity of the fluid flow

 α = the angle the pipe bend makes with the horizontal

 ρ = the density of the fluid

Q = the quantity of fluid flow

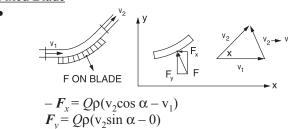
Jet Propulsion

 $\mathbf{F} = 2\gamma h A_2$, where

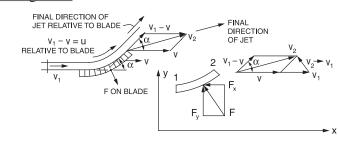
F = the propulsive force

 γ = the specific weight of the fluid

h = the height of the fluid above the outlet


 A_2 = the area of the nozzle tip

 $Q = A_2 \sqrt{2gh}$

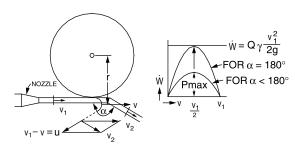

 $v_2 = \sqrt{2gh}$

Deflectors and Blades

Fixed Blade

Moving Blade

$$-F_x = Q\rho(v_{2x} - v_{1x})$$


$$= -Q\rho(v_1 - v)(1 - \cos \alpha)$$

$$F_y = Q\rho(v_{2y} - v_{1y})$$

$$= +Q\rho(v_1 - v) \sin \alpha, \text{ where}$$

v =the velocity of the blade.

Impulse Turbine

$$\dot{W} = Q\rho(v_1 - v)(1 - \cos \alpha)v$$
, where

 \dot{W} = power of the turbine.

$$\dot{W}_{\text{max}} = Q\rho \left(v_1^2 / 4 \right) (1 - \cos \alpha)$$

When $\alpha = 180^{\circ}$.

$$\dot{W}_{\text{max}} = \left(Q\rho v_1^2\right)/2 = \left(Q\gamma v_1^2\right)/2g$$

COMPRESSIBLE FLOW

Mach Number

The local speed of sound in an ideal gas is given by:

$$c = \sqrt{kRT}$$
, where

 $c \equiv local speed of sound$

 $k = \text{ratio of specific heats} = \frac{c_p}{c_p}$

 $R \equiv \text{gas constant}$

 $T \equiv absolute temperature$

This shows that the acoustic velocity in an ideal gas depends only on its temperature. The *Mach number* (Ma) is the ratio of the fluid velocity to the speed of sound.

$$Ma \equiv \frac{V}{C}$$

 $V \equiv \text{mean fluid velocity}$

• Vennard, J.K., Elementary Fluid Mechanics, 6th ed., J.K. Vennard, 1954.

Isentropic Flow Relationships

In an ideal gas for an isentropic process, the following relationships exist between static properties at any two points in the flow.

$$\frac{P_2}{P_1} = \left(\frac{T_2}{T_1}\right)^{\frac{k}{(k-1)}} = \left(\frac{\rho_2}{\rho_1}\right)^k$$

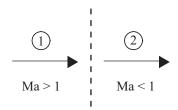
The stagnation temperature, T_0 , at a point in the flow is related to the static temperature as follows:

$$T_0 = T + \frac{V^2}{2 \cdot c_p}$$

The relationship between the static and stagnation properties $(T_0, P_0, \text{ and } \rho_0)$ at any point in the flow can be expressed as a function of the Mach number as follows:

$$\begin{split} &\frac{T_0}{T} = 1 + \frac{k-1}{2} \cdot \text{Ma}^2 \\ &\frac{P_0}{P} = \left(\frac{T_0}{T}\right)^{\frac{k}{(k-1)}} = \left(1 + \frac{k-1}{2} \cdot \text{Ma}^2\right)^{\frac{k}{(k-1)}} \\ &\frac{\rho_0}{\rho} = \left(\frac{T_0}{T}\right)^{\frac{1}{(k-1)}} = \left(1 + \frac{k-1}{2} \cdot \text{Ma}^2\right)^{\frac{1}{(k-1)}} \end{split}$$

Compressible flows are often accelerated or decelerated through a nozzle or diffuser. For subsonic flows, the velocity decreases as the flow cross-sectional area increases and vice versa. For supersonic flows, the velocity increases as the flow cross-sectional area increases and decreases as the flow cross-sectional area decreases. The point at which the Mach number is sonic is called the throat and its area is represented by the variable, A^* . The following area ratio holds for any Mach number.

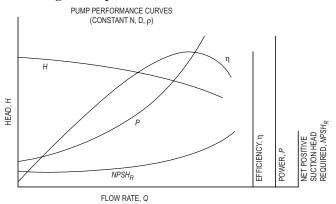

$$\frac{A}{A^*} = \frac{1}{Ma} \left[\frac{1 + \frac{1}{2}(k-1)Ma^2}{\frac{1}{2}(k+1)} \right]^{\frac{(k+1)}{2(k-1)}}$$

where

 $A \equiv \text{area [length}^2]$ $A^* \equiv \text{area at the sonic point (Ma = 1.0)}$

Normal Shock Relationships

A normal shock wave is a physical mechanism that slows a flow from supersonic to subsonic. It occurs over an infinitesimal distance. The flow upstream of a normal shock wave is always supersonic and the flow downstream is always subsonic as depicted in the figure.


NORMAL SHOCK

The following equations relate downstream flow conditions to upstream flow conditions for a normal shock wave.

$$\begin{aligned} \mathbf{M}\mathbf{a}_2 &= \sqrt{\frac{(k-1)\mathbf{M}\mathbf{a}_1^2 + 2}{2k\ \mathbf{M}\mathbf{a}_1^2 - (k-1)}} \\ \frac{T_2}{T_1} &= \left[2 + (k-1)\mathbf{M}\mathbf{a}_1^2\right] \frac{2k\ \mathbf{M}\mathbf{a}_1^2 - (k-1)}{(k+1)^2\mathbf{M}\mathbf{a}_1^2} \\ \frac{P_2}{P_1} &= \frac{1}{k+1} \left[2k\ \mathbf{M}\mathbf{a}_1^2 - (k-1)\right] \\ \frac{\rho_2}{\rho_1} &= \frac{V_1}{V_2} = \frac{(k+1)\mathbf{M}\mathbf{a}_1^2}{(k-1)\mathbf{M}\mathbf{a}_1^2 + 2} \\ T_{01} &= T_{02} \end{aligned}$$

FLUID FLOW MACHINERY

Centrifugal Pump Characteristics

Net Positive Suction Head Available (NPSH₄)

$$NPSH_A = \frac{P_{\text{atm}}}{\rho g} + H_s - H_f - \frac{V^2}{2g} - \frac{P_{\text{vapor}}}{\rho g}$$
, where

 P_{otm} = atmospheric pressure at fluid source surface

 $H_{\rm s}$ = static head at pump inlet

 H_f = friction losses from fluid source to pump inlet

V = fluid velocity at pump inlet

 P_{vapor} = fluid vapor pressure at pump inlet

 ρ = fluid density

g = gravitational constant

Fluid power $\dot{W}_{\text{fluid}} = \rho g H Q$

Pump (brake) power $\dot{W} = \frac{\rho g H Q}{\eta_{\text{pump}}}$

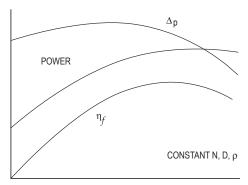
Purchased power $\dot{W}_{\text{purchased}} = \frac{\dot{W}}{\eta_{\text{motor}}}$

 $\eta_{\text{pump}} = \text{pump efficiency } (0 \text{ to } 1)$

 $\eta_{\text{motor}} = \text{motor efficiency } (0 \text{ to } 1)$

H = head increase provided by pump

Pump Power Equation


 $\dot{W} = Q\gamma h/\eta = Q\rho gh/\eta_t$, where

 $Q = \text{volumetric flow (m}^3/\text{s or cfs)}$

h = head (m or ft) the fluid has to be lifted

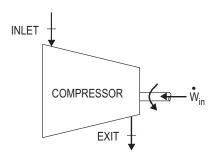
 $\eta_t = \text{total efficiency} (\eta_{\text{pump}} \times \eta_{\text{motor}})$ $\dot{W} = \text{power} (\text{kg} \cdot \text{m}^2/\text{sec}^3 \text{ or ft-lbf/sec})$

Fan Characteristics

FLOW RATE, Q

Typical Backward Curved Fans

$$\dot{W} = \frac{\Delta PQ}{\eta_f}$$
, where


 $\dot{W} = \text{fan power}$

 ΔP = pressure rise

 η_f = fan efficiency

Compressors

Compressors consume power to add energy to the working fluid. This energy addition results in an increase in fluid pressure (head).

For an adiabatic compressor with $\Delta PE = 0$ and negligible ΔKE :

$$\dot{W}_{\rm comp} = -\dot{m} \left(h_e - h_i \right)$$

For an ideal gas with constant specific heats:

$$\dot{W}_{\rm comp} = -\dot{m}c_p \big(T_e - T_i\big)$$

Per unit mass:

$$W_{\rm comp} = -c_p (T_e - T_i)$$

Compressor Isentropic Efficiency

$$\eta_C = \frac{w_s}{w_a} = \frac{T_{es} - T_i}{T_e - T_i}$$
 where,

 $w_a \equiv$ actual compressor work per unit mass

 $w_s \equiv \text{isentropic compressor work per unit mass}$

 $T_{es} \equiv \text{isentropic exit temperature}$

For a compressor where ΔKE is included:

$$\begin{split} \dot{W}_{\text{comp}} &= -\dot{m} \bigg(h_e - h_i + \frac{V_e^2 - V_i^2}{2} \bigg) \\ &= -\dot{m} \bigg(c_p \big(T_e - T_i \big) + \frac{V_e^2 - V_i^2}{2} \bigg) \end{split}$$

Adiabatic Compression

$$\dot{W}_{\text{comp}} = \frac{\dot{m} P_i k}{(k-1)\rho_i \eta_c} \left[\left(\frac{P_e}{P_i} \right)^{1-1/k} - 1 \right]$$

 $\dot{W}_{\text{comp}} = \text{fluid or gas power (W)}$

 P_i = inlet or suction pressure (N/m²)

 P_e = exit or discharge pressure (N/m²)

k = ratio of specific heats = c_p/c_v

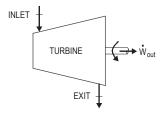
 ρ_i = inlet gas density (kg/m³)

 η_c = isentropic compressor efficiency

Isothermal Compression

$$\dot{W}_{\rm comp} = \frac{\overline{R} T_i}{M \eta_c} \ln \frac{P_e}{P_i} (\dot{m})$$

 \dot{W}_{comp} , P_i , P_e , and η_c as defined for adiabatic compression


 \overline{R} = universal gas constant

 T_i = inlet temperature of gas (K)

 \dot{M} = molecular weight of gas (kg/kmol)

Turbines

Turbines produce power by extracting energy from a working fluid. The energy loss shows up as a decrease in fluid pressure (head).

For an adiabatic turbine with $\Delta PE = 0$ and negligible ΔKE :

$$\dot{W}_{\text{turb}} = \dot{m}(h_i - h_e)$$

For an ideal gas with constant specific heats:

$$\dot{W}_{\rm turb} = \dot{m}c_p \left(T_i - T_e \right)$$

Per unit mass:

$$w_{\text{turb}} = c_p (T_i - T_e)$$

Turbine Isentropic Efficiency

$$\eta_T = \frac{w_a}{w_s} = \frac{T_i - T_e}{T_i - T_{es}}$$

For a turbine where ΔKE is included:

$$\dot{W}_{\text{turb}} = \dot{m} \left(h_e - h_i + \frac{V_e^2 - V_i^2}{2} \right) \\
= \dot{m} \left(c_p \left(T_e - T_i \right) + \frac{V_e^2 - V_i^2}{2} \right)$$

Performance of Components

Fans, Pumps, and Compressors

Scaling Laws; Affinity Laws

$$\begin{split} &\left(\frac{Q}{ND^3}\right)_2 = \left(\frac{Q}{ND^3}\right)_1 \\ &\left(\frac{\dot{m}}{\rho ND^3}\right)_2 = \left(\frac{\dot{m}}{\rho ND^3}\right)_1 \\ &\left(\frac{H}{N^2D^2}\right)_2 = \left(\frac{H}{N^2D^2}\right)_1 \\ &\left(\frac{P}{\rho N^2D^2}\right)_2 = \left(\frac{P}{\rho N^2D^2}\right)_1 \\ &\left(\frac{\dot{W}}{\rho N^3D^5}\right)_2 = \left(\frac{\dot{W}}{\rho N^3D^5}\right)_1 \end{split}$$

where

Q = volumetric flow rate

 $\dot{m} = \text{mass flow rate}$

H = head

P = pressure rise

 $\dot{W} = power$

 ρ = fluid density

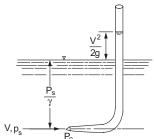
N =rotational speed

D = impeller diameter

Subscripts 1 and 2 refer to different but similar machines or to different operating conditions of the same machine.

FLUID FLOW MEASUREMENT

The Pitot Tube – From the stagnation pressure equation for an *incompressible fluid*,


$$v = \sqrt{(2/\rho)(P_0 - P_s)} = \sqrt{2g(P_0 - P_s)/\gamma}$$
, where

v = the velocity of the fluid

 P_0 = the stagnation pressure

 P_s = the static pressure of the fluid at the elevation where

the measurement is taken

For a *compressible fluid*, use the above incompressible fluid equation if the Mach number ≤ 0.3 .

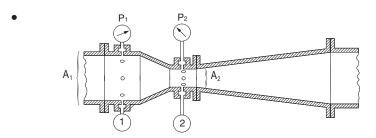
Venturi Meters

$$Q = \frac{C_{v}A_{2}}{\sqrt{1 - (A_{2}/A_{1})^{2}}} \sqrt{2g(\frac{P_{1}}{\gamma} + z_{1} - \frac{P_{2}}{\gamma} - z_{2})}, \text{ where}$$

Q = volumetric flow rate

 $C_{\rm v}$ = the coefficient of velocity

A =cross-sectional area of flow

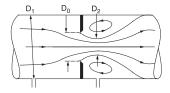

P = pressure

 $\gamma = 00$

 z_1 = elevation of venturi entrance

 z_2 = elevation of venturi throat

The above equation is for *incompressible fluids*.



Vennard, J.K., Elementary Fluid Mechanics, 6th ed., J.K. Vennard, 1954.

Orifices

The cross-sectional area at the vena contracta A_2 is characterized by a *coefficient of contraction* C_c and given by C_cA .

$$Q = CA_0 \sqrt{2g\left(\frac{P_1}{\gamma} + z_1 - \frac{P_2}{\gamma} - z_2\right)}$$

where *C*, the *coefficient of the meter* (*orifice coefficient*), is given by

$$C = \frac{C_{\rm v}C_{c}}{\sqrt{1 - C_{c}^{2} (A_{0}/A_{\rm l})^{2}}}$$

ORIFICES AND THEIR NOMINAL COEFFICIENTS						
	SHARP ROUNDED SHORT TUBE BORDA					
С	0.61	0.98	0.80	0.51		
Сс	0.62	1.00	1.00	0.52		
C _v	0.98	0.98	0.80	0.98		

For incompressible flow through a horizontal orifice meter installation

$$Q = CA_0 \sqrt{\frac{2}{\rho} (P_1 - P_2)}$$

DIMENSIONAL HOMOGENEITY

Dimensional Analysis

A dimensionally homogeneous equation has the same dimensions on the left and right sides of the equation. Dimensional analysis involves the development of equations that relate dimensionless groups of variables to describe physical phemona.

Buckingham Pi Theorem: The *number of independent dimensionless groups* that may be employed to describe a phenomenon known to involve n variables is equal to the number $(n - \bar{r})$, where \bar{r} is the number of basic dimensions (e.g., M, L, T) needed to express the variables dimensionally.

Similitude

In order to use a model to simulate the conditions of the prototype, the model must be *geometrically*, *kinematically*, and *dynamically similar* to the prototype system.

To obtain dynamic similarity between two flow pictures, all independent force ratios that can be written must be the same in both the model and the prototype. Thus, dynamic similarity between two flow pictures (when all possible forces are acting) is expressed in the five simultaneous equations below.

$$\begin{bmatrix} \frac{F_I}{F_P} \end{bmatrix}_p = \begin{bmatrix} \frac{F_I}{F_P} \end{bmatrix}_m = \begin{bmatrix} \frac{\rho v^2}{P} \end{bmatrix}_p = \begin{bmatrix} \frac{\rho v^2}{P} \end{bmatrix}_m \\
\begin{bmatrix} \frac{F_I}{F_V} \end{bmatrix}_p = \begin{bmatrix} \frac{F_I}{F_V} \end{bmatrix}_m = \begin{bmatrix} \frac{vl\rho}{\mu} \end{bmatrix}_p = \begin{bmatrix} \frac{vl\rho}{\mu} \end{bmatrix}_m = [Re]_p = [Re]_m \\
\begin{bmatrix} \frac{F_I}{F_G} \end{bmatrix}_p = \begin{bmatrix} \frac{F_I}{F_G} \end{bmatrix}_m = \begin{bmatrix} \frac{v^2}{lg} \end{bmatrix}_p = \begin{bmatrix} \frac{v^2}{lg} \end{bmatrix}_m = [Fr]_p = [Fr]_m \\
\begin{bmatrix} \frac{F_I}{F_E} \end{bmatrix}_p = \begin{bmatrix} \frac{F_I}{F_E} \end{bmatrix}_m = \begin{bmatrix} \frac{\rho v^2}{E_v} \end{bmatrix}_p = \begin{bmatrix} \frac{\rho v^2}{E_v} \end{bmatrix}_m = [Ca]_p = [Ca]_m \\
\begin{bmatrix} \frac{F_I}{F_T} \end{bmatrix}_p = \begin{bmatrix} \frac{F_I}{F_T} \end{bmatrix}_m = \begin{bmatrix} \frac{\rho lv^2}{\sigma} \end{bmatrix}_p = \begin{bmatrix} \frac{\rho lv^2}{\sigma} \end{bmatrix}_m = [We]_p = [We]_m$$

where the subscripts p and m stand for prototype and model respectively, and

 F_I = inertia force

 F_P = pressure force

 F_V = viscous force

 F_G = gravity force

 F_E = elastic force

 F_T = surface tension force

Re = Reynolds number

We = Weber number

Ca = Cauchy number

Fr = Froude number

l = characteristic length

v = velocity

 ρ = density

 σ = surface tension

 E_{ii} = bulk modulus

 μ = dynamic viscosity

P = pressure

g = acceleration of gravity

- Bober, W., and R.A. Kenyon, Fluid Mechanics, Wiley, 1980. Diagrams reprinted by permission of William Bober and Richard A. Kenyon.
- Vennard, J.K., Elementary Fluid Mechanics, 6th ed., J.K. Vennard, 1954.

AERODYNAMICS

Airfoil Theory

The lift force on an airfoil, F_L , is given by

$$F_L = \frac{C_L \rho v^2 A_P}{2}$$

 C_L = the lift coefficient

 ρ = fluid density

v = velocity (m/s) of the undisturbed fluid and

 A_P = the projected area of the airfoil as seen from above (plan area). This same area is used in defining the drag coefficient for an airfoil.

The lift coefficient, C_L , can be approximated by the equation

 $C_L = 2\pi k_1 \sin(\alpha + \beta)$, which is valid for small values of α and β

 k_1 = a constant of proportionality

 α = angle of attack (angle between chord of airfoil and direction of flow)

 β = negative of angle of attack for zero lift

The drag coefficient, C_D , may be approximated by

$$C_D = C_{D\infty} + \frac{C_L^2}{\pi AR}$$

 $C_{D\infty}$ = infinite span drag coefficient

The aspect ratio, AR, is defined

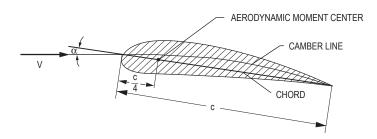
$$AR = \frac{b^2}{A_p} = \frac{A_p}{c^2}$$

b = span length

 A_p = plan area

c' = chord length

The aerodynamic moment, M, is given by


$$M = \frac{C_M \rho v^2 A_p c}{2}$$

where the moment is taken about the front quarter point of the airfoil.

 $C_M =$ moment coefficient

 ρ = fluid density

v = velocity

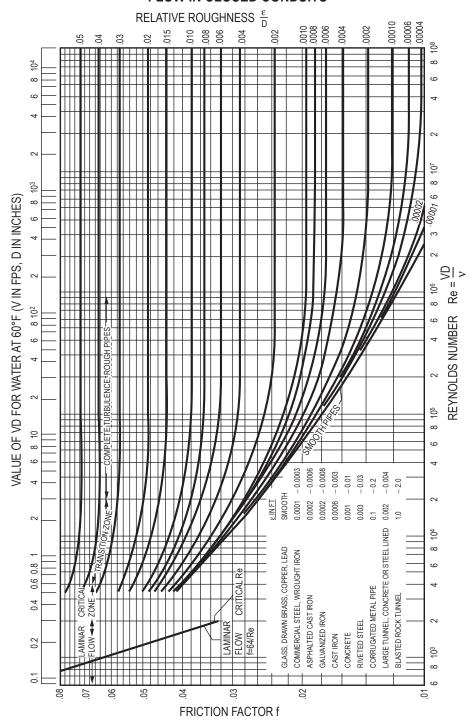
Properties of Water (SI Metric Units)

Temperature (°C)	Specific Weight ^a $\gamma \\ (kN/m^3)$	Density ^a ρ (kg/m ³)	Absolute Dynamic Viscosity ^a	Kinematic Viscosity ^a v (m ² /s)	Vapor Pressure ^e P _v (kPa)
0	9.805	999.8	0.001781	0.000001785	0.61
5	9.807	1000.0	0.001518	0.000001518	0.87
10	9.804	999.7	0.001307	0.000001306	1.23
15	9.798	999.1	0.001139	0.000001139	1.70
20	9.789	998.2	0.001002	0.000001003	2.34
25	9.777	997.0	0.000890	0.000000893	3.17
30	9.764	995.7	0.000798	0.000000800	4.24
40	9.730	992.2	0.000653	0.000000658	7.38
50	9.689	988.0	0.000547	0.000000553	12.33
60	9.642	983.2	0.000466	0.000000474	19.92
70	9.589	977.8	0.000404	0.000000413	31.16
80	9.530	971.8	0.000354	0.000000364	47.34
90	9.466	965.3	0.000315	0.000000326	70.10
100	9.399	958.4	0.000282	0.000000294	101.33

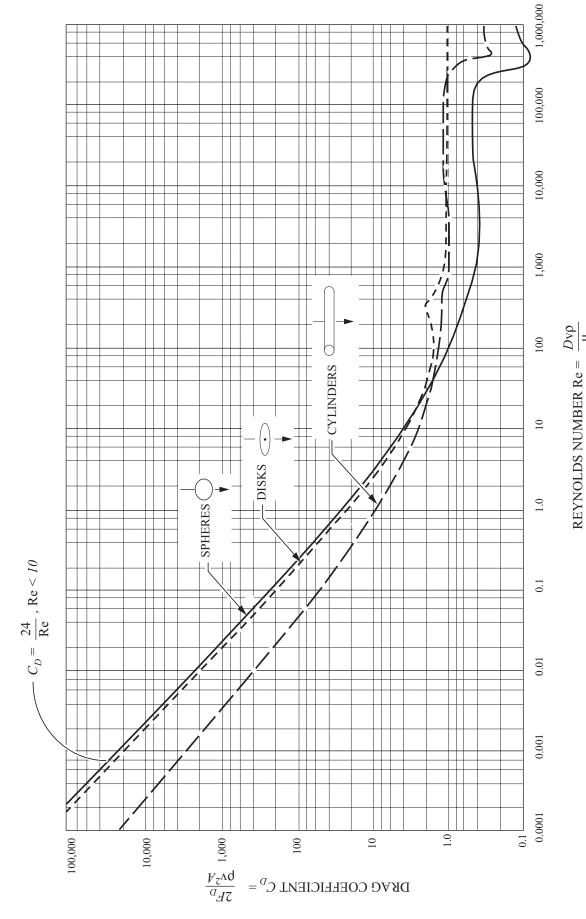
Properties of Water (English Units)

Temperature (°F)	Specific Weight	Mass Density ρ (lbf-sec ² /ft ⁴)	Absolute Dynamic Viscosity	Kinematic Viscosity υ (× 10 ⁻⁵ ft ² /sec)	Vapor Pressure P _v (psi)
32	62.42	1.940	3.746	1.931	0.09
40	62.43	1.940	3.229	1.664	0.12
50	62.41	1.940	2.735	1.410	0.18
60	62.37	1.938	2.359	1.217	0.26
70	62.30	1.936	2.050	1.059	0.36
80	62.22	1.934	1.799	0.930	0.51
90	62.11	1.931	1.595	0.826	0.70
100	62.00	1.927	1.424	0.739	0.95
110	61.86	1.923	1.284	0.667	1.24
120	61.71	1.918	1.168	0.609	1.69
130	61.55	1.913	1.069	0.558	2.22
140	61.38	1.908	0.981	0.514	2.89
150	61.20	1.902	0.905	0.476	3.72
160	61.00	1.896	0.838	0.442	4.74
170	60.80	1.890	0.780	0.413	5.99
180	60.58	1.883	0.726	0.385	7.51
190	60.36	1.876	0.678	0.362	9.34
200	60.12	1.868	0.637	0.341	11.52
212	59.83	1.860	0.593	0.319	14.70

 $^{^{\}blacklozenge}$ ^aFrom "Hydraulic Models," *ASCE Manual of Engineering Practice*, No. 25, ASCE, 1942.


^eFrom J.H. Keenan and F.G. Keyes, *Thermodynamic Properties of Steam*, John Wiley & Sons, 1936.

^fCompiled from many sources including those indicated: *Handbook of Chemistry and Physics*, 54th ed.,


The CRC Press, 1973, and *Handbook of Tables for Applied Engineering Science*, The Chemical Rubber Co., 1970. Vennard, J.K. and Robert L. Street, *Elementary Fluid Mechanics*, 6th ed., 1982. Reproduced with permission of John Wiley & Sons.

Moody (Stanton) Diagram

FLOW IN CLOSED CONDUITS

Chow, Ven Te, Handbook of Applied Hydrology, McGraw-Hill, 1964.

Note: Intermediate divisions are 2, 4, 6, and 8

HEAT TRANSFER

There are three modes of heat transfer: conduction, convection, and radiation.

BASIC HEAT TRANSFER RATE EQUATIONS

Conduction

Fourier's Law of Conduction

$$\dot{Q} = -kA\frac{dT}{dx}$$
, where

 \dot{Q} = rate of heat transfer (W)

 $k = \text{the thermal conductivity } [W/(m \cdot K)]$

A = the surface area perpendicular to direction of heat transfer (m²)

Convection

Newton's Law of Cooling

$$\dot{Q} = hA(T_w - T_\infty)$$
, where

h = the convection heat transfer coefficient of the fluid $[W/(m^2 \cdot K)]$

A =the convection surface area (m²)

 T_w = the wall surface temperature (K)

 T_{∞} = the bulk fluid temperature (K)

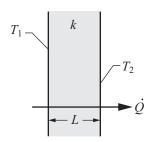
Radiation

The radiation emitted by a body is given by

$$\dot{Q} = \varepsilon \sigma A T^4$$
, where

 ε = the emissivity of the body

 σ = the Stefan-Boltzmann constant

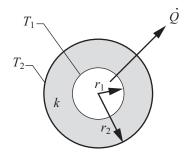

$$= 5.67 \times 10^{-8} \text{ W/(m}^2 \cdot \text{K}^4)$$

A =the body surface area (m²)

T = the absolute temperature (K)

CONDUCTION

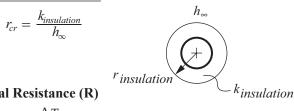
Conduction Through a Plane Wall


$$\dot{Q} = \frac{-kA(T_2 - T_1)}{L}$$
, where

 $A = \text{wall surface area normal to heat flow (m}^2)$

L = wall thickness (m)

 T_1 = temperature of one surface of the wall (K) T_2 = temperature of the other surface of the wall (K)


Conduction Through a Cylindrical Wall

Cylinder (Length = L)

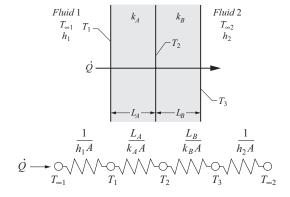
$$\dot{Q} = \frac{2\pi kL(T_1 - T_2)}{\ln\left(\frac{r_2}{r_1}\right)}$$

Critical Insulation Radius

Thermal Resistance (R)

$$\dot{Q} = \frac{\Delta T}{R_{total}}$$

Resistances in series are added: $R_{total} = \Sigma R$, where


Plane Wall Conduction Resistance (K/W): $R = \frac{L}{kA}$, where L = wall thickness

Cylindrical Wall Conduction Resistance (K/W): $R = \frac{\ln(\frac{r_2}{r_1})}{2\pi k I}$

L = cylinder length

Convection Resistance (K/W): $R = \frac{1}{hA}$

Composite Plane Wall

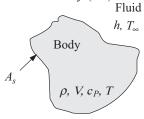
To evaluate surface or intermediate temperatures:

$$\dot{Q} = \frac{T_1 - T_2}{R_A} = \frac{T_2 - T_3}{R_B}$$

113 HEAT TRANSFER

Transient Conduction Using the Lumped Capacitance Model

The lumped capacitance model is valid if


Biot number, Bi =
$$\frac{hV}{kA_s}$$
 \ll 1, where

h = the convection heat transfer coefficient of the fluid $[W/(m^2 \cdot K)]$

V =the volume of the body (m³)

 $k = \text{thermal conductivity of the body } [W/(m \cdot K)]$

 A_s = the surface area of the body (m²)

Constant Fluid Temperature

If the temperature may be considered uniform within the body at any time, the heat transfer rate at the body surface is given

$$\dot{Q} = hA_s(T - T_{\infty}) = -\rho V(c_P) \left(\frac{dT}{dt}\right)$$
, where

T = the body temperature (K)

 T_{∞} = the fluid temperature (K)

 ρ = the density of the body (kg/m³)

 c_P = the heat capacity of the body [J/(kg•K)]

= time (s)

The temperature variation of the body with time is

$$T - T_{\infty} = (T_i - T_{\infty})e^{-\beta t}$$
, where

$$\beta = \frac{hA_s}{\rho V c_P}$$
 where $\beta = \frac{1}{\tau}$ and
$$\tau = \text{time constant } (s)$$

The total heat transferred (Q_{total}) up to time t is

$$Q_{total} = \rho V c_P (T_i - T)$$
, where

 T_i = initial body temperature (K)

Fins

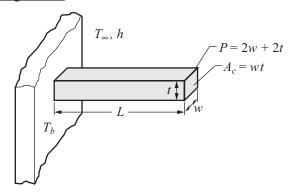
For a straight fin with uniform cross section (assuming negligible heat transfer from tip),

$$\dot{Q} = \sqrt{hPkA_c} (T_b - T_{\infty}) \tanh(mL_c)$$
, where

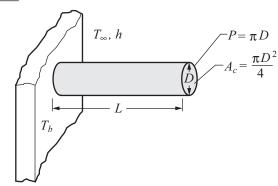
= the convection heat transfer coefficient of the fluid $[W/(m^2 \cdot K)]$

= perimeter of exposed fin cross section (m)

 $k = \text{fin thermal conductivity } [W/(m \cdot K)]$


 A_c = fin cross-sectional area (m²)

 T_b = temperature at base of fin (K) T_∞ = fluid temperature (K)


$$m = \sqrt{\frac{hP}{kA_c}}$$

 $L_c = L + \frac{A_c}{P}$, corrected length of fin (m)

Rectangular Fin

Pin Fin

CONVECTION

= diameter (m)

= average convection heat transfer coefficient of the fluid $[W/(m^2 \cdot K)]$

L = length (m)

 \overline{Nu} = average Nusselt number

Pr = Prandtl number = $\frac{c_P \mu}{k}$

 u_m = mean velocity of fluid (m/s)

 u_{∞} = free stream velocity of fluid (m/s)

= dynamic viscosity of fluid [kg/(s•m)]

= density of fluid (kg/m^3)

External Flow

In all cases, evaluate fluid properties at average temperature between that of the body and that of the flowing fluid.

Flat Plate of Length L in Parallel Flow

$$Re_{L} = \frac{\rho u_{\infty} L}{\mu}$$

$$\overline{Nu}_{L} = \frac{\overline{h}L}{k} = 0.6640 Re_{L}^{1/2} Pr^{1/3} \qquad (Re_{L} < 10^{5})$$

$$\overline{Nu}_{L} = \frac{\overline{h}L}{k} = 0.0366 Re_{L}^{0.8} Pr^{1/3} \qquad (Re_{L} > 10^{5})$$

Cylinder of Diameter D in Cross Flow

$$Re_D = \frac{\rho u_{\infty} D}{\mu}$$

$$\overline{Nu}_D = \frac{\overline{hD}}{k} = C \operatorname{Re}_D^n \operatorname{Pr}^{1/3}, \text{ where}$$

Re_D	С	n
1 – 4	0.989	0.330
4 – 40	0.911	0.385
40 – 4,000	0.683	0.466
4,000 – 40,000	0.193	0.618
40,000 – 250,000	0.0266	0.805

Flow Over a Sphere of Diameter, D

$$\overline{Nu}_D = \frac{\overline{h}D}{k} = 2.0 + 0.60 \,\text{Re}_D^{1/2} \text{Pr}^{1/3},$$

$$(1 < \text{Re}_D < 70,000; 0.6 < \text{Pr} < 400)$$

Internal Flow

$$Re_D = \frac{\rho u_m D}{\mu}$$

Laminar Flow in Circular Tubes

For laminar flow ($Re_D \le 2300$), fully developed conditions

$$Nu_D = 4.36$$
 (uniform heat flux)

$$Nu_D = 3.66$$
 (constant surface temperature)

For laminar flow ($Re_D \le 2300$), combined entry length with constant surface temperature

$$Nu_D = 1.86 \left(\frac{\text{Re}_D \text{Pr}}{\frac{L}{D}}\right)^{1/3} \left(\frac{\mu_b}{\mu_s}\right)^{0.14}$$
, where

L = length of tube (m)

D = tube diameter (m)

 μ_b = dynamic viscosity of fluid [kg/(s•m)] at bulk temperature of fluid, T_b

 μ_s = dynamic viscosity of fluid [kg/(s•m)] at inside surface temperature of the tube, T_s

Turbulent Flow in Circular Tubes

For turbulent flow ($Re_D > 10^4$, Pr > 0.7) for either uniform surface temperature or uniform heat flux condition, Sieder-Tate equation offers good approximation:

$$Nu_D = 0.023 \operatorname{Re}_D^{0.8} \operatorname{Pr}^{1/3} \left(\frac{\mu_b}{\mu_s} \right)^{0.14}$$

Noncircular Ducts

In place of the diameter, D, use the equivalent (hydraulic) diameter (D_H) defined as

$$D_H = \frac{4 \times \text{cross-sectional area}}{\text{wetted perimeter}}$$

Circular Annulus $(D_a > D_i)$

In place of the diameter, \dot{D} , use the equivalent (hydraulic) diameter (D_H) defined as

$$D_H = D_o - D_i$$

Liquid Metals (0.003 < Pr < 0.05)

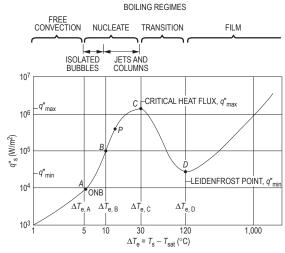
$$Nu_D = 6.3 + 0.0167 \,\text{Re}_D^{0.85} \text{Pr}^{0.93}$$
 (uniform heat flux)

$$Nu_D = 7.0 + 0.025 \,\mathrm{Re}_D^{0.8} \,\mathrm{Pr}^{0.8}$$
 (constant wall temperature)

Boiling

Evaporation occurring at a solid-liquid interface when $T_{\text{solid}} > T_{\text{sat. liquid}}$

$$q'' = h(T_s - T_{sat}) = h\Delta T_e$$
, where $\Delta T_e =$ excess temperature


Pool Boiling – Liquid is quiescent; motion near solid surface is due to free convection and mixing induced by bubble growth and detachment.

Forced Convection Boiling – Fluid motion is induced by external means in addition to free convection and bubble-induced mixing.

Sub-Cooled Boiling – Temperature of liquid is below saturation temperature; bubbles forming at surface may condense in the liquid.

Saturated Boiling – Liquid temperature slightly exceeds the saturation temperature; bubbles forming at the surface are propelled through liquid by buoyancy forces.

•

Typical boiling curve for water at one atmosphere: surface heat flux q_s as a function of excess temperature, $\Delta T_e = T_s - T_{sat}$

Free Convection Boiling – Insufficient vapor is in contact with the liquid phase to cause boiling at the saturation temperature.

Nucleate Boiling – Isolated bubbles form at nucleation sites and separate from surface; vapor escapes as jets or columns.

 Incropera, Frank P. and David P. DeWitt, Fundamentals of Heat and Mass Transfer, 3rd ed., Wiley, 1990. Reproduced with permission of John Wiley & Sons, Inc. ◆ For nucleate boiling a widely used correlation was proposed in 1952 by Rohsenow:

$$\dot{q}_{\text{nucleate}} = \mu_l h_{fg} \left[\frac{g(\rho_l - \rho_v)}{\sigma} \right]^{1/2} \left[\frac{c_{pl}(T_s - T_{\text{sat}})}{C_{sf} h_{fg} \text{Pr}_l^n} \right]^3$$

 $\dot{q}_{\text{nucleate}}$ = nucleate boiling heat flux, W/m²

 μ_i = viscosity of the liquid, kg/(m•s)

 h_{fg} = enthalpy of vaporization, J/kg

g = gravitational acceleration, m/s²

 ρ_i = density of the liquid, kg/m³

 ρ_{y} = density of the vapor, kg/m³

 σ = surface tension of liquid-vapor interface, N/m

 c_{nl} = specific heat of the liquid, J/(kg•°C)

 $T_{\rm s}$ = surface temperature of the heater, °C

 $T_{\rm est}$ = saturation temperature of the fluid, °C

 C_{sf} = experimental constant that depends on surface-fluid combination

Pr₁ = Prandtl number of the liquid

n =experimental constant that depends on the fluid

♦ Peak Heat Flux

The maximum (or critical) heat flux (CHF) in nucleate pool boiling:

$$\dot{q}_{\text{max}} = C_{cr} h_{fg} \left[\sigma g \rho^2_{\nu} (\rho_l - \rho_{\nu}) \right]^{1/4}$$

 C_{cr} is a constant whose value depends on the heater geometry, but generally is about 0.15.

The CHF is independent of the fluid—heating surface combination, as well as the viscosity, thermal conductivity, and specific heat of the liquid.

The CHF increases with pressure up to about one-third of the critical pressure, and then starts to decrease and becomes zero at the critical pressure.

The CHF is proportional to h_{fg} , and large maximum heat fluxes can be obtained using fluids with a large enthalpy of vaporization, such as water.

Values of the coefficient C_{cr} for maximum heat flux (dimensionless parameter $L^* = L[g(\rho_I - \rho_v)/\sigma]^{1/2}$

Heater Geometry	C_{cr}	Charac. Dimension of Heater, L	Range of L*
Large horizontal flat heater	0.149	Width or diameter	L* > 27
Small horizontal flat heater1	$18.9 K_1$	Width or diameter	$9 < L^* < 20$
Large horizontal cyclinder	0.12	Radius	$L^* > 1.2$
Small horizontal cyclinder	$0.12 L^{*-0.25}$	Radius	$0.15 < L^* < 1.2$
Large sphere	0.11	Radius	$L^* > 4.26$
Small sphere	0.227 L*-0.5	Radius	$0.15 < L^* < 4.26$

 $^{{}^{1}}K_{1} = \sigma/[g(\rho_{l} - \rho_{v})A_{\text{heater}}]$

♦ Minimum Heat Flux

Minimum heat flux, which occurs at the Leidenfrost point, is of practical interest since it represents the lower limit for the heat flux in the film boiling regime.

Zuber derived the following expression for the minimum heat flux for a large horizontal plate

$$\dot{q}_{\min} = 0.09 \, \rho_{v} \, h_{fg} \left[\frac{\sigma g(\rho_{l} - \rho_{v})}{(\rho_{l} + \rho_{v})^{2}} \right]^{1/4}$$

The relation above can be in error by 50% or more.

Transition Boiling – Rapid bubble formation results in vapor film on surface and oscillation between film and nucleate boiling.

Film Boiling – Surface completely covered by vapor blanket; includes significant radiation through vapor film.

♦ Film Boiling

The heat flux for film boiling on a horizontal cylinder or sphere of diameter D is given by

$$\dot{q}_{\rm film} = C_{\rm film} \left[\frac{g k_{\nu}^3 \, \rho_{\nu} (\rho_{l} - \rho_{\nu}) \left[h_{fg} + 0.4 c_{p\nu} (T_{s} - T_{\rm sat}) \right]}{\mu_{\nu} D (T_{s} - T_{\rm sat})} \right]^{1/4} (T_{s} - T_{\rm sat})$$

$$C_{\text{film}} = \begin{cases} 0.62 \text{ for horizontal cylinders} \\ 0.67 \text{ for spheres} \end{cases}$$

Film Condensation of a Pure Vapor

On a Vertical Surface

$$\overline{Nu}_L = \frac{\overline{h}L}{k_l} = 0.943 \left[\frac{\rho_l^2 g h_{fg} L^3}{\mu_l k_l (T_{sat} - T_s)} \right]^{0.25}$$
, where

 ρ_l = density of liquid phase of fluid (kg/m³)

g = gravitational acceleration (9.81 m/s²)

 h_{fg} = latent heat of vaporization [J/kg]

L = length of surface [m]

 μ_I = dynamic viscosity of liquid phase of fluid [kg/(s•m)]

 k_l = thermal conductivity of liquid phase of fluid [W/(m•K)]

 T_{sat} = saturation temperature of fluid [K]

 T_s = temperature of vertical surface [K]

Note: Evaluate all liquid properties at the average temperature between the saturated temperature, $T_{\rm sat}$, and the surface temperature, $T_{\rm s}$.

Outside Horizontal Tubes

$$\overline{Nu}_D = \frac{\overline{h}_D}{k} = 0.729 \left[\frac{\rho_l^2 g h_{fg} D^3}{\mu_l k_l (T_{\text{sat}} - T_s)} \right]^{0.25}$$
, where

D = tube outside diameter (m)

Note: Evaluate all liquid properties at the average temperature between the saturated temperature, $T_{\rm sat}$, and the surface temperature, $T_{\rm s}$.

 Cengel, Yunus A., and Afshin J. Ghajar, Heat and Mass Transfer, 4th ed., McGraw-Hill, 2011.

Natural (Free) Convection

Vertical Flat Plate in Large Body of Stationary Fluid

Equation also can apply to vertical cylinder of sufficiently large diameter in large body of stationary fluid.

$$\bar{h} = C\left(\frac{k}{L}\right)Ra_L^n$$
, where

the length of the plate (cylinder) in the vertical direction

$$Ra_L = Rayleigh Number = \frac{g\beta(T_s - T_{\infty})L^3}{v^2} Pr$$

 T_s = surface temperature (K)

 T_{∞} = fluid temperature (K)

 β = coefficient of thermal expansion (1/K)

(For an ideal gas: $\beta = \frac{2}{T_s + T_\infty}$ with T in absolute temperature)

 $v = \text{kinematic viscosity } (m^2/s)$

Range of Ra_L	C	n
$10^4 - 10^9$	0.59	1/4
$10^9 - 10^{13}$	0.10	1/3

Long Horizontal Cylinder in Large Body of Stationary Fluid

$$\overline{h} = C(\frac{k}{D}) \operatorname{Ra}_{D}^{n}$$
, where

$$Ra_D = \frac{g\beta(T_s - T_{\infty})D^3}{v^2} Pr$$

Ra_D	С	n
$10^{-3} - 10^2$	1.02	0.148
$10^2 - 10^4$	0.850	0.188
$10^4 - 10^7$	0.480	0.250
$10^7 - 10^{12}$	0.125	0.333

Heat Exchangers

The rate of heat transfer in a heat exchanger is

$$\dot{Q} = UAF\Delta T_{lm}$$
, where

A = any convenient reference area (m²)

F = heat exchanger configuration correction factor (F = 1 if temperature change of one fluid is negligible)

U = overall heat transfer coefficient based on area A and

the log mean temperature difference $[W/(m^2{\raisebox{-0.1ex}{\line}} K)]$

 ΔT_{lm} = log mean temperature difference (K)

Overall Heat Transfer Coefficient for Concentric Tube and Shell-and-Tube Heat Exchangers

$$\frac{1}{UA} = \frac{1}{h_i A_i} + \frac{R_{fi}}{A_i} + \frac{\ln\left(\frac{D_o}{D_i}\right)}{2\pi k L} + \frac{R_{fo}}{A_o} + \frac{1}{h_o A_o}, \text{ where}$$

 A_i = inside area of tubes (m²)

 A_o = outside area of tubes (m²)

 D_i = inside diameter of tubes (m)

 D_o = outside diameter of tubes (m)

 h_i = convection heat transfer coefficient for inside of tubes $[W/(m^2 \cdot K)]$

 $h_o = \text{convection heat transfer coefficient for outside of tubes}$ $[W/(\text{m}^2 \cdot K)]$

 $k = \text{thermal conductivity of tube material } [W/(m \cdot K)]$

 R_{fi} = fouling factor for inside of tube [(m²•K)/W]

 R_{fo} = fouling factor for outside of tube [(m²•K)/W]

Log Mean Temperature Difference (LMTD)

For counterflow in tubular heat exchangers

$$\Delta T_{lm} = \frac{(T_{Ho} - T_{Ci}) - (T_{Hi} - T_{Co})}{\ln\left(\frac{T_{Ho} - T_{Ci}}{T_{Hi} - T_{Co}}\right)}$$

For parallel flow in tubular heat exchangers

$$\Delta T_{lm} = \frac{(T_{Ho} - T_{Co}) - (T_{Hi} - T_{Ci})}{\ln(\frac{T_{Ho} - T_{Co}}{T_{Hi} - T_{Ci}})}$$
, where

 ΔT_{lm} = log mean temperature difference (K)

 T_{Hi} = inlet temperature of the hot fluid (K)

 T_{Ho} = outlet temperature of the hot fluid (K)

 T_{C_i} = inlet temperature of the cold fluid (K)

 T_{Co} = outlet temperature of the cold fluid (K)

Heat Exchanger Effectiveness, ε

$$\varepsilon = \frac{\dot{Q}}{\dot{Q}_{\text{max}}} = \frac{\text{actual heat transfer rate}}{\text{maximum possible heat transfer rate}}$$

$$\varepsilon = \frac{C_H \left(T_{Hi} - T_{Ho} \right)}{C_{\min} \left(T_{Hi} - T_{Ci} \right)} \quad \text{or} \quad \varepsilon = \frac{C_C \left(T_{Co} - T_{Ci} \right)}{C_{\min} \left(T_{Hi} - T_{Ci} \right)}$$

where

 $C = \dot{m}c_P = \text{heat capacity rate (W/K)}$

 C_{\min} = smaller of C_C or C_H

Number of Transfer Units (NTU)

$$NTU = \frac{UA}{C_{\min}}$$

Effectiveness-NTU Relations

$$C_r = \frac{C_{\min}}{C_{\max}} = \text{heat capacity ratio}$$

For parallel flow concentric tube heat exchanger

$$\varepsilon = \frac{1 - \exp[-NTU(1 + C_r)]}{1 + C_r}$$

$$NTU = -\frac{\ln[1 - \varepsilon(1 + C_r)]}{1 + C_r}$$

For counterflow concentric tube heat exchanger

$$\varepsilon = \frac{1 - \exp[-NTU(1 - C_r)]}{1 - C_r \exp[-NTU(1 - C_r)]}$$
 (C_r< 1)

$$\varepsilon = \frac{NTU}{1 + NTU} \tag{C_r = 1}$$

$$NTU = \frac{1}{C_r - 1} \ln \left(\frac{\varepsilon - 1}{\varepsilon C_r - 1} \right) \tag{C_r < 1}$$

$$NTU = \frac{\varepsilon}{1 - \varepsilon} \tag{C_r = 1}$$

RADIATION

Types of Bodies

Any Body

For any body, $\alpha + \rho + \tau = 1$, where

 α = absorptivity (ratio of energy absorbed to incident energy)

 ρ = reflectivity (ratio of energy reflected to incident energy)

 τ = transmissivity (ratio of energy transmitted to incident energy)

Opaque Body

For an opaque body: $\alpha + \rho = 1$

Gray Body

A gray body is one for which

$$\alpha = \varepsilon$$
, $(0 < \alpha < 1; 0 < \varepsilon < 1)$, where

 ε = the emissivity of the body

For a gray body: $\varepsilon + \rho = 1$

Real bodies are frequently approximated as gray bodies.

Black body

A black body is defined as one that absorbs all energy incident upon it. It also emits radiation at the maximum rate for a body of a particular size at a particular temperature. For such a body

$$\alpha = \varepsilon = 1$$

Shape Factor (View Factor, Configuration Factor) Relations

Reciprocity Relations

$$A_i F_{ii} = A_i F_{ii}$$
, where

 $A_i = \text{surface area } (m^2) \text{ of surface } i$

 F'_{ij} = shape factor (view factor, configuration factor); fraction of the radiation leaving surface i that is intercepted by surface j; $0 \le F_{ij} \le 1$

Summation Rule for N Surfaces

$$\sum_{i=1}^{N} F_{ij} = 1$$

Net Energy Exchange by Radiation between Two Bodies Body Small Compared to its Surroundings

$$\dot{Q}_{12} = \varepsilon \sigma A (T_1^4 - T_2^4)$$
, where

 \dot{Q}_{12} = the net heat transfer rate from the body (W)

 ε = the emissivity of the body

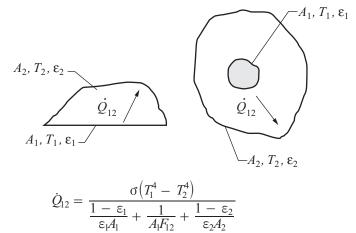
 σ = the Stefan-Boltzmann constant

$$[\sigma = 5.67 \times 10^{-8} \text{ W/(m}^2 \cdot \text{K}^4)]$$

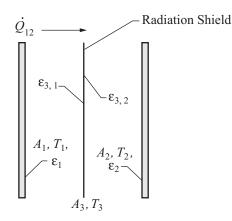
A = the body surface area (m²)

 T_1 = the absolute temperature (K) of the body surface

 T_2 = the absolute temperature (K) of the surroundings

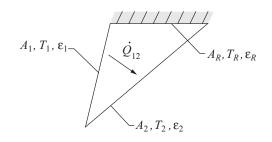

Net Energy Exchange by Radiation between Two Black Bodies

The net energy exchange by radiation between two black bodies that see each other is given by


$$\dot{Q}_{12} = A_1 F_{12} \, \sigma \left(T_1^4 - T_2^4 \right)$$

Net Energy Exchange by Radiation between Two Diffuse-Gray Surfaces that Form an Enclosure

Generalized Cases


One-Dimensional Geometry with Thin Low-Emissivity Shield Inserted between Two Parallel Plates

$$\dot{Q}_{12} = \frac{\sigma(T_1^4 - T_2^4)}{\frac{1 - \varepsilon_1}{\varepsilon_1 A_1} + \frac{1}{A_1 F_{13}} + \frac{1 - \varepsilon_{3,1}}{\varepsilon_{3,1} A_3} + \frac{1 - \varepsilon_{3,2}}{\varepsilon_{3,2} A_3} + \frac{1}{A_3 F_{32}} + \frac{1 - \varepsilon_2}{\varepsilon_2 A_2}}$$

Reradiating Surface

Reradiating Surfaces are considered to be insulated or adiabatic $(\dot{Q}_R = 0)$.

$$\dot{Q}_{12} = \frac{\sigma(T_1^4 - T_2^4)}{\frac{1 - \varepsilon_1}{\varepsilon_1 A_1} + \frac{1}{A_1 F_{12} + \left[\left(\frac{1}{A_1 F_{1R}}\right) + \left(\frac{1}{A_2 F_{2R}}\right)\right]^{-1}} + \frac{1 - \varepsilon_2}{\varepsilon_2 A_2}}$$

INSTRUMENTATION, MEASUREMENT, AND CONTROLS

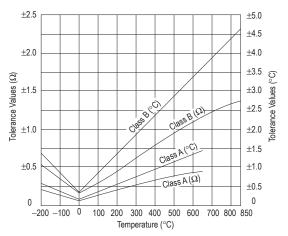
MEASUREMENT

Definitions

Transducer – a device used to convert a physical parameter such as temperature, pressure, flow, light intensity, etc. into an electrical signal (also called a sensor).

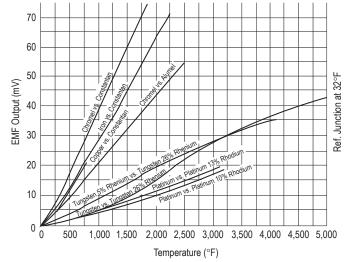
Transducer sensitivity – the ratio of change in electrical signal magnitude to the change in magnitude of the physical parameter being measured.

Resistance Temperature Detector (RTD) – a device used to relate change in resistance to change in temperature. Typically made from platinum, the controlling equation for an RTD is given by:


$$R_T = R_0 [1 + \alpha (T - T_0)]$$
, where

 R_T = resistance of the RTD at temperature T (in °C)

 R_0 = resistance of the RTD at the reference temperature T_0 (usually 0°C)


 α = temperature coefficient of the RTD

The following graph shows tolerance values as a function of temperature for $100-\Omega$ RTDs.

From Tempco Manufactured Products, as posted on www.tempco.com, July 2013.

Thermocouple (TC) – a device used to relate change in voltage to change in temperature. A thermocouple consists of two dissimilar conductors in contact, which produce a voltage when heated.

From Convectronics Inc., as posted on www.convectronics.com, July 2013.

Typical Thermocouple (TC) Cable

From Convectronics Inc., as posted on www.convectronics.com, July 2013.

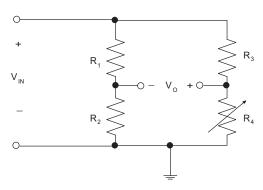
ANSI Code	Alloy Combination and Color		Outer Jacket Color		Maximum	
	+ Lead	– Lead	Thermocouple Leads	Extension Cable	Thermocouple Temperature Range	Environment
J	IRON Fe (magnetic) White	CONSTANTAN COPPER-NICKEL Cu-Ni Red	Brown	Black	-346 to 2,193°F -210 to 1,200°C	Reducing, Vacuum, Inert. Limited use in Oxidizing at High Temperatures. Not Recommended for Low Temperatures
K	NICKELCHROMIUM Ni-Cr Yellow	NICKEL-ALUMINUM Ni-Al (magnetic) Red	Brown	Yellow	-454 to 2,501°F -270 to 1,372°C	Clean Oxidizing and Inert. Limited Use in Vacuum or Reducing.
Т	COPPER Cu Blue	CONSTANTAN COPPER-NICKEL Cu-Ni Red	Brown	Blue	-454 to 752°F -270 to 400°C	Mild Oxidizing, Reducing Vacuum or Inert. Good where moisture is present.
Е	NICKELCHROMIUM Ni-Cr Purple	CONSTANTAN COPPER-NICKEL Cu-Ni Red	Brown	Purple	-454 to 1,832°F -270 to 1,000°C	Oxidizing or Inert. Limited Use in Vacuum or Reducing.

Strain Gage - a device whose electrical resistance varies in proportion to the amount of strain in the device. Gage factor (GF) – the ratio of fractional change in electrical resistance to the fractional change in length (strain):

$$GF = \frac{\Delta R/R}{\Delta L/L} = \frac{\Delta R/R}{\epsilon}$$
, where

R = nominal resistance of the strain gage at nominal length L

 ΔR = change in resistance due the change in length ΔL


 ε = normal strain sensed by the gage

The gage factor for metallic strain gages is typically around 2.

Strain	Gage Setup	Bridge Type	Sensitivity mV/V @ 100 με	Details
		1/4	0.5	Good: Simplest to implement, but must use a dummy gage if compensating for temperature. Also responds to bending strain.
Axial		1/2	0.65	Better: Temperature compensated, but it is sensitive to bending strain.
	3	1/2	1.0	Better: Rejects bending strain, but not temperature. Must use dummy gages if compensating for temperature
	3 4	Full	1.3	Best: More sensitive and compensates for both temperature and bending strain.
		1/4	0.5	Good: Simplest to implement, but must use a dummy gage if compensating for temperature. Responds equally to axial strain.
Bending	1 2 2	1/2	1.0	Better: Rejects axial strain and is temperature compensated.
	3 4	Full	2.0	Best: Rejects axial strain and is temperature compensated. Most sensitive to bending strain.
ıal and sar	3 1	1/2	1.0	Good: Gages must be mounted at 45 degrees from centerline.
Torsional and Shear	2 1 1	Full	2.0	Best: Most sensitive full-bridge version of previous setup. Rejects both axial and bending strains.

From National Instruments Corporation, as posted on www.ni.com, July 2013.

Wheatstone Bridge – an electrical circuit used to measure changes in resistance.

WHEATSTONE BRIDGE

If $\frac{R_1}{R_2} = \frac{R_3}{R_4}$ then $V_0 = 0$ V and the bridge is said to be *balanced*. If $R_1 = R_2 = R_3 = R$ and $R_4 = R + \Delta R$, where $\Delta R \ll R$, then $V_0 \approx \frac{\Delta R}{4R} \cdot V_{IN}.$

♦ *Pressure sensors* – can alternatively be called pressure transducers, pressure transmitters, pressure senders, pressure indicators, piezometers, and manometers.

Pressure Relative Measurement Types	Comparison
Absolute	Relative to 0 Pa, the pressure in a vacuum
Gage	Relative to local atmospheric pressure
Vacuum	Relative to either absolute vacuum (0 Pa) or local atmospheric pressure
Differential	Relative to another pressurized container
Sealed	Relative to sea level pressure

• pH sensor – a typical pH meter consists of a special measuring probe connected to an electronic meter that measures and displays the pH reading.

$$E_{el} = E^0 - S(pH_a - pH_i)$$

 E_{el} = electrode potential

 E^0 = zero potential

S = slope (mV per pH unit)

 $pH_a = pH$ value of the measured solution

 $pH_i = pH$ value of the internal buffer

- ♦ From National Instruments Corporation, as posted on www.ni.com, July 2013.
- From Alliance Technical Sales, Inc., as posted on www.alliancets.com, July 2013.

Examples of Common Chemical Sensors

Sensor Type	Principle	Materials	Analyte
Semiconducting oxide sensor	Conductivity impedance	SnO ₂ , TiO ₂ , ZnO ₂ , WO ₃ , polymers	O_2 , H_2 , CO , SO_x , NO_x , combustible hydrocarbons, alcohol, H_2S , NH_3
Electrochemical sensor (liquid electrolyte)	Amperiometric	composite Pt, Au catalyst	H ₂ , O ₂ , O ₃ , CO, H ₂ S, SO ₂ , NO _x , NH ₃ , glucose, hydrazine
Ion-selective electrode (ISE)	Potentiometric	glass, LaF ₃ , CaF ₂	pH, K ⁺ , Na ⁺ , Cl ⁻ , Ca ² , Mg ²⁺ , F ⁻ , Ag ⁺
Solid electrode sensor	Amperiometric Potentiometric	YSZ, H ⁺ -conductor YSZ, β-alumina, Nasicon, Nafion	O ₂ , H ₂ , CO, combustible hydrocarbons, O ₂ , H ₂ , CO ₂ , CO, NO _x , SO _x , H ₂ S, Cl ₂ H ₂ O, combustible hydrocarbons
Piezoelectric sensor	Mechanical w/ polymer film	quartz	combustible hydrocarbons, VOCs
Catalytic combustion sensor	Calorimetric	Pt/Al ₂ O ₃ , Pt-wire	H ₂ , CO, combustible hydrocarbons
Pyroelectric sensor	Calorimetric	Pyroelectric + film	Vapors
Optical sensors	Colorimetric fluorescence	optical fiber/indicator dye	Acids, bases, combustible hydrocarbons, biologicals

Reprinted with permission from Journal of The Electrochemical Society, 150 (2), © 2003, The Electrochemical Society.

SAMPLING

When a continuous-time or analog signal is sampled using a discrete-time method, certain basic concepts should be considered. The sampling rate or frequency is given by

$$f_s = \frac{1}{\Delta t}$$

Nyquist's (Shannon's) sampling theorem states that in order to accurately reconstruct the analog signal from the discrete sample points, the sample rate must be larger than twice the highest frequency contained in the measured signal. Denoting this frequency, which is called the Nyquist frequency, as f_{N_2} the sampling theorem requires that

$$f_{\rm s} > 2f_{\rm N}$$

When the above condition is not met, the higher frequencies in the measured signal will not be accurately represented and will appear as lower frequencies in the sampled data. These are known as alias frequencies.

Analog-to-Digital Conversion

When converting an analog signal to digital form, the resolution of the conversion is an important factor. For a measured analog signal over the nominal range $[V_I, V_H]$, where ${\cal V}_{L}$ is the low end of the voltage range and ${\cal V}_{H}$ is the nominal high end of the voltage range, the voltage resolution is given

$$\varepsilon_V = \frac{V_H - V_L}{2^n}$$

where n is the number of conversion bits of the A/D converter with typical values of 4, 8, 10, 12, or 16. This number is a key design parameter. After converting an analog signal, the A/D converter produces an integer number of *n* bits. Call this number N. Note that the range of N is $[0, 2^n - 1]$. When calculating the discrete voltage, V, using the reading, N, from the A/D converter the following equation is used.

$$V = \varepsilon_V N + V_L$$

Note that with this strategy, the highest measurable voltage is one voltage resolution less than V_H , or $V_H - \varepsilon_V$.

Signal Conditioning

Signal conditioning of the measured analog signal is often required to prevent alias frequencies from being measured, and to reduce measurement errors.

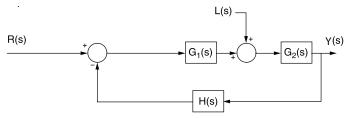
MEASUREMENT UNCERTAINTY

Suppose that a calculated result *R* depends on measurements whose values are $x_1 \pm w_1$, $x_2 \pm w_2$, $x_3 \pm w_3$, etc., where $R = f(x_1, x_2, x_3, ... x_n), x_i$ is the measured value, and w_i is the uncertainty in that value. The uncertainty in R, w_R , can be estimated using the Kline-McClintock equation:

$$w_R = \sqrt{\left(w_1 \frac{\partial f}{\partial x_1}\right)^2 + \left(w_2 \frac{\partial f}{\partial x_2}\right)^2 + \cdots + \left(w_n \frac{\partial f}{\partial x_n}\right)^2}$$

CONTROL SYSTEMS

The linear time-invariant transfer function model represented by the block diagram



can be expressed as the ratio of two polynomials in the form

$$\frac{Y(s)}{X(s)} = G(s) = \frac{N(s)}{D(s)} = K \frac{\prod_{m=1}^{M} (s - z_m)}{\prod_{n=1}^{N} (s - p_n)}$$

where the M zeros, z_m , and the N poles, p_n , are the roots of the numerator polynomial, N(s), and the denominator polynomial, D(s), respectively.

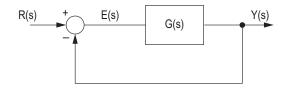
One classical negative feedback control system model block diagram is

where $G_1(s)$ is a controller or compensator, $G_2(s)$ represents a plant model, and H(s) represents the measurement dynamics. Y(s) represents the controlled variable, R(s) represents the reference input, and L(s) represents a disturbance. Y(s) is related to R(s) and L(s) by

$$Y(s) = \frac{G_1(s)G_2(s)}{1 + G_1(s)G_2(s)H(s)}R(s) + \frac{G_2(s)}{1 + G_1(s)G_2(s)H(s)}L(s)$$

 $G_1(s)$ $G_2(s)$ H(s) is the open-loop transfer function. The closed-loop characteristic equation is

$$1 + G_1(s) G_2(s) H(s) = 0$$


System performance studies normally include

1. Steady-state analysis using constant inputs based on the Final Value Theorem. If all poles of a G(s) function have negative real parts, then

$$dc gain = \lim_{s \to 0} G(s)$$

Note that G(s) could refer to either an open-loop or a closedloop transfer function.

For the unity feedback control system model

with the open-loop transfer function defined by

$$G(s) = \frac{K_B}{s^T} \times \frac{\prod\limits_{m=1}^{M} (1 + s/\omega_m)}{\prod\limits_{m=1}^{N} (1 + s/\omega_n)}$$

The following steady-state error analysis table can be constructed where T denotes the type of system, i.e., type 0, type 1, etc.

Steady-State Error ess							
Input Type	T = 0	T=1	T=2				
Unit Step	$1/(K_B+1)$	0	0				
Ramp	8	$1/K_B$	0				
Acceleration	∞	∞	$1/K_B$				

- 2. Frequency response evaluations to determine dynamic performance and stability. For example, relative stability can be quantified in terms of
 - a. Gain margin (GM), which is the additional gain required to produce instability in the unity gain feedback control system. If at $\omega = \omega_{180}$,

$$\angle G(j\omega_{180}) = -180^{\circ}$$
; then

$$GM = -20\log_{10} (|G(j\omega_{180})|)$$

b. Phase margin (PM), which is the additional phase required to produce instability. Thus,

$$PM = 180^{\circ} + \angle G(j\omega_{0dB})$$

where ω_{0dB} is the ω that satisfies $|G(j\omega)| = 1$.

3. Transient responses are obtained by using Laplace transforms or computer solutions with numerical integration.

Common Compensator/Controller forms are

PID Controller
$$G_C(s) = K \left(1 + \frac{1}{T_I s} + T_D s \right)$$

Lag or Lead Compensator $G_C(s) = K\left(\frac{1+sT_1}{1+sT_2}\right)$ depending on the ratio of T_1/T_2 .

Routh Test

For the characteristic equation

$$a_n s^n + a_{n-1} s^{n-1} + a_{n-2} s^{n-2} + \ldots + a_0 = 0$$

the coefficients are arranged into the first two rows of an array. Additional rows are computed. The array and coefficient computations are defined by:

where

$$b_{1} = \frac{a_{n-1}a_{n-2} - a_{n}a_{n-3}}{a_{n-1}} \qquad c_{1} = \frac{a_{n-3}b_{1} - a_{n-1}b_{2}}{b_{1}}$$

$$b_{2} = \frac{a_{n-1}a_{n-4} - a_{n}a_{n-5}}{a_{n-1}} \qquad c_{2} = \frac{a_{n-5}b_{1} - a_{n-1}b_{3}}{b_{1}}$$

The necessary and sufficient conditions for all the roots of the equation to have negative real parts is that all the elements in the first column be of the same sign and nonzero.

First-Order Control System Models

The transfer function model for a first-order system is

$$\frac{Y(s)}{R(s)} = \frac{K}{\tau s + 1}$$
, where

K = steady-state gain

 τ = time constant

The step response of a first-order system to a step input of magnitude M is

$$y(t) = y_0 e^{-t/\tau} + KM(1 - e^{-t/\tau})$$

In the chemical process industry, y_0 is typically taken to be zero, and y(t) is referred to as a deviation variable.

For systems with time delay (dead time or transport lag) θ , the transfer function is

$$\frac{Y(s)}{R(s)} = \frac{Ke^{-\theta s}}{\tau s + 1}$$

The step response for $t \ge \theta$ to a step of magnitude M is $y(t) = \left[y_0 e^{-(t-\theta)/\tau} + KM \left(1 - e^{-(t-\theta)/\tau} \right) \right] u(t-\theta), \text{ where}$ u(t) is the unit step function.

Second-Order Control System Models

One standard second-order control system model is

$$\frac{Y(s)}{R(s)} = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}, \text{ where }$$

K = steady-state gain

 ζ = the damping ratio

 ω_n = the undamped natural ($\zeta = 0$) frequency

 $\omega_d = \omega_n \sqrt{1 - \zeta^2}$, the damped natural frequency

 $\omega_r = \omega_n \sqrt{1 - 2\zeta^2}$, the damped resonant frequency

If the damping ratio ζ is less than unity, the system is said to be underdamped; if ζ is equal to unity, it is said to be critically damped; and if ζ is greater than unity, the system is said to be overdamped.

For a unit step input to a normalized underdamped secondorder control system, the time required to reach a peak value t_n and the value of that peak M_n are given by

$$t_p = \pi / (\omega_n \sqrt{1 - \zeta^2})$$

$$M_p = 1 + e^{-\pi \zeta / \sqrt{1 - \zeta^2}}$$

The percent overshoot (% OS) of the response is given by

% OS =
$$100e^{-\pi\zeta/\sqrt{1-\zeta^2}}$$

For an underdamped second-order system, the logarithmic decrement is

$$\delta = \frac{1}{m} \ln \left(\frac{x_k}{x_{k+m}} \right) = \frac{2\pi \zeta}{\sqrt{1 - \zeta^2}}$$

where x_k and x_{k+m} are the amplitudes of oscillation at cycles k and k + m, respectively. The period of oscillation τ is related to ω_d by

$$\omega_d \tau = 2\pi$$

The time required for the output of a second-order system to settle to within 2% of its final value (2% settling time) is defined to be

$$T_s = \frac{4}{\zeta_{(0)}}$$

An alternative form commonly employed in the chemical process industry is

$$\frac{Y(s)}{R(s)} = \frac{K}{\tau^2 s^2 + 2\zeta \tau s + 1}, \text{ where}$$

K = steady-state gain

 ζ = the damping ratio

 τ = the inverse natural frequency

Root Locus

The root locus is the locus of points in the complex s-plane satisfying

$$1 + K \frac{(s - z_1)(s - z_2)...(s - z_m)}{(s - p_1)(s - p_2)...(s - p_n)} = 0 \qquad m \le n$$

as K is varied. The p_i and z_i are the open-loop poles and zeros, respectively. When K is increased from zero, the locus has the following properties.

- 1. Locus branches exist on the real axis to the left of an odd number of open-loop poles and/or zeros.
- 2. The locus originates at the open-loop poles $p_1, ..., p_n$ and terminates at the zeros $z_1, ..., z_m$. If m < n then (n - m)branches terminate at infinity at asymptote angles

$$\alpha = \frac{(2k+1)180^{\circ}}{n-m} \qquad k = 0, \pm 1, \pm 2, \pm 3, \dots$$

with the real axis.

3. The intersection of the real axis with the asymptotes is called the asymptote centroid and is given by

$$\sigma_A = \frac{\sum\limits_{i=1}^{n} \operatorname{Re}(p_i) - \sum\limits_{i=1}^{m} \operatorname{Re}(z_i)}{n - m}$$

4. If the locus crosses the imaginary (ω) axis, the values of K and ω are given by letting $s = j\omega$ in the defining equation.

State-Variable Control System Models

One common state-variable model for dynamic systems has the form

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$
 (state equation)
 $\mathbf{v}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$ (output equation)

where

 $\mathbf{x}(t) = N$ by 1 state vector (N state variables)

 $\mathbf{u}(t) = R$ by 1 input vector (R inputs)

y(t) = M by 1 output vector (M outputs)

 \mathbf{A} = system matrix

= input distribution matrix

= output matrix

 \mathbf{D} = feed-through matrix

The orders of the matrices are defined via variable definitions.

State-variable models are used to handle multiple inputs and multiple outputs. Furthermore, state-variable models can be formulated for open-loop system components or the complete closed-loop system.

The Laplace transform of the time-invariant state equation is

$$s\mathbf{X}(s) - \mathbf{x}(0) = \mathbf{A}\mathbf{X}(s) + \mathbf{B}\mathbf{U}(s)$$

from which

$$\mathbf{X}(s) = \mathbf{\Phi}(s) \ \mathbf{x}(0) + \mathbf{\Phi}(s) \ \mathbf{B}\mathbf{U}(s)$$

where the Laplace transform of the state transition matrix is

$$\Phi(s) = [s\mathbf{I} - \mathbf{A}]^{-1}.$$

The state-transition matrix

$$\Phi(t) = L^{-1}\{\Phi(s)\}$$

(also defined as e^{At}) can be used to write

$$\mathbf{x}(t) = \Phi(t) \ \mathbf{x}(0) + \int_0^t \ \Phi(t - \tau) \ \mathbf{B}\mathbf{u}(\tau) \ d\tau$$

The output can be obtained with the output equation; e.g., the Laplace transform output is

$$\mathbf{Y}(s) = \{\mathbf{C}\Phi(s)\ \mathbf{B} + \mathbf{D}\}\mathbf{U}(s) + \mathbf{C}\Phi(s)\ \mathbf{x}(0)$$

The latter term represents the output(s) due to initial conditions, whereas the former term represents the output(s) due to the U(s) inputs and gives rise to transfer function definitions.

ENGINEERING ECONOMICS

Factor Name	Converts	Symbol	Formula
Single Payment Compound Amount	to F given P	(F/P, i%, n)	$(1+i)^n$
Single Payment Present Worth	to P given F	(P/F, i%, n)	$(1+i)^{-n}$
Uniform Series Sinking Fund	to A given F	(A/F, i%, n)	$\frac{i}{(1+i)^n-1}$
Capital Recovery	to A given P	(A/P, i%, n)	$\frac{i(1+i)^n}{(1+i)^n-1}$
Uniform Series Compound Amount	to F given A	(F/A, i%, n)	$\frac{(1+i)^n-1}{i}$
Uniform Series Present Worth	to P given A	(P/A, i%, n)	$\frac{(1+i)^n-1}{i(1+i)^n}$
Uniform Gradient Present Worth	to P given G	(P/G, i%, n)	$\frac{\left(1+i\right)^{n}-1}{i^{2}\left(1+i\right)^{n}}-\frac{n}{i\left(1+i\right)^{n}}$
Uniform Gradient † Future Worth	to F given G	(F/G, i%, n)	$\frac{(1+i)^n-1}{i^2}-\frac{n}{i}$
Uniform Gradient Uniform Series	to A given G	(A/G, i%, n)	$\frac{1}{i} - \frac{n}{\left(1+i\right)^n - 1}$

NOMENCLATURE AND DEFINITIONS

A...... Uniform amount per interest period

B..... Benefit

BV..... Book value

C..... Cost

d...... Inflation adjusted interest rate per interest period

 D_i Depreciation in year j

F..... Future worth, value, or amount

f...... General inflation rate per interest period

G...... Uniform gradient amount per interest period

i Interest rate per interest period

 i_{α} Annual effective interest rate

m.......... Number of compounding periods per year

n.......... Number of compounding periods; or the expected life of an asset

P...... Present worth, value, or amount

r..... Nominal annual interest rate

 S_n Expected salvage value in year n

Subscripts

j at time *j*

n..... at time *n*

†..... $F/G = (F/A - n)/i = (F/A) \times (A/G)$

Risk

Risk is the chance of an outcome other than what is planned to occur or expected in the analysis.

NON-ANNUAL COMPOUNDING

$$i_e = \left(1 + \frac{r}{m}\right)^m - 1$$

BREAK-EVEN ANALYSIS

By altering the value of any one of the variables in a situation, holding all of the other values constant, it is possible to find a value for that variable that makes the two alternatives equally economical. This value is the break-even point.

Break-even analysis is used to describe the percentage of capacity of operation for a manufacturing plant at which income will just cover expenses.

The payback period is the period of time required for the profit or other benefits of an investment to equal the cost of the investment.

INFLATION

To account for inflation, the dollars are deflated by the general inflation rate per interest period f, and then they are shifted over the time scale using the interest rate per interest period i. Use an inflation adjusted interest rate per interest period d for computing present worth values P.

The formula for *d* is $d = i + f + (i \times f)$

DEPRECIATION

Straight Line

$$D_j = \frac{C - S_n}{n}$$

Modified Accelerated Cost Recovery System (MACRS)

$$D_j = (factor) C$$

A table of MACRS factors is provided below.

BOOK VALUE

 $BV = \text{initial cost} - \sum D_i$

TAXATION

Income taxes are paid at a specific rate on taxable income. Taxable income is total income less depreciation and ordinary expenses. Expenses do not include capital items, which should be depreciated.

CAPITALIZED COSTS

Capitalized costs are present worth values using an assumed perpetual period of time.

Capitalized Costs =
$$P = \frac{A}{i}$$

BONDS

Bond value equals the present worth of the payments the purchaser (or holder of the bond) receives during the life of the bond at some interest rate i.

Bond yield equals the computed interest rate of the bond value when compared with the bond cost.

RATE-OF-RETURN

The minimum acceptable rate-of-return (MARR) is that interest rate that one is willing to accept, or the rate one desires to earn on investments. The rate-of-return on an investment is the interest rate that makes the benefits and costs equal.

BENEFIT-COST ANALYSIS

In a benefit-cost analysis, the benefits B of a project should exceed the estimated costs C.

$$B-C \ge 0$$
, or $B/C \ge 1$

	MACRS FACTORS										
		Recovery P	eriod (Years)								
Year	3	5	7	10							
		Recovery R	ate (Percent)	•							
1	33.33	20.00	14.29	10.00							
2	44.45	32.00	24.49	18.00							
3	14.81	19.20	17.49	14.40							
4	7.41	11.52	12.49	11.52							
5		11.52	8.93	9.22							
6		5.76	8.92	7.37							
7			8.93	6.55							
8			4.46	6.55							
9				6.56							
10				6.55							
11				3.28							

Factor Table - i = 0.50%

n	P/F	P/A	P/G	F/P	F/A	A/P	A/F	A/G
1	0.9950	0.9950	0.0000	1.0050	1.0000	1.0050	1.0000	0.0000
2	0.9901	1.9851	0.9901	1.0100	2.0050	0.5038	0.4988	0.4988
3	0.9851	2.9702	2.9604	1.0151	3.0150	0.3367	0.3317	0.9967
4	0.9802	3.9505	5.9011	1.0202	4.0301	0.2531	0.2481	1.4938
5	0.9754	4.9259	9.8026	1.0253	5.0503	0.2030	0.1980	1.9900
6	0.9705	5.8964	14.6552	1.0304	6.0755	0.1696	0.1646	2.4855
7	0.9657	6.8621	20.4493	1.0355	7.1059	0.1457	0.1407	2.9801
8	0.9609	7.8230	27.1755	1.0407	8.1414	0.1278	0.1228	3.4738
9	0.9561	8.7791	34.8244	1.0459	9.1821	0.1139	0.1089	3.9668
10	0.9513	9.7304	43.3865	1.0511	10.2280	0.1028	0.0978	4.4589
11	0.9466	10.6770	52.8526	1.0564	11.2792	0.0937	0.0887	4.9501
12	0.9419	11.6189	63.2136	1.0617	12.3356	0.0861	0.0811	5.4406
13	0.9372	12.5562	74.4602	1.0670	13.3972	0.0796	0.0746	5.9302
14	0.9326	13.4887	86.5835	1.0723	14.4642	0.0741	0.0691	6.4190
15	0.9279	14.4166	99.5743	1.0777	15.5365	0.0694	0.0644	6.9069
16	0.9233	15.3399	113.4238	1.0831	16.6142	0.0652	0.0602	7.3940
17	0.9187	16.2586	128.1231	1.0885	17.6973	0.0615	0.0565	7.8803
18	0.9141	17.1728	143.6634	1.0939	18.7858	0.0582	0.0532	8.3658
19	0.9096	18.0824	160.0360	1.0994	19.8797	0.0553	0.0503	8.8504
20	0.9051	18.9874	177.2322	1.1049	20.9791	0.0527	0.0477	9.3342
21	0.9006	19.8880	195.2434	1.1104	22.0840	0.0503	0.0453	9.8172
22	0.8961	20.7841	214.0611	1.1160	23.1944	0.0481	0.0431	10.2993
23	0.8916	21.6757	233.6768	1.1216	24.3104	0.0461	0.0411	10.7806
24	0.8872	22.5629	254.0820	1.1272	25.4320	0.0443	0.0393	11.2611
25	0.8828	23.4456	275.2686	1.1328	26.5591	0.0427	0.0377	11.7407
30	0.8610	27.7941	392.6324	1.1614	32.2800	0.0360	0.0310	14.1265
40	0.8191	36.1722	681.3347	1.2208	44.1588	0.0276	0.0226	18.8359
50	0.7793	44.1428	1,035.6966	1.2832	56.6452	0.0227	0.0177	23.4624
60	0.7414	51.7256	1,448.6458	1.3489	69.7700	0.0193	0.0143	28.0064
100	0.6073	78.5426	3,562.7934	1.6467	129.3337	0.0127	0.0077	45.3613

Factor Table - i = 1.00%

n	P/F	P/A	P/G	F/P	F/A	A/P	A/F	A/G
1	0.9901	0.9901	0.0000	1.0100	1.0000	1.0100	1.0000	0.0000
2	0.9803	1.9704	0.9803	1.0201	2.0100	0.5075	0.4975	0.4975
3	0.9706	2.9410	2.9215	1.0303	3.0301	0.3400	0.3300	0.9934
4	0.9610	3.9020	5.8044	1.0406	4.0604	0.2563	0.2463	1.4876
5	0.9515	4.8534	9.6103	1.0510	5.1010	0.2060	0.1960	1.9801
6	0.9420	5.7955	14.3205	1.0615	6.1520	0.1725	0.1625	2.4710
7	0.9327	6.7282	19.9168	1.0721	7.2135	0.1486	0.1386	2.9602
8	0.9235	7.6517	26.3812	1.0829	8.2857	0.1307	0.1207	3.4478
9	0.9143	8.5650	33.6959	1.0937	9.3685	0.1167	0.1067	3.9337
10	0.9053	9.4713	41.8435	1.1046	10.4622	0.1056	0.0956	4.4179
11	0.8963	10.3676	50.8067	1.1157	11.5668	0.0965	0.0865	4.9005
12	0.8874	11.2551	60.5687	1.1268	12.6825	0.0888	0.0788	5.3815
13	0.8787	12.1337	71.1126	1.1381	13.8093	0.0824	0.0724	5.8607
14	0.8700	13.0037	82.4221	1.1495	14.9474	0.0769	0.0669	6.3384
15	0.8613	13.8651	94.4810	1.1610	16.0969	0.0721	0.0621	6.8143
16	0.8528	14.7179	107.2734	1.1726	17.2579	0.0679	0.0579	7.2886
17	0.8444	15.5623	120.7834	1.1843	18.4304	0.0643	0.0543	7.7613
18	0.8360	16.3983	134.9957	1.1961	19.6147	0.0610	0.0510	8.2323
19	0.8277	17.2260	149.8950	1.2081	20.8109	0.0581	0.0481	8.7017
20	0.8195	18.0456	165.4664	1.2202	22.0190	0.0554	0.0454	9.1694
21	0.8114	18.8570	181.6950	1.2324	23.2392	0.0530	0.0430	9.6354
22	0.8034	19.6604	198.5663	1.2447	24.4716	0.0509	0.0409	10.0998
23	0.7954	20.4558	216.0660	1.2572	25.7163	0.0489	0.0389	10.5626
24	0.7876	21.2434	234.1800	1.2697	26.9735	0.0471	0.0371	11.0237
25	0.7798	22.0232	252.8945	1.2824	28.2432	0.0454	0.0354	11.4831
30	0.7419	25.8077	355.0021	1.3478	34.7849	0.0387	0.0277	13.7557
40	0.6717	32.8347	596.8561	1.4889	48.8864	0.0305	0.0205	18.1776
50	0.6080	39.1961	879.4176	1.6446	64.4632	0.0255	0.0155	22.4363
60	0.5504	44.9550	1,192.8061	1.8167	81.6697	0.0222	0.0122	26.5333
100	0.3697	63.0289	2,605.7758	2.7048	170.4814	0.0159	0.0059	41.3426

Factor Table - i = 1.50%

n	P/F	P/A	P/G	F/P	F/A	A/P	A/F	A/G
1	0.9852	0.9852	0.0000	1.0150	1.0000	1.0150	1.0000	0.0000
2	0.9707	1.9559	0.9707	1.0302	2.0150	0.5113	0.4963	0.4963
3	0.9563	2.9122	2.8833	1.0457	3.0452	0.3434	0.3284	0.9901
4	0.9422	3.8544	5.7098	1.0614	4.0909	0.2594	0.2444	1.4814
5	0.9283	4.7826	9.4229	1.0773	5.1523	0.2091	0.1941	1.9702
6	0.9145	5.6972	13.9956	1.0934	6.2296	0.1755	0.1605	2.4566
7	0.9010	6.5982	19.4018	1.1098	7.3230	0.1516	0.1366	2.9405
8	0.8877	7.4859	26.6157	1.1265	8.4328	0.1336	0.1186	3.4219
9	0.8746	8.3605	32.6125	1.1434	9.5593	0.1196	0.1046	3.9008
10	0.8617	9.2222	40.3675	1.1605	10.7027	0.1084	0.0934	4.3772
11	0.8489	10.0711	48.8568	1.1779	11.8633	0.0993	0.0843	4.8512
12	0.8364	10.9075	58.0571	1.1956	13.0412	0.0917	0.0767	5.3227
13	0.8240	11.7315	67.9454	1.2136	14.2368	0.0852	0.0702	5.7917
14	0.8118	12.5434	78.4994	1.2318	15.4504	0.0797	0.0647	6.2582
15	0.7999	13.3432	89.6974	1.2502	16.6821	0.0749	0.0599	6.7223
16	0.7880	14.1313	101.5178	1.2690	17.9324	0.0708	0.0558	7.1839
17	0.7764	14.9076	113.9400	1.2880	19.2014	0.0671	0.0521	7.6431
18	0.7649	15.6726	126.9435	1.3073	20.4894	0.0638	0.0488	8.0997
19	0.7536	16.4262	140.5084	1.3270	21.7967	0.0609	0.0459	8.5539
20	0.7425	17.1686	154.6154	1.3469	23.1237	0.0582	0.0432	9.0057
21	0.7315	17.9001	169.2453	1.3671	24.4705	0.0559	0.0409	9.4550
22	0.7207	18.6208	184.3798	1.3876	25.8376	0.0537	0.0387	9.9018
23	0.7100	19.3309	200.0006	1.4084	27.2251	0.0517	0.0367	10.3462
24	0.6995	20.0304	216.0901	1.4295	28.6335	0.0499	0.0349	10.7881
25	0.6892	20.7196	232.6310	1.4509	30.0630	0.0483	0.0333	11.2276
30	0.6398	24.0158	321.5310	1.5631	37.5387	0.0416	0.0266	13.3883
40	0.5513	29.9158	524.3568	1.8140	54.2679	0.0334	0.0184	17.5277
50	0.4750	34.9997	749.9636	2.1052	73.6828	0.0286	0.0136	21.4277
60	0.4093	39.3803	988.1674	2.4432	96.2147	0.0254	0.0104	25.0930
100	0.2256	51.6247	1,937.4506	4.4320	228.8030	0.0194	0.0044	37.5295

Factor Table - i = 2.00%

n	P/F	P/A	P/G	F/P	F/A	A/P	A/F	A/G
1	0.9804	0.9804	0.0000	1.0200	1.0000	1.0200	1.0000	0.0000
2	0.9612	1.9416	0.9612	1.0404	2.0200	0.5150	0.4950	0.4950
3	0.9423	2.8839	2.8458	1.0612	3.0604	0.3468	0.3268	0.9868
4	0.9238	3.8077	5.6173	1.0824	4.1216	0.2626	0.2426	1.4752
5	0.9057	4.7135	9.2403	1.1041	5.2040	0.2122	0.1922	1.9604
6	0.8880	5.6014	13.6801	1.1262	6.3081	0.1785	0.1585	2.4423
7	0.8706	6.4720	18.9035	1.1487	7.4343	0.1545	0.1345	2.9208
8	0.8535	7.3255	24.8779	1.1717	8.5830	0.1365	0.1165	3.3961
9	0.8368	8.1622	31.5720	1.1951	9.7546	0.1225	0.1025	3.8681
10	0.8203	8.9826	38.9551	1.2190	10.9497	0.1113	0.0913	4.3367
11	0.8043	9.7868	46.9977	1.2434	12.1687	0.1022	0.0822	4.8021
12	0.7885	10.5753	55.6712	1.2682	13.4121	0.0946	0.0746	5.2642
13	0.7730	11.3484	64.9475	1.2936	14.6803	0.0881	0.0681	5.7231
14	0.7579	12.1062	74.7999	1.3195	15.9739	0.0826	0.0626	6.1786
15	0.7430	12.8493	85.2021	1.3459	17.2934	0.0778	0.0578	6.6309
16	0.7284	13.5777	96.1288	1.3728	18.6393	0.0737	0.0537	7.0799
17	0.7142	14.2919	107.5554	1.4002	20.0121	0.0700	0.0500	7.5256
18	0.7002	14.9920	119.4581	1.4282	21.4123	0.0667	0.0467	7.9681
19	0.6864	15.6785	131.8139	1.4568	22.8406	0.0638	0.0438	8.4073
20	0.6730	16.3514	144.6003	1.4859	24.2974	0.0612	0.0412	8.8433
21	0.6598	17.0112	157.7959	1.5157	25.7833	0.0588	0.0388	9.2760
22	0.6468	17.6580	171.3795	1.5460	27.2990	0.0566	0.0366	9.7055
23	0.6342	18.2922	185.3309	1.5769	28.8450	0.0547	0.0347	10.1317
24	0.6217	18.9139	199.6305	1.6084	30.4219	0.0529	0.0329	10.5547
25	0.6095	19.5235	214.2592	1.6406	32.0303	0.0512	0.0312	10.9745
30	0.5521	22.3965	291.7164	1.8114	40.5681	0.0446	0.0246	13.0251
40	0.4529	27.3555	461.9931	2.2080	60.4020	0.0366	0.0166	16.8885
50	0.3715	31.4236	642.3606	2.6916	84.5794	0.0318	0.0118	20.4420
60	0.3048	34.7609	823.6975	3.2810	114.0515	0.0288	0.0088	23.6961
100	0.1380	43.0984	1,464.7527	7.2446	312.2323	0.0232	0.0032	33.9863

Factor Table - i = 4.00%

n	P/F	P/A	P/G	F/P	F/A	A/P	A/F	A/G
1	0.9615	0.9615	0.0000	1.0400	1.0000	1.0400	1.0000	0.0000
2	0.9246	1.8861	0.9246	1.0816	2.0400	0.5302	0.4902	0.4902
3	0.8890	2.7751	2.7025	1.1249	3.1216	0.3603	0.3203	0.9739
4	0.8548	3.6299	5.2670	1.1699	4.2465	0.2755	0.2355	1.4510
5	0.8219	4.4518	8.5547	1.2167	5.4163	0.2246	0.1846	1.9216
6	0.7903	5.2421	12.5062	1.2653	6.6330	0.1908	0.1508	2.3857
7	0.7599	6.0021	17.0657	1.3159	7.8983	0.1666	0.1266	2.8433
8	0.7307	6.7327	22.1806	1.3686	9.2142	0.1485	0.1085	3.2944
9	0.7026	7.4353	27.8013	1.4233	10.5828	0.1345	0.0945	3.7391
10	0.6756	8.1109	33.8814	1.4802	12.0061	0.1233	0.0833	4.1773
11	0.6496	8.7605	40.3772	1.5395	13.4864	0.1141	0.0741	4.6090
12	0.6246	9.3851	47.2477	1.6010	15.0258	0.1066	0.0666	5.0343
13	0.6006	9.9856	54.4546	1.6651	16.6268	0.1001	0.0601	5.4533
14	0.5775	10.5631	61.9618	1.7317	18.2919	0.0947	0.0547	5.8659
15	0.5553	11.1184	69.7355	1.8009	20.0236	0.0899	0.0499	6.2721
16	0.5339	11.6523	77.7441	1.8730	21.8245	0.0858	0.0458	6.6720
17	0.5134	12.1657	85.9581	1.9479	23.6975	0.0822	0.0422	7.0656
18	0.4936	12.6593	94.3498	2.0258	25.6454	0.0790	0.0390	7.4530
19	0.4746	13.1339	102.8933	2.1068	27.6712	0.0761	0.0361	7.8342
20	0.4564	13.5903	111.5647	2.1911	29.7781	0.0736	0.0336	8.2091
21	0.4388	14.0292	120.3414	2.2788	31.9692	0.0713	0.0313	8.5779
22	0.4220	14.4511	129.2024	2.3699	34.2480	0.0692	0.0292	8.9407
23	0.4057	14.8568	138.1284	2.4647	36.6179	0.0673	0.0273	9.2973
24	0.3901	15.2470	147.1012	2.5633	39.0826	0.0656	0.0256	9.6479
25	0.3751	15.6221	156.1040	2.6658	41.6459	0.0640	0.0240	9.9925
30	0.3083	17.2920	201.0618	3.2434	56.0849	0.0578	0.0178	11.6274
40	0.2083	19.7928	286.5303	4.8010	95.0255	0.0505	0.0105	14.4765
50	0.1407	21.4822	361.1638	7.1067	152.6671	0.0466	0.0066	16.8122
60	0.0951	22.6235	422.9966	10.5196	237.9907	0.0442	0.0042	18.6972
100	0.0198	24.5050	563.1249	50.5049	1,237.6237	0.0408	0.0008	22.9800

Factor Table - i = 6.00%

n	P/F	P/A	P/G	F/P	F/A	A/P	A/F	A/G
1	0.9434	0.9434	0.0000	1.0600	1.0000	1.0600	1.0000	0.0000
2	0.8900	1.8334	0.8900	1.1236	2.0600	0.5454	0.4854	0.4854
3	0.8396	2.6730	2.5692	1.1910	3.1836	0.3741	0.3141	0.9612
4	0.7921	3.4651	4.9455	1.2625	4.3746	0.2886	0.2286	1.4272
5	0.7473	4.2124	7.9345	1.3382	5.6371	0.2374	0.1774	1.8836
6	0.7050	4.9173	11.4594	1.4185	6.9753	0.2034	0.1434	2.3304
7	0.6651	5.5824	15.4497	1.5036	8.3938	0.1791	0.1191	2.7676
8	0.6274	6.2098	19.8416	1.5938	9.8975	0.1610	0.1010	3.1952
9	0.5919	6.8017	24.5768	1.6895	11.4913	0.1470	0.0870	3.6133
10	0.5584	7.3601	29.6023	1.7908	13.1808	0.1359	0.0759	4.0220
11	0.5268	7.8869	34.8702	1.8983	14.9716	0.1268	0.0668	4.4213
12	0.4970	8.3838	40.3369	2.0122	16.8699	0.1193	0.0593	4.8113
13	0.4688	8.8527	45.9629	2.1329	18.8821	0.1130	0.0530	5.1920
14	0.4423	9.2950	51.7128	2.2609	21.0151	0.1076	0.0476	5.5635
15	0.4173	9.7122	57.5546	2.3966	23.2760	0.1030	0.0430	5.9260
16	0.3936	10.1059	63.4592	2.5404	25.6725	0.0990	0.0390	6.2794
17	0.3714	10.4773	69.4011	2.6928	28.2129	0.0954	0.0354	6.6240
18	0.3505	10.8276	75.3569	2.8543	30.9057	0.0924	0.0324	6.9597
19	0.3305	11.1581	81.3062	3.0256	33.7600	0.0896	0.0296	7.2867
20	0.3118	11.4699	87.2304	3.2071	36.7856	0.0872	0.0272	7.6051
21	0.2942	11.7641	93.1136	3.3996	39.9927	0.0850	0.0250	7.9151
22	0.2775	12.0416	98.9412	3.6035	43.3923	0.0830	0.0230	8.2166
23	0.2618	12.3034	104.7007	3.8197	46.9958	0.0813	0.0213	8.5099
24	0.2470	12.5504	110.3812	4.0489	50.8156	0.0797	0.0197	8.7951
25	0.2330	12.7834	115.9732	4.2919	54.8645	0.0782	0.0182	9.0722
30	0.1741	13.7648	142.3588	5.7435	79.0582	0.0726	0.0126	10.3422
40	0.0972	15.0463	185.9568	10.2857	154.7620	0.0665	0.0065	12.3590
50	0.0543	15.7619	217.4574	18.4202	290.3359	0.0634	0.0034	13.7964
60	0.0303	16.1614	239.0428	32.9877	533.1282	0.0619	0.0019	14.7909
100	0.0029	16.6175	272.0471	339.3021	5,638.3681	0.0602	0.0002	16.3711

Factor Table - i = 8.00%

n	P/F	P/A	P/G	F/P	F/A	A/P	A/F	A/G
1	0.9259	0.9259	0.0000	1.0800	1.0000	1.0800	1.0000	0.0000
2	0.8573	1.7833	0.8573	1.1664	2.0800	0.5608	0.4808	0.4808
3	0.7938	2.5771	2.4450	1.2597	3.2464	0.3880	0.3080	0.9487
4	0.7350	3.3121	4.6501	1.3605	4.5061	0.3019	0.2219	1.4040
5	0.6806	3.9927	7.3724	1.4693	5.8666	0.2505	0.1705	1.8465
6	0.6302	4.6229	10.5233	1.5869	7.3359	0.2163	0.1363	2.2763
7	0.5835	5.2064	14.0242	1.7138	8.9228	0.1921	0.1121	2.6937
8	0.5403	5.7466	17.8061	1.8509	10.6366	0.1740	0.0940	3.0985
9	0.5002	6.2469	21.8081	1.9990	12.4876	0.1601	0.0801	3.4910
10	0.4632	6.7101	25.9768	2.1589	14.4866	0.1490	0.0690	3.8713
11	0.4289	7.1390	30.2657	2.3316	16.6455	0.1401	0.0601	4.2395
12	0.3971	7.5361	34.6339	2.5182	18.9771	0.1327	0.0527	4.5957
13	0.3677	7.9038	39.0463	2.7196	21.4953	0.1265	0.0465	4.9402
14	0.3405	8.2442	43.4723	2.9372	24.2149	0.1213	0.0413	5.2731
15	0.3152	8.5595	47.8857	3.1722	27.1521	0.1168	0.0368	5.5945
16	0.2919	8.8514	52.2640	3.4259	30.3243	0.1130	0.0330	5.9046
17	0.2703	9.1216	56.5883	3.7000	33.7502	0.1096	0.0296	6.2037
18	0.2502	9.3719	60.8426	3.9960	37.4502	0.1067	0.0267	6.4920
19	0.2317	9.6036	65.0134	4.3157	41.4463	0.1041	0.0241	6.7697
20	0.2145	9.8181	69.0898	4.6610	45.7620	0.1019	0.0219	7.0369
21	0.1987	10.0168	73.0629	5.0338	50.4229	0.0998	0.0198	7.2940
22	0.1839	10.2007	76.9257	5.4365	55.4568	0.0980	0.0180	7.5412
23	0.1703	10.3711	80.6726	5.8715	60.8933	0.0964	0.0164	7.7786
24	0.1577	10.5288	84.2997	6.3412	66.7648	0.0950	0.0150	8.0066
25	0.1460	10.6748	87.8041	6.8485	73.1059	0.0937	0.0137	8.2254
30	0.0994	11.2578	103.4558	10.0627	113.2832	0.0888	0.0088	9.1897
40	0.0460	11.9246	126.0422	21.7245	259.0565	0.0839	0.0039	10.5699
50	0.0213	12.2335	139.5928	46.9016	573.7702	0.0817	0.0017	11.4107
60	0.0099	12.3766	147.3000	101.2571	1,253.2133	0.0808	0.0008	11.9015
100	0.0005	12.4943	155.6107	2,199.7613	27,484.5157	0.0800		12.4545

Factor Table - i = 10.00%

n	P/F	P/A	P/G	F/P	F/A	A/P	A/F	A/G
1	0.9091	0.9091	0.0000	1.1000	1.0000	1.1000	1.0000	0.0000
2	0.8264	1.7355	0.8264	1.2100	2.1000	0.5762	0.4762	0.4762
3	0.7513	2.4869	2.3291	1.3310	3.3100	0.4021	0.3021	0.9366
4	0.6830	3.1699	4.3781	1.4641	4.6410	0.3155	0.2155	1.3812
5	0.6209	3.7908	6.8618	1.6105	6.1051	0.2638	0.1638	1.8101
6	0.5645	4.3553	9.6842	1.7716	7.7156	0.2296	0.1296	2.2236
7	0.5132	4.8684	12.7631	1.9487	9.4872	0.2054	0.1054	2.6216
8	0.4665	5.3349	16.0287	2.1436	11.4359	0.1874	0.0874	3.0045
9	0.4241	5.7590	19.4215	2.3579	13.5735	0.1736	0.0736	3.3724
10	0.3855	6.1446	22.8913	2.5937	15.9374	0.1627	0.0627	3.7255
11	0.3505	6.4951	26.3962	2.8531	18.5312	0.1540	0.0540	4.0641
12	0.3186	6.8137	29.9012	3.1384	21.3843	0.1468	0.0468	4.3884
13	0.2897	7.1034	33.3772	3.4523	24.5227	0.1408	0.0408	4.6988
14	0.2633	7.3667	36.8005	3.7975	27.9750	0.1357	0.0357	4.9955
15	0.2394	7.6061	40.1520	4.1772	31.7725	0.1315	0.0315	5.2789
16	0.2176	7.8237	43.4164	4.5950	35.9497	0.1278	0.0278	5.5493
17	0.1978	8.0216	46.5819	5.0545	40.5447	0.1247	0.0247	5.8071
18	0.1799	8.2014	49.6395	5.5599	45.5992	0.1219	0.0219	6.0526
19	0.1635	8.3649	52.5827	6.1159	51.1591	0.1195	0.0195	6.2861
20	0.1486	8.5136	55.4069	6.7275	57.2750	0.1175	0.0175	6.5081
21	0.1351	8.6487	58.1095	7.4002	64.0025	0.1156	0.0156	6.7189
22	0.1228	8.7715	60.6893	8.1403	71.4027	0.1140	0.0140	6.9189
23	0.1117	8.8832	63.1462	8.9543	79.5430	0.1126	0.0126	7.1085
24	0.1015	8.9847	65.4813	9.8497	88.4973	0.1113	0.0113	7.2881
25	0.0923	9.0770	67.6964	10.8347	98.3471	0.1102	0.0102	7.4580
30	0.0573	9.4269	77.0766	17.4494	164.4940	0.1061	0.0061	8.1762
40	0.0221	9.7791	88.9525	45.2593	442.5926	0.1023	0.0023	9.0962
50	0.0085	9.9148	94.8889	117.3909	1,163.9085	0.1009	0.0009	9.5704
60	0.0033	9.9672	97.7010	304.4816	3,034.8164	0.1003	0.0003	9.8023
100	0.0001	9.9993	99.9202	13,780.6123	137,796.1234	0.1000		9.9927

Factor Table - i = 12.00%

n	P/F	P/A	P/G	F/P	F/A	A/P	A/F	A/G
1	0.8929	0.8929	0.0000	1.1200	1.0000	1.1200	1.0000	0.0000
2	0.7972	1.6901	0.7972	1.2544	2.1200	0.5917	0.4717	0.4717
3	0.7118	2.4018	2.2208	1.4049	3.3744	0.4163	0.2963	0.9246
4	0.6355	3.0373	4.1273	1.5735	4.7793	0.3292	0.2092	1.3589
5	0.5674	3.6048	6.3970	1.7623	6.3528	0.2774	0.1574	1.7746
6	0.5066	4.1114	8.9302	1.9738	8.1152	0.2432	0.1232	2.1720
7	0.4523	4.5638	11.6443	2.2107	10.0890	0.2191	0.0991	2.5515
8	0.4039	4.9676	14.4714	2.4760	12.2997	0.2013	0.0813	2.9131
9	0.3606	5.3282	17.3563	2.7731	14.7757	0.1877	0.0677	3.2574
10	0.3220	5.6502	20.2541	3.1058	17.5487	0.1770	0.0570	3.5847
11	0.2875	5.9377	23.1288	3.4785	20.6546	0.1684	0.0484	3.8953
12	0.2567	6.1944	25.9523	3.8960	24.1331	0.1614	0.0414	4.1897
13	0.2292	6.4235	28.7024	4.3635	28.0291	0.1557	0.0357	4.4683
14	0.2046	6.6282	31.3624	4.8871	32.3926	0.1509	0.0309	4.7317
15	0.1827	6.8109	33.9202	5.4736	37.2797	0.1468	0.0268	4.9803
16	0.1631	6.9740	36.3670	6.1304	42.7533	0.1434	0.0234	5.2147
17	0.1456	7.1196	38.6973	6.8660	48.8837	0.1405	0.0205	5.4353
18	0.1300	7.2497	40.9080	7.6900	55.7497	0.1379	0.0179	5.6427
19	0.1161	7.3658	42.9979	8.6128	63.4397	0.1358	0.0158	5.8375
20	0.1037	7.4694	44.9676	9.6463	72.0524	0.1339	0.0139	6.0202
21	0.0926	7.5620	46.8188	10.8038	81.6987	0.1322	0.0122	6.1913
22	0.0826	7.6446	48.5543	12.1003	92.5026	0.1308	0.0108	6.3514
23	0.0738	7.7184	50.1776	13.5523	104.6029	0.1296	0.0096	6.5010
24	0.0659	7.7843	51.6929	15.1786	118.1552	0.1285	0.0085	6.6406
25	0.0588	7.8431	53.1046	17.0001	133.3339	0.1275	0.0075	6.7708
30	0.0334	8.0552	58.7821	29.9599	241.3327	0.1241	0.0041	7.2974
40	0.0107	8.2438	65.1159	93.0510	767.0914	0.1213	0.0013	7.8988
50	0.0035	8.3045	67.7624	289.0022	2,400.0182	0.1204	0.0004	8.1597
60	0.0011	8.3240	68.8100	897.5969	7,471.6411	0.1201	0.0001	8.2664
100		8.3332	69.4336	83,522.2657	696,010.5477	0.1200		8.3321

Factor Table - i = 18.00%

n	P/F	P/A	P/G	F/P	F/A	A/P	A/F	A/G
1	0.8475	0.8475	0.0000	1.1800	1.0000	1.1800	1.0000	0.0000
2	0.7182	1.5656	0.7182	1.3924	2.1800	0.6387	0.4587	0.4587
3	0.6086	2.1743	1.9354	1.6430	3.5724	0.4599	0.2799	0.8902
4	0.5158	2.6901	3.4828	1.9388	5.2154	0.3717	0.1917	1.2947
5	0.4371	3.1272	5.2312	2.2878	7.1542	0.3198	0.1398	1.6728
6	0.3704	3.4976	7.0834	2.6996	9.4423	0.2859	0.1059	2.0252
7	0.3139	3.8115	8.9670	3.1855	12.1415	0.2624	0.0824	2.3526
8	0.2660	4.0776	10.8292	3.7589	15.3270	0.2452	0.0652	2.6558
9	0.2255	4.3030	12.6329	4.4355	19.0859	0.2324	0.0524	2.9358
10	0.1911	4.4941	14.3525	5.2338	23.5213	0.2225	0.0425	3.1936
11	0.1619	4.6560	15.9716	6.1759	28.7551	0.2148	0.0348	3.4303
12	0.1372	4.7932	17.4811	7.2876	34.9311	0.2086	0.0286	3.6470
13	0.1163	4.9095	18.8765	8.5994	42.2187	0.2037	0.0237	3.8449
14	0.0985	5.0081	20.1576	10.1472	50.8180	0.1997	0.0197	4.0250
15	0.0835	5.0916	21.3269	11.9737	60.9653	0.1964	0.0164	4.1887
16	0.0708	5.1624	22.3885	14.1290	72.9390	0.1937	0.0137	4.3369
17	0.0600	5.2223	23.3482	16.6722	87.0680	0.1915	0.0115	4.4708
18	0.0508	5.2732	24.2123	19.6731	103.7403	0.1896	0.0096	4.5916
19	0.0431	5.3162	24.9877	23.2144	123.4135	0.1881	0.0081	4.7003
20	0.0365	5.3527	25.6813	27.3930	146.6280	0.1868	0.0068	4.7978
21	0.0309	5.3837	26.3000	32.3238	174.0210	0.1857	0.0057	4.8851
22	0.0262	5.4099	26.8506	38.1421	206.3448	0.1848	0.0048	4.9632
23	0.0222	5.4321	27.3394	45.0076	244.4868	0.1841	0.0041	5.0329
24	0.0188	5.4509	27.7725	53.1090	289.4944	0.1835	0.0035	5.0950
25	0.0159	5.4669	28.1555	62.6686	342.6035	0.1829	0.0029	5.1502
30	0.0070	5.5168	29.4864	143.3706	790.9480	0.1813	0.0013	5.3448
40	0.0013	5.5482	30.5269	750.3783	4,163.2130	0.1802	0.0002	5.5022
50	0.0003	5.5541	30.7856	3,927.3569	21,813.0937	0.1800		5.5428
60	0.0001	5.5553	30.8465	20,555.1400	114,189.6665	0.1800		5.5526
100		5.5556	30.8642	15,424,131.91	85,689,616.17	0.1800		5.5555

CHEMICAL ENGINEERING

CHEMICAL REACTION ENGINEERING

Nomenclature

A chemical reaction may be expressed by the general equation

$$aA + bB \leftrightarrow cC + dD$$
.

The rate of reaction of any component is defined as the moles of that component formed per unit time per unit volume.

$$-r_A = -\frac{1}{V} \frac{dN_A}{dt}$$
 (negative because A disappears)
 $-r_A = \frac{-dC_A}{dt}$ if V is constant

The rate of reaction is frequently expressed by

$$-r_A = kf_r(C_A, C_B,)$$
, where

k = reaction rate constant

 C_I = concentration of component I

In the conversion of A, the fractional conversion X_A is defined as the moles of A reacted per mole of A fed.

$$X_A = (C_{A0} - C_A)/C_{A0}$$
 if V is constant

The Arrhenius equation gives the dependence of k on temperature

$$k = Ae^{-E_a/\overline{R}T}$$
, where

A =pre-exponential or frequency factor

 E_a = activition energy (J/mol, cal/mol)

T = temperature (K)

 $R = \text{gas law constant} = 8.314 \text{ J/(mol} \cdot \text{K)}$

For values of rate constant (k_i) at two temperatures (T_i) ,

$$E_a = \frac{RT_1T_2}{(T_1 - T_2)} \ln\left(\frac{k_1}{k_2}\right)$$

Reaction Order

If
$$-r_A = kC_A^x C_B^y$$

the reaction is x order with respect to reactant A and y order with respect to reactant B. The overall order is

$$n = x + v$$

Batch Reactor, Constant Volume

For a well-mixed, constant-volume batch reactor

$$-r_A = -dC_A/dt$$

$$t = -C_{A0} \int_0^{X_A} dX_A/(-r_A)$$

Zero-Order Irreversible Reaction

$$-r_A = kC_A^0 = k(1)$$

$$-dC_A/dt = k$$
 or
$$C_A = C_{A0} - kt$$

$$dX_A/dt = k/C_{A0}$$
 or
$$C_{A0}X_A = kt$$

First-Order Irreversible Reaction

$$-r_A = kC_A$$

$$-dC_A/dt = kC_A mtext{ or}$$

$$\ln(C_A/C_{A0}) = -kt$$

$$dX_A/dt = k(1 - X_A) mtext{ or}$$

$$\ln(1 - X_A) = -kt$$

Second-Order Irreversible Reaction

$$-r_A = kC_A^2$$

$$-dC_A/dt = kC_A^2 \text{ or}$$

$$1/C_A - 1/C_{A0} = kt$$

$$dX_A/dt = kC_{A0}(1 - X_A)^2 \text{ or}$$

$$X_A/[C_{A0}(1 - X_A)] = kt$$

First-Order Reversible Reactions

$$A \underset{k_{2}}{\overset{k_{1}}{\rightleftharpoons}} R$$

$$-r_{A} = -\frac{dC_{A}}{dt} = k_{1}C_{A} - k_{2}C_{R}$$

$$K_{c} = k_{1}/k_{2} = \hat{C}_{R}/\hat{C}_{A}$$

$$M = C_{R_{0}}/C_{A_{0}}$$

$$\frac{d\hat{X}_{A}}{dt} = \frac{k_{1}(M+1)}{M+\hat{X}_{A}}(\hat{X}_{A} - X_{A})$$

$$-\ln\left(1 - \frac{X_{A}}{\hat{X}_{A}}\right) = -\ln\frac{C_{A} - \hat{C}_{A}}{C_{A_{0}} - \hat{C}_{A}}$$

$$= \frac{(M+1)}{(M+\hat{X}_{A})}k_{1}t$$

Reactions of Shifting Order

$$-r_{A} = \frac{k_{1}C_{A}}{1 + k_{2}C_{A}}$$

$$\ln\left(\frac{C_{A_{o}}}{C_{A}}\right) + k_{2}\left(C_{A_{o}} - C_{A}\right) = k_{1}t$$

$$\frac{\ln\left(C_{A_{o}}/C_{A}\right)}{C_{A} - C_{A}} = -k_{2} + \frac{k_{1}t}{C_{A} - C_{A}}$$

This form of the rate equation is used for elementary enzyme-catalyzed reactions and for elementary surfacedcatalyzed reactions.

Batch Reactor, Variable Volume

If the volume of the reacting mass varies with the conversion (such as a variable-volume batch reactor) according to

$$V = V_{X_A = 0} (1 + \varepsilon_A X_A)$$

(i.e., at constant pressure), where

$$\varepsilon_A = \frac{V_{X_{A=1}} - V_{X_{A=0}}}{V_{X_{A=0}}} = \frac{\Delta V}{V_{X_{A=0}}}$$

then at any time

$$C_A = C_{A0} \left[\frac{1 - X_A}{1 + \varepsilon_A X_A} \right]$$

and

$$t = -C_{A0} \int_0^{X_A} dX_A / [(1 + \varepsilon_A X_A)(-r_A)]$$

For a first-order irreversible reaction,

$$kt = -\ln(1 - X_A) = -\ln\left(1 - \frac{\Delta V}{\varepsilon_A V_{XA=0}}\right)$$

Flow Reactors, Steady State

Space-time τ is defined as the reactor volume divided by the inlet volumetric feed rate. Space-velocity SV is the reciprocal of space-time, $SV = 1/\tau$.

Plug-Flow Reactor (PFR)

$$\tau = \frac{C_{A0}V_{PFR}}{F_{A0}} = C_{A0} \int_0^{X_A} \frac{dX_A}{(-r_A)}, \text{ where}$$

 F_{A0} = moles of A fed per unit time.

Continuous-Stirred Tank Reactor (CSTR)

For a constant volume, well-mixed CSTR

$$\frac{\tau}{C_{A0}} = \frac{V_{CSTR}}{F_{A0}} = \frac{X_A}{-r_A}$$
, where

 $-r_A$ is evaluated at exit stream conditions.

Continuous-Stirred Tank Reactors in Series

With a first-order reaction $A \rightarrow R$, no change in volume.

$$\tau_{N-\text{reactors}} = N\tau_{\text{individual}}$$

$$= \frac{N}{k} \left[\left(\frac{C_{A0}}{C_{AN}} \right)^{1/N} - 1 \right], \text{ where}$$

N = number of CSTRs (equal volume) in series, and $C_{AN} =$ concentration of A leaving the Nth CSTR.

Two Irreversible Reactions in Parallel

$$A \stackrel{k_D}{\to} D(\text{desired})$$

$$A \stackrel{k_U}{\rightarrow} U(\text{undesired})$$

$$-r_A = -dc_A/dt = k_D C_A^x + k_U C_A^y$$

$$r_D = dc_D/dt = k_D C_A^x$$

$$r_U = dc_U/dt = k_U C_A^y$$

 Y_D = instantaneous fractional yield of D

$$= dC_D / (-dC_A)$$

 \overline{Y}_D = overall fractional yield of D

$$=\,N_{D_f}/\!\left(N_{A_0}\,-\,N_{A_f}\right)$$

where $N_{A_{\it f}}$ and $N_{D_{\it f}}$ are measured at the outlet of the

flow reactor.

$$\overline{S}_{DU}$$
 = overall selectivity to D
= N_{D_f}/N_{U_f}

Two First-Order Irreversible Reactions in Series

$$A \xrightarrow{k_D} D \xrightarrow{k_U} U$$

$$r_A = -dC_A/dt = k_D C_A$$

$$r_D = dC_D/dt = k_D C_A - k_U C_D$$

$$r_U = dC_U/dt = k_U C_D$$

Yield and selectivity definitions are identical to those for two irreversible reactions in parallel. The optimal yield of D in a

PFR is

$$\frac{C_{D,\text{max}}}{C_{A_0}} = \left(\frac{k_D}{k_U}\right)^{k_U/\left(k_U - k_D\right)}$$

at tim

$$\tau_{\text{max}} = \frac{1}{k_{\text{log mean}}} = \frac{\ln(k_U/k_D)}{(k_U - k_D)}$$

The optimal yield of D in a CSTR is

$$\frac{C_{D,\max}}{C_{A_0}} = \frac{1}{\left[\left(k_U / k_D \right)^{1/2} + 1 \right]^2}$$

at time

$$\tau_{\rm max} = 1 / \sqrt{k_D k_U^D}$$

MASS TRANSFER

Diffusion

Molecular Diffusion

Gas:
$$N_A = \frac{p_A}{P} (N_A + N_B) - \frac{D_m}{\overline{R}T} \frac{\partial p_A}{\partial z}$$

Liquid:
$$N_A = x_A (N_A + N_B) - CD_m \frac{\partial x_A}{\partial z}$$

where,

 N_i = molar flux of component i

P = pressure

 p_i = partial pressure of component i

 $D_m = \text{mass diffusivity}$

 \overline{R} = universal gas constant

T = temperature

z = length

<u>Unidirectional Diffusion of a Gas A Through a Second</u> <u>Stagnant Gas B (N_b = 0)</u>

$$N_A = \frac{D_m P}{\overline{R}T(p_B)_{lm}} \times \frac{(p_{A2} - p_{A1})}{z_2 - z_1}$$

in which $(p_B)_{lm}$ is the log mean of p_{B2} and p_{B1}

$$(p_{BM})_{lm} = \frac{p_{B2} - p_{B1}}{\ln(\frac{p_{B2}}{p_{B1}})}$$

 N_i = diffusive flux [mole/(time × area)] of component i through area A, in z direction

 D_m = mass diffusivity

 p_I = partial pressure of species I

C = concentration (mole/volume)

 $(z_2 - z_1) =$ diffusion flow path length

Equimolar Counter-Diffusion (Gases)

$$(N_B = -N_A)$$

$$N_A = D_m / (RT) \times [(p_{A1} - p_{A2}) / (\Delta z)]$$

 $N_A = D_m (C_{A1} - C_{A2}) / \Delta z$

Convection

Two-Film Theory (for Equimolar Counter-Diffusion)

$$N_{A} = k'_{G}(p_{AG} - p_{Ai})$$

$$= k'_{L}(C_{Ai} - C_{AL})$$

$$= K'_{G}(p_{AG} - p_{A}^{*})$$

$$= K'_{L}(C_{A}^{*} - C_{AI})$$

where

 N_A = molar flux of component A

 k'_{G} = gas phase mass transfer coefficient

 k'_{I} = liquid phase mass transfer coefficient

 K'_{G} = overall gas phase mass transfer coefficient

 K'_{L} = overall liquid phase mass transfer coefficient

 p_{AG} = partial pressure in component A in the bulk gas phase

 p_{Ai} = partial pressure at component A at the gas-liquid interface

 C_{Ai} = concentration (mole/volume) of component A in the liquid phase at the gas-liquid interface

 C_{AI} = concentration of component A in the bulk liquid phase

 p_A^* = partial pressure of component A in equilibrium with C_{AL}

 C_A * = concentration of component A in equilibrium with the bulk gas vapor composition of A

Overall Coefficients

$$1/K'_G = 1/k'_G + H/k'_L$$

 $1/K'_L = 1/Hk'_G + 1/k'_L$

 $H = \text{Henry's Law constant where } p_A^* = H C_{AL} \text{ and } C_A^* = p_{AG}/H$

<u>Dimensionless Group Equation (Sherwood)</u>

For the turbulent flow inside a tube the Sherwood number

$$Sh = \left(\frac{k_m D}{D_m}\right) = 0.023 \left(\frac{DV\rho}{\mu}\right)^{0.8} \left(\frac{\mu}{\rho D_m}\right)^{1/3}$$

where.

D = inside diameter

 D_{m} = diffusion coefficient

V = average velocity in the tube

 ρ = fluid density

 μ = fluid viscosity

 k_m = mass transfer coefficient

Distillation

Definitions:

 α = relative volatility

B = molar bottoms-product rate

D = molar overhead-product rate

F = molar feed rate

L =molar liquid downflow rate

 R_D = ratio of reflux to overhead product

V =molar vapor upflow rate

W = total moles in still pot

mole fraction of the more volatile component in the liquid phase

y = mole fraction of the more volatile component in the vapor phase

Subscripts:

B = bottoms product

D = overhead product

F = feed

m =any plate in stripping section of column

m+1= plate below plate m

n =any plate in rectifying section of column

n+1 = plate below plate n

o = original charge in still pot

Flash (or equilibrium) Distillation

Component material balance:

$$Fz_F = yV + xL$$

Overall material balance:

$$F = V + L$$

Differential (Simple or Rayleigh) Distillation

$$\ln\left(\frac{W}{W_o}\right) = \int_{x_o}^{x} \frac{dx}{y - x}$$

When the relative volatility α is constant,

$$v = \alpha x/[1 + (\alpha - 1)x]$$

can be substituted to give

$$\ln\left(\frac{W}{W_o}\right) = \frac{1}{(\alpha - 1)} \ln\left[\frac{x(1 - x_o)}{x_o(1 - x)}\right] + \ln\left[\frac{1 - x_o}{1 - x}\right]$$

For binary system following Raoult's Law

$$\alpha = (y/x)_a/(y/x)_b = p_a/p_b$$
, where

 p_i = partial pressure of component i.

Continuous Distillation (Binary System)

Constant molal overflow is assumed.

Equilibrium stages numbered from top.

Overall Material Balances

Total Material:

$$F = D + B$$

Component A:

$$Fz_F = Dx_D + Bx_B$$

Operating Lines

Rectifying section

Total Material:

$$V_{n+1} = L_n + D$$

Component A:

$$V_{n+1} y_{n+1} = L_n x_n + D x_D$$

$$y_{n+1} = [L_n/(L_n + D)] x_n + Dx_D/(L_n + D)$$

Stripping section

Total Material:

$$L_m = V_{m+1} + B$$

Component A:

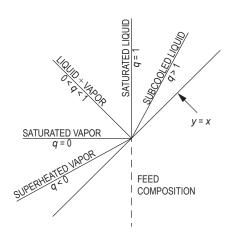
$$L_m x_m = V_{m+1} y_{m+1} + B x_B$$

$$y_{m+1} = [L_m/(L_m - B)] x_m - Bx_B/(L_m - B)$$

Reflux ratio

Ratio of reflux to overhead product

$$R_D = L_R/D = (V_R - D)/D$$


Minimum reflux ratio is defined as that value which results in an infinite number of contact stages. For a binary system the equation of the operating line is

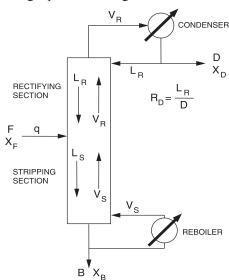
$$y = \frac{R_{\min}}{R_{\min} + 1} x + \frac{x_D}{R_{\min} + 1}$$

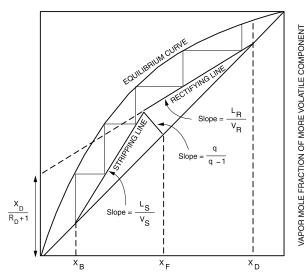
Feed condition line

slope = q/(q-1), where

 $q = \frac{\text{heat to convert one mol of feed to saturated vapor}}{\text{molar heat of vaporization}}$

q-LINE SLOPES


Murphree plate efficiency


$$E_{ME} = (y_n - y_{n+1})/(y_n^* - y_{n+1}),$$
 where

 y_n = concentration of vapor above equilibrium stage n

 y_{n+1} = concentration of vapor entering from equilibrium stage below n

 y_n^* = concentration of vapor in equilibrium with liquid leaving equilibrium stage n

LIQUID MOLE FRACTION OF MORE VOLATILE COMPONENT

Absorption (packed columns)

Continuous Contact Columns

$$Z = NTU_G \bullet HTU_G = NTU_L \bullet HTU_L = N_{EO} \bullet HETP$$

Z = column height

 NTU_G = number of transfer units (gas phase)

 NTU_L = number of transfer units (liquid phase)

 N_{EO} = number of equilibrium stages

 HTU_G = height of transfer unit (gas phase)

 HTU_L = height of transfer unit (liquid phase)

HETP = height equivalent to theoretical plate (stage)

$$HTU_G = \frac{G}{K'_G a}$$
 $HTU_L = \frac{L}{K'_L a}$

G = gas phase mass velocity (mass or moles/flow area • time)

L = liquid phase mass velocity (mass or moles/flow area • time)

 K'_G = overall gas phase mass transfer coefficient (mass or moles/mass transfer area • time)

 K'_L = overall liquid phase mass transfer coefficient (mass or moles/mass transfer area • time)

 $a = \text{mass transfer area/volume of column (length}^{-1})$

$$NTU_G = \int_{y_1}^{y_2} \frac{dy}{\left(y - y^*\right)} \qquad NTU_L = \int_{x_1}^{x_2} \frac{dx}{\left(x^* - x\right)}$$

y = gas phase solute mole fraction

x = liquid phase solute mole fraction

 $y^* = K \cdot x$, where K = equilibrium constant

 $x^* = y/K$, where K = equilibrium constant

 y_2, x_2 = mole fractions at the lean end of column

 y_1, x_1 = mole fractions at the rich end of column

For dilute solutions (constant G/L and constant K value for entire column):

$$NTU_G = \frac{y_1 - y_2}{(y - y^*)_{LM}}$$
$$(y - y^*)_{LM} = \frac{(y_1 - y_1^*) - (y_2 - y_2^*)}{\ln\left(\frac{y_1 - y_1^*}{y_2 - y_2^*}\right)}$$

For a chemically reacting system—absorbed solute reacts in the liquid phase—the preceding relation simplifies to:

$$NTU_G = \ln\left(\frac{y_1}{y_2}\right)$$

TRANSPORT PHENOMENA-MOMENTUM, HEAT, AND MASS TRANSFER ANALOGY

For the equations which apply to *turbulent flow in circular tubes*, the following definitions apply:

 $Nu = Nusselt Number \left[\frac{hD}{k} \right]$

Pr = Prandtl Number $(c_n \mu/k)$

Re = Reynolds Number $(DV\rho/\mu)$

Sc = Schmidt Number $[\mu/(\rho D_m)]$

Sh = Sherwood Number $(k_m D/D_m)$

St = Stanton Number $[h/(c_p G)]$

 $c_m = \text{concentration (mol/m}^3)$

 c_p = heat capacity of fluid [J/(kg•K)]

D = tube inside diameter (m)

 $D_m = \text{diffusion coefficient (m}^2/\text{s})$

 $(dc_m/dy)_w$ = concentration gradient at the wall (mol/m⁴)

 $(dT/dy)_{w}$ = temperature gradient at the wall (K/m)

 $(dv/dy)_w$ = velocity gradient at the wall (s⁻¹)

f = Moody friction factor

 $G = \text{mass velocity } [\text{kg/(m}^2 \cdot \text{s})]$

 $h = \text{heat-transfer coefficient at the wall } [W/(m^2 \cdot K)]$

 $k = \text{thermal conductivity of fluid } [W/(m \cdot K)]$

 $k_m = \text{mass-transfer coefficient (m/s)}$

L = length over which pressure drop occurs (m)

 $(N/A)_{w}$ = inward mass-transfer flux at the wall [mol/(m²•s)]

 $(\dot{Q}/A)_{w}$ = inward heat-transfer flux at the wall (W/m²)

y = distance measured from inner wall toward centerline(m)

 Δc_m = concentration difference between wall and bulk fluid (mol/m³)

 ΔT = temperature difference between wall and bulk fluid (K)

 μ = absolute dynamic viscosity (N•s/m²)

 τ_w = shear stress (momentum flux) at the tube wall (N/m²)

Definitions already introduced also apply.

Rate of Transfer as a Function of Gradients at the Wall Momentum Transfer:

$$\tau_w = -\mu \left(\frac{dv}{dy}\right)_w = -\frac{f \rho V^2}{8} = \left(\frac{D}{4}\right) \left(-\frac{\Delta p}{L}\right)_f$$

Heat Transfer

$$\left(\frac{\dot{Q}}{A}\right)_{w} = -k\left(\frac{dT}{dy}\right)_{w}$$

Mass Transfer in Dilute Solutions

$$\left(\frac{N}{A}\right)_{w} = -D_{m} \left(\frac{dc_{m}}{dy}\right)_{w}$$

Rate of Transfer in Terms of Coefficients

Momentum Transfer

$$\tau_w = \frac{f \rho V^2}{8}$$

Heat Transfer

$$\left(\frac{\dot{Q}}{A}\right)_{w} = h\Delta T$$

Mass Transfer

$$\left(\frac{N}{A}\right)_{w} = k_{m} \Delta c_{m}$$

Use of Friction Factor (f) to Predict Heat-Transfer and Mass Transfer Coefficients (Turbulent Flow)

Heat Transfer

$$j_H = \left(\frac{\text{Nu}}{\text{RePr}}\right) \text{Pr}^{2/3} = \frac{f}{8}$$

Mass Transfer

$$j_M = \left(\frac{\mathrm{Sh}}{\mathrm{ReSc}}\right) \mathrm{Sc}^{2/3} = \frac{f}{8}$$

COST ESTIMATION

Cost Indexes

Cost indexes are used to update historical cost data to the present. If a purchase cost is available for an item of equipment in year *M*, the equivalent current cost would be found by:

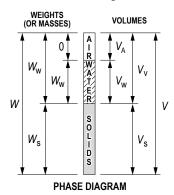
Current
$$$ = (Cost in year M) \left(\frac{Current Index}{Index in year M} \right)$$

Component	Range
Direct costs Purchased equipment-delivered (including fabricated equipment and process machinery	100
such as pumps and compressors)	
Purchased-equipment installation	39–47
Instrumentation and controls (installed)	9–18
Piping (installed)	16–66
Electrical (installed)	10–11
Buildings (including services)	18–29
Yard improvements	10–13
Service facilities (installed)	40–70
Land (if purchase is required)	6
Total direct plant cost	264–346
Indirect costs	
Engineering and supervision	32–33
Construction expenses	34–41
Total direct and indirect plant costs	336–420
Contractor's fee (about 5% of direct and indirect plant costs)	17–21
Contingency (about 10% of direct and indirect plant costs)	36–42
Fixed-capital investment	387–483
Working capital (about 15% of total capital investment)	68–86
Total capital investment	455–569

Scaling of Equipment Costs

The cost of Unit A at one capacity related to the cost of a similar Unit B with X times the capacity of Unit A is approximately X^n times the cost of Unit B.

Cost of Unit A = cost of Unit B
$$\left(\frac{\text{capacity of Unit A}}{\text{capacity of Unit B}}\right)^n$$


Typical Exponents (n) for Equipment Cost vs. Capacity

Equipment	Size range	Exponent
Dryer, drum, single vacuum	10 to 10^2 ft ²	0.76
Dryer, drum, single atmospheric	10 to 10^2 ft ²	0.40
Fan, centrifugal	10^3 to 10^4 ft ³ /min	0.44
Fan, centrifugal	2×10^4 to 7×10^4 ft ³ /min	n 1.17
Heat exchanger, shell and tube, floating head, c.s.	100 to 400 ft ²	0.60
Heat exchanger, shell and tube, fixed sheet, c.s.	100 to 400 ft ²	0.44
Motor, squirrel cage, induction, 440 volts, explosion proof	5 to 20 hp	0.69
Motor, squirrel cage, induction, 440 volts, explosion proof	20 to 200 hp	0.99
Tray, bubble cup, c.s.	3- to 10-ft diameter	1.20
Tray, sieve, c.s.	3- to 10-ft diameter	0.86

CIVIL ENGINEERING

GEOTECHNICAL

Phase Relationships

Volume of voids

$$V_{\rm V} = V_{\rm A} + V_{\rm W}$$

Total unit weight

$$\gamma = W/V$$

Saturated unit weight

$$\gamma_{\text{sat}} = (G_{\text{s}} + e) \gamma_{\text{w}} / (1 + e) = \gamma (G_{\text{s}} + e) / (1 + \omega)$$

 $\gamma_{\text{w}} = 62.4 \text{ lb/ft}^3 \text{ or } 9.81 \text{ kN/m}^3$

Effective (submerged) unit weight

$$\gamma' = \gamma_{sat} - \gamma_{w}$$

Unit weight of solids

$$\gamma_{\rm S} = W_{\rm S}/V_{\rm S}$$

Dry unit weight

$$\gamma_{\rm D} = W_{\rm S}/V$$

Water content (%)

$$\omega = (W_w/W_s) \times 100$$

Specific gravity of soil solids

$$G_{\rm s} = (W_{\rm s}/V_{\rm s})/\gamma_{\rm w}$$

Void ratio

$$e = V_{\rm v}/V_{\rm s}$$

Porosity

$$n = V_{y}/V = e/(1+e)$$

Degree of saturation (%)

$$S = (V_{\rm w}/V_{\rm v}) \times 100$$

Relative density

$$D_{\rm r} = [(e_{\rm max} - e)/(e_{\rm max} - e_{\rm min})] \times 100$$

$$= [(\gamma_{\rm D field} - \gamma_{\rm D min})/(\gamma_{\rm D max} - \gamma_{\rm D min})][\gamma_{\rm D max}/\gamma_{\rm D field}] \times 100$$

Relative compaction (%)

$$RC = (\gamma_{D \text{ field}}/\gamma_{D \text{ max}}) \times 100$$

Plasticity index

PI = LL - PL

LL= liquid limit

PL = Plastic limit

Coefficient of uniformity

$$C_{\text{IJ}} = D_{60}/D_{10}$$

Coefficient of concavity (or curvature)

$$C_C = (D_{30})^2 / (D_{10} \times D_{60})$$

Hydraulic conductivity (also coefficient of permeability)

From constant head test: $k = Q/(iAt_a)$

i = dh/dL

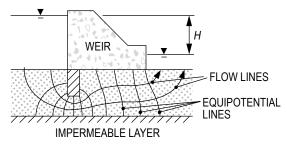
Q = total quantity of water

From falling head test: $k = 2.303[(aL)/(At_o)]\log_{10}(h_1/h_2)$

A =cross-sectional area of test specimen perpendicular to flow

a =cross-sectional area of reservoir tube

 t_{a} = elapsed time


 h_1 = head at time t = 0

 h_2 = head at time $t = t_2$

L = length of soil column

Discharge velocity, v = ki

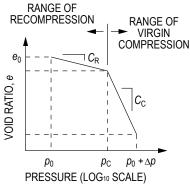
Flow Nets

FLOW NET

 $Q = kH(N_{\rm s}/N_{\rm d})$

 $N_{\rm f}$ = number of flow channels

 N_{A}^{1} = number of equipotential drops


H = total hydraulic head differential

Factor of safety against seepage liquifaction

$$FS_s = i_c/i_e$$

$$i = (\gamma_{1} - \gamma_{11})/\gamma_{11}$$

 $i_{\rm c} = (\gamma_{\rm sat} - \gamma_{\rm W})/\gamma_{\rm W}$ $i_{\rm e} = {\rm seepage\ exit\ gradient}$

SOIL CONSOLIDATION CURVE

 e_0 = initial void ratio (prior to consolidation)

 Δe = change in void ratio

 p_0 = initial effective consolidation stress, σ'_0

 p_c = past maximum consolidation stress, σ'_c

 Δp = induced change in consolidation stress at center of consolidating stratum

 $\Delta p = I q$

I =Stress influence value at center of consolidating stratum

 q_s = applied surface stress causing consolidation

If
$$(p_0 \text{ and } p_0 + \Delta p) < p_c$$
, then $\Delta H = \frac{H_0}{1 + e_0} \left[C_R \log \frac{p_0 + \Delta p}{p_0} \right]$

If
$$(p_0 \text{ and } p_0 + \Delta p) > p_c$$
, then $\Delta H = \frac{H_0}{1 + e_0} \left[C_C \log \frac{p_0 + \Delta p}{p_0} \right]$

If
$$p_{\rm o} < p_{\rm c} < \left(p_{\rm o} + \Delta p\right)$$
, then $\Delta H = \frac{H_{\rm o}}{1+e_{\rm o}} \left[C_{\rm R}\log\frac{p_{\rm c}}{p_{\rm o}} + C_{\rm C}\log\frac{p_{\rm o} + \Delta p}{p_{\rm c}}\right]$

where: ΔH = change in thickness of soil layer

Compression index

In virgin compression range: $C_{\rm C} = \Delta e/\Delta \log p$ By correlation to liquid limit: $C_{\rm C} = 0.009$ (LL – 10)

Recompression index

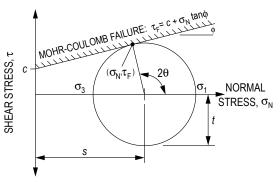
In recompression range: $C_{\rm R} = \Delta e/\Delta \log p$ By correlation to compression index, $C_{\rm C}$: $C_{\rm R} = C_{\rm C}/6$

Ultimate consolidation settlement in soil layer

$$S_{\text{ULT}} = \varepsilon_{\text{v}} H_{\text{S}}$$

 H_s = thickness of soil layer

$$\varepsilon_v = \Delta e_{\text{TOT}}/(1 + e_0)$$


 Δe_{TOT} = total change in void ratio due to recompression and virgin compression

Approximate settlement (at time $t = t_c$)

$$S_{\mathrm{T}} = U_{\mathrm{AV}} S_{\mathrm{ULT}}$$

 $U_{\scriptscriptstyle{\mathrm{AV}}}$ = average degree of consolidation

 $t_{\rm C}$ = elapsed time since application of consolidation load

s = mean normal stress

t = maximum shear stress

 σ_1 = major principal stress

 σ_3 = minor principal stress

 θ = orientation angle between plane of existing normal stress and plane of major principal stress

Total normal stress

$$\sigma_{\rm N} = P/A$$

P = normal force

A =cross-sectional area over which force acts

Effective stress

$$\sigma' = \sigma - u$$

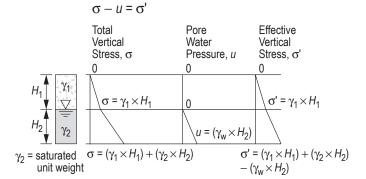
$$u = h_{yy}$$

 $h_{\rm u}$ = uplift or pressure head

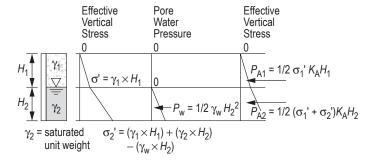
Shear stress

$$\tau = T/A$$

T = shearing force


Shear stress at failure

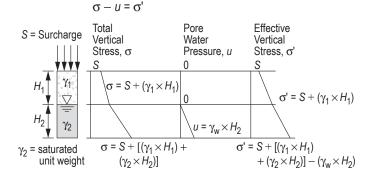
$$\tau_{\rm F} = c + \sigma_{\rm N} \tan \phi$$

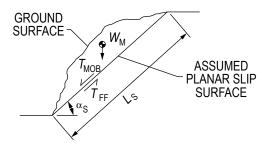

$$c = cohesion$$

 ϕ = angle of internal friction

Vertical Stress Profiles

Horizontal Stress Profiles and Forces




Active forces on retaining wall per unit wall length (as shown): $K_A = \text{Rankine}$ active earth pressure coefficient (smooth wall, c = 0, level backfill) = $\tan^2 (45^\circ - \phi/2)$

Passive forces on retaining wall per unit wall length (similar to the active forces shown):

 K_p = Rankine passive earth pressure coefficient (smooth wall, c = 0, level backfill) = $\tan^2 (45^\circ + \phi/2)$

Vertical Stress Profiles with Surcharge

SLOPE FAILURE ALONG PLANAR SURFACE

FS = factor of safety against slope instability

 $= T_{\rm FF}/T_{\rm MOB}$

 $T_{\rm FF}$ = available shearing resistance along slip surface

= $cL_S + W_M \cos \alpha_S \tan \phi$

 T_{MOB} = mobilized shear force along slip surface

 $= W_{\rm M} \sin \alpha_{\rm S}$

 $L_{\rm S}$ = length of assumed planar slip surface

 $W_{\rm M}$ = weight of soil above slip surface

 $\alpha_{\rm S}$ = angle of assumed slip surface with respect to horizontal

♦ AASHTO Soil Classification

GENERAL CLASSIFICATION	GRAN	NULAR MAT	ΓERIALS (35% OR LE	SS PASSIN	NG 0.075 S	IEVE)		AY MATER HAN 35% PA		'5 SIEVE)
GROUP CLASSIFICATION		A-1	A-3		A-	-2		A-4	A-5	A-6	A-7-5 A-7-6
OROGI GEAGGII IGATIGI	A-1-a	A-1-b		A-2-4	A -2-5	A -2-6	A -2-7				
SIEVE ANALYSIS, PERCENT PASSING: 2.00 mm (No. 10) 0.425 mm (No. 40) 0.075 mm (No. 200)	≤ 50 ≤ 30 ≤ 15	_ ≤ 50 ≤ 25	- ≥ 51 ≤10	_ _ ≤35	_ _ ≤35	_ _ ≤35	_ _ ≤35	_ _ ≥36	- - ≥36	_ _ ≥36	_ _ ≥36
CHARACTERISTICS OF FRACTION PASSING 0.425 SIEVE (No. 40):											
LIQUID LIMIT	-	-	_	≤ 40	≥ 41	≤ 40	≥ 41	≤ 40	≥ 41	≤ 40	≥ 41
PLASTICITY INDEX *	6 max		NP	≤ 10	≤ 10	≥ 11	≥ 11	≤ 10	≤ 10	≥ 11	≥ 11
USUAL TYPES OF CONSTITUENT MATERIALS	STONE FI GRAVEI		FINE SAND	SILTY O	R CLAYEY G	RAVEL AND	SAND	SILTY	SOILS	CLAYEY	SOILS
GENERAL RATING AS A SUBGRADE			E	XCELLENT	TO GOOD				FAIR TO	POOR	

^{*}Plasticity index of A-7-5 subgroup is equal to or less than LL - 30. Plasticity index of A-7-6 subgroup is greater than LL - 30. NP = Non-plastic (use "0"). Symbol "-" means that the particular sieve analysis is not considered for that classification.

If the soil classification is A4-A7, then calculate the group index (GI) as shown below and report with classification. The higher the GI, the less suitable the soil. Example: A-6 with GI = 15 is less suitable than A-6 with GI = 10.

$$GI = (F-35)[0.2+0.005(LL-40)]+0.01(F-15)(PI-10)$$

where: F = Percent passing No. 200 sieve, expressed as a whole number. This percentage

is based only on the material passing the No. 200 sieve.

LL = Liquid limit
PI = Plasticity index

If the computed value of GI < 0, then use GI = 0.

♦ Adapted from AASHTO Standard Specification M145-91, Standard Specification for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes, 2004.

ASTM D2487-11 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)

				Soil Cla	ssification
Criteria for Assigni	ng Group Symbols and Group Na	mes Using Laboratory Tests ^A		Group Symbol	Group Name ^B
COARSE-GRAINED SOILS	Gravels (more than 50%	Clean Gravels (Less than 5% fines ^C)	$Cu \ge 4$ and $1 \le Cc \le 3^D$	GW	Well-graded gravel E
SOILS	of coarse fraction retained on	(Less than 376 times)	$Cu < 4$ and/or $[Cc < 1 \text{ or } Cc > 3]^D$	GP	Poorly graded gravel ^E
	No. 4 sieve)	Gravels with Fines (More than 12% fines ^C)	Fines classify as ML or MH	GM	Silty gravel ^{E, F, G}
More than 50%			Fines classify as CL or CH	GC	Clayey gravel ^{E, F, G}
retained on No. 200 sieve	Sands	Clean Sands	$Cu \ge 6$ and $1 \le Cc \le 3^D$	SW	Well-graded sand ^I
	(50% or more of coarse fraction passes No. 4 sieve)	(Less than 5% fines H)	$Cu < 6 \text{ and/or}$ $[Cc < 1 \text{ or } Cc > 3]^D$	SP	Poorly graded sand ^I
	No. 4 sieve)	Sands with Fines (More than 12% fines ^H)	Fines classify as ML or MH	SM	Silty sand ^{F, G, I}
			Fines classify as CL or CH	SC	Clayey sand ^{F, G, I}
FINE-GRAINED SOILS	Silts and Clays	inorganic	PI > 7 and plots on or above "A" line ^J	CL	Lean clay ^{K, L, M}
	Liquid limit less than 50		PI < 4 or plots below "A" line ^J	ML	Silt ^{K,L, M}
	1000 111111 0 0	organic	Liquid limit – oven dried/Liquid) OL	Organic clay ^{K, L, M, N}
50% or more			< 0.75		Organic silt ^{K, L, M, O}
passes the No. 200 sieve	Silts and Clays	inorganic	PI plots on or above "A" line	СН	Fat clay K, L, M
	Liquid limit 50 or more		PI plots below "A" line	MH	Elastic silt $^{K, L, M}$
		organic	Liquid limit – oven dried/Liquid	OH	Organic clay ^{K, L, M, P}
			< 0.75		Organic silt ^{K, L, M, Q}
HIGHLY ORGANIC SOILS	Primarily	organic matter, dark in color, a	and organic odor	PT	Peat

^ABased on the material passing the 3-in. (75-mm) sieve.

GW-GM well-graded gravel with silt

GW-GC well-graded gravel with clay

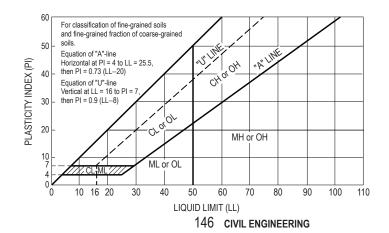
GP-GM poorly graded gravel with silt

GP-GC poorly graded gravel with clay

$$^{D}Cu = D_{60}/D_{10}$$
 $Cc = \frac{(D_{30})^{2}}{D_{10} \times D_{60}}$

SW-SM well-graded sand with silt

SW-SC well-graded sand with clay


SP-SM poorly graded sand with silt

SP-SC poorly graded sand with clay

^IIf soil contains \geq 15% gravel, add "with gravel" to group name.

^JIf Atterberg limits plot in hatched area, soil is a CL-ML, silty clay.

QPI plots below "A" line.

^BIf field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.

^CGravels with 5 to 12% fines require dual symbols:

 $^{^{}E}$ If soil contains $\geq 15\%$ sand, add "with sand" to group name.

FIf fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

^GIf fines are organic, add "with organic fines" to group name.

^HSands with 5 to 12% fines require dual symbols:

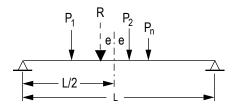
^KIf soil contains 15 < 30% plus No. 200, add "with sand" or "with gravel", whichever is predominant.

^LIf soil contains ≥ 30% plus No. 200, predominantly sand, add "sand" to group name.

 $^{^{}M}$ If soil contains \geq 30% plus No. 200, predominantly gravel, add "gravelly" to group name.

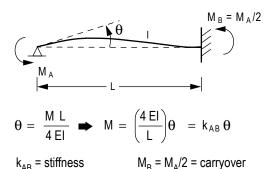
 $^{^{}N}$ PI \geq 4 and plots on or above "A" line.

^OPI < 4 or plots below "A" line.


PPI plots on or above "A" line.

STRUCTURAL ANALYSIS

Influence Lines for Beams and Trusses


An influence line shows the variation of an effect (reaction, shear and moment in beams, bar force in a truss) caused by moving a unit load across the structure. An influence line is used to determine the position of a moveable set of loads that causes the maximum value of the effect.

Moving Concentrated Load Sets

The **absolute maximum moment** produced in a beam by a set of "n" moving loads occurs when the resultant "R" of the load set and an adjacent load are equal distance from the centerline of the beam. In general, two possible load set positions must be considered, one for each adjacent load.

Beam Stiffness and Moment Carryover

Truss Deflection by Unit Load Method

The displacement of a truss joint caused by external effects (truss loads, member temperature change, member misfit) is found by applying a unit load at the point that corresponds to the desired displacement.

$$\Delta_{\text{joint}} = \sum_{i=1}^{\text{members}} f_i(\Delta L)_i$$

where: Δ_{joint} = joint displacement at point of application of unit load (+ in direction of unit load)

 f_i = force in member "i" caused by unit load (+ tension)

 $(\Delta L)_i$ = change in length caused by external effect (+ for increase in member length):

= $\left(\frac{FL}{AE}\right)_i$ for bar force F caused by external load

= $\alpha L_i(\Delta T)_i$ for temperature change in member (α = coefficient of thermal expansion)

= member misfit

L, A = member length and cross-sectional area

E = member elastic modulus

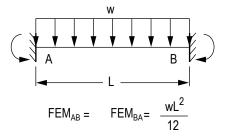
Frame Deflection by Unit Load Method

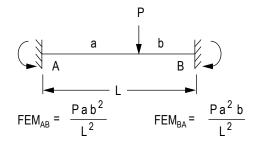
The displacement of any point on a frame caused by external loads is found by applying a unit load at that point that corresponds to the desired displacement:

$$\Delta = \sum_{i=1}^{\text{members}} \int_{x=0}^{x=L_i} \frac{m_i M_i}{E I_i} dx$$

where: Δ = displacement at point of application of unit load (+ in direction of unit load)

 m_i = moment equation in member "i" caused by the unit load


 M_i = moment equation in member "i" caused by loads applied to frame


 L_i = length of member "i"

 I_i = moment of inertia of member "i"

If either the real loads or the unit load cause no moment in a member, that member can be omitted from the summation.

Member Fixed-End Moments (Magnitudes)

STABILITY, DETERMINANCY, AND CLASSIFICATION OF STRUCTURES

m = number of members

r = number of independent reaction components

j = number of joints

c = number of condition equations based on known internal moments or forces, such as internal moment of zero at a hinge

Plane Truss

Static Analysis	Classification
$m+r \le 2j$	Unstable
m + r = 2j	Stable and statically determinate
m+r>2j	Stable and statically indeterminate

Plane Frame

Static Analysis	Classification
3m+r<3j+c	Unstable
3m + r = 3j + c	Stable and statically determinate
3m+r>3j+c	Stable and statically indeterminate

Stability also requires an appropriate arrangement of members and reaction components.

STRUCTURAL DESIGN

Live Load Reduction

The effect on a building member of nominal occupancy live loads may often be reduced based on the loaded floor area supported by the member. A typical model used for computing reduced live load (as found in ASCE 7 and many building codes) is:

$$L_{\text{reduced}} = L_{\text{nominal}} \left(0.25 + \frac{15}{\sqrt{K_{LL} A_T}} \right) \ge 0.4 L_{\text{nominal}}$$

where: L_{nominal} = nominal live load given in ASCE 7 or

a building code

 A_T = the cumulative floor tributary area supported by the member

 $K_{LL}A_T$ = area of influence supported by the member

 K_{LL} = ratio of area of influence to the tributary area supported by the member:

 $K_{LL} = 4$ (typical columns)

 $K_{LL} = 2$ (typical beams and girders)

Load Combinations using Strength Design (LRFD, USD)

Nominal loads used in following combinations:

D = dead loads

E = earthquake loads

L = live loads (floor)

 L_r = live loads (roof)

R = rain load

S = snow load

W = wind load

Load factors λ : λ_D (dead load), λ_L (live load), etc.

Basic combinations $L_r/S/R = \text{largest of } L_r$, S_r , R

L or 0.8W = larger of L, 0.8W

1.4D

 $1.2D + 1.6L + 0.5 (L_r/S/R)$

 $1.2D + 1.6(L_r/S/R) + (L \text{ or } 0.8W)$

 $1.2D + 1.6W + L + 0.5(L_r/S/R)$

1.2D + 1.0E + L + 0.2S

0.9D + 1.6W

0.9D + 1.0E

DESIGN OF REINFORCED CONCRETE COMPONENTS (ACI 318-11)

U.S. Customary units

Definitions

a =depth of equivalent rectangular stress block, in.

 $A_g = \text{gross area of column, in}^2$

 A_s = area of tension reinforcement, in²

 A_{st} = total area of longitudinal reinforcement, in²

 A_{y} = area of shear reinforcement within a distance s, in.

b =width of compression face of member, in.

 β_1 = ratio of depth of rectangular stress block, a, to depth to neutral axis, c

$$=0.85 \ge 0.85 - 0.05 \left(\frac{f'_c - 4,000}{1,000} \right) \ge 0.65$$

c = distance from extreme compression fiber to neutral axis,
 in.

 d = distance from extreme compression fiber to centroid of nonprestressed tension reinforcement, in.

 d_t = distance from extreme compression fiber to extreme tension steel, in.

 $E_c = \text{modulus of elasticity} = 33w_c^{1.5} \sqrt{f'_c}, \text{psi}$

 ε_t = net tensile strain in extreme tension steel at nominal strength

 f'_{c} = compressive strength of concrete, psi

 f_v = yield strength of steel reinforcement, psi

 M_n = nominal moment strength at section, in.-lb

 ϕM_n = design moment strength at section, in.-lb

 M_{μ} = factored moment at section, in.-lb

 P_n = nominal axial load strength at given eccentricity, lb

 ϕP_n = design axial load strength at given eccentricity, lb

 P_{μ} = factored axial force at section, lb

 ρ_g = ratio of total reinforcement area to cross-sectional area of column = A_{st}/A_o

s = spacing of shear ties measured along longitudinal axis of member, in.

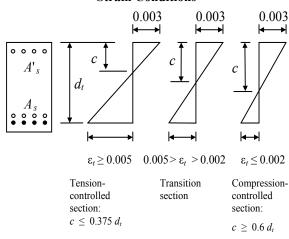
 V_c = nominal shear strength provided by concrete, lb

 V_n = nominal shear strength at section, lb

 ϕV_n = design shear strength at section, lb

 V_s = nominal shear strength provided by reinforcement, lb

 V_{μ} = factored shear force at section, lb


ASTM	STANDARD R	EINFORCI	NG BARS
BAR SIZE	DIAMETER, IN.	AREA, IN ²	WEIGHT, LB/FT
#3	0.375	0.11	0.376
#4	0.500	0.20	0.668
#5	0.625	0.31	1.043
#6	0.750	0.44	1.502
#7	0.875	0.60	2.044
#8	1.000	0.79	2.670
#9	1.128	1.00	3.400
#10	1.270	1.27	4.303
#11	1.410	1.56	5.313
#14	1.693	2.25	7.650
#18	2.257	4.00	13.60

UNIFIED DESIGN PROVISIONS

Internal Forces and Strains

Strain Conditions

RESISTANCE FACTORS, ϕ

Tension-controlled sections ($\varepsilon_t \ge 0.005$): $\phi = 0.9$

Compression-controlled sections ($\varepsilon_t \leq 0.002$):

Members with tied reinforcement $\phi = 0.65$

Transition sections $(0.002 < \varepsilon_t < 0.005)$:

Members with tied reinforcement $\phi = 0.48 + 83\varepsilon_t$ Shear and torsion $\phi = 0.75$ Bearing on concrete $\phi = 0.65$

BEAMS—FLEXURE

$$\phi M_n \ge M_u$$

For All Beams

Net tensile strain: $a = \beta_1 c$

$$\varepsilon_t = \frac{0.003(d_t - c)}{c} = \frac{0.003(\beta_1 d_t - a)}{a}$$

Design moment strength: ϕM_n

where:
$$\phi = 0.9 \ [\epsilon_t \ge 0.005]$$

 $\phi = 0.48 + 83\epsilon_t [0.004 \le \epsilon_t < 0.005]$

Singly-Reinforced Beams

$$a = \frac{A_s f_y}{0.85 f_c' b}$$

$$M_n = 0.85 f'_c a b \left(d - \frac{a}{2} \right) = A_s f_y \left(d - \frac{a}{2} \right)$$

BEAMS—SHEAR

$$\phi V_n \ge V_u$$

Nominal shear strength:

$$V_n = V_c + V_s$$

$$V_c = 2 b_w d\sqrt{f_c}$$

$$V_s = \frac{A_v f_y d}{s}$$
(may not exceed 8 $b_w d\sqrt{f_c}$)

Required and maximum-permitted stirrup spacing, s

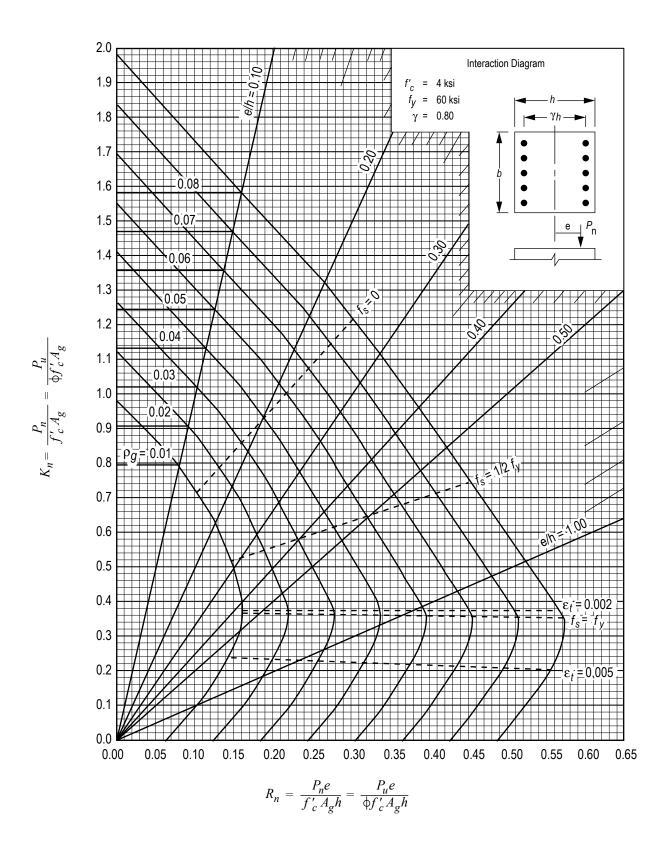
$$V_u \le \frac{\Phi V_c}{2}$$
: No stirrups required

$$V_u > \frac{\Phi V_c}{2}$$
: Use the following table (A_v given)

	$\frac{\phi V_c}{2} < V_u \le \phi V_c$	$V_u > \phi V_c$
Required spacing	Smaller of: $s = \frac{A_v f_y}{50b_w}$ $s = \frac{A_v f_y}{0.75 b_w \sqrt{f_c'}}$	$V_{s} = \frac{V_{u}}{\phi} - V_{c}$ $S = \frac{A_{v} f_{y} d}{V_{s}}$
Maximum permitted spacing	Smaller of: $s = \frac{d}{2}$ OR $s = 24$ "	$V_{s} \le 4 \ b_{w} \ d \sqrt{f_{c}'}$ Smaller of: $s = \frac{d}{2} \text{OR}$ $s = 24"$ $V_{s} > 4 \ b_{w} \ d \sqrt{f_{c}'}$ Smaller of: $s = \frac{d}{4}$ $s = 12"$

SHORT COLUMNS

Limits for Main Reinforcements


$$\rho_g = \frac{A_{st}}{A_g}$$

$$0.01 \le \rho_g \le 0.08$$

Design Column Strength, Tied Columns

$$\varphi = 0.65$$

$$\phi P_n = 0.80 \phi [0.85 f_c^* (A_g - A_{st}) + A_{st} f_y]$$

GRAPH A.11

Column strength interaction diagram for rectangular section with bars on end faces and $\gamma = 0.80$ (for instructional use only).

 $Nilson, Arthur\ H.,\ David\ Darwin,\ and\ Charles\ W.\ Dolan,\ \textit{Design of Concrete Structures},\ 13th\ ed.,\ McGraw-Hill,\ New\ York,\ 2004.$

DESIGN OF STEEL COMPONENTS (ANSI/AISC 360-10) LRFD, E = 29,000 ksi

BEAMS

For doubly symmetric compact I-shaped members bent about their major axis, the *design flexural strength* $\phi_b M_n$ is determined with $\phi_b = 0.90$ as follows:

Yielding

$$M_n = M_p = F_y Z_x$$

where

 F_y = specified minimum yield stress Z_x = plastic section modulus about the x-axis

Lateral-Torsional Buckling

Based on bracing where L_b is the length between points that are either braced against lateral displacement of the compression flange or braced against twist of the cross section with respect to the length limits L_p and L_p :

When $L_b \le L_p$, the limit state of lateral-torsional buckling does not apply.

When
$$L_p < L_b \le L_r$$

$$M_n = C_b \left[M_p - \left(M_p - 0.7 F_y S_x \right) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right] \le M_p$$

where

$$C_b = \frac{12.5 M_{\text{max}}}{2.5 M_{\text{max}} + 3 M_{\text{A}} + 4 M_{\text{B}} + 3 M_{\text{C}}}$$

 $M_{\rm max}$ = absolute value of maximum moment in the unbraced segment

 $M_{\rm A}$ = absolute value of maximum moment at quarter point of the unbraced segment

 $M_{\rm B}$ = absolute value of maximum moment at centerline of the unbraced segment

 $M_{\rm C}$ = absolute value of maximum moment at three-quarter of the unbraced segment

Shear

The design shear strength $\phi_v V_n$ is determined with $\phi_v = 1.00$ for webs of rolled I-shaped members and is determined as follows:

$$V_n = 0.6 F_v (d t_w)$$

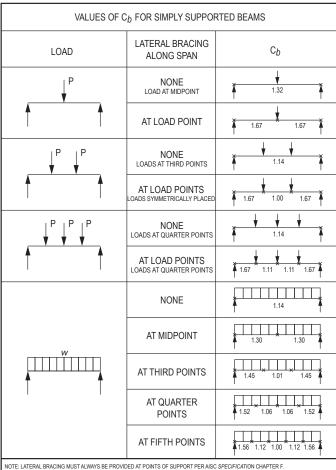
COLUMNS

The design compressive strength $\phi_c P_n$ is determined with $\phi_c = 0.90$ for flexural buckling of members without slender elements and is determined as follows:

$$P_n = F_{\rm cr} A_g$$

where the critical stress $F_{\rm cr}$ is determined as follows:

(a) When
$$\frac{KL}{r} \le 4.71 \sqrt{\frac{E}{F_y}}$$
, $F_{cr} = [0.658 \frac{F_y}{F_c}] F_y$


(b) When
$$\frac{KL}{r} > 4.71 \sqrt{\frac{E}{F_U}}$$
, $F_{cr} = 0.877 F_y$

where

KL/r is the effective slenderness ratio based on the column effective length (KL) and radius of gyration (r)

KL is determined from AISC Table C-A-7.1 or AISC Figures C-A-7.1 and C-A-7.2 on p. 158.

 F_{ρ} is the elastic buckling stress = $\pi^2 E/(KL/r)^2$

TENSION MEMBERS

Flat bars or angles, bolted or welded

Definitions

Bolt diameter: d_h

Nominal hole diameter: $d_h = d_b + 1/16$ "

Gross width of member: b_{σ}

Member thickness: t

Connection eccentricity: \bar{x}

Gross area: $A_g = b_g t$ (use tabulated areas for angles)

Net area (parallel holes): $A_n = \left[b_g - \Sigma \left(d_h + \frac{1}{16}\right)^n\right]t$

Net area (staggered holes):

$$A_n = \left[b_g - \Sigma \left(d_h + \frac{1}{16}\right)^n + \Sigma \frac{s^2}{4g}\right]t$$

$$s = \text{longitudinal spacing of consecutive holes}$$

g = transverse spacing between lines of holes

Effective area (bolted members):

$$A_e = UA_n$$
 {Flat bars: $U = 1.0$
Angles: $U = 1 - \overline{x}/L$

Effective area (welded members):

Flat bars or angles with transverse welds:
$$U = 1.0$$

Flat bars of width "w", longitudinal welds of length "L" only:

$$U = 1.0 \ (L \ge 2w)$$

$$U = 0.87 \ (2w > L \ge 1.5w)$$

$$U = 0.75 \ (1.5w > L > w)$$

Angles with longitudinal welds only

$$U = 1 - \overline{y}/U$$

$$U = 1.0 (L \ge 2w)$$

$$U = 0.87 (2w > L \ge 1.5w)$$

$$U = 0.75 (1.5w > L > w)$$

$$U=1-\overline{x}/I$$

Limit States and Available Strengths

Yielding:
$$\phi_{y} = 0.90$$

$$\phi_y = 0.90
\phi T_n = \phi_y F_y A_g$$

Fracture:
$$\phi_f = 0.75$$

$$\phi_f = 0.75
\phi T_n = \phi_f F_u A_e$$

Block shear:
$$\phi = 0.75$$

$$U_{bs} = 1.0$$
 (flat bars and angles)
 $A_{gv} = \text{gross area for shear}$
 $A_{nv} = \text{net area for shear}$
 $A_{nt} = \text{net area for tension}$

$$\phi T_n \ = \ \begin{cases} 0.75 \ F_u \left[0.6 A_{nv} + U_{bs} A_{nt} \right] \\ 0.75 \left[0.6 F_y A_{gv} + U_{bs} F_u A_{nt} \right] \end{cases}$$

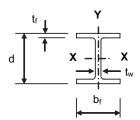
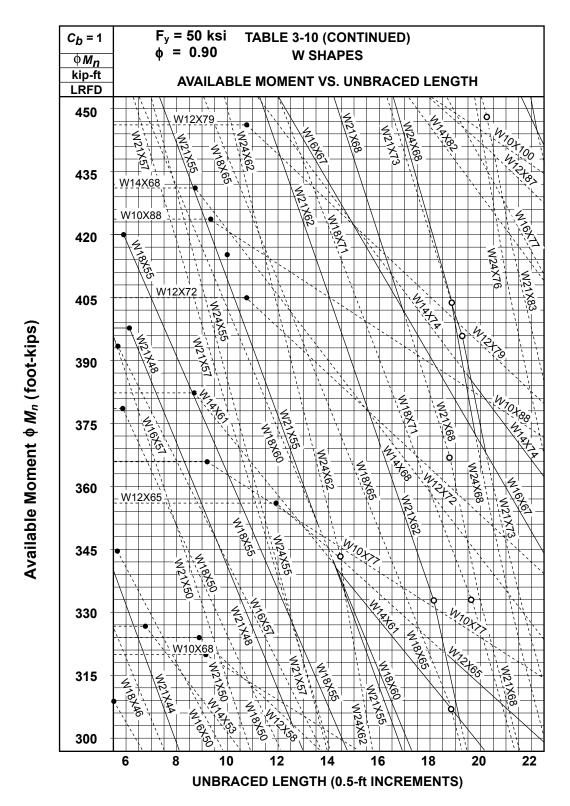
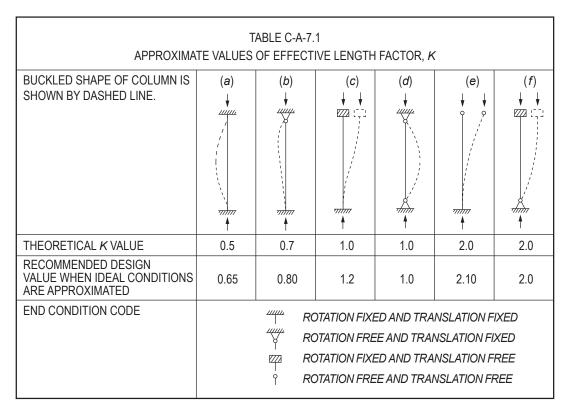


Table 1-1: W Shapes Dimensions and Properties

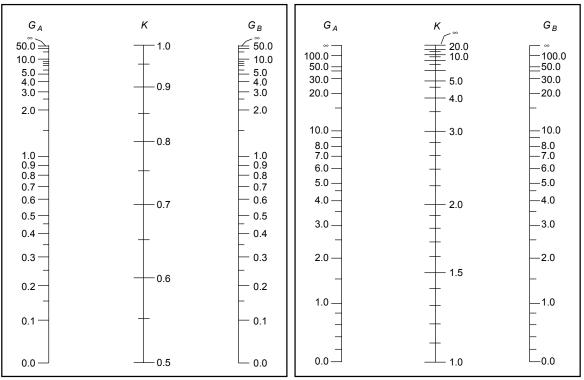

	Area	Depth	Web	Fla	nge		Axis	x-x		Axis	Y-Y
Shape	Α	d	t _w	b f	t f	I	s	r	Z	I	r
	In. ²	ln.	ln.	ln.	ln.	In. ⁴	In. ³	ln.	In. ³	In. ⁴	ln.
W24X68	20.1	23.7	0.415	8.97	0.585	1830	154	9.55	177	70.4	1.87
W24X62	18.2	23.7	0.430	7.04	0.590	1550	131	9.23	153	34.5	1.38
W24X55	16.3	23.6	0.395	7.01	0.505	1350	114	9.11	134	29.1	1.34
W21X73	21.5	21.2	0.455	8.30	0.740	1600	151	8.64	172	70.6	1.81
W21X68	20.0	21.1	0.430	8.27	0.685	1480	140	8.60	160	64.7	1.80
W21X62	18.3	21.0	0.400	8.24	0.615	1330	127	8.54	144	57.5	1.77
W21X55	16.2	20.8	0.375	8.22	0.522	1140	110	8.40	126	48.4	1.73
W21X57	16.7	21.1	0.405	6.56	0.650	1170	111	8.36	129	30.6	1.35
W21X50	14.7	20.8	0.380	6.53	0.535	984	94.5	8.18	110	24.9	1.30
W21X48	14.1	20.6	0.350	8.14	0.430	959	93.0	8.24	107	38.7	1.66
W21X44	13.0	20.7	0.350	6.50	0.450	843	81.6	8.06	95.4	20.7	1.26
W18X71	20.8	18.5	0.495	7.64	0.810	1170	127	7.50	146	60.3	1.70
W18X65	19.1	18.4	0.450	7.59	0.750	1070	117	7.49	133	54.8	1.69
W18X60	17.6	18.2	0.415	7.56	0.695	984	108	7.47	123	50.1	1.68
W18X55	16.2	18.1	0.390	7.53	0.630	890	98.3	7.41	112	44.9	1.67
W18X50	14.7	18.0	0.355	7.50	0.570	800	88.9	7.38	101	40.1	1.65
W18X46	13.5	18.1	0.360	6.06	0.605	712	78.8	7.25	90.7	22.5	1.29
W18X40	11.8	17.9	0.315	6.02	0.525	612	68.4	7.21	78.4	19.1	1.27
W16X67	19.7	16.3	0.395	10.2	0.67	954	117	6.96	130	119	2.46
W16X57	16.8	16.4		7.12	0.715	758	92.2	6.72	105	43.1	1.60
W16X50	14.7	16.3	0.380	7.07	0.630	659	81.0	6.68	92.0	37.2	1.59
W16X45	13.3	16.1	0.345	7.04	0.565	586	72.7	6.65	82.3	32.8	1.57
W16X40	11.8	16.0		7.00	0.505	518	64.7	6.63	73.0	28.9	1.57
W16X36	10.6	15.9	0.295	6.99	0.430	448	56.5	6.51	64.0	24.5	1.52
W14X74	21.8	14.2	0.450	10.1	0.785	795	112	6.04	126	134	2.48
W14X68	20.0	14.0		10.0	0.720	722	103	6.01	115	121	2.46
W14X61	17.9	13.9		9.99	0.645	640	92.1	5.98	102	107	2.45
W14X53	15.6	13.9	0.370	8.06	0.660	541	77.8	5.89	87.1	57.7	1.92
W14X48	14.1	13.8	0.340	8.03	0.595	484	70.2	5.85	78.4	51.4	1.91
W12X79	23.2	12.4	0.470	12.1	0.735	662	107	5.34	119	216	3.05
W12X72	21.1	12.3	0.430	12.0	0.670	597	97.4	5.31	108	195	3.04
W12X65	19.1	12.1	0.390	12.0	0.605	533	87.9	5.28	96.8	174	3.02
W12X58	17.0			10.0	0.640	475	78.0	5.28	86.4	107	2.51
W12X53	15.6		0.345	9.99	0.575	425	70.6	5.23	77.9	95.8	2.48
W12X50	14.6		0.343	8.08	0.640	391	64.2	5.18	71.9	56.3	1.96
				8.05							
W12X45 W12X40	13.1 11.7	12.1 11.9	0.335 0.295	8.05	0.575 0.515	348 307	57.7 51.5	5.15 5.13	64.2 57.0	50.0 44.1	1.95 1.94
	17.6			10.1	0.680	341	66.7	4.39	74.6	116	
W10x60		10.2			0.680	303				103	2.57
W10x54 W10x49	15.8 14.4	10.1	0.370 0.340	10.0		303 272	60.0 54.6	4.37	66.6	93.4	2.56
W10x49 W10x45	13.3	10.0 10.1	0.340	10.0 8.02	0.560 0.620	248	54.6 49.1	4.35 4.32	60.4 54.9	93.4 53.4	2.54 2.01
W10x45	11.5	9.92	0.315	7.99	0.530	209	49.1	4.32	46.8	45.0	1.98

Adapted from Steel Construction Manual, 14th ed., AISC, 2011.


7			AIS	C Table 3-	2			50 ksi
\mathbf{Z}_{x}		W	Shapes	– Selecti	on by Z _x		$\phi_b = \phi_v = 0$	0.90 1.00
Shape	Z _x in. ³	φ _b M _{px} kip-ft	φ _b M _{rx} kip-ft	φ _b BF kips	L _p ft.	L _r ft.	l _x in. ⁴	φ _ν V _{nx} kips
W24 x 55	134	503	299	22.2	4.73	13.9	1350	251
W18 x 65	133	499	307	14.9	5.97	18.8	1070	248
W12 x 87	132	495	310	5.76	10.8	43.0	740	194
W16 x 67	130	488	307	10.4	8.69	26.1	954	194
W10 x 100	130	488	294	4.01	9.36	57.7	623	226
W21 x 57	129	484	291	20.1	4.77	14.3	1170	256
W21 x 55	126	473	289	16.3	6.11	17.4	1140	234
W14 x 74	126	473	294	8.03	8.76	31.0	795	191
W18 x 60	123	461	284	14.5	5.93	18.2	984	227
W12 x 79	119	446	281	5.67	10.8	39.9	662	175
W12 x 73	115	431	270	7.81	8.69	29.3	722	175
W14 x 88	113	424	259	3.95	9.29	51.1	534	197
W18 x 55	112	420	258	13.9	5.90	17.5	890	212
WIOXSS	112	420	230	13.3	3.90	17.5	090	212
W21 x 50	110	413	248	18.3	4.59	13.6	984	237
W12 x 72	108	405	256	5.59	10.7	37.4	597	158
W21 x 48	107	398	244	14.7	6.09	16.6	959	217
W16 x 57	105	394	242	12.0	5.56	18.3	758	212
W14 x 61	102	383	242	7.46	8.65	27.5	640	156
W18 x 50	101	379	233	13.1	5.83	17.0	800	192
W10 x 77	97.6	366	225	3.90	9.18	45.2	455	169
W12 x 65	96.8	356	231	5.41	11.9	35.1	533	142
W21 x 44	95.4	358	214	16.8	4.45	13.0	843	217
W16 x 50	92.0	345	213	11.4	5.62	17.2	659	185
W18 x 46	90.7	340	207	14.6	4.56	13.7	712	195
W14 x 53	87.1	327	204	7.93	6.78	22.2	541	155
W12 x 58	86.4	324	205	5.66	8.87	29.9	475	132
W10 x 68	85.3	320	199	3.86	9.15	40.6	394	147
W16 x 45	82.3	309	191	10.8	5.55	16.5	586	167
W18 x 40	78.4	294	180	13.3	4.49	13.1	612	169
W14 x 48	78.4	294	184	7.66	6.75	21.1	484	141
W12 x 53	77.9	292	185	5.48	8.76	28.2	425	125
W10 x 60	74.6	280	175	3.80	9.08	36.6	341	129
W16 x 40	73.0	274	170	10.1	5.55	15.9	518	146
W12 x 50	71.9	270	169	5.97	6.92	23.9	391	135
W8 x 67	70.1	263	159	2.60	7.49	47.7	272	154
W14 x 43	69.6	261	164	7.24	6.68	20.0	428	125
W10 x 54	66.6	250	158	3.74	9.04	33.7	303	112
W18 x 35	66.5	249	151	12.3	4.31	12.4	510	159
W12 x 45	64.2	241	151	5.75	6.89	22.4	348	121
W16 x 36	64.0	240	148	9.31	5.37	15.2	448	140
W14 x 38	61.5	231	143	8.10	5.47	16.2	385	131
W10 x 49	60.4	227	143	3.67	8.97	31.6	272	102
W8 x 58	59.8	224	137	2.56	7.42	41.7	228	134
W12 x 40	57.0	214	135	5.50	6.85	21.1	307	106
W10 x 45	54.9	206	129	3.89	7.10	26.9	248	106

$$M_{rx} = (0.7F_y)S_x \qquad \qquad BF = \frac{M_{px} - M_{rx}}{L_r - L_p}$$

Adapted from Steel Construction Manual, 14th ed., AISC, 2011.



Steel Construction Manual, 14th ed., AISC, 2011.

FOR COLUMN ENDS SUPPORTED BY, BUT NOT RIGIDLY CONNECTED TO, A FOOTING OR FOUNDATION, G IS THEORETICALLY INFINITY BUT UNLESS DESIGNED AS A TRUE FRICTION-FREE PIN, MAY BE TAKEN AS 10 FOR PRACTICAL DESIGNS. IF THE COLUMN END IS RIGIDLY ATTACHED TO A PROPERLY DESIGNED FOOTING, G MAY BE TAKEN AS 1.0. SMALLER VALUES MAY BE USED IF JUSTIFIED BY ANALYSIS.

AISC Figure C-A-7.1 AISC Figure C-A-7.2 Alignment chart, sidesway inhibited (braced frame) Alignment chart, sidesway uninhibited (moment frame)

Steel Construction Manual, 14th ed., AISC, 2011.

 $\begin{array}{c} \text{AISC Table 4-22} \\ \text{Available Critical Stress } \varphi_c F_{cr} \text{ for Compression Members} \\ F_y = 50 \text{ ksi} \\ \hline \qquad \qquad \varphi_c = 0.90 \end{array}$

KL	φF _{cr}	KL	φF _{cr}	KL	φF _{cr}	KL	φF _{cr}	KL	φF _{cr}
	ksi	r	ksi	r	ksi	r	ksi	r	ksi
1	45.0	41	39.8	81	27.9	121	15.4	161	8.72
2	45.0	42	39.5	82	27.5	122	15.2	162	8.61
3	45.0	43	39.3	83	27.2	123	14.9	163	8.50
4	44.9	44	39.1	84	26.9	124	14.7	164	8.40
5	44.9	45	38.8	85	26.5	125	14.5	165	8.30
6	44.9	46	38.5	86	26.2	126	14.2	166	8.20
7	44.8	47	38.3	87	25.9	127	14.0	167	8.10
8	44.8	48	38.0	88	25.5	128	13.8	168	8.00
9	44.7	49	37.7	89	25.2	129	13.6	169	7.89
10	44.7	50	37.5	90	24.9	130	13.4	170	7.82
11	44.6	51	37.2	91	24.6	131	13.2	171	7.73
12	44.5	52	36.9	92	24.2	132	13.0	172	7.64
13	44.4	53	36.7	93	23.9	133	12.8	173	7.55
14	44.4	54	36.4	94	23.6	134	12.6	174	7.46
15	44.3	55	36.1	95	23.3	135	12.4	175	7.38
16	44.2	56	35.8	96	22.9	136	12.2	176	7.29
17	44.1	57	35.5	97	22.6	137	12.0	177	7.21
18	43.9	58	35.2	98	22.3	138	11.9	178	7.13
19	43.8	59	34.9	99	22.0	139	11.7	179	7.05
20	43.7	60	34.6	100	21.7	140	11.5	180	6.97
21	43.6	61	34.3	101	21.3	141	11.4	181	6.90
22	43.4	62	34.0	102	21.0	142	11.2	182	6.82
23	43.3	63	33.7	103	20.7	143	11.0	183	6.75
24	43.1	64	33.4	104	20.4	144	10.9	184	6.67
25	43.0	65	33.0	105	20.1	145	10.7	185	6.60
26	42.8	66	32.7	106	19.8	146	10.6	186	6.53
27	42.7	67	32.4	107	19.5	147	10.5	187	6.46
28	42.5	68	32.1	108	19.2	148	10.3	188	6.39
29	42.3	69	31.8	109	18.9	149	10.2	189	6.32
30	42.1	70	31.4	110	18.6	150	10.0	190	6.26
31	41.9	71	31.1	111	18.3	151	9.91	191	6.19
32	41.8	72	30.8	112	18.0	152	9.78	192	6.13
33	41.6	73	30.5	113	17.7	153	9.65	193	6.06
34	41.4	74	30.2	114	17.4	154	9.53	194	6.00
35	41.2	75	29.8	115	17.1	155	9.40	195	5.94
36	40.9	76	29.5	116	16.8	156	9.28	196	5.88
37	40.7	77	29.2	117	16.5	157	9.17	197	5.82
38	40.5	78	28.8	118	16.2	158	9.05	198	5.76
39	40.3	79	28.5	119	16.0	159	8.94	199	5.70
40	40.0	80	28.2	120	15.7	160	8.82	200	5.65

Adapted from Steel Construction Manual, 14th ed., AISC, 2011.

		L						AISC Table 4–1	ble 4–1							
0)	Selected W1	Selected W14, W12, W10	0			Availa	Available Strength in Axial Compression, kips—W shapes LRFD: ΦP _n	h in Axial Compre LRFD: ∳P _n	ompression : ∲Pn	, kips—W s	hapes				$F_y = 50 \text{ Ksi}$ $\phi_C = 0.90$	
Sh	аре			W14					W12					W10		
×	wt/ft	74	89	61	53	48	58	53	50	45	40	09	54	49	45	39
	0	086	899	908	702	636	292	701	657	290	526	794	712	649	297	516
	9	922	844	757	633	573	722	629	595	534	475	750	672	612	543	469
	7	901	826	740	610	552	707	644	574	516	458	734	658	599	525	452
	8	878	804	721	585	529	689	628	551	495	439	717	643	585	505	435
	6	853	781	200	257	504	029	610	526	472	419	869	625	569	483	415
	10	826	755	229	528	477	649	290	499	448	397	229	209	551	460	395
	7	797	728	652	497	449	627	569	471	422	375	655	586	533	435	373
	12	992	200	626	465	420	603	547	443	396	351	631	565	513	410	351
	13	734	029	599	433	391	578	525	413	370	328	909	543	493	384	328
	14	701	629	572	401	361	553	501	384	343	304	581	520	471	358	305
	15	299	809	543	369	332	527	477	354	317	280	555	496	450	332	282
	16	632	576	515	338	304	200	452	326	291	257	528	472	428	306	260
	17	298	544	486	308	276	473	427	297	265	234	501	448	405	281	238
	18	563	512	457	278	250	446	402	270	241	212	474	423	383	256	216
	19	528	480	428	250	224	420	378	244	217	191	447	399	360	233	195
	20	494	448	400	226	202	393	353	220	196	172	420	375	338	210	176
	22	428	387	345	186	167	342	306	182	162	142	367	327	295	174	146
	24	365	329	293	157	140	293	261	153	136	120	317	282	254	146	122
	26	311	281	250	133	120	249	222	130	116	102	270	241	216	124	104
	28	268	242	215	115	103	215	192	112	8.66	0.88	233	208	186	107	0.06
	30	234	211	187	100	89.9	187	167	7.76	87.0	9.92	203	181	162	93.4	78.4
	22	205	185	165	200		165	147	820	76.4	67.3	170	150	1/13	82.1	0 89
	34	182	164	146			146	130				158	141	126		
	36	162	146	130			130	116				141	126	113		
	38	146	131	117			117	104				127	113	101		
	40	131	119	105			105	93.9				114	102	91.3		
_	Heavy line in	Heavy line indicates KL/r equal to or		oreater than 200												

Heavy line indicates KL/r equal to or greater than 200

Adapted from Steel Construction Manual, 14th ed., AISC, 2011

Effective length KL (ft) with respect to least radius of gyration $r_{\boldsymbol{y}}$

HYDROLOGY/WATER RESOURCES

NRCS (SCS) Rainfall-Runoff

$$Q = \frac{(P - 0.2S)^2}{P + 0.8S}$$
$$S = \frac{1,000}{CN} - 10$$

$$CN = \frac{1,000}{S + 10}$$

P = precipitation (inches)

S = maximum basin retention (inches)

Q = runoff (inches)

CN = curve number

Rational Formula

$$Q = CIA$$
, where

A =watershed area (acres)

C = runoff coefficient

I = rainfall intensity (in./hr)

Q = peak discharge (cfs)

Darcy's Law

$$Q = -KA(dh/dx)$$
, where

 $Q = \text{discharge rate (ft}^3/\text{sec or m}^3/\text{s})$

K = hydraulic conductivity (ft/sec or m/s)

h = hydraulic head (ft or m)

 $A = \text{cross-sectional area of flow (ft}^2 \text{ or m}^2)$

q = -K(dh/dx)

q = specific discharge (also called Darcy velocity or superficial velocity)

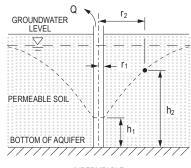
v = q/n = -K/n(dh/dx)

v = average seepage velocity

n = effective porosity

Unit hydrograph: The direct runoff hydrograph that would result from one unit of runoff occurring uniformly in space and time over a specified period of time.

Transmissivity, T: The product of hydraulic conductivity and thickness, b, of the aquifer (L^2T^{-1}) .


Storativity or storage

coefficient of an

aquifer, S: The volume of water taken into or released from storage per unit surface area per unit change in potentiometric (piezometric) head.

Well Drawdown

Unconfined aquifer

IMPERMEABLE

Dupuit's Formula

$$Q = \frac{\pi k \left(h_2^2 - h_1^2\right)}{\ln\left(\frac{r_2}{r_1}\right)}$$

where

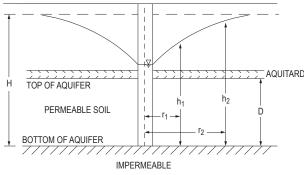
Q = flow rate of water drawn from well (cfs)

k = coefficient of permeability of soil (fps)

 h_1 = height of water surface above bottom of aquifer at perimeter of well (ft)

 h_2 = height of water surface above bottom of aquifer at distance r_2 from well centerline (ft)

 r_1 = radius to water surface at perimeter of well, i.e., radius of well (ft)


 r_2 = radius to water surface whose height is h_2 above bottom of aquifer (ft)

In = natural logarithm

 Q/D_{w} = specific capacity

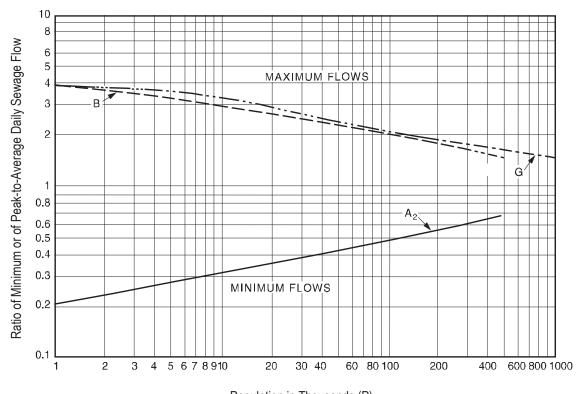
 $D_{yy} = \text{well drawdown (ft)}$

Confined aquifer:

$$Q = \frac{2\pi T(h_2 - h_1)}{\ln\left(\frac{r_2}{r_1}\right)}$$

where

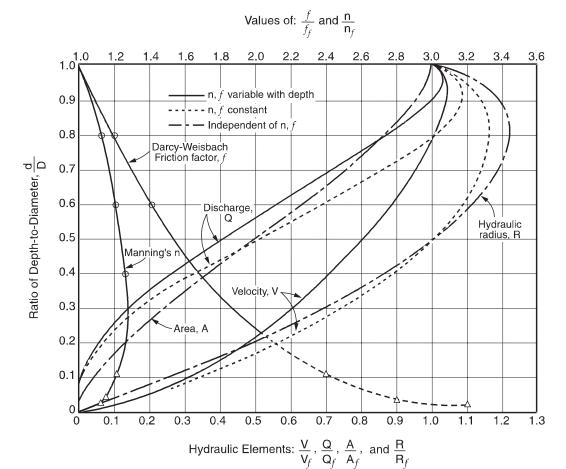
 $T = KD = \text{transmissivity (ft}^2/\text{sec)}$


D = thickness of confined aquifer (ft)

 h_1 , h_2 = heights of piezometric surface above bottom of aquifer (ft)

 r_1 , r_2 = radii from pumping well (ft)

In = natural logarithm


♦ Sewage Flow Ratio Curves

Curve A₂: $\frac{P^{0.2}}{5}$ Curve B: $\frac{14}{4+\sqrt{P}}+1$ Curve G: $\frac{18+\sqrt{P}}{4+\sqrt{P}}$

Population in Thousands (P)

♦ Hydraulic-Elements Graph for Circular Sewers

Design and Construction of Sanitary and Storm Sewers, Water Pollution Control Federation and American Society of Civil Engineers, 1970. Reprinted with permission from ASCE.
 This material may be downloaded from nees.org for personal use only. Any other use requires prior permission of ASCE.

Open-Channel Flow

Specific Energy

$$E = \alpha \frac{V^2}{2g} + y = \frac{\alpha Q^2}{2gA^2} + y, \text{ where}$$

E = specific energy

Q = discharge

V = velocity

y = depth of flow

A = cross-sectional area of flow

 α = kinetic energy correction factor, usually 1.0

Critical Depth = that depth in a channel at minimum specific energy

$$\frac{Q^2}{g} = \frac{A^3}{T}$$

where Q and A are as defined above,

g = acceleration due to gravity

T =width of the water surface

For rectangular channels

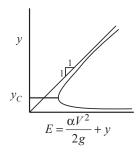
$$y_c = \left(\frac{q^2}{g}\right)^{1/3}$$
, where

 y_c = critical depth

q = unit discharge = Q/B

B = channel width

g = acceleration due to gravity


Froude Number = ratio of inertial forces to gravity forces

$$Fr = \frac{V}{\sqrt{gv_h}}$$
, where

V = velocity

 y_h = hydraulic depth = A/T

Specific Energy Diagram

Alternate depths: depths with the same specific energy.

Uniform flow: a flow condition where depth and velocity do not change along a channel.

Manning's Equation

$$Q = \frac{K}{n} A R_H^{2/3} S^{1/2}$$

 $Q = \text{discharge (ft}^3/\text{sec or m}^3/\text{s})$

K = 1.0 for SI units, 1.486 for USCS units

 $A = \text{cross-sectional area of flow (ft}^2 \text{ or m}^2)$

 R_H = hydraulic radius = A/P (ft or m)

P = wetted perimeter (ft or m)

S = slope of hydraulic surface (ft/ft or m/m)

n = Manning's roughness coefficient

Normal depth (uniform flow depth)

$$AR_H^{2/3} = \frac{Qn}{KS^{1/2}}$$

Weir Formulas

Rectangular

Free discharge suppressed

$$O = CLH^{3/2}$$

Free discharge contracted

$$Q = C(L - 0.2H)H^{3/2}$$

V-Notch

$$Q = CH^{5/2}$$
, where

 $Q = \text{discharge (cfs or m}^3/\text{s)}$

C = 3.33 for rectangular weir (USCS units)

C = 1.84 for rectangular weir (SI units)

C = 2.54 for 90° V-notch weir (USCS units)

C = 1.40 for 90° V-notch weir (SI units)

L = weir length (ft or m)

H = head (depth of discharge over weir) ft or m

Hazen-Williams Equation

$$V = k_1 C R_H^{0.63} S^{0.54}$$
, where

C = roughness coefficient

 $k_1 = 0.849$ for SI units

 $k_1 = 1.318$ for USCS units

 R_H = hydraulic radius (ft or m)

S = slope of energy grade line

= h_f/L (ft/ft or m/m)

V = velocity (ft/sec or m/s)

Circular Pipe Head Loss Equation (Head Loss Expressed in Feet)

$$h_f = \frac{4.73 L}{C^{1.852} D^{4.87}} Q^{1.852}$$
, where

 h_f = head loss (ft)

 \vec{L} = pipe length (ft)

D = pipe diameter (ft)

Q = flow (cfs)

C = Hazen-Williams coefficient

Circular Pipe Head Loss Equation (Head Loss Expressed as Pressure)

U.S. Customary Units

$$P = \frac{4.52 \ Q^{1.85}}{C^{1.85} \ D^{4.87}}$$
, where

P = pressure loss (psi per foot of pipe)

Q = flow (gpm)

D = pipe diameter (inches)

C = Hazen-Williams coefficient

SI Units

$$P = \frac{6.05 \ Q^{1.85}}{C^{1.85}} \frac{Q^{1.85}}{D^{4.87}} \times 10^5$$
, where

P = pressure loss (bars per meter of pipe)

Q = flow (liters/minute)

D = pipe diameter (mm)

Values of Hazen-Williams Coefficient	C
Pipe Material	С
Ductile iron	140
Concrete (regardless of age)	130
Cast iron:	
New	130
5 yr old	120
20 yr old	100
Welded steel, new	120
Wood stave (regardless of age)	120
Vitrified clay	110
Riveted steel, new	110
Brick sewers	100
Asbestos-cement	140
Plastic	150

TRANSPORTATION

U.S. Customary Units

 $a = \text{deceleration rate (ft/sec}^2)$

A =absolute value of algebraic difference in grades (%)

e = superelevation (%)f = side friction factor

 $\pm G$ = percent grade divided by 100 (uphill grade "+")

 h_1 = height of driver's eyes above the roadway surface (ft)

 h_2 = height of object above the roadway surface (ft)

L = length of curve (ft)

 L_s = spiral transition length (ft)

R = radius of curve (ft)

SSD = stopping sight distance (ft)

t = driver reaction time (sec)

V = design speed (mph)

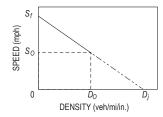
v = vehicle approach speed (fps)

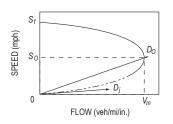
W =width of intersection, curb-to-curb (ft)

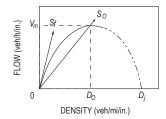
l = length of vehicle (ft)

y =length of yellow interval to nearest 0.1 sec (sec)

r =length of red clearance interval to nearest 0.1 sec (sec)


Vehicle Signal Change Interval


$$y = t + \frac{v}{2a \pm 64.4 G}$$
$$r = \frac{W+l}{v}$$


Stopping Sight Distance

$$SSD = 1.47Vt + \frac{V^2}{30\left(\left(\frac{a}{32.2}\right) \pm G\right)}$$

Traffic Flow Relationships (q = kv)

LEGEND Oversaturated flow

 V_m = Maximum flow

 D_{O} = Optimum density (sometimes called critical density)

 $D_j = \text{Jam density}$

 S_0 = Optimum speed (often called critical speed)

S_f = Theoretical speed selected by the first driver entering a facility (i.e., under zero density and zero flow rate conditions)

Vertical Curves: Sight Distance Re	elated to Curve Length				
	$S \leq L$	S > L			
Crest Vertical Curve General equation:	$L = \frac{AS^2}{100(\sqrt{2h_1} + \sqrt{2h_2})^2}$	$L = 2S - \frac{200\left(\sqrt{h_1} + \sqrt{h_2}\right)^2}{A}$			
Standard Criteria: $h_1 = 3.50$ ft and $h_2 = 2.0$ ft:	$L = \frac{AS^2}{2,158}$	$L = 2S - \frac{2,158}{A}$			
Sag Vertical Curve (based on standard headlight criteria)	$L = \frac{AS^2}{400 + 3.5S}$	$L = 2S - \left(\frac{400 + 3.5S}{A}\right)$			
Sag Vertical Curve (based on riding comfort)	L =	$\frac{AV^2}{46.5}$			
Sag Vertical Curve (based on adequate sight distance under an overhead structure to see an object beyond a sag vertical curve)	$L = \frac{AS^2}{800 \left(C - \frac{h_1 + h_2}{2}\right)}$	$L = 2S - \frac{800}{A} \left(C - \frac{h_1 + h_2}{2} \right)$			
esgen segende a sug roundar our roy	C = vertical clearance for overhead structure (overpass) located within 200 feet of the midpoint of the curve				

Horizontal Curves						
Side friction factor (based on superelevation)	$0.01e + f = \frac{V^2}{15R}$					
Spiral Transition Length	$L_s = \frac{3.15V^3}{RC}$					
	C = rate of increase of lateral acceleration [use 1 ft/sec ³ unless otherwise stated]					
Sight Distance (to see around obstruction)	$HSO = R \left[1 - \cos\left(\frac{28.65 S}{R}\right) \right]$					
	HSO = Horizontal sight line offset					

- AASHTO, A Policy on Geometric Design of Highways and Streets, 6th ed., 2011. Used by permission.
 Compiled from AASHTO, A Policy on Geometric Design of Highways and Streets, 6th ed., 2011.

Horizontal Curve Formulas

D = Degree of Curve, Arc Definition

PC = Point of Curve (also called BC)

PT = Point of Tangent (also called EC)

PI = Point of Intersection

I = Intersection Angle (also called Δ) Angle Between Two Tangents

L = Length of Curve, from PC to PT

T = Tangent Distance

E =External Distance

R = Radius

LC = Length of Long Chord

M = Length of Middle Ordinate

c = Length of Sub-Chord

d = Angle of Sub-Chord

l = Curve Length for Sub-Chord

$$R = \frac{5729.58}{D}$$

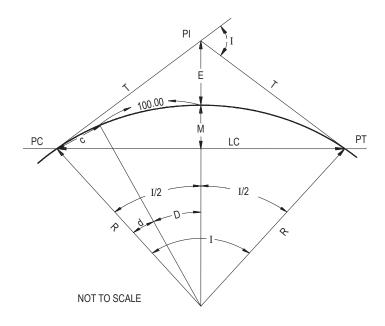
$$R = \frac{LC}{2\sin(I/2)}$$

$$T = R \tan(I/2) = \frac{LC}{2\cos(I/2)}$$

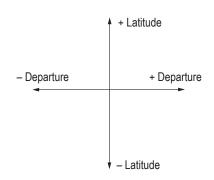
$$L = RI \frac{\pi}{180} = \frac{I}{D} 100$$

$$M = R[1 - \cos(I/2)]$$

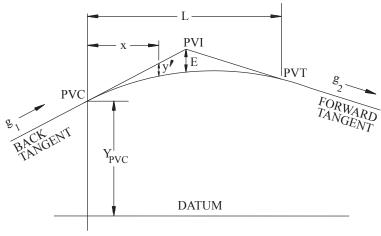
$$\frac{R}{E+R} = \cos(I/2)$$


$$\frac{R-M}{R} = \cos(I/2)$$

$$c = 2R\sin(d/2)$$


$$l = Rd\left(\frac{\pi}{180}\right)$$

$$E = R \left[\frac{1}{\cos(I/2)} - 1 \right]$$


Deflection angle per 100 feet of arc length equals D/2

LATITUDES AND DEPARTURES

Vertical Curve Formulas

VERTICAL CURVE FORMULAS NOT TO SCALE

L = Length of curve

PVC = Point of vertical curvature

PVI = Point of vertical intersection

PVT = Point of vertical tangency

 g_1 = Grade of back tangent

x = Horizontal distance from PVC

to point on curve

 g_2 = Grade of forward tangent

a = Parabola constant

y =Tangent offset

E = Tangent offset at PVI = AL/800

r = Rate of change of grade

K = Rate of vertical curvature

 x_m = Horizontal distance to min/max elevation on curve = $-\frac{g_1}{2a} = \frac{g_1 L}{g_1 - g_2}$

Tangent elevation = $Y_{PVC} + g_1 x$ and = $Y_{PVI} + g_2 (x - L/2)$

Curve elevation = $Y_{PVC} + g_1 x + ax^2 = Y_{PVC} + g_1 x + [(g_2 - g_1)/(2L)]x^2$

$$y = ax^2$$
 $a = \frac{g_2 - g_1}{2L}$ $E = a\left(\frac{L}{2}\right)^2$ $r = \frac{g_2 - g_1}{L}$ $K = \frac{L}{A}$

EARTHWORK FORMULAS

Average End Area Formula, $V = L(A_1 + A_2)/2$

Prismoidal Formula, $V = L (A_1 + 4A_m + A_2)/6$

where A_m = area of mid-section

 $L = \text{distance between A}_1 \text{ and A}_2$

Pyramid or Cone, V = h (Area of Base)/3

AREA FORMULAS

Area by Coordinates: Area =
$$[X_A(Y_B - Y_N) + X_B(Y_C - Y_A) + X_C(Y_D - Y_B) + ... + X_N(Y_A - Y_{N-1})]/2$$

Trapezoidal Rule: Area =
$$w\left(\frac{h_1 + h_n}{2} + h_2 + h_3 + h_4 + \dots + h_{n-1}\right)$$
 $w = \text{common interval}$

Simpson's 1/3 Rule: Area =
$$= w \left[h_1 + 2 \left(\sum_{k=3,5,...}^{n-2} h_k \right) + 4 \left(\sum_{k=2,4,...}^{n-1} h_k \right) + h_n \right] / 3$$

n must be odd number of measurements (only for Simpson's 1/3 Rule)

Highway Pavement Design

AASHTO Structural Number Equation

 $SN = a_1D_1 + a_2D_2 + ... + a_nD_n$, where

SN =structural number for the pavement

 a_i = layer coefficient and D_i = thickness of layer (inches).

Gross Ax	de Load	Load Equ Fac	,	Gross Ax	le Load	-	uivalency ctors
kN	lb	Single Axles	Tandem Axles	kN	lb	Single Axles	Tandem Axles
4.45	1,000	0.00002		187.0	42,000	25.64	2.51
8.9	2,000	0.00018		195.7	44,000	31.00	3.00
17.8	4,000	0.00209		200.0	45,000	34.00	3.27
22.25	5,000	0.00500		204.5	46,000	37.24	3.55
26.7	6,000	0.01043		213.5	48,000	44.50	4.17
35.6	8,000	0.0343		222.4	50,000	52.88	4.86
44.5	10,000	0.0877	0.00688	231.3	52,000		5.63
53.4	12,000	0.189	0.0144	240.2	54,000		6.47
62.3	14,000	0.360	0.0270	244.6	55,000		6.93
66.7	15,000	0.478	0.0360	249.0	56,000		7.41
71.2	16,000	0.623	0.0472	258.0	58,000		8.45
80.0	18,000	1.000	0.0773	267.0	60,000		9.59
89.0	20,000	1.51	0.1206	275.8	62,000		10.84
97.8	22,000	2.18	0.180	284.5	64,000		12.22
106.8	24,000	3.03	0.260	289.0	65,000		12.96
111.2	25,000	3.53	0.308	293.5	66,000		13.73
115.6	26,000	4.09	0.364	302.5	68,000		15.38
124.5	28,000	5.39	0.495	311.5	70,000		17.19
133.5	30,000	6.97	0.658	320.0	72,000		19.16
142.3	32,000	8.88	0.857	329.0	74,000		21.32
151.2	34,000	11.18	1.095	333.5	75,000		22.47
155.7	35,000	12.50	1.23	338.0	76,000		23.66
160.0	36,000	13.93	1.38	347.0	78,000		26.22
169.0	38,000	17.20	1.70	356.0	80,000		28.99
178.0	40,000	21.08	2.08				

Superpave

PERFORMANCE-GRADED (PG) BINDER GRADING SYSTEM

PERFORMANCE GRADE				PG 52						PG 58					PG 64		
	-10	-16	-22	-28	-34	-40	-46	-16	-22	-28	-34	-40	-16	-22	-28	-34	-40
AVERAGE 7-DAY MAXIMUM PAVEMENT DESIGN TEMPERATURE, °Cª			I	<52					I	<58		<u> </u>		I	<64	1	
MINIMUM PAVEMENT DESIGN TEMPERATURE, °C ^a	>–10	>–16	>-22	>–28	>–34	>-40	>–46	>–16	>–22	>–28	>–34	>-40	>–16	>–22	>–28	>–34	>-40
										ORIGI	NAL BI	NDER					
FLASH POINT TEMP, T48: MINIMUM °C											230						
VISCOSITY, ASTM D 4402: b MAXIMUM, 3 Pa-s (3,000 cP), TEST TEMP, °C		135															
DYNAMIC SHEAR, TP5: ^C G*/sin δ , MINIMUM, 1.00 kPa TEST TEMPERATURE @ 10 rad/sec., °C				52				58					64				
	ROLLING THIN FILM OVEN (T240) OR THIN FILM OVEN (T179) RESIDUE																
MASS LOSS, MAXIMUM, %											1.00						
DYNAMIC SHEAR, TP5: G*/sin δ , MINIMUM, 2.20 kPa TEST TEMP @ 10 rad/sec. °C				52				58					64				
								PRES	SSURE	AGINO	S VESS	EL RE	SIDUE	(PP1)			
PAV AGING TEMPERATURE, °C ^d				90				100					100				
DYNAMIC SHEAR, TP5: G*/sin δ , MAXIMUM, 5,000 kPa TEST TEMP @ 10 rad/sec. °C	25	22	19	16	13	10	7	25	22	19	16	13	28	25	22	19	16
PHYSICAL HARDENING ⁶	REPORT																
CREEP STIFFNESS, TP1: f S, MAXIMUM, 300 MPa M-VALUE, MINIMUM, 0.300 TEST TEMP, @ 60 sec., °C	0	- 6	-12	-18	-24	-30	-36	-6	-12	-18	-24	-30	-6	-12	-18	-24	-30
DIRECT TENSION, TP3: f FAILURE STRAIN, MINIMUM, 1.0% TEST TEMP @ 1.0 mm/min, °C	0	-6	-12	-18	-24	-30	-36	-6	-12	-18	-24	-30	-6	-12	-18	-24	-30

 $Federal\ Highway\ Administration\ Report\ FHWA-SA-95-03, "Background\ of\ Superpave\ Asphalt\ Mixture\ Design\ and\ Analysis,"\ Nov.\ 1994.$

Superpave Mixture Design: Compaction Requirements

CLIDEDDAVE CVDATODY COMPACTION EFFORT												
	SUPERPAVE GYRATORY COMPACTION EFFORT AVERAGE DESIGN HIGH AIR TEMPERATURE											
TRAFFIC,			AVER	AGE DE	-SIGN F	HIGH AIF	<u> </u>	ERAIUF	KE			
MILLION		< 39°C		39	°- 40°	C	41	° – 42°	C	42	!°- 43°	,C
ESALs	N _{int}	N _{des}	N _{max}	N _{int}	N _{des}	N _{max}	N _{int}	N _{des}	N _{max}	N _{int}	N _{des}	N _{max}
< 0.3	7	68	104	7	74	114	7	78	121	7	82	127
< 1	7	76	117	7	83	129	7	88	138	8	93	146
< 3	7	86	134	8	95	150	8	100	158	8	105	167
< 10	8	96	152	8	106	169	8	113	181	9	119	192
< 30	8	109	174	9	121	195	9	128	208	9	135	220
< 100	9	126	204	9	139	228	9	146	240	10	153	253
≥ 100	9	142	233	10	158	262	10	165	275	10	177	288

VFA REQUIREMENTS @ 4% AIR VOIDS							
TRAFFIC, MILLION ESALs	DESIGN VFA (%)						
< 0.3	70 – 80						
< 1	65 – 78						
< 3	65 – 78						
< 10	65 – 75						
< 30	65 – 75						
< 100	65 – 75						
≥ 100	65 – 75						

VMA REQUIREMENTS @ 4% AIR VOIDS							
NOMINAL MAXIMUM AGGREGATE SIZE (mm) 9.5 12.5 19.0 25.0 37.5							
MINIMUM VMA (%)	15	14	13	12	11		

COMPACTION KEY							
SUPERPAVE GYRATORY COMPACTION	N_{int}	N _{des}	N_{max}				
PERCENT OF Gmm	≤89%	96%	≤98%				

Federal Highway Administration Report FHWA-SA-95-03, "Background of Superpave Asphalt Mixture Design and Analysis," Nov. 1994.

Gravity Model

$$T_{ij} = P_i \left[\frac{A_j F_{ij} K_{ij}}{\sum\limits_i A_j F_{ij} K_{ij}} \right]$$

where

 T_{ii} = number of trips that are produced in zone i and attracted to zone j

 $P_i = \text{total number of trips produced in zone } i$

 A_i = number of trips attracted to zone j

 F_{ij} = a value that is an inverse function of travel time between zones i and j

 K_{ii} = socioeconomic adjustment factor for interchange ij

Logit Models

$$U_x = \sum_{i=1}^n a_i X_i$$

where

 U_{x} = utility of mode x

n = number of attributes

 X_i = attribute value (time, cost, and so forth)

 a_i = coefficient value for attributes i (negative, since the values are disutilities)

If two modes, auto (A) and transit (T), are being considered, the probability of selecting the auto mode A can be written as

$$P(A) = \frac{e^{U_A}}{e^{U_A} + e^{U_T}}$$
 $P(x) = \frac{e^{U_x}}{\sum_{e=1}^{n} e^{U_{xi}}}$

Traffic Safety Equations

$$RMEV = \frac{A \times 1,000,000}{V}$$

where

RMEV = crash rate per million entering vehicles

a = number of crashes, total or by type occurring in a single year at the location

 $V = ADT \times 365$

ADT = average daily traffic entering intersection

$$RMVM = \frac{A \times 100,000,000}{VMT}$$

where

RMVM = crash rate per million vehicle miles

A = number of crashes, total or by type at the study location, during a given period

VMT = vehicle miles of travel during the given period

= $ADT \times$ (number of days in study period) \times (length of road)

Crashes prevented = $N \times CR \frac{(ADT \text{ after improvement})}{(ADT \text{ before improvement})}$

where

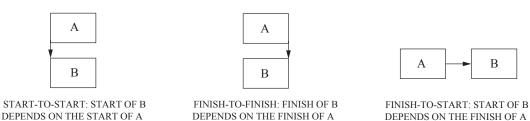
N = expected number of crashes if countermeasure is not implemented and if the traffic volume remains the same

 $CR = CR_1 + (1 - CR_1)CR_2 + (1 - CR_1)(1 - CR_2)CR_3 + \dots + (1 - CR_1)\dots(1 - CR_{m-1})CR_m$

= overall crash reduction factor for multiple mutually exclusive improvements at a single site

 CR_i = crash reduction factor for a specific countermeasure i

m = number of countermeasures at the site


Garber, Nicholas J., and Lester A. Hoel, Traffic and Highway Engineering, 4th ed., Cengage Learning, 2009.

CONSTRUCTION

Construction project scheduling and analysis questions may be based on either the activity-on-node method or the activity-on-arrow method.

CPM PRECEDENCE RELATIONSHIPS

ACTIVITY-ON-NODE

ACTIVITY-ON-ARROW ANNOTATION

ACTIVITY-ON-NODE ANNOTATION

EARLY	EARLY
START	FINISH
ACTIVITY DES	
LATE	LATE
START	FINISH

Nomenclature

ES = Early start = Latest EF of predecessors

EF = Early finish = ES + duration

LS = Late start = LF - duration

LF = Late finish = Earliest LS of successors

D = Duration

Float = LS - ES or LF - EF

Determining the Project Size Modifier

			Square Foot	Base Size			
Building Type	Median Cost per S.F.	Typical Size Gross S.F.	Typical Range Gross S.F.	Building Type	Median Cost per S.F.	Typical Size Gross S.F.	Typical Range Gross S.F.
Apartments, Low Rise	\$ 54.05	21,000	9,700-37,200	Jails	\$ 165.00	13,700	7,500-28,000
Apartments, Mid Rise	68.25	50,000	32,000-100,000	Libraries	97.30	12,000	7,000-31,000
Apartments, High Rise	78.30	310,000	100,000-650,000	Medical Clinics	93.15	7,200	4,200-15,700
Auditoriums	90.35	25,000	7,600-39,000	Medical Offices	87.50	6,000	4,000-15,000
Auto Sales	55.90	20,000	10,800-28,600	Motels	67.00	27,000	15,800-51,000
Banks	121.00	4,200	2,500-7,500	Nursing Homes	89.95	23,000	15,000-37,000
Churches	81.60	9,000	5,300-13,200	Offices, Low Rise	73.00	8,600	4,700-19,000
Clubs, Country	81.40	6,500	4,500-15,000	Offices, Mid Rise	76.65	52,000	31,300-83,100
Clubs, Social	79.15	10,000	6,000-13,500	Offices, High Rise	98.05	260,000	151,000-468,000
Clubs, YMCA	81.60	28,300	12,800-39,400	Police Stations	122.00	10,500	4,000-19,000
Colleges (Class)	107.00	50,000	23,500-98,500	Post Offices	90.40	12,400	6,800-30,000
Colleges (Science Lab)	156.00	45,600	16,600-80,000	Power Plants	678.00	7,500	1,000-20,000
College (Student Union)	119.00	33,400	16,000-85,000	Religious Education	74.85	9,000	6,000-12,000
Community Center	85.05	9,400	5,300-16,700	Research	127.00	19,000	6,300-45,000
Court Houses	116.00	32,400	17,800-106,000	Restaurants	110.00	4,400	2,800-6,000
Dept. Stores	50.50	90,000	44,000-122,000	Retail Stores	53.70	7,200	4,000-17,600
Dormitories, Low Rise	87.20	24,500	13,400-40,000	Schools, Elementary	78.20	41,000	24,500-55,000
Dormitories, Mid Rise	113.00	55,600	36,100-90,000	Schools, Jr. High	79.65	92,000	52,000-119,000
Factories	48.95	26,400	12,900-50,000	Schools, Sr. High	79.65	101,000	50,500-175,000
Fire Stations	85.45	5,800	4,000-8,700	Schools, Vocational	79.35	37,000	20,500-82,000
Fraternity Houses	84.10	12,500	8,200-14,800	Sports Arenas	66.45	15,000	5,000-40,000
Funeral Homes	94.00	7,800	4,500-11,000	Supermarkets	53.85	20,000	12,000-30,000
Garages, Commercial	59.70	9,300	5,000-13,600	Swimming Pools	125.00	13,000	7,800-22,000
Garages, Municipal	76.40	8,300	4,500-12,600	Telephone Exchange	145.00	4,500	1,200-10,600
Garages, Parking	31.30	163,000	76,400-225,300	Theaters	79.70	10,500	8,800-17,500
Gymnasiums	78.95	19,200	11,600-41,000	Town Halls	87.65	10,800	4,800-23,400
Hospitals	149.00	55,000	27,200-125,000	Warehouses	36.15	25,000	8,000-72,000
House (Elderly)	73.90	37,000	21,000-66,000	Warehouse and Office	41.75	25,000	8,000-72,000
Housing (Public)	68.45	36,000	14,400-74,400				
Ice Rinks	76.00	29,000	27,200-33,600				

Earned-Value Analysis

BCWS = Budgeted cost of work scheduled (Planned)

ACWP = Actual cost of work performed (Actual)

BCWP = Budgeted cost of work performed (Earned)

Variances

CV = BCWP - ACWP (Cost variance = Earned – Actual)

SV = BCWP – BCWS (Schedule variance = Earned – Planned)

Indices

$$\begin{split} & CPI = \frac{BCWP}{ACWP} \quad \left(Cost \; Performance \; Index = \frac{Earned}{Actual} \right) \\ & SPI = \frac{BCWP}{BCWS} \quad \left(Schedule \; Performance \; Index = \frac{Earned}{Planned} \right) \end{split}$$

Forecasting

BAC = Original project estimate (Budget at completion)

$$ETC = \frac{BAC - BCWP}{CPI} \qquad (Estimate to complete)$$

$$EAC = (ACWP + ETC)$$
 (Estimate to complete)

ENVIRONMENTAL ENGINEERING

AIR POLLUTION

Nomenclature

$$\frac{\mu g}{m^3} = ppb \times \frac{P(MW)}{RT}$$

ppb = parts per billion

= pressure (atm)

= ideal gas law constant

= 0.0821 L-atm/(mole-K)

= absolute temperature, $K = 273.15 + {}^{\circ}C$

MW = molecular weight (g/mole)

Atmospheric Dispersion Modeling (Gaussian)

 σ_{v} and σ_{z} as a function of downwind distance and stability class, see following figures.

$$C = \frac{Q}{2\pi u \sigma_y \sigma_z} \exp\left(-\frac{1}{2} \frac{y^2}{\sigma_y^2}\right) \left[\exp\left(-\frac{1}{2} \frac{(z-H)^2}{\sigma_z^2}\right) + \exp\left(-\frac{1}{2} \frac{(z+H)^2}{\sigma_z^2}\right)\right]$$

where

= steady-state concentration at a point (x, y, z) (µg/m³)

= emissions rate (μ g/s)

= horizontal dispersion parameter (m)

= vertical dispersion parameter (m)

= average wind speed at stack height (m/s)

= horizontal distance from plume centerline (m)

= vertical distance from ground level (m)

 $H = \text{effective stack height (m)} = h + \Delta h$

where h = physical stack height

 Δh = plume rise

= downwind distance along plume centerline (m)

Maximum concentration at ground level and directly downwind from an elevated source.

$$C_{\text{max}} = \frac{Q}{\pi u \sigma_y \sigma_z} \exp\left(-\frac{1}{2} \frac{\left(H^2\right)}{\sigma_z^2}\right)$$

where variables are as above except

 C_{max} = maximum ground-level concentration

 $\sigma_z = \frac{H}{\sqrt{2}}$ for neutral atmospheric conditions

Selected Properties of Air

Nitrogen (N ₂) by volume	78.09%
Oxygen (O ₂) by volume	20.94%
Argon (Ar) by volume	0.93%

Absolute viscosity, µ

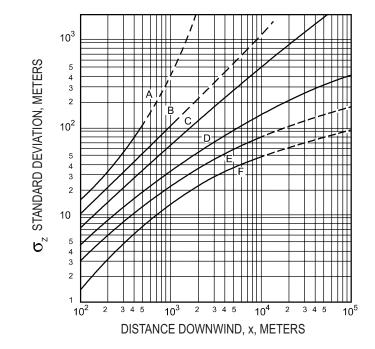
at 80°F 0.045 lbm/(hr-ft) at 100°F $0.047 \, \text{lbm/(hr-ft)}$

Density

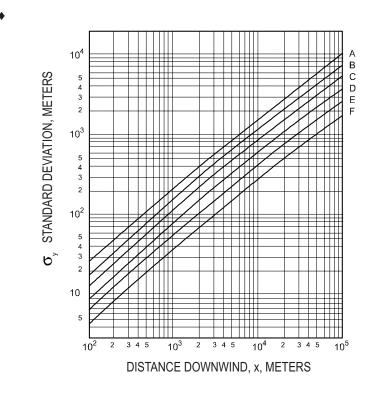
at 80°F 0.0734 lbm/ft at 100°F 0.0708 lbm/ft

The dry adiabatic lapse rate Γ_{AD} is 0.98°C per 100 m (5.4°F per 1,000 ft). This is the rate at which dry air cools adiabatically with altitude. The actual (environmental) lapse rate Γ is compared to Γ_{AD} to determine stability as follows:

Lapse Rate	Stability Condition
$\Gamma > \Gamma_{AD}$	Unstable
$\Gamma = \Gamma_{AD}$	Neutral
$\Gamma < \Gamma_{AD}$	Stable


Atmospheric Stability Under Various Conditions

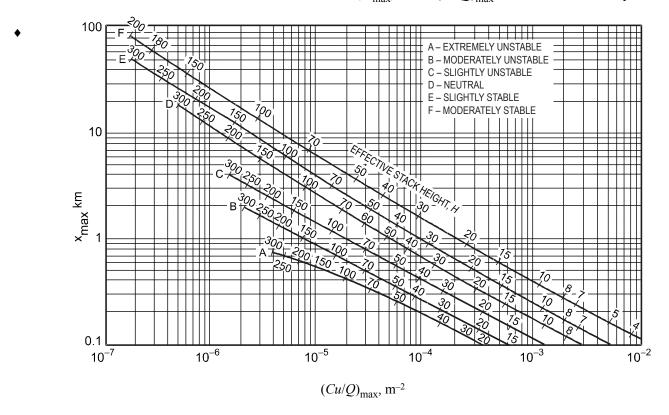
		Day		Night	
Surface Wind	S	olar Insolation		Cloudine	ss ^e
Speed ^a (m/s)				Cloudy	Clear
	Strong ^b	Moderate ^c	Slight ^d	(≥4/8)	(≤3/8)
<2	A	$A-B^f$	В	Е	F
2–3	A–B	В	C	E	F
3–5	В	В-С	C	D	E
5–6	C	C–D	D	D	D
>6	C	D	D	D	D


- a. Surface wind speed is measured at 10 m above the ground.
- Corresponds to clear summer day with sun higher than 60° above the horizon. b.
- Corresponds to a summer day with a few broken clouds, or a clear day with sun $35\text{-}60^\circ$ above the
- d. Corresponds to a fall afternoon, or a cloudy summer day, or clear summer day with the sun $15-35^{\circ}$.
- e. Cloudiness is defined as the fraction of sky covered by the clouds.
- f. For A–B, B–C, or C–D conditions, average the values obtained for each.
- A = Very unstableD = Neutral $B = \text{Moderately unstable} \qquad E = \text{Slightl} \\ C = \text{Slightly unstable} \qquad F = \text{Stable}$ E = Slightly stable

Regardless of wind speed, Class D should be assumed for overcast conditions, day or night.

Turner, D.B., "Workbook of Atmospheric Dispersion Estimates: An Introduction to Dispersion Modeling," 2nd ed., Lewis Publishing/CRC Press, Florida, 1994.

VERTICAL STANDARD DEVIATIONS OF A PLUME



HORIZONTAL STANDARD DEVIATIONS OF A PLUME

- A EXTREMELY UNSTABLE
- **B MODERATELY UNSTABLE**
- C SLIGHTLY UNSTABLE
- D NEUTRAL
- E SLIGHTLY STABLE
- F MODERATELY STABLE

[•] Turner, D.B., "Workbook of Atmospheric Dispersion Estimates," U.S. Department of Health, Education, and Welfare, Washington, DC, 1970.

Downwind distance where the maximum concentration occurs, x_{max} , versus $(Cu/Q)_{max}$ as a function of stability class

NOTES: Effective stack height shown on curves numerically.

 x_{max} = distance along plume centerline to the point of maximum concentration

$$(Cu/Q)_{\text{max}} = e^{[a+b \ln H + c (\ln H)^2 + d(\ln H)^3]}$$

H = effective stack height, stack height + plume rise, m

lack Values of Curve-Fit Constants for Estimating $(Cu/Q)_{max}$ from H as a Function of Atmospheric Stability

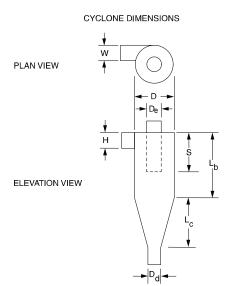
	Constants					
Stability	а	b	С	d		
A	-1.0563	-2.7153	0.1261	0		
В	-1.8060	-2.1912	0.0389	0		
C	-1.9748	-1.9980	0	0		
D	-2.5302	-1.5610	-0.0934	0		
E	-1.4496	-2.5910	0.2181	-0.0343		
F	-1.0488	-3.2252	0.4977	-0.0765		

Adapted from Ranchoux, R.J.P., 1976.

◆ Turner, D.B., "Workbook of Atmospheric Dispersion Estimates: An Introduction to Dispersion Modeling," 2nd ed., Lewis Publishing/CRC Press, Florida, 1994.

Cyclone

Cyclone Collection (Particle Removal) Efficiency


$$\eta = \frac{1}{1 + \left(d_{pc}/d_p\right)^2}, \text{ where}$$

 d_{pc} = diameter of particle collected with 50% efficiency

 d_p = diameter of particle of interest

 η = fractional particle collection efficiency

AIR POLLUTION CONTROL

Cyclone Effective Number of Turns Approximation

$$N_e = \frac{1}{H} \left[L_b + \frac{L_c}{2} \right]$$
, where

 N_e = number of effective turns gas makes in cyclone

H = inlet height of cyclone (m)

 L_h = length of body cyclone (m)

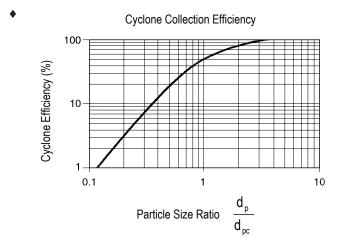
 L_c = length of cone of cyclone (m)

Cyclone 50% Collection Efficiency for Particle Diameter

$$d_{pc} = \left[\frac{9\mu W}{2\pi N_e V_i (\rho_p - \rho_g)} \right]^{0.5}, \text{ where}$$

 d_{pc} = diameter of particle that is collected with 50% efficiency (m)

 μ = dynamic viscosity of gas (kg/m•s)


W = inlet width of cyclone (m)

 N_e = number of effective turns gas makes in cyclone

 V_i = inlet velocity into cyclone (m/s)

 ρ_n = density of particle (kg/m³)

 ρ_{σ} = density of gas (kg/m³)

Cyclone Ratio of Dimensions to Body Diameter

Dimension	High Efficiency	Conventional	High Throughput
Inlet height, H	0.44	0.50	0.80
Inlet width, W	0.21	0.25	0.35
Body length, L_b	1.40	1.75	1.70
Cone length, L_c	2.50	2.00	2.00
Vortex finder length, S	0.50	0.60	0.85
Gas exit diameter, D_e	0.40	0.50	0.75
Dust outlet diameter, D_d	0.40	0.40	0.40

Adapted from Cooper, David C., and F.C. Alley, Air Pollution Control: A Design Approach, 2nd ed., Waveland Press, Illinois, 1986.

Baghouse

Air-to-Cloth Ratio for Baghouses

Cl. 1 NY						
	Shaker/Woven	D 1				
	Reverse	Pulse				
	Air/Woven	Jet/Felt				
Dust	$[m^3/(min \cdot m^2)]$	$[m^3/(min \cdot m^2)]$				
alumina	0.8	2.4				
asbestos	0.9	3.0				
bauxite	0.8	2.4				
carbon black	0.5	1.5				
coal	0.8	2.4				
cocoa	0.8	3.7				
clay	0.8	2.7				
cement	0.6	2.4				
cosmetics	0.5	3.0				
enamel frit	0.8	2.7				
feeds, grain	1.1	4.3				
feldspar	0.7	2.7				
fertilizer	0.9	2.4				
flour	0.9	3.7				
fly ash	0.8	1.5				
graphite	0.6	1.5				
gypsum	0.6	3.0				
iron ore	0.9	3.4				
iron oxide	0.8	2.1				
iron sulfate	0.6	1.8				
lead oxide	0.6	1.8				
leather dust	1.1	3.7				
lime	0.8	3.0				
limestone	0.8	2.4				
mica	0.8	2.7				
paint pigments	0.8	2.1				
paper	1.1	3.0				
plastics	0.8	2.1				
quartz	0.9	2.7				
rock dust	0.9	2.7				
sand	0.8	3.0				
sawdust (wood)	1.1	3.7				
silica	0.8	2.1				
slate	1.1	3.7				
soap detergents	0.6	1.5				
spices	0.8	3.0				
starch	0.9	2.4				
sugar	0.6	2.1				
talc	0.8	3.0				
tobacco	1.1	4.0				

U.S. EPA OAQPS Control Cost Manual, 4th ed., EPA 450/3-90-006 (NTIS PB 90-169954), January 1990.

Electrostatic Precipitator Efficiency

Deutsch-Anderson equation:

$$\eta = 1 - e^{(-WA/Q)}$$

where

 η = fractional collection efficiency

W = terminal drift velocity

A = total collection area

Q = volumetric gas flow rate

Note that any consistent set of units can be used for W, A, and Q (for example, ft/min, ft², and ft³/min).

Incineration

$$DRE = \frac{W_{\rm in} - W_{\rm out}}{W_{\rm in}} \times 100\%$$

where

DRE = destruction and removal efficiency (%)

 W_{in} = mass feed rate of a particular POHC (kg/h or lb/h)

 W_{out} = mass emission rate of the same POHC (kg/h or lb/h)

POHC = principal organic hazardous contaminant

$$CE = \frac{\text{CO}_2}{\text{CO}_2 + \text{CO}} \times 100\%$$

 CO_2 = volume concentration (dry) of CO_2

(parts per million, volume, ppm,)

= volume concentration (dry) of CO (ppm_v) CO

CE= combustion efficiency

Kiln Formula

$$t = \frac{2.28 \ L/D}{SN}$$

where

t = mean residence time, min

L/D = internal length-to-diameter ratio

S = kiln rake slope, in./ft of length

N = rotational speed, rev/min

Energy Content of Waste

Typical Waste Values	Moisture, %	Energy, Btu/lb
Food Waste	70	2,000
Paper	6	7,200
Cardboard	5	7,000
Plastics	2	14,000
Wood	20	8,000
Glass	2	60
Bi-metallic Cans	3	300

FATE AND TRANSPORT

Mass Calculations

Mass balance: $Mass_{in} = Mass_{out}$

$$M = CQ = CV$$

Continuity equation = Q = vA

M = mass

C = concentration

Q = flow rate

V = volume

v = velocity

A = cross-sectional area of flow

 $M (lb/day) = C (mg/L) \times Q (MGD) \times 8.34 [lb-L/(mg-MG)]$ where:

MGD = million gallons per day

MG = million gallons

Microbial Kinetics

BOD Exertion

$$y_t = L(1 - e^{-kt})$$

where

 $k = BOD decay rate constant (base e, days^{-1})$

L = ultimate BOD (mg/L)

t = time (days)

 y_t = the amount of BOD exerted at time t (mg/L)

Stream Modeling

Streeter Phelps

$$D = \frac{k_1 L_0}{k_2 - k_1} \left[\exp(-k_1 t) - \exp(-k_2 t) \right] + D_0 \exp(-k_2 t)$$

$$t_c = \frac{1}{k_2 - k_1} \ln \left[\frac{k_2}{k_1} \left(1 - D_0 \frac{(k_2 - k_1)}{k_1 L_0} \right) \right]$$

$$DO = DO_{\text{sat}} - D$$

where

= dissolved oxygen deficit (mg/L) D

DO= dissolved oxygen concentration (mg/L)

= initial dissolved oxygen deficit in mixing zone D_0

 DO_{sat} = saturated dissolved oxygen concentration (mg/L)

= deoxygenation rate constant, base e (days⁻¹)

= reaeration rate constant, base e (days⁻¹)

= initial BOD ultimate in mixing zone (mg/L)

= time (days)

= time at which minimum dissolved oxygen occurs t_c (days)

Monod Kinetics—Substrate Limited Growth

Continuous flow systems where growth is limited by one substrate (chemostat):

$$\mu = \frac{Yk_mS}{K_s + S} - k_d = \mu_{\text{max}} \frac{S}{K_s + S} - k_d$$

Multiple Limiting Substrates

$$\frac{\mu}{\mu_{\max}} = \left[\mu_1\left(S_1\right)\right] \! \left[\mu_2\left(S_2\right)\right] \! \left[\mu_3\left(S_3\right)\right] \! ... \! \left[\mu_n\left(S_n\right)\right]$$

where
$$\mu_i = \frac{S_i}{K_{s_i} + S_i}$$
 for $i = 1$ to n

Non-steady State Continuous Flow

$$\frac{dx}{dt} = Dx_0 + (\mu - k_d - D)x$$

Steady State Continuous Flow

$$\mu = D$$
 with $k_d << \mu$

Product production at steady state, single substrate limiting

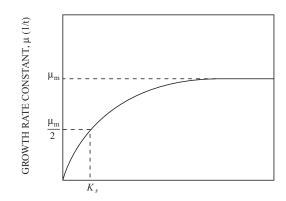
$$X_1 = Y_{P/S}(S_0 - S_i)$$

= microbial death rate or endogenous decay rate constant (time⁻¹)

= maximum growth rate constant (time⁻¹)

= saturation constant or half-velocity constant

[= concentration at $\mu_{max}/2$]


= concentration of substrate in solution S (mass/unit volume)

Y = yield coefficient [(mass/L product)/(mass/L food used)]

= specific growth rate (time⁻¹)

 μ_{max} = maximum specific growth rate (time⁻¹) = Yk_m

Monod growth rate constant as a function of limiting food concentration.

LIMITING FOOD CONCENTRATION, S (mg/L)

 X_1 = product (mg/L)

= volume (L)

= dilution rate (flow f/reactor volume V_r ; hr⁻¹)

= flow rate (L/hr)

= growth rate with one or multiple limiting substrates μ_i (hr^{-1})

 S_{i} = substrate *i* concentration (mass/unit volume)

= initial substrate concentration (mass/unit volume) S_0

= product yield per unit of substrate (mass/mass) $Y_{P/S}$

= product concentration (mass/unit volume) p

= cell concentration (mass/unit volume) \boldsymbol{x}

= initial cell concentration (mass/unit volume) x_0

= time (time)

Kinetic Temperature Corrections

 $k_{\rm T} = k_{20} (\theta)^{\rm T-20}$

Activated sludge: $\theta = 1.136 \text{ (T>20°C)}$

 $\theta = 1.056 (T < 20^{\circ}C)$

Reaeration $\theta = 1.024$ **Biotowers** $\theta = 1.035$ Trickling Filters $\theta = 1.072$

Davis, M.L., and D. Cornwell, Introduction to Environmental Engineering, 3rd ed., McGraw-Hill, 1998.

Partition Coefficients

Bioconcentration Factor BCF

The amount of a chemical to accumulate in aquatic organisms.

$$BCF = C_{\text{org}}/C$$

where

 C_{org} = equilibrium concentration in organism (mg/kg or ppm)

C =concentration in water (ppm)

Octanol-Water Partition Coefficient

The ratio of a chemical's concentration in the octanol phase to its concentration in the aqueous phase of a two-phase octanolwater system.

$$K_{ow} = C_o/C_w$$

where

 C_{o} = concentration of chemical in octanol phase $(mg/L \text{ or } \mu g/L)$

 C_w = concentration of chemical in aqueous phase $(mg/L \text{ or } \mu g/L)$

Organic Carbon Partition Coefficient K_{oc}

$$K_{oc} = C_{\text{soil}} / C_{\text{water}}$$

where

 C_{soil} = concentration of chemical in organic carbon component of soil (µg adsorbed/kg organic C, or ppb)

 C_{water} = concentration of chemical in water (ppb or μ g/kg)

Retardation Factor R

$$R = 1 + (\rho/\eta)K_d$$

where

= bulk density

= porosity η

= distribution coefficient

Soil - Water Partition Coefficient $K_{sw} = K_0$

$$K_{sw} = X/C$$

where

X = concentration of chemical in soil (ppb or μg/kg)

C= concentration of chemical in water (ppb or µg/kg)

$$K_{sw} = K_{oc} f_{oc}$$

= fraction of organic carbon in the soil (dimensionless) f_{oc}

♦ Steady-State Reactor Parameters (Constant Density Systems)

Comparison of Steady-State Retention Times (θ) for Decay Reactions of Different Order ^a

		Equations for Mean Retention Times (θ)		
Reaction Order	r	Ideal Batch Ideal Plug Flow Ideal CMFR		
Zero ^b	-k	$\frac{\left(C_{o}-C_{t}\right)}{k} \qquad \frac{\left(C_{o}-C_{t}\right)}{k} \qquad \frac{\left(C_{o}-C_{t}\right)}{k}$		
First	-kC	$\frac{\ln\left(\mathrm{C_o/C_t}\right)}{k} \qquad \frac{\ln\left(\mathrm{C_o/C_t}\right)}{k} \qquad \qquad \frac{\left(\mathrm{C_o/C_t}\right) - 1}{k}$		
Second	$-kC^2$	$\frac{1}{k} \left[\frac{1}{C_2} - \frac{1}{C_0} \right] \frac{\left(C_o / C_t \right) - 1}{k C_o} \qquad \frac{\left(C_o / C_t \right) - 1}{k C_t}$		

 $^{{}^{}a}C_{o}$ = initial concentration or influent concentration; C_{t} = final condition or effluent concentration.

Comparison of Steady-State Performance for Decay Reactions of Different Order^a

			Equations for	C_{t}
Reaction Order	r	Ideal Batch	Ideal Plug Flow	Ideal CMFR
Zero ^b $t \le C_o/k$	-k	C _o -kt	$C_o - k\theta$	$C_o - k\theta$
$t > C_o/k$		0		
First	–kC	$C_o[exp(-kt)]$	$C_o[\exp(-k\theta)]$	$\frac{C_o}{1+k\theta}$
Second	$-kC^2$	$\frac{C_o}{1 + ktC_o}$	$\frac{C_o}{1 + k\theta C_o}$	$\frac{\left(4k\theta C_o + 1\right)^{1/2} - 1}{2k\theta}$

 $^{{}^{}a}C_{o}$ = initial concentration or influent concentration; C_{t} = final condition or effluent concentration.

 $[^]bExpressions$ are valid for $k\theta \leq C_o;$ otherwise C_t = 0.

^bTime conditions are for ideal batch reactor only.

[♦] Davis, M.L., and S.J. Masten, *Principles of Environmental Engineering and Science*, McGraw-Hill, 2004.

LANDFILL

Break-Through Time for Leachate to Penetrate a **Clay Liner**

$$t = \frac{d^2 \eta}{K(d+h)}$$

where

= breakthrough time (yr)

= thickness of clay liner (ft)

= porosity

= hydraulic conductivity (ft/yr)

= hydraulic head (ft)

Typical porosity values for clays with a coefficient of permeability in the range of 10⁻⁶ to 10⁻⁸ cm/s vary from 0.1 to 0.3.

Effect of Overburden Pressure

$$SW_p = SW_i + \frac{p}{a + bp}$$

where

 SW_p = specific weight of the waste material at pressure $p \text{ (lb/yd}^3\text{) (typical 1,750 to 2,150)}$

 SW_i = initial compacted specific weight of waste (lb/yd^3) (typical 1,000)

= overburden pressure (lb/in²)

= empirical constant (vd^3/in^2)

= empirical constant (yd^3/lb)

Gas Flux

$$N_A = rac{D\eta^{4/3} \left(C_{A_{
m atm}} - C_{A_{
m fill}}
ight)}{L}$$

where

 $N_4 = \text{gas flux of compound } A, [g/(\text{cm}^2 \cdot \text{s})][\text{lb} \cdot \text{mol/}(\text{ft}^2 \cdot \text{d})]$

 $C_{A_{\text{atm}}}$ = concentration of compound A at the surface of the landfill cover, g/cm³ (lb • mol/ft³)

= concentration of compound A at the bottom of the landfill cover, g/cm³ (lb • mol/ft³)

= depth of the landfill cover, cm (ft)

Typical values for the coefficient of diffusion for methane and carbon dioxide are $0.20 \text{ cm}^2/\text{s}$ (18.6 ft²/d) and $0.13 \text{ cm}^2/\text{s}$ $(12.1 \text{ ft}^2/\text{d})$, respectively.

= diffusion coefficient, cm^2/s (ft²/d)

 η_{gas} = gas-filled porosity, cm³/cm³ (ft³/ft³)

= porosity, cm^3/cm^3 (ft³/ft³)

Soil Landfill Cover Water Balance

$$\Delta S_{LC} = P - R - ET - PER_{sw}$$

where

 $\Delta S_{\rm LC}$ = change in the amount of water held in storage in a

unit volume of landfill cover (in.)

P = amount of precipitation per unit area (in.)

= amount of runoff per unit area (in.) R

ET = amount of water lost through evapotranspiration per

unit area (in.)

PER_{sw} = amount of water percolating through the unit area

of landfill cover into compacted solid waste (in.)

POPULATION MODELING

Population Projection Equations

Linear Projection = Algebraic Projection

$$P_t = P_0 + k\Delta t$$

where

 P_t = population at time t

 P_0 = population at time zero

k = growth rate

 Δt = elapsed time in years relative to time zero

Log Growth = Exponential Growth = Geometric Growth

$$P_t = P_0 e^{k\Delta t}$$

$$\ln P_t = \ln P_0 + k\Delta t$$

where

 P_t = population at time t

 P_0 = population at time zero

k = growth rate

 Δt = elapsed time in years relative to time zero

RADIATION

Effective Half-Life

Effective half-life, τ_e , is the combined radioactive and biological half-life.

$$\frac{1}{\tau_e} = \frac{1}{\tau_r} + \frac{1}{\tau_b}$$

where

 τ_r = radioactive half-life

 τ_h = biological half-life

Half-Life

$$N = N_0 e^{-0.693 t/\tau}$$

where

 N_0 = original number of atoms

N = final number of atoms

= time

= half-life

Flux at distance 2 = (Flux at distance 1) $(r_1/r_2)^2$

where r_1 and r_2 are distances from source.

The half-life of a biologically degraded contaminant assuming a first-order rate constant is given by:

$$t_{1/2} = \frac{0.693}{k}$$

 $k = rate constant (time^{-1})$

 $t_{1/2}$ = half-life (time)

Daughter Product Activity

$$N_2 = \frac{\lambda_1 N_{10}}{\lambda_2 - \lambda_1} \left(e^{-\lambda_1 t} - e^{-\lambda_2 t} \right)$$

where $\lambda_{1,2} = \text{decay constants (time}^{-1})$

 N_{10} = initial activity (curies) of parent nuclei

Daughter Product Maximum Activity Time

$$t' = \frac{\ln \lambda_2 - \ln \lambda_1}{\lambda_2 - \lambda_1}$$

Inverse Square Law

$$\frac{I_1}{I_2} = \frac{\left(R_2\right)^2}{\left(R_1\right)^2}$$

where $I_{1/2}$ = Radiation intensity at locations 1 and 2

 $R_{1,2}$ = Distance from the source at locations 1 and 2

SAMPLING AND MONITORING

Data Quality Objectives (DQO) for Sampling Soils and Solids

	Confidence		Minimum Detectable Relative
Investigation Type	Level (1–α) (%)	Power $(1-\beta)$ (%)	Difference (%)
Preliminary site investigation	70–80	90–95	10–30
Emergency clean-up	80–90	90–95	10–20
Planned removal and remedial response operations	90–95	90–95	10–20

Confidence level: 1– (Probability of a Type I error) = $1 - \alpha$ = size probability of not making a Type I error.

Power = $1 - (Probability of a Type II error) = 1 - \beta = probability of not making a Type II error.$

EPA Document "EPA/600/8-89/046" Soil Sampling Quality Assurance User's Guide, Chapter 7.

CV = $(100 * s)/\bar{x}$

coefficient of variation

standard deviation of sample

sample average

Minimum Detectable Relative Difference = Relative increase over background [$100 (\mu_s - \mu_B)/\mu_B$] to be detectable with a probability (1–β)

Number of Samples Required in a One-Sided One-Sample t-Test to Achieve a Minimum Detectable Relative Difference at Confidence Level $(1-\alpha)$ and Power $(1-\beta)$

Coefficient of Variation (%)	Power (%)	Confidence Level (%)	M	inimum Dete	ectable Rela (%)	tive Differen	nce
			5	10	20	30	40
15	95	99	145	39	12	7	5
		95	99	26	8	5	3
		90	78	21	6	3	3
_		80	57	15	4	2	2
	90	99	120	32	11	6	5
		95	79	21	7	4	3 2
		90	60	16	5	3	
_		80	41	11	3	2	1
	80	99	94	26	9	6	5
		95	58	16	5	3	3
		90	42	11	4	2	2
		80	26	7	2	2	1
25	95	99	397	102	28	14	9
		95	272	69	19	9	6
		90	216	55	15	7	5
_		80	155	40	11	5	3
	90	99	329	85	24	12	8
		95	272	70	19	9	6
		90	166	42	12	6	4
_		80	114	29	8	4	3
	80	99	254	66	19	10	7
		95	156	41	12	6	4
		90	114	30	8	4	3
		80	72	19	5	3	2
35	95	99	775	196	42	25	15
		95	532	134	35	17	10
		90	421	106	28	13	8
-		80	304	77	20	9	6
	90	99	641	163	43	21	13
		95	421	107	28	14	8
		90	323	82	21	10	6
-		80	222	56	15	7	4
	80	99	495	126	34	17	11
		95	305	78	21	10	7
		90	222	57	15	7	5
		80	140	36	10	5	3

WASTEWATER TREATMENT AND TECHNOLOGIES

Activated Sludge

$$X_A = \frac{\theta_c Y(S_0 - S_e)}{\theta(1 + k_d \theta_c)}$$

Steady State Mass Balance around Secondary Clarifier:

$$(Q_0 + Q_R)X_A = Q_eX_e + Q_RX_r + Q_wX_w$$

$$\theta_c$$
 = Solids residence time = $\frac{V(X_A)}{Q_w X_w + Q_e X_e}$

Sludge volume/day:
$$Q_s = \frac{M(100)}{\rho_s(\% \text{ solids})}$$

$$SVI = \frac{Sludge\ volume\ after\ settling\left(mL/L\right)*1,000}{MLSS\left(mg/L\right)}$$

 k_d = microbial death ratio; kinetic constant; day⁻¹; typical range 0.1–0.01, typical domestic wastewater value = 0.05 day⁻¹

 S_e = effluent BOD or COD concentration (kg/m³)

 S_0 = influent BOD or COD concentration (kg/m³)

 X_A = biomass concentration in aeration tank (MLSS or MLVSS kg/m³)

Y = yield coefficient (kg biomass/kg BOD or COD consumed); range 0.4–1.2

 θ = hydraulic residence time = V/Q

Solids loading rate = QX_A

For activated sludge secondary clarifier $Q = Q_0 + Q_R$

Organic loading rate (volumetric) = Q_0S_0/Vol

Organic loading rate (F:M) = $Q_0S_0/(Vol X_A)$

Organic loading rate (surface area) = $Q_0 S_0 / A_M$

 ρ_s = density of solids

A =surface area of unit

 A_M = surface area of media in fixed-film reactor

 A_x = cross-sectional area of channel

M =sludge production rate (dry weight basis)

 Q_0 = influent flow rate

 Q_e = effluent flow rate

 Q_w = waste sludge flow rate

 ρ_s = wet sludge density

 $R = \text{recycle ratio} = Q_R/Q_0$

 Q_R = recycle flow rate = $Q_0 R$

 X_{e} = effluent suspended solids concentration

 X_{w} = waste sludge suspended solids concentration

V = aeration basin volume

Q = flow rate

 X_r = recycled sludge suspended solids concentration

Design and Operational Parameters for Activated-Sludge Treatment of Municipal Wastewater

Type of Process	Mean cell residence time (θ_c, d)	Food-to-mass ratio [(kg BOD ₅ / (day•kg MLSS)]	Volumetric loading (kgBOD ₅ /m³)	Hydraulic residence time in aeration basin (θ, h)	Mixed liquor suspended solids (MLSS, mg/L)	Recycle ratio (Q_r/Q)	Flow regime*	BOD ₅ removal efficiency (%)	Air supplied (m³/kg BOD ₅)
Tapered aeration	5-15	0.2-0.4	0.3-0.6	4-8	1,500-3,000	0.25-0.5	PF	85-95	45-90
Conventional	4-15	0.2 - 0.4	0.3 - 0.6	4-8	1,500-3,000	0.25 - 0.5	PF	85-95	45-90
Step aeration	4-15	0.2 - 0.4	0.6 - 1.0	3-5	2,000-3,500	0.25 - 0.75	PF	85-95	45-90
Completely mixed	4-15	0.2 - 0.4	0.8 - 2.0	3-5	3,000-6,000	0.25 - 1.0	CM	85-95	45-90
Contact stabilization	4-15	0.2 - 0.6	1.0-1.2			0.25 - 1.0			45-90
Contact basin				0.5 - 1.0	1,000-3,000		PF	80-90	
Stabilization basin				4-6	4,000-10,000		PF		
High-rate aeration	4-15	0.4-1.5	1.6-16	0.5 - 2.0	4,000-10,000	1.0-5.0	CM	75-90	25-45
Pure oxygen	8-20	0.2-1.0	1.6-4	1-3	6,000-8,000	0.25 - 0.5	CM	85-95	
Extended aeration	20-30	0.05-0.15	0.16-0.40	18-24	3,000-6,000	0.75-1.50	CM	75-90	90-125

^{*}PF = plug flow, CM = completely mixed.

♦ Blowers

$$P_{\rm w} = \frac{W R T_1}{C ne} \left[\left(\frac{P_2}{P_1} \right)^{0.283} - 1 \right]$$

C = 29.7 (constant for SI unit conversion)

= 550 ft-lb/(sec-hp) (U.S. Customary Units)

 $P_{\rm w}$ = power requirement (hp)

W = weight of flow of air (lb/sec)

 $R = \text{engineering gas constant for air} = 53.3 \text{ ft-lb/(lb air-}^{\circ}\text{R})$

 T_1 = absolute inlet temperature (°R)

 P_1 = absolute inlet pressure (lbf/in²)

 P_2 = absolute outlet pressure (lbf/in²)

n = (k-1)/k = 0.283 for air

e = efficiency (usually 0.70 < e < 0.90)

 Metcalf and Eddy, Wastewater Engineering: Treatment, Disposal, and Reuse, 3rd ed., McGraw-Hill, 1991.

Facultative Pond

BOD Loading Total System ≤ 35 pounds BOD₅/(acre-day) Minimum = 3 ponds

Depth = 3-8 ft

Minimum t = 90-120 days

Biotower

Fixed-Film Equation without Recycle

$$\frac{S_e}{S_0} = e^{-kD/q^n}$$

Fixed-Film Equation with Recycle

$$\frac{S_e}{S_a} = \frac{e^{-kD/q^n}}{(1+R) - R(e^{-kD/q^n})}$$

where

 S_e = effluent BOD₅ (mg/L)

 $S_0 = \text{influent BOD}_5 (\text{mg/L})$

 $R = \text{recycle ratio} = Q_0/Q_R$

 Q_R = recycle flow rate

$$S_a = \frac{S_o + RS_e}{1 + R}$$

D = depth of biotower media (m)

q = hydraulic loading [m³/(m² • min)] = $(Q_0 + RQ_0)/A_{\text{plan}}$ (with recycle)

k = treatability constant; functions of wastewater and medium (min⁻¹); range 0.01–0.1; for municipal wastewater and modular plastic media 0.06 min⁻¹
 @ 20°C

 $k_T = k_{20}(1.035)^{T-20}$

n =coefficient relating to media characteristics; modular plastic, n = 0.5

♦ Aerobic Digestion

Design criteria for aerobic digesters^a

Parameter	Value
Sludge retention time, d	
At 20°C	40
At 15°C	60
Solids loading, lb volatile solids/ft3•d	0.1-0.3
Oxygen requirements, lb O2/lb solids destroyed	
Cell tissue	~2.3
BOD ₅ in primary sludge	1.6-1.9
Energy requirements for mixing	
Mechanical aerators, hp/10 ³ ft ³	0.7-1.50
Diffused-air mixing, ft ³ /10 ³ ft ³ •min	20-40
Dissolved-oxygen residual in liquid, mg/L	1–2
Reduction in volatile suspended solids, %	40–50

Tank Volume

$$V = \frac{Q_i(X_i + FS_i)}{X_d(k_dP_v + 1/\theta_c)}$$

where

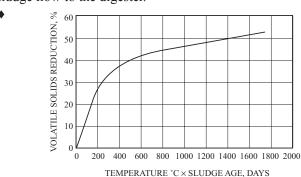
 $V = \text{volume of aerobic digester (ft}^3)$

 Q_i = influent average flowrate to digester (ft³/d)

 X_i = influent suspended solids (mg/L)

F = fraction of the influent BOD₅ consisting of raw primary sludge (expressed as a decimal)

 $S_i = \text{influent BOD}_5 (\text{mg/L})$


 X_d = digester suspended solids (mg/L); typically X_d = (0.7) X_i

 k_d = reaction-rate constant (d⁻¹)

 P_{v} = volatile fraction of digester suspended solids (expressed as a decimal)

 θ_c = solids residence time (sludge age) (d)

 $F S_i$ can be neglected if primary sludge is not included on the sludge flow to the digester.

VOLATILE SOLIDS REDUCTION IN AN AEROBIC DIGESTER AS A FUNCTION OF DIGESTER LIQUID TEMPERATURE AND DIGESTER SLUDGE AGE

• Anaerobic Digestion

Design parameters for anaerobic digesters

Parameter	Standard-rate	High-rate
Solids residence time, d	30–90	10–20
Volatile solids loading, kg/m ³ /d	0.5 - 1.6	1.6-6.4
Digested solids concentration, %	4–6	4–6
Volatile solids reduction, %	35–50	45–55
Gas production (m³/kg VSS added)	0.5-0.55	0.6-0.65
Methane content, %	65	65

Standard Rate

Reactor Volume =
$$\frac{V_1 + V_2}{2} t_r + V_2 t_s$$

High Rate

First stage

Reactor Volume = $V_1 t_r$

Second Stage

Reactor Volume =
$$\frac{V_1 + V_2}{2}t_t + V_2t_s$$

where

 V_1 = raw sludge input (volume/day)

 V_2 = digested sludge accumulation (volume/day)

t_r = time to react in a high-rate digester = time to react and thicken in a standard-rate digester

 t_t = time to thicken in a high-rate digester

 t_s = storage time

- Tchobanoglous, G., and Metcalf and Eddy, Wastewater Engineering: Treatment, Disposal, and Reuse, 4th ed., McGraw-Hill, 2003.
- Peavy, HS, D.R. Rowe, and G. Tchobanoglous, Environmental Engineering, McGraw-Hill, 1985

187 ENVIRONMENTAL ENGINEERING

WATER TREATMENT TECHNOLOGIES

Activated Carbon Adsorption

Freundlich Isotherm

$$\frac{x}{m} = X = KC_e^{1/n}$$

where

x =mass of solute adsorbed

m =mass of adsorbent

X = mass ratio of the solid phase—that is, the mass of adsorbed solute per mass of adsorbent

 C_e = equilibrium concentration of solute, mass/volume

K, n = experimental constants

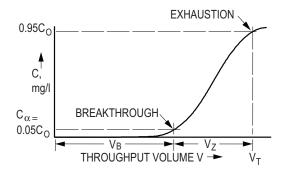
Linearized Form

$$\ln \frac{x}{m} = \frac{1}{n} \ln C_e + \ln K$$

For linear isotherm, n = 1

Langmuir Isotherm

$$\frac{x}{m} = X = \frac{aKC_e}{1 + KC_a}$$


where

 a = mass of adsorbed solute required to saturate completely a unit mass of adsorbent

K =experimental constant

Linearized Form

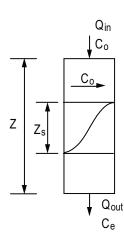
$$\frac{m}{x} = \frac{1}{a} + \frac{1}{aK} \frac{1}{C_e}$$

Depth of Sorption Zone

$$Z_s = Z \left[\frac{V_Z}{V_T - 0.5 V_Z} \right]$$

where

$$V_Z = V_T - V_R$$

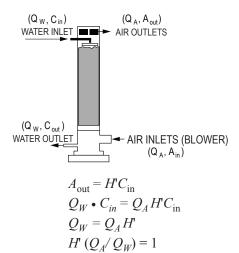

 $Z_{\rm s}$ = depth of sorption zone

Z = total carbon depth

 V_T = total volume treated at exhaustion ($C = 0.95 C_0$)

 V_B = total volume at breakthrough $(C = C_{\alpha} = 0.05 C_0)$

 C_0 = concentration of contaminant in influent


Air Stripping

 $P_i = HC_i = \text{Henry's Law}$

 P_i = partial pressure of component i, atm

H = Henry's Law constant, atm-m³/kmol

 C_i = concentration of component i in solvent, kmol/m³

where

 A_{out} = concentration in the effluent air (kmol/m³); in this formulation of the equation A_{in} and C_{out} are assumed to be negligible for simplicity.

 Q_W = water flow rate (m³/s)

 Q_A = air flow rate (m³/s)

 $A_{\rm in}$ = concentration of contaminant in air (kmol/m³)

 $C_{\text{out}} = \text{concentration of contaminants in effluent water}$ (kmol/m³)

 C_{in} = concentration of contaminants in influent water (kmol/m³)

Stripper Packing Height = Z

$$Z = HTU \times NTU$$

Assuming rapid equilibrium:

$$NTU = \left(\frac{R_S}{R_S - 1}\right) \ln \left(\frac{\left(C_{in}/C_{out}\right)\left(R_S - 1\right) + 1}{R_S}\right)$$

where

NTU = number of transfer units

H = Henry's Law constant

H' = H/RT = dimensionless Henry's Law constant

T = temperature in units consistent with R

R = universal gas constant, atm•m³/(kmol•K)

 R_S = stripping factor $H'(Q_A/Q_W)$

 C_{in} = concentration in the influent water (kmol/m³)

 C_{out} = concentration in the effluent water (kmol/m³)

HTU = Height of Transfer Units = $\frac{L}{M_{W}K_{I}a}$

where

 $L = \text{liquid molar loading rate } [\text{kmol/}(\text{s} \cdot \text{m}^2)]$

 M_W = molar density of water

 $(55.6 \text{ kmol/m}^3) = 3.47 \text{ lbmol/ft}^3$

 $K_I a$ = overall transfer rate constant (s⁻¹)

188 ENVIRONMENTAL ENGINEERING

Clarifier

Overflow rate = Hydraulic loading rate = $v_o = Q/A_{\text{surface}}$

 v_o = critical settling velocity

= terminal settling velocity of smallest particle that is 100% removed

Weir loading = weir overflow rate, WOR = Q/Weir Length

Horizontal velocity = approach velocity = v_h

$$= Q/A_{\text{cross-section}} = Q/A_x$$

Hydraulic residence time = $V/Q = \theta$

where

Q = flow rate

 $A_r =$ cross-sectional area

A =surface area, plan view

= tank volume

Typical Primary Clarifier Efficiency Percent Removal

	Overflow rates							
	1,200	1,000	800	600				
	(gpd/ft ²)	(gpd/ft^2)	(gpd/ft ²)	(gpd/ft ²)				
	48.9	40.7	32.6	24.4				
	(m/d)	(m/d)	(m/d)	(m/d)				
Suspended Solids	54%	58%	64%	68%				
BOD ₅	30%	32%	34%	36%				

Weir Loadings

- 1. Water Treatment—weir overflow rates should not exceed 20,000 gpd/ft
- 2. Wastewater Treatment
 - a. Flow ≤ 1 MGD: weir overflow rates should not exceed 10,000 gpd/ft
 - b. Flow > 1 MGD: weir overflow rates should not exceed 15,000 gpd/ft

Horizontal Velocities

- 1. Water Treatment—horizontal velocities should not exceed 0.5 fpm
- Wastewater Treatment—no specific requirements (use the same criteria as for water)

Dimensions

- 1. Rectangular Tanks
 - a. Length: Width ratio = 3:1 to 5:1
 - b. Basin width is determined by the scraper width (or multiples of the scraper width)
 - c. Bottom slope is set at 1%
- 2. Circular Tanks
 - a. Diameters up to 200 ft
 - b. Diameters must match the dimensions of the sludge scraping mechanism
 - c. Bottom slope is less than 8%

Design Criteria for Sedimentation Basins

		Overfl	ow Rate			Solids Loa	nding Rate	Hydraulic Residence	Depth
Type of Basin	Aver	age	Pea	ak	Avei	rage	Peak	Time	(ft)
	(gpd/ft ²)	$(m^3/m^2 \cdot d)$	(gpd/ft ²)	$(m^3/m^2 \cdot d)$	(lb/ft ² -d)	(kg/m ² •h)	(lb/ft^2-h) $(kg/m^2 \cdot h)$	(hr)	
Water Treatment									
Clarification following coagulation and flocculation:									
Alum coagulation	350-550	14-22						4-8	12-16
Ferric coagulation	550-700	22-28						4-8	12-16
Upflow clarifiers									
Groundwater	1,500-2,200	61-90						1	
Surface water	1,000-1,500	41-61						4	
Clarification following lime-soda softening									
Conventional	550-1,000	22-41						2-4	
Upflow clarifiers									
Groundwater	1,000-2,500	41-102						1	
Surface water	1,000-1,800	41-73						4	
Wastewater Treatment									
Primary clarifiers	800-1,200	32-49	1,200-2,000	50-80				2	10-12
Settling basins following fixed film reactors	400-800	16-33						2	
Settling basins following air-activated sludge reactors									
All configurations EXCEPT extended aeration	400-700	16-28						2	12-15
Extended aeration	200-400	8-16	1,000-1,200	40-64	19-29	4–6	38 8	2	12-15
Settling basins following chemical flocculation reactors	800-1,200		600-800	24–32	5–24	1–5	34 7	2	

Settling Equations

General Spherical

$$v_t = \sqrt{\frac{4g(\rho_p - \rho_f)d}{3C_D\rho_f}}$$

where

 C_D = drag coefficient

= 24/Re (Laminar; Re ≤ 1.0)

 $= 24/\text{Re} + 3/(\text{Re}^{1/2}) + 0.34$ (Transitional)

= 0.4(Turbulent; Re $\geq 10^4$)

= Reynolds number $\frac{v_t \rho d}{\mu}$ = gravitational constant

 ρ_n and ρ_f = density of particle and fluid respectively

d = diameter of sphere

= bulk viscosity of liquid = absolute viscosity μ

= terminal settling velocity \mathcal{V}_t

Stokes' Law

$$v_t = \frac{g(\rho_p - \rho_f)d^2}{18\mu} = \frac{g \rho_f(S.G. - 1)d^2}{18\mu}$$

Approach velocity = horizontal velocity = Q/A_r

Hydraulic loading rate = Q/A

Hydraulic residence time = $V/Q = \theta$

where

= flow rate

 $A_r = \text{cross-sectional area}$

= surface area, plan view

= tank volume

= fluid mass density

S.G. = specific gravity

Filtration Equations

Filter bay length: width ratio = 1.2:1 to 1.5:1

Effective size = d_{10}

Uniformity coefficient = d_{60}/d_{10}

 d_r = diameter of particle class for which x% of sample is less than (units meters or feet)

Filter equations can be used with any consistent set of units.

Head Loss Through Clean Bed

Rose Equation

Monosized Media Multisized Media

$$h_f = \frac{1067 \left(v_s\right)^2 L C_D}{g \eta^4 d}$$

$$h_f = \frac{1067 \left(v_s\right)^2 L}{g \eta^4} \sum \frac{C_{D_{ij}} x_{ij}}{d_{ij}}$$

Carmen-Kozeny Equation

Monosized Media

Multisized Media

$$h_f = \frac{f'L(1-\eta)v_s^2}{\eta^3 gd}$$

$$h_f = \frac{L(1-\eta)v_s^2}{\eta^3 g} \sum \frac{f'_{ij}x_{ij}}{d_{ij}}$$

$$f' = \text{friction factor} = 150 \left(\frac{1 - \eta}{\text{Re}} \right) + 1.75$$

where

 h_f = head loss through the clean bed (m of H₂O)

L = depth of filter media (m)

 η = porosity of bed = void volume/total volume

 v_s = filtration rate = empty bed approach velocity

 $= Q/A_{\rm plan} ({\rm m/s})$

 $g = \text{gravitational acceleration } (\text{m/s}^2)$

Re = Reynolds number =
$$\frac{v_s \rho d}{\mu}$$

 d_{ii} , d = diameter of filter media particles; arithmetic average of adjacent screen openings (m)

= filter media (sand, anthracite, garnet)

= filter media particle size

 x_{ii} = mass fraction of media retained between adjacent

 f'_{ii} = friction factors for each media fraction

 C_D = drag coefficient as defined in settling velocity equations

Bed Expansion

Monosized

Multisized

$$L_f = \frac{L_o (1 - \eta_o)}{1 - \left(\frac{\nu_B}{\nu_t}\right)^{0.22}}$$

$$L_{f} = \frac{L_{o}(1 - \eta_{o})}{1 - \left(\frac{\nu_{B}}{\nu_{t}}\right)^{0.22}} \qquad L_{f} = L_{o}(1 - \eta_{o}) \sum \frac{x_{ij}}{1 - \left(\frac{\nu_{B}}{\nu_{t,i,j}}\right)^{0.22}}$$

$$\eta_f = \left(\frac{v_B}{v_t}\right)^{0.22}$$

where

 $L_f = \text{depth of fluidized filter media (m)}$

 v_B = backwash velocity (m/s), Q_B/A_{plan}

 Q_B = backwash flowrate

 v_t = terminal setting velocity

 η_f = porosity of fluidized bed

 L_o = initial bed depth

 η_o = initial bed porosity

Lime-Soda Softening Equations

- 1. Carbon dioxide removal $CO_2 + Ca(OH)_2 \rightarrow CaCO_3(s) + H_2O$
- Calcium carbonate hardness removal $Ca (HCO_3)_2 + Ca(OH)_2 \rightarrow 2CaCO_3(s) + 2H_2O$
- Calcium non-carbonate hardness removal $CaSO_4 + Na_2CO_3 \rightarrow CaCO_3(s) + 2Na^+ + SO_4^{-2}$
- Magnesium carbonate hardness removal $Mg(HCO_3)_2 + 2Ca(OH)_2 \rightarrow 2CaCO_3(s) +$ $Mg(OH)_2(s) + 2H_2O$
- Magnesium non-carbonate hardness removal $MgSO_4 + Ca(OH)_2 + Na_2CO_3 \rightarrow CaCO_3(s) +$ $Mg(OH)_2(s) + 2Na^+ + SO_4^{2-}$
- Destruction of excess alkalinity $2HCO_3^- + Ca(OH)_2 \rightarrow CaCO_3(s) + CO_3^{2-} + 2H_2O$
- Recarbonation $Ca^{2+} + 2OH^{-} + CO_2 \rightarrow CaCO_3(s) + H_2O$

Malassias	Malamlan	n	E		
Molecular Formulas			Equivalent Weight		
CO ₃ ²⁻	60.0	2	30.0		
CO,	44.0	2	22.0		
Ca(OH)	74.1	2	37.1		
CaCO ₃	100.1	2	50.0		
Ca(HCO ₃) ₂	162.1	2	81.1		
CaSO ₄	136.1	2	68.1		
Ca ²⁺	40.1	2	20.0		
H^{+}	1.0	1	1.0		
HCO ₃	61.0	1	61.0		
Mg(HCO ₃) ₂	146.3	2	73.2		
Mg(OH) ₂	58.3	2	29.2		
MgSO ₄	120.4	2	60.2		
Mg^{2+}	24.3	2	12.2		
Na ⁺	23.0	1	23.0		
Na ₂ CO ₃	106.0	2	53.0		
OH -	17.0	1	17.0		
SO ₄ ²⁻	96.1	2	48.0		

Rapid Mix and Flocculator Design

$$G = \sqrt{\frac{P}{\mu V}} = \sqrt{\frac{\gamma H_L}{t\mu}}$$

 $Gt = 10^4 \text{ to } 10^5$

where

= root mean square velocity gradient (mixing intensity) [ft/(sec-ft) or m/(s \bullet m)]

= power to the fluid (ft-lb/sec or N•m/s)

= volume (ft 3 or m 3)

m = dynamic viscosity [lb/(ft-sec) or Pa•s]

= specific weight of water (lb/ft³ or N/m³)

 H_L = head loss (ft or m)

= time (sec or s)

Reel and Paddle

$$P = \frac{C_D A_P \rho_f v_r^3}{2}$$

 C_D = drag coefficient = 1.8 for flat blade with a L:W > 20:1

= area of blade (m^2) perpendicular to the direction of travel through the water

= density of H_2O (kg/m³)

= velocity of paddle (m/s) v_p

= relative or effective paddle velocity

= v_n • slip coefficient

slip coefficient = 0.5 to 0.75

Turbulent Flow Impeller Mixer

$$P = K_T(n)^3 (D_i)^5 \rho_f$$

where

 K_T = impeller constant (see table)

n = rotational speed (rev/sec)

 D_i = impeller diameter (m)

Values of the Impeller Constant K_T (Assume Turbulent Flow)

Type of Impeller	K_T
Propeller, pitch of 1, 3 blades	0.32
Propeller, pitch of 2, 3 blades	1.00
Turbine, 6 flat blades, vaned disc	6.30
Turbine, 6 curved blades	4.80
Fan turbine, 6 blades at 45°	1.65
Shrouded turbine, 6 curved blades	1.08
Shrouded turbine, with stator, no baffles	1.12

Note: Constant assumes baffled tanks having four baffles at the tank wall with a width equal to 10% of the tank diameter.

Reprinted with permission from Industrial & Engineering Chemistry,

"Mixing of Liquids in Chemical Processing," J. Henry Rushton, 1952,

v. 44, no. 12. p. 2934, American Chemical Society.

Reverse Osmosis

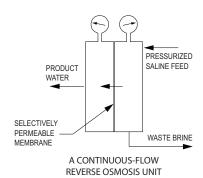
Osmotic Pressure of Solutions of Electrolytes

$$\Pi = \phi v \frac{n}{V} RT$$

where

= osmotic pressure, Pa

= osmotic coefficient


= number of ions formed from one molecule of electrolyte

= number of moles of electrolyte

= specific volume of solvent, m³/kmol

= universal gas constant, Pa • m³/(kmol • K)

= absolute temperature, K

Salt Flux through the Membrane

$$J_{s} = (D_{s} K_{s} / \Delta Z)(C_{in} - C_{out})$$

where

 J_s = salt flux through the membrane [kmol/(m² • s)]

 D_s = diffusivity of the solute in the membrane (m²/s)

 K_s = solute distribution coefficient (dimensionless)

 $C = \text{concentration (kmol/m}^3)$

 $\Delta Z = \text{membrane thickness (m)}$

$$J_s = K_n (C_{in} - C_{out})$$

 K_p = membrane solute mass transfer coefficient

$$=\frac{D_s K_s}{\Lambda Z} (L/t, m/s)$$

Water Flux

$$J_{w} = W_{p} \left(\Delta P - \Delta \pi \right)$$

 J_w = water flux through the membrane [kmol/(m² • s)]

 W_p = coefficient of water permeation, a characteristic of the particular membrane [kmol/(m² • s • Pa)]

 ΔP = pressure differential across membrane = $P_{\rm in} - P_{\rm out}$ (Pa)

 $\Delta \pi$ = osmotic pressure differential across membrane

$$\pi_{\rm in} - \pi_{\rm out}$$
 (Pa)

Ultrafiltration

$$J_{w} = \frac{\varepsilon r^{2} \int \Delta P}{8\mu \delta}$$

where

= membrane porosity

= membrane pore size

 ΔP = net transmembrane pressure

= viscosity

= membrane thickness

 J_{w} = volumetric flux (m/s)

♦ Disinfection

Chlorine contact chamber length: width ratio = 20:1 to 50:1

$$T = TDT \times BF$$

T = time that the water is in contact with the disinfectant (min)

TDT = theoretical detention time (min)

TDT (min-mg/L) = $C \times T$

BF = baffling factor

C = residual disinfectant concentration measured during peakhourly flow (mg/L)

Baffling Factors

Baffling Condition	Baffling Factor	Baffling Description
Unbaffled (mixed flow)	0.1	None, agitated basin, very low length to width ratio, high inlet and outlet flow velocities.
Poor	0.3	Single or multiple unbaffled inlets and outlets, no intra-basin baffles.
Average	0.5	Baffled inlet or outlet with some intra-basin baffles.
Superior	0.7	Perforated inlet baffle, serpentine or perforated intra-basin baffles, outlet weir or perforated launders.
Perfect (plug flow)	1.0	Very high length to width ratio (pipeline flow), perforated inlet, outlet, and intra-basin baffles.

♦ Guidance Manual LT1ESWTR Disinfection Profiling and Benchmarking, U.S. Environmental Protection Agency, 2003.

Removal and Inactivation Requirements

Microorganism	Required Log Reduction	Treatment
Giardia	3-log (99.9%)	Removal and/or inactivation
Virsuses	4-log (99.99%)	Removal and/or inactivation
Cryptosporidium	2-log (99%)	Removal

Typical Removal Credits and Inactivation Requirements for Various Treatment Technologies

Process	Typic: Remova	al Log l Credits	Resulting Disinfection Log Inactivation Requirements				
	Giardia	Viruses	Giardia	Viruses			
Conventional Treatment	2.5	2.0	0.5	2.0			
Direct Filtration	2.0	1.0	1.0	3.0			
Slow Sand Filtration	2.0	2.0	1.0	2.0			
Diatomaceous Earth Filtration	2.0	1.0	1.0	3.0			
Unfiltered	0	0	3.0	4.0			

[♦] Guidance Manual LT1ESWTR Disinfection Profiling and Benchmarking, U.S. Environmental Protection Agency, 2003.

CT Values* For 3-LOG Inactivation Of Giardia Cysts By Free Chlorine

Chlorine Concentration	Temperature <= 0.5°C						Temperature = 5° C						Temperature = 10°C								
(mg/L)				pН							рН							pН			
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<=6.0	6.5	7.0	7.5	8.0	8.5	9.0	<=6.0	6.5	7.0	7.5	8.0	8.5	9.0	<=6.0	6.5	7.0	7.5	8.0	8.5	9.0
<=0.4	137	163	195	237	277	329	390	97	117	139	166	198	236	279	73	88	104	125	149	177	209
0.6	141	168	200	239	286	342	407	100	120	143	171	204	244	291	75	90	107	128	153	183	218
0.8	145	172	205	246	295	354	422	103	122	146	175	210	252	301	78	92	110	131	158	189	226
1.0	148	176	210	253	304	365	437	105	125	149	179	216	260	312	79	94	112	134	162	195	234
1.2	152	180	215	259	313	376	451	107	127	152	183	221	267	320	80	95	114	137	166	200	240
1.4	155	184	221	266	321	387	464	109	130	155	187	227	274	329	82	98	116	140	170	206	247
1.6	157	189	226	273	329	397	477	111	132	158	192	232	281	337	83	99	119	144	174	211	253
1.8	162	193	231	279	338	407	489	114	135	162	196	238	287	345	86	101	122	147	179	215	259
2.0	165	197	236	286	346	417	500	116	138	165	200	243	294	353	87	104	124	150	182	221	265
2.2	169	201	242	297	353	426	511	118	140	169	204	248	300	361	89	105	127	153	186	225	271
2.4	172	205	247	298	361	435	522	120	143	172	209	253	306	368	90	107	129	157	190	230	276
2.6	175	209	252	304	368	444	533	122	146	175	213	258	312	375	92	110	131	160	194	234	281
2.8	178	213	257	310	375	452	543	124	148	178	217	263	318	382	93	111	134	163	197	239	287
3.0	181	217	261	316	382	460	552	126	151	182	221	268	324	389	95	113	137	166	201	243	292
Chlorine Concentration		Т	emper	ature =	= 15°C			Temperature = 20° C					Temperature = 25° C								
(mg/L)				pН							рН							pН			
	<=6.0	6.5	7.0	7.5	8.0	8.5	9.0	<=6.0	6.5	7.0	7.5	8.0	8.5	9.0	<=6.0	6.5	7.0	7.5	8.0	8.5	9.0
<=0.4	49	59	70	83	99	118	140	36	44	52	62	74	89	105	24	29	35	42	50	59	70
0.6	50	60	72	86	102	122	146	38	45	54	64	77	92	109	25	30	36	43	51	61	73
0.8	52	61	73	88	105	126	151	39	46	55	66	79	95	113	26	31	37	44	53	63	75
1.0	53	63	75	90	108	130	156	39	47	56	67	81	98	117	26	31	37	45	54	65	78
1.2	54	64	76	92	111	134	160	40	48	57	69	83	100	120	27	32	38	46	55	67	80
1.4	55	65	78	94	114	137	165	41	49	58	70	85	103	123	27	33	39	47	57	69	82
1.6	56	66	79	96	116	141	169	42	50	59	72	87	105	126	28	33	40	48	58	70	84
1.8	57	68	81	98	119	144	173	43	51	61	74	89	106	129	29	34	41	49	60	72	86
2.0	58	69	83	100	122	147	177	44	52	62	75	91	110	132	29	35	41	50	61	74	88
2.2	59	70	85	102	124	150	181	44	53	63	77	93	113	135	30	35	42	51	62	75	90
2.4	60	72	86	105	127	153	184	45	54	65	78	95	115	138	30	36	43	52	63	77	92
2.6	61	73	88	107	129	156	188	46	55	66	80	97	117	141	31	37	44	53	65	78	94
2.8	62	74	89	109	132	159	191	47	56	67	81	99	119	143	31	37	45	54	66	80	96
3.0	63	76	91	111	134	162	195	47	57	68	83	101	122	146	32	38	46	55	67	81	97

^{*}Although units did not appear in the original tables, units are min-mg/L

CT VALUES* FOR 4-LOG INACTIVATION OF VIRUSES BY FREE CHLORINE

	p]	Н
Temperature (°C)	<u>6–9</u>	<u>10</u>
0.5	12	90
5	8	60
10	6	45
15	4	30
20	3	22
25	2	15

^{*}Although units did not appear in the original tables, units are min-mg/L

[♦] Guidance Manual LTIESWTR Disinfection Profiling and Benchmarking, U.S. Environmental Protection Agency, 2003.

ELECTRICAL AND COMPUTER ENGINEERING

UNITS

The basic electrical units are coulombs for charge, volts for voltage, amperes for current, and ohms for resistance and impedance.

ELECTROSTATICS

$$\mathbf{F}_2 = \frac{Q_1 Q_2}{4\pi \varepsilon r^2} \mathbf{a}_{r12}$$
, where

 \mathbf{F}_2 = the force on charge 2 due to charge 1

 Q_i = the *i*th point charge

r = the distance between charges 1 and 2

 $\mathbf{a}_{r12} = \mathbf{a}$ unit vector directed from 1 to 2

= the permittivity of the medium

For free space or air:

$$\epsilon$$
 = ϵ_0 = 8.85×10^{-12} farads/meter

Electrostatic Fields

Electric field intensity E (volts/meter) at point 2 due to a point charge Q_1 at point 1 is

$$\mathbf{E} = \frac{Q_1}{4\pi\varepsilon r^2} \mathbf{a}_{r12}$$

For a line charge of density ρ_L coulombs/meter on the z-axis, the radial electric field is

$$\mathbf{E}_L = \frac{\rho_L}{2\pi\varepsilon r} \mathbf{a}_r$$

For a sheet charge of density ρ_c coulombs/meter² in the x-y plane:

$$\mathbf{E}_s = \frac{\rho_s}{2\varepsilon} \mathbf{a}_z, z > 0$$

Gauss' law states that the integral of the electric flux density $\mathbf{D} = \varepsilon \mathbf{E}$ over a closed surface is equal to the charge enclosed or

$$Q_{encl} = \oint_{S} \varepsilon \mathbf{E} \cdot d\mathbf{S}$$

The force on a point charge Q in an electric field with intensity \mathbf{E} is $\mathbf{F} = Q\mathbf{E}$.

The work done by an external agent in moving a charge Q in an electric field from point p_1 to point p_2 is

$$W = -Q \int_{p_1}^{p_2} \mathbf{E} \cdot d\mathbf{1}$$

The energy W_E stored in an electric field \mathbf{E} is

$$W_E = (1/2) \iiint_V \varepsilon |\mathbf{E}|^2 dV$$

Voltage

The potential difference V between two points is the work per unit charge required to move the charge between the points.

For two parallel plates with potential difference V, separated by distance d, the strength of the E field between the plates is

$$E = \frac{V}{d}$$

directed from the + plate to the - plate.

Current

Electric current i(t) through a surface is defined as the rate of charge transport through that surface or

$$i(t) = dq(t)/dt$$
, which is a function of time t

since q(t) denotes instantaneous charge.

A constant current i(t) is written as I, and the vector current density in amperes/ m^2 is defined as **J**.

Magnetic Fields

For a current-carrying wire on the z-axis

$$\mathbf{H} = \frac{\mathbf{B}}{\mu} = \frac{I\mathbf{a}_{\phi}}{2\pi r}$$
, where

H = the magnetic field strength (amperes/meter)

 \mathbf{B} = the magnetic flux density (tesla)

 \mathbf{a}_{ϕ} = the unit vector in positive ϕ direction in cylindrical coordinates

= the current

 μ = the permeability of the medium

For air:
$$\mu = \mu_0 = 4\pi \times 10^{-7} \,\text{H/m}$$

Force on a current-carrying conductor in a uniform magnetic field is

$$\mathbf{F} = I\mathbf{L} \times \mathbf{B}$$
, where

L = the length vector of a conductor

The energy stored W_H in a magnetic field **H** is

$$W_H = (1/2) \iiint_V \mu |\mathbf{H}|^2 dv$$

Induced Voltage

Faraday's Law states for a coil of *N* turns enclosing flux φ:

$$v = -N d\phi/dt$$
, where

v =the induced voltage

 ϕ = the average flux (webers) enclosed by each turn

$$\phi = \int_{S} \mathbf{B} \cdot d\mathbf{S}$$

Resistivity

For a conductor of length L, electrical resistivity ρ , and cross-sectional area A, the resistance is

$$R = \frac{\rho L}{A}$$

For metallic conductors, the resistivity and resistance vary linearly with changes in temperature according to the following relationships:

$$\rho = \rho_0 [1 + \alpha (T - T_0)],$$
 and $R = R_0 [1 + \alpha (T - T_0)],$ where

 ρ_0 = resistivity at T_0

 R_0 = resistance at T_0

 α = temperature coefficient

Ohm's Law: V = IR; v(t) = i(t) R

Resistors in Series and Parallel

For series connections, the current in all resistors is the same and the equivalent resistance for n resistors in series is

$$R_S = R_1 + R_2 + \dots + R_n$$

For parallel connections of resistors, the voltage drop across each resistor is the same and the equivalent resistance for nresistors in parallel is

$$R_P = 1/(1/R_1 + 1/R_2 + \dots + 1/R_n)$$

For two resistors R_1 and R_2 in parallel

$$R_P = \frac{R_1 R_2}{R_1 + R_2}$$

Power Absorbed by a Resistive Element

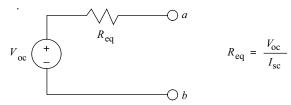
$$P = VI = \frac{V^2}{R} = I^2 R$$

Kirchhoff's Laws

Kirchhoff's voltage law for a closed path is expressed by

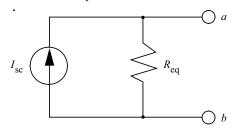
$$\sum V_{\text{rises}} = \sum V_{\text{drops}}$$

Kirchhoff's current law for a closed surface is


$$\Sigma I_{\rm in} = \Sigma I_{\rm out}$$

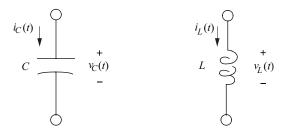
SOURCE EQUIVALENTS

For an arbitrary circuit



The Thévenin equivalent is

The open circuit voltage V_{oc} is $V_a - V_b$, and the short circuit current is I_{sc} from a to b.


The Norton equivalent circuit is

where I_{sc} and R_{eq} are defined above.

A load resistor R_L connected across terminals a and b will draw maximum power when $R_L = R_{eq}$.

CAPACITORS AND INDUCTORS

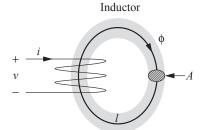
The charge $q_{C}(t)$ and voltage $v_{C}(t)$ relationship for a capacitor C in farads is

$$C = q_C(t)/v_C(t)$$
 or $q_C(t) = Cv_C(t)$

A parallel plate capacitor of area A with plates separated a distance d by an insulator with a permittivity ε has a capacitance

$$C = \frac{\varepsilon A}{d}$$

 ε is often given as $\varepsilon = \varepsilon_{r}(\varepsilon_{o})$ where ε_{r} is the relative permittivity or dielectric constant and $\varepsilon_0 = 8.85 \times 10^{-12} \text{ F/m}.$


The current-voltage relationships for a capacitor are

$$v_C(t) = v_C(0) + \frac{1}{C} \int_0^t i_C(\tau) d\tau$$

and
$$i_C(t) = C (dv_C/dt)$$

The energy stored in a capacitor is expressed in joules and given by

Energy =
$$Cv_C^2/2 = q_C^2/2C = q_Cv_C/2$$

The inductance L (henrys) of a coil of N turns wound on a core with cross-sectional area A (m²), permeability μ and flux ϕ with a mean path of l (m) is given as:

$$L = N^2 \mu A/l$$
$$N\phi = Li$$

and using Faraday's law, the voltage-current relations for an inductor are

$$v_L(t) = L \left(\frac{di_L}{dt} \right)$$

$$i_L(t) = i_L(0) + \frac{1}{L} \int_0^t v_L(\tau) d\tau$$
, where

 v_L = inductor voltage

L = inductance (henrys)

 i_L = inductor current (amperes)

The energy stored in an inductor is expressed in joules and given by

Energy =
$$Li_L^2/2$$

Capacitors and Inductors in Parallel and Series

Capacitors in Parallel

$$C_P = C_1 + C_2 + \dots + C_n$$

Capacitors in Series

$$C_S = \frac{1}{1/C_1 + 1/C_2 + \dots + 1/C_n}$$

Inductors in Parallel

$$L_P = \frac{1}{1/L_1 + 1/L_2 + \dots + 1/L_n}$$

Inductors in Series

$$L_S = L_1 + L_2 + \dots + L_n$$

AC CIRCUITS

For a sinusoidal voltage or current of frequency f(Hz) and period T (seconds),

$$f = 1/T = \omega/(2\pi)$$
, where

 ω = the angular frequency in radians/s

Average Value

For a periodic waveform (either voltage or current) with period T,

$$X_{\text{ave}} = (1/T) \int_{0}^{T} x(t) dt$$

The average value of a full-wave rectified sinusoid is

$$X_{\text{ave}} = (2X_{\text{max}})/\pi$$

and half this for half-wave rectification, where

 X_{max} = the peak amplitude of the sinusoid.

Effective or RMS Values

For a periodic waveform with period T, the rms or effective value is

$$X_{\text{eff}} = X_{\text{rms}} = \left[(1/T) \int_{0}^{T} x^{2}(t) dt \right]^{1/2}$$

For a sinusoidal waveform and full-wave rectified sine wave,

$$X_{\rm eff} = X_{\rm rms} = X_{\rm max} / \sqrt{2}$$

For a half-wave rectified sine wave,

$$X_{\rm eff} = X_{\rm rms} = X_{\rm max}/2$$

For a periodic signal.

$$X_{\rm rms} = \sqrt{X_{\rm dc}^2 + \sum_{\rm n=1}^{\infty} X_{\rm n}^2}$$
 where

 X_{dc} is the dc component of x(t)

 X_n is the rms value of the *n*th harmonic

Sine-Cosine Relations and Trigonometric Identities

$$\cos(\omega t) = \sin(\omega t + \pi/2) = -\sin(\omega t - \pi/2)$$

$$\sin(\omega t) = \cos(\omega t - \pi/2) = -\cos(\omega t + \pi/2)$$

Other trigonometric identities for sinusoids are given in the section on Trigonometry.

Phasor Transforms of Sinusoids

$$P[V_{\text{max}}\cos(\omega t + \phi)] = V_{\text{rms}} \angle \phi = \mathbf{V}$$

$$P[I_{\text{max}}\cos(\omega t + \theta)] = I_{\text{rms}} \angle \theta = \mathbf{I}$$

For a circuit element, the impedance is defined as the ratio of phasor voltage to phasor current.

$$Z = V/I$$

For a resistor. $\mathbf{Z}_{R} = R$

For a capacitor, $\mathbf{Z}_{\rm C} = \frac{1}{i\omega C} = jX_{\rm C}$

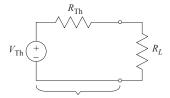
For an inductor,

$$\mathbf{Z}_{\mathrm{L}} = j\omega L = jX_{\mathrm{L}}$$
, where

 $X_{\rm C}$ and $X_{\rm L}$ are the capacitive and inductive reactances respectively defined as

$$X_C = -\frac{1}{\omega C}$$
 and $X_L = \omega L$

Impedances in series combine additively while those in parallel combine according to the reciprocal rule just as in the case of resistors.

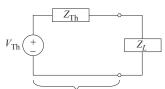

Maximum Power-Transfer Theorem

DC Circuits

Maximum power transfer to the load R_L occurs when $R_L = R_{Th}$.

$$P_{\text{max}} = \frac{V_{\text{Th}}^2}{4 R_{\text{Th}}}$$

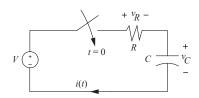
Efficiency:
$$\eta = \frac{P_L}{P_S} = \frac{R_L}{R_L + R_{Th}}$$



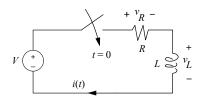
Thevenin Equivalent Circuit

AC Circuits

In an ac circuit maximum power transfer to the load impedance Z_i , occurs when the load impedance equals the complex conjugate of the Thevenin equivalent impedance:



Thevenin Equivalent Circuit


*If the load is purely resistive (R_i) then for maximum power transfer $R_I = |Z_{Th}|$

RC AND RL TRANSIENTS

$$t \ge 0; v_C(t) = v_C(0)e^{-t/RC} + V(1 - e^{-t/RC})$$
$$i(t) = \{ [V - v_C(0)]/R \} e^{-t/RC}$$

$$v_R(t) = i(t)R = [V - v_C(0)]e^{-t/RC}$$

$$t \ge 0; i(t) = i(0)e^{-Rt/L} + \frac{V}{R}(1 - e^{-Rt/L})$$

$$v_R(t) = i(t)R = i(0)Re^{-Rt/L} + V(1 - e^{-Rt/L})$$

$$v_L(t) = L(di/dt) = -i(0)Re^{-Rt/L} + Ve^{-Rt/L}$$

where v(0) and i(0) denote the initial conditions and the parameters RC and L/R are termed the respective circuit time constants.

RESONANCE

The radian resonant frequency for both parallel and series resonance situations is

$$\omega_0 = \frac{1}{\sqrt{LC}} = 2\pi f_0 \text{ rad/s}$$

Series Resonance

$$\omega_0 L = \frac{1}{\omega_0 C}$$

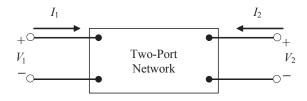
$$Z = R$$
 at resonance

$$Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR}$$

$$BW = \frac{\omega_0}{Q} \text{ rad/s}$$

Parallel Resonance

$$\omega_0 L = \frac{1}{\omega_0 C}$$


$$Z = R$$
 at resonance

$$Q = \omega_0 RC = \frac{R}{\omega_0 L}$$

$$BW = \frac{\omega_0}{Q} \text{ rad/s}$$

TWO-PORT PARAMETERS

A two-port network consists of two input and two output terminals as shown.

A two-port network may be represented by an equivalent circuit using a set of two-port parameters. Three commonly used sets of parameters are impedance, admittance, and hybrid parameters. The following table describes the equations used for each of these sets of parameters.

Parameter Type	Equations	Definitions
Impedance (z)	$V_1 = z_{11}I_1 + z_{12}I_2$ $V_2 = z_{21}I_1 + z_{22}I_2$	$ z_{11} = \frac{V_1}{I_1} \Big _{I_2 = 0} z_{12} = \frac{V_1}{I_2} \Big _{I_1 = 0} z_{21} = \frac{V_2}{I_1} \Big _{I_2 = 0} z_{22} = \frac{V_2}{I_2} \Big _{I_1 = 0} $
Admittance (y)	$I_1 = y_{11}V_1 + y_{12}V_2$ $I_2 = y_{21}V_1 + y_{22}V_2$	$y_{11} = \frac{I_1}{V_1}\Big _{V_2=0}$ $y_{12} = \frac{I_1}{V_2}\Big _{V_1=0}$ $y_{21} = \frac{I_2}{V_1}\Big _{V_2=0}$ $y_{22} = \frac{I_2}{V_2}\Big _{V_1=0}$
Hybrid (h)	$V_1 = h_{11}I_1 + h_{12}V_2$ $I_2 = h_{21}I_1 + h_{22}V_2$	$h_{11} = \frac{V_1}{I_1}\Big _{V_2=0}$ $h_{12} = \frac{V_1}{V_2}\Big _{I_1=0}$ $h_{21} = \frac{I_2}{I_1}\Big _{V_2=0}$ $h_{22} = \frac{I_2}{V_2}\Big _{I_1=0}$

AC POWER

Complex Power

Real power P (watts) is defined by

$$P = (\frac{1}{2})V_{\text{max}}I_{\text{max}}\cos\theta$$
$$= V_{\text{rms}}I_{\text{rms}}\cos\theta$$

where θ is the angle measured from V to I. If I leads (lags) V, then the power factor (pf),

$$pf = \cos \theta$$

is said to be a leading (lagging) pf.

Reactive power Q (vars) is defined by

$$Q = (\frac{1}{2})V_{\text{max}}I_{\text{max}}\sin\theta$$
$$= V_{\text{rms}}I_{\text{rms}}\sin\theta$$

Complex power S (volt-amperes) is defined by

$$\mathbf{S} = \mathbf{VI*} = P + jQ,$$

where I* is the complex conjugate of the phasor current.

$$S = VI$$

$$Q = VI \sin \theta$$

$$P = VI \cos \theta$$

Complex Power Triangle (Inductive Load)

For resistors, $\theta = 0$, so the real power is

$$P = V_{\rm rms} I_{\rm rms} = V_{\rm rms}^2 / R = I_{\rm rms}^2 R$$

Balanced Three-Phase (3-\$) Systems

The 3-φ line-phase relations are

for a delta
$$V_L = V_P \\ I_L = \sqrt{3} \, I_P$$
 for a wye
$$V_L = \sqrt{3} \, V_P = \sqrt{3} \, V_{LN}$$

$$I_L = I_P$$

where subscripts L and P denote line and phase respectively.

A balanced 3-φ, delta-connected load impedance can be converted to an equivalent wye-connected load impedance using the following relationship

$$\mathbf{Z}_{\Delta} = 3\mathbf{Z}_{Y}$$

The following formulas can be used to determine 3-φ power for balanced systems.

$$S = P + jQ$$

$$|S| = 3V_P I_P = \sqrt{3} V_L I_L$$

$$S = 3V_P I_P^* = \sqrt{3} V_L I_L (\cos \theta_P + j \sin \theta_P)$$

For balanced 3-\(\phi\), wye- and delta-connected loads

$$\mathbf{S} = \frac{V_L^2}{Z_V^*} \qquad \mathbf{S} = 3\frac{V_L^2}{Z_\Lambda^*}$$

where

S = total 3- ϕ complex power (VA)

S = total 3- ϕ apparent power (VA)

P = total 3- ϕ real power (W)

Q = total 3- ϕ reactive power (var)

= power factor angle of each phase

= rms value of the line-to-line voltage

= rms value of the line-to-neutral voltage

= rms value of the line current

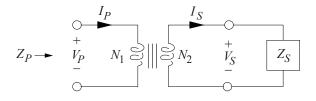
= rms value of the phase current I_{P}

For a 3-φ, wye-connected source or load with line-to-neutral voltages and a positive phrase sequence

$$\mathbf{V}_{an} = V_P \angle 0^{\circ}$$

$$\mathbf{V}_{bn} = V_P \angle -120^{\circ}$$

$$\mathbf{V}_{cn} = V_P \angle 120^\circ$$


The corresponding line-to-line voltages are

$$V_{ab} = \sqrt{3} V_P \angle 30^\circ$$

$$\mathbf{V}_{bc} = \sqrt{3} V_P \angle -90^\circ$$

$$V_{ca} = \sqrt{3} V_P \angle 150^\circ$$

Transformers (Ideal)

Turns Ratio

$$a = N_1/N_2$$

$$a = \left| \frac{\mathbf{V}_P}{\mathbf{V}_S} \right| = \left| \frac{\mathbf{I}_S}{\mathbf{I}_P} \right|$$

The impedance seen at the input is

$$\mathbf{Z}_P = a^2 \mathbf{Z}_S$$

AC Machines

The synchronous speed n_s for ac motors is given by

$$n_s = 120 f/p$$
, where

f = the line voltage frequency (Hz)

p = the number of poles

The slip for an induction motor is

slip =
$$(n_s - n)/n_s$$
, where

n = the rotational speed (rpm)

DC Machines

The armature circuit of a dc machine is approximated by a series connection of the armature resistance R_a , the armature inductance L_a , and a dependent voltage source of value

$$V_a = K_a n \phi$$
 volts, where

 K_a = constant depending on the design

n = armature speed (rpm)

 ϕ = the magnetic flux generated by the field

The field circuit is approximated by the field resistance R_f in series with the field inductance L_f Neglecting saturation, the magnetic flux generated by the field current I_f is

$$\phi = K_f I_f$$
 webers

The mechanical power generated by the armature is

$$P_m = V_a I_a$$
 watts

where I_a is the armature current. The mechanical torque produced is

$$T_m = (60/2\pi)K_a \phi I_a$$
 newton-meters.

Servomotors and Generators

Servomotors are electrical motors tied to a feedback system to obtain precise control. Smaller servomotors typically are dc motors.

A permanent magnet dc generator can be used to convert mechanical energy to electrical energy, as in a tachometer.

DC motor suppliers may provide data sheets with speed torque curves, motor torque constants (K_T) , and motor voltage constants (K_E) . An idealized dc motor at steady state exhibits the following relationships:

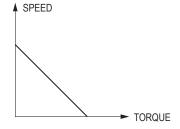
$$V = I R + K_{\rm E} \omega$$
$$T = K_{\rm T} I$$

where

V =voltage at the motor terminals

I =current through the motor

T =torque applied by the motor


R = resistance of the windings

 ω = rotational speed

When using consistent SI units [N•m/A and V/(rad/s)],

$$K_{\rm T} = K_{\rm E}$$
.

An ideal speed-torque curve for a servomotor, with constant V, would look like this:

ELECTROMAGNETIC DYNAMIC FIELDS

The integral and point form of Maxwell's equations are

$$\oint \mathbf{E} \cdot d\mathbf{l} = -\iint_{S} (\partial \mathbf{B}/\partial t) \cdot d\mathbf{S}$$

$$\oint \mathbf{H} \cdot d\mathbf{l} = I_{\text{enc}} + \iint_{S} (\partial \mathbf{D}/\partial t) \cdot d\mathbf{S}$$

$$\oiint_{S_{V}} \mathbf{D} \cdot d\mathbf{S} = \iiint_{V} \rho dv$$

$$\oiint_{S_{V}} \mathbf{B} \cdot d\mathbf{S} = 0$$

$$\nabla \times \mathbf{E} = -\partial \mathbf{B}/\partial t$$

$$\nabla \times \mathbf{H} = \mathbf{J} + \partial \mathbf{D}/\partial t$$

$$\nabla \cdot \mathbf{D} = \rho$$

$$\nabla \cdot \mathbf{B} = 0$$

LOSSLESS TRANSMISSION LINES

The wavelength, λ , of a sinusoidal signal is defined as the distance the signal will travel in one period.

$$\lambda = \frac{U}{f}$$

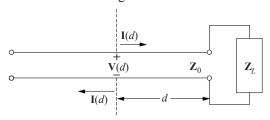
where U is the velocity of propagation and f is the frequency of the sinusoid.

The characteristic impedance, \mathbf{Z}_0 , of a transmission line is the input impedance of an infinite length of the line and is given by

$$\mathbf{Z}_0 = \sqrt{L/C}$$

where L and C are the per unit length inductance and capacitance of the line.

The reflection coefficient at the load is defined as


$$\Gamma = \frac{\mathbf{Z}_L - \mathbf{Z}_0}{\mathbf{Z}_L + \mathbf{Z}_0}$$

and the standing wave ratio SWR is

$$SWR = \frac{1 + |\Gamma|}{1 - |\Gamma|}$$

$$\beta$$
 = Propagation constant = $\frac{2\pi}{\lambda}$

For sinusoidal voltages and currents:

Voltage across the transmission line:

$$\mathbf{V}(d) = \mathbf{V}^{+} e^{j\beta d} + \mathbf{V}^{-} e^{-j\beta d}$$

Current along the transmission line:

$$\mathbf{I}(d) = \mathbf{I}^{+} e^{j\beta d} + \mathbf{I}^{-} e^{-j\beta d}$$

where
$$\mathbf{I}^+ = \mathbf{V}^+ / \mathbf{Z}_0$$
 and $\mathbf{I}^- = - \mathbf{V}^- / \mathbf{Z}_0$

Input impedance at d

$$\mathbf{Z}_{in}(d) = \mathbf{Z}_0 \frac{\mathbf{Z}_L + j \mathbf{Z}_0 \tan(\beta d)}{\mathbf{Z}_0 + j \mathbf{Z}_I \tan(\beta d)}$$

DIFFERENCE EQUATIONS

Difference equations are used to model discrete systems. Systems which can be described by difference equations include computer program variables iteratively evaluated in a loop, sequential circuits, cash flows, recursive processes, systems with time-delay components, etc. Any system whose input x(t) and output y(t) are defined only at the equally spaced intervals t = kT can be described by a difference equation.

First-Order Linear Difference Equation

A first-order difference equation is

$$y[k] + a_1 y[k-1] = x[k]$$

Second-Order Linear Difference Equation

A second-order difference equation is

$$y[k] + a_1 y[k-1] + a_2 y[k-2] = x[k]$$

z-Transforms

The transform definition is

$$F(z) = \sum_{k=0}^{\infty} f[k]z^{-k}$$

The inverse transform is given by the contour integral

$$f(k) = \frac{1}{2\pi i} \oint_{\Gamma} F(z) z^{k-1} dz$$

and it represents a powerful tool for solving linear shiftinvariant difference equations. A limited unilateral list of z-transform pairs follows:

f[k]	$\int F(z)$
$\delta[k]$, Impulse at $k = 0$	1
u[k], Step at $k = 0$	$1/(1-z^{-1})$
eta^k	$1/(1-\beta z^{-1})$
y[k-1]	$z^{-1}Y(z) + y(-1)$
y[k-2]	$z^{-2}Y(z) + y(-2) + y(-1)z^{-1}$
y[k+1]	zY(z) - zy(0)
y[k+2]	$z^{2}Y(z) - z^{2}y(0) - zy(1)$
$\sum_{m=0}^{\infty} X[k-m]h[m]$	H(z)X(z)
$ \lim_{k \to 0} f[k] $	$\left \lim_{z \to \infty} F(z) \right $
$ \lim_{k \to \infty} f[k] $	$\left \lim_{z \to 1} (1 - z^{-1}) F(z) \right $

[Note: The last two transform pairs represent the Initial Value Theorem (I.V.T.) and the Final Value Theorem (F.V.T.) respectively.]

CONVOLUTION

Continuous-time convolution:

$$v(t) = x(t) * y(t) = \int_{-\infty}^{\infty} x(\tau)y(t-\tau)d\tau$$

Discrete-time convolution:

$$v[n] = x[n] * y[n] = \sum_{k=-\infty}^{\infty} x[k]y[n-k]$$

DIGITAL SIGNAL PROCESSING

A discrete-time, linear, time-invariant (DTLTI) system with a single input x[n] and a single output y[n] can be described by a linear difference equation with constant coefficients of the form

$$y[n] + \sum_{i=1}^{k} b_i y[n-i] = \sum_{i=0}^{l} a_i x[n-i]$$

If all initial conditions are zero, taking a z-transform yields a transfer function

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{i=0}^{l} a_{i}z^{-i}}{1 + \sum_{i=1}^{k} b_{i}z^{-i}}$$

Two common discrete inputs are the unit-step function u[n]and the unit impulse function $\delta[n]$, where

$$u[n] = \begin{cases} 0 & n < 0 \\ 1 & n \ge 0 \end{cases} \text{ and } \delta[n] = \begin{cases} 1 & n = 0 \\ 0 & n \ne 0 \end{cases}$$

The impulse response h[n] is the response of a discrete-time system to $x[n] = \delta[n]$.

A finite impulse response (FIR) filter is one in which the impulse response h[n] is limited to a finite number of points:

$$h[n] = \sum_{i=0}^{k} a_i \delta[n-i]$$

The corresponding transfer function is given by

$$H(z) = \sum_{i=0}^{k} a_i z^{-i}$$

where *k* is the order of the filter.

An infinite impulse response (IIR) filter is one in which the impulse response h[n] has an infinite number of points:

$$h[n] = \sum_{i=0}^{\infty} a_i \delta[n-i]$$

COMMUNICATION THEORY AND CONCEPTS

The following concepts and definitions are useful for communications systems analysis.

Functions

Unit step, $u(t)$	$u(t) = \begin{cases} 0 \\ 1 \end{cases}$	t < 0 $t > 0$
Rectangular pulse, $\Pi(t/\tau)$	$\Pi(t/\tau) = \begin{cases} 1 \\ 0 \end{cases}$	$\left t/\tau \right < \frac{1}{2}$ $\left t/\tau \right > \frac{1}{2}$
Triangular pulse, $\Lambda(t/\tau)$	$\Lambda(t/\tau) = \begin{cases} 1 - t/\tau \\ 0 \end{cases}$	$ t/\tau < 1$ $ t/\tau > 1$
Sinc, sinc(at)	$\operatorname{sinc}(at) = \frac{\sin(at)}{at}$	$\frac{(a\pi t)}{u\pi t}$
Unit impulse, $\delta(t)$	$\int_{-\infty}^{+\infty} x(t+t_0)\delta(t)dt$ for every $x(t)$ defined continuous at $t=t_0$. The equivalent to $\int_{-\infty}^{+\infty} x(t)\delta(t-t_0)dt$	and This is

$$x(t) * h(t) = \int_{-\infty}^{+\infty} x(\lambda) h(t - \lambda) d\lambda$$

= $h(t) * x(t) = \int_{-\infty}^{+\infty} h(\lambda) x(t - \lambda) d\lambda$

In particular,

$$x(t)*\delta(t-t_0) = x(t-t_0)$$

The Fourier Transform and its Inverse

$$X(f) = \int_{-\infty}^{+\infty} x(t) e^{-j2\pi f t} dt$$
$$x(t) = \int_{-\infty}^{+\infty} X(f) e^{j2\pi f t} df$$

x(t) and X(f) form a Fourier transform pair.

$$x(t) \leftrightarrow X(f)$$

Frequency Response and Impulse Response

The frequency response H(f) of a system with input x(t) and output y(t) is given by

$$H(f) = \frac{Y(f)}{X(f)}$$

This gives

$$Y(f) = H(f)X(f)$$

The response h(t) of a linear time-invariant system to a unit-impulse input $\delta(t)$ is called the *impulse response* of the system. The response y(t) of the system to any input x(t) is the convolution of the input x(t) with the impulse response h(t):

$$y(t) = x(t) * h(t) = \int_{-\infty}^{+\infty} x(\lambda) h(t - \lambda) d\lambda$$
$$= h(t) * x(t) = \int_{-\infty}^{+\infty} h(\lambda) x(t - \lambda) d\lambda$$

Therefore, the impulse response h(t) and frequency response H(f) form a Fourier transform pair:

$$h(t) \leftrightarrow H(f)$$

Parseval's Theorem

The total energy in an energy signal (finite energy) x(t) is given by

$$E = \int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

Parseval's Theorem for Fourier Series

A periodic signal x(t) with period T_0 and fundamental frequency $f_0 = 1/T_0 = \omega_0/2\pi$ can be represented by a complexexponential Fourier series

$$x(t) = \sum_{n=-\infty}^{n=+\infty} X_n e^{jn2\pi f_0 t}$$

The average power in the dc component and the first Nharmonics is

$$P = \sum_{n=-N}^{n=+N} |X_n|^2 = X_0^2 + 2 \sum_{n=0}^{n=N} |X_n|^2$$

The total average power in the periodic signal x(t) is given by Parseval's theorem:

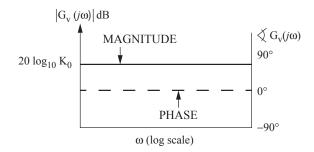
$$P = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} |x(t)|^2 dt = \sum_{n = -\infty}^{n = +\infty} |X_n|^2$$

Decibels and Bode Plots

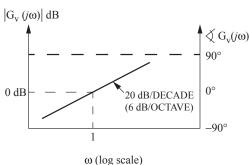
Decibels is a technique to measure the ratio of two powers:

$$dB = 10\log_{10} (P_{2}/P_{1})$$

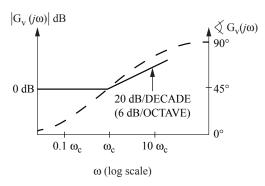
The definition can be modified to measure the ratio of two voltages:

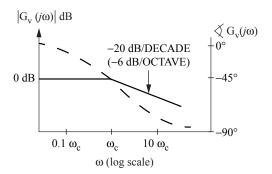

$$dB = 20\log_{10} V_2/V_1$$

Bode plots use a logarithmic scale for the frequency when plotting magnitude and phase response, where the magnitude is plotted in dB using a straight-line (asymptotic) approximation.


The information below summarizes Bode plots for several terms commonly encountered when determining voltage gain, $G_{\omega}(j\omega)$. Since logarithms are used to convert gain to decibels, the decibel response when these various terms are multiplied together can be added to determine the overall response.

Term	Magnitude Response $ G_v(j\omega) _{dB}$	Phase Response < G _v (jω)	Plot
K ₀	20log ₁₀ (K ₀)	0°	a
$(j\omega)^{\pm 1}$	±20log ₁₀ (ω)	±90°	b & c
$(1+j\omega/\omega_{\rm c})^{\pm 1}$	0 for $\omega << \omega_c$ ± 3 dB for $\omega = \omega_c$ $\pm 20\log_{10}(\omega)$ for $\omega >> \omega_c$	0° for $\omega << \omega_{c}$ $\pm 45^{\circ}$ for $\omega = \omega_{c}$ $\pm 90^{\circ}$ for $\omega >> \omega_{c}$	d & e


(a) K₀



$(d)(1+j\omega/\omega_c)$

(e) $(1 + j\omega/\omega_c)^{-1}$

Amplitude Modulation (AM)

$$x_{AM}(t) = A_c \left[A + m(t) \right] \cos(2\pi f_c t)$$
$$= A'_c \left[1 + am_n(t) \right] \cos(2\pi f_c t)$$

The *modulation index* is a, and the normalized message is

$$m_n(t) = \frac{m(t)}{\max|m(t)|}$$

The *efficiency* η is the percent of the total transmitted power that contains the message.

$$\eta = \frac{a^2 < m_n^2(t) >}{1 + a^2 < m_n^2(t) >} 100 \text{ percent}$$

where the mean-squared value or normalized average power in $m_n(t)$ is

$$< m_n^2(t) > = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{+T} |m_n(t)|^2 dt$$

If M(f) = 0 for |f| > W, then the *bandwidth* of $x_{AM}(t)$ is 2W. AM signals can be demodulated with an envelope detector or a synchronous demodulator.

Double-Sideband Modulation (DSB)

$$x_{DSB}(t) = A_c m(t) \cos(2\pi f_c t)$$

If M(f) = 0 for |f| > W, then the bandwidth of m(t) is W and the bandwidth of $x_{DSB}(t)$ is 2W. DSB signals must be demodulated with a synchronous demodulator. A Costas loop is often used.

Single-Sideband Modulation (SSB)

Lower Sideband:

$$x_{LSB}(t) \longleftrightarrow X_{LSB}(f) = X_{DSB}(f) \prod \left(\frac{f}{2f_c}\right)$$

Upper Sideband:

$$x_{USB}(t) \longleftrightarrow X_{USB}(f) = X_{DSB}(f) \left[1 - \Pi\left(\frac{f}{2f}\right) \right]$$

In either case, if M(f) = 0 for |f| > W, then the bandwidth of $x_{LSB}(t)$ or of $x_{USB}(t)$ is W. SSB signals can be demodulated with a synchronous demodulator or by carrier reinsertion and envelope detection.

Angle Modulation

$$x_{Ang}(t) = A_c \cos[2\pi f_c t + \phi(t)]$$

The *phase deviation* $\phi(t)$ is a function of the message m(t). The *instantaneous phase* is

$$\phi_i(t) = 2\pi f_i t + \phi(t)$$
 rad

The instantaneous frequency is

$$\omega_i(t) = \frac{d}{dt}\phi_i(t) = 2\pi f_c + \frac{d}{dt}\phi(t)$$
 rad/s

The frequency deviation is

$$\Delta\omega(t) = \frac{d}{dt}\phi(t)$$
 rad/s

Phase Modulation (PM)

The phase deviation is

$$\phi(t) = k_{P}m(t)$$
 rad

Frequency Modulation (FM)

The phase deviation is

$$\phi(t) = k_F \int_{-\infty}^{t} m(\lambda) d\lambda \quad \text{rad}$$

The frequency-deviation ratio is

$$D = \frac{k_F \max|m(t)|}{2\pi W}$$

where W is the message bandwidth. If $D \ll 1$ (narrowband FM), the 98% power bandwidth B is

$$B \cong 2W$$

If D > 1, (wideband FM) the 98% power bandwidth B is given by Carson's rule:

$$B \cong 2(D+1)W$$

The *complete* bandwidth of an angle-modulated signal is infinite.

A discriminator or a phase-lock loop can demodulate anglemodulated signals.

Sampled Messages

A low-pass message m(t) can be exactly reconstructed from uniformly spaced samples taken at a sampling frequency of $f_{\rm s} = 1/T_{\rm s}$

$$f_s > 2W$$
 where $M(f) = 0$ for $f > W$

The frequency 2W is called the Nyquist frequency. Sampled messages are typically transmitted by some form of pulse modulation. The minimum bandwidth B required for transmission of the modulated message is inversely proportional to the pulse length τ .

$$B \propto \frac{1}{\tau}$$

Frequently, for approximate analysis

$$B \cong \frac{1}{2\tau}$$

is used as the *minimum* bandwidth of a pulse of length τ .

Ideal-Impulse Sampling

$$\chi_{\delta}(t) = m(t) \sum_{n=-\infty}^{n=+\infty} \delta(t - nT_s) = \sum_{n=-\infty}^{n=+\infty} m(nT_s) \delta(t - nT_s)$$

$$\chi_{\delta}(f) = M(f) * \left[f_s \sum_{k=-\infty}^{k=+\infty} \delta(f - kf_s) \right]$$

$$= f_s \sum_{k=-\infty}^{k=+\infty} M(f - kf_s)$$

The message m(t) can be recovered from $x_{\delta}(t)$ with an ideal low-pass filter of bandwidth W if $f_s > 2$ W.

(PAM) Pulse-Amplitude Modulation—Natural Sampling

A PAM signal can be generated by multiplying a message by a pulse train with pulses having duration τ and period $T_{\rm s} = 1/f_{\rm s}$

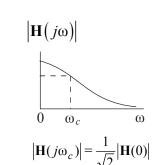
$$x_{N}(t) = m(t) \sum_{n=-\infty}^{n=+\infty} \prod_{s=-\infty} \left[\frac{t - nT_{s}}{\tau} \right] = \sum_{n=-\infty}^{n=+\infty} m(t) \prod_{s=-\infty} \left[\frac{t - nT_{s}}{\tau} \right]$$
$$X_{N}(f) = \tau f_{s} \sum_{k=-\infty}^{k=+\infty} \operatorname{sinc}(k\tau f_{s}) M(f - kf_{s})$$

The message m(t) can be recovered from $x_N(t)$ with an ideal low-pass filter of bandwidth W.

Pulse-Code Modulation (PCM)

PCM is formed by sampling a message m(t) and digitizing the sample values with an A/D converter. For an n-bit binary word length, transmission of a pulse-code-modulated lowpass message m(t), with M(f) = 0 for $f \ge W$, requires the transmission of at least 2nW binary pulses per second. A binary word of length n bits can represent q quantization levels:

$$q=2^n$$


The minimum bandwidth required to transmit the PCM message will be

$$B \propto 2nW = 2W \log_2 q$$

ANALOG FILTER CIRCUITS

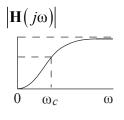
Analog filters are used to separate signals with different frequency content. The following circuits represent simple analog filters used in communications and signal processing.

First-Order Low-Pass Filters

$$v_1 \stackrel{+}{\longleftarrow} C \stackrel{R_1}{\longleftarrow} R_2 \stackrel{+}{\rightleftharpoons} v_2$$

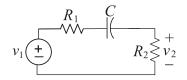
$$\mathbf{H}(s) = \frac{\mathbf{V}_2}{\mathbf{V}_1} = \frac{R_P}{R_1} \bullet \frac{1}{1 + sR_PC}$$

$$R_P = \frac{R_1 R_2}{R_1 + R_2}$$
 $\omega_c = \frac{1}{R_P C}$

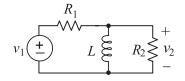

$$R_{1} \qquad L$$

$$V_{1} \stackrel{+}{\longleftarrow} \qquad R_{2} \stackrel{\downarrow}{\rightleftharpoons} \qquad V_{2}$$

$$H(s) = \frac{\mathbf{V}_{2}}{\mathbf{V}_{1}} = \frac{R_{2}}{R_{S}} \cdot \frac{1}{1 + s L/R_{S}}$$


$$R_{S} = R_{1} + R_{2} \qquad \omega_{c} = \frac{R_{S}}{L}$$

First-Order High-Pass Filters


$$\left| \mathbf{H}(j\omega_c) \right| = \frac{1}{\sqrt{2}} \left| \mathbf{H}(j\infty) \right|$$

Frequency Response

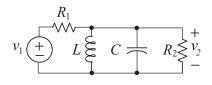
$$\mathbf{H}(s) = \frac{\mathbf{V}_2}{\mathbf{V}_1} = \frac{R_2}{R_S} \bullet \frac{sR_SC}{1 + sR_SC}$$

$$R_S = R_1 + R_2 \qquad \omega_c = \frac{1}{R_S C}$$

$$\mathbf{H}(s) = \frac{\mathbf{V}_2}{\mathbf{V}_1} = \frac{R_P}{R_1} \bullet \frac{s L/R_P}{1 + s L/R_P}$$

$$R_P = \frac{R_1 R_2}{R_1 + R_2} \qquad \omega_c = \frac{R_P}{L}$$

Band-Pass Filters

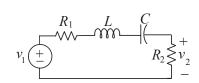

$$|\mathbf{H}(j\omega)|$$

$$0 \omega_L \omega_0 \omega_U \omega$$

$$\left|\mathbf{H}(j\omega_{L})\right| = \left|\mathbf{H}(j\omega_{U})\right| = \frac{1}{\sqrt{2}}\left|\mathbf{H}(j\omega_{0})\right|$$

3-dB Bandwidth = $BW = \omega_U - \omega_L$

Frequency Response

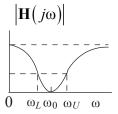


$$\mathbf{H}(s) = \frac{\mathbf{V}_2}{\mathbf{V}_1} = \frac{1}{R_1 C} \bullet \frac{s}{s^2 + s/R_P C + 1/LC}$$

$$R_P = \frac{R_1 R_2}{R_1 + R_2} \qquad \qquad \omega_0 = \frac{1}{\sqrt{LC}}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

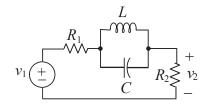
$$|\mathbf{H}(j\omega_0)| = \frac{R_2}{R_1 + R_2} = \frac{R_P}{R_1}$$
 $BW = \frac{1}{R_PC}$


$$\mathbf{H}(s) = \frac{\mathbf{V}_2}{\mathbf{V}_1} = \frac{R_2}{L} \cdot \frac{s}{s^2 + sR_S/L + 1/LC}$$

$$R_S = R_1 + R_2$$

$$R_S = R_1 + R_2 \qquad \qquad \omega_0 = \frac{1}{\sqrt{LC}}$$

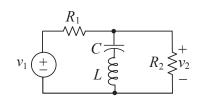
$$|\mathbf{H}(j\omega_0)| = \frac{R_2}{R_1 + R_2} = \frac{R_2}{R_S}$$
 $BW = \frac{R_S}{L}$


Band-Reject Filters

$$|\mathbf{H}(j\omega_L)| = |\mathbf{H}(j\omega_U)| = \left[1 - \frac{1}{\sqrt{2}}\right] |\mathbf{H}(0)|$$

3-dB Bandwidth = $BW = \omega_U - \omega_L$

Frequency Response



$$\mathbf{H}(s) = \frac{\mathbf{V}_2}{\mathbf{V}_1} = \frac{R_2}{R_S} \cdot \frac{s^2 + 1/LC}{s^2 + s/R_SC + 1/LC}$$

$$R_{S} = R_{1} + R_{2}$$

$$R_S = R_1 + R_2 \qquad \omega_0 = \frac{1}{\sqrt{LC}}$$

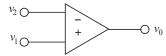
$$|\mathbf{H}(0)| = \frac{R_2}{R_1 + R_2} = \frac{R_2}{R_S}$$
 $BW = \frac{1}{R_SC}$

$$\mathbf{H}(s) = \frac{\mathbf{V}_2}{\mathbf{V}_1} = \frac{R_P}{R_1} \cdot \frac{s^2 + 1/LC}{s^2 + sR_P/L + 1/LC}$$

$$R_P = \frac{R_1 R_2}{R_1 + R_2}$$
 $\omega_0 = \frac{1}{\sqrt{LC}}$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$|\mathbf{H}(0)| = \frac{R_2}{R_1 + R_2} = \frac{R_P}{R_1}$$
 $BW = \frac{R_P}{L}$

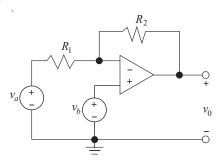

$$BW = \frac{R_P}{L}$$

OPERATIONAL AMPLIFIERS

Ideal

$$v_0 = A(v_1 - v_2)$$

where



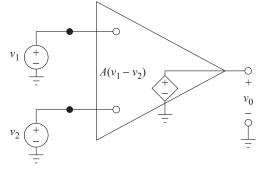
A is large ($> 10^4$), and

 $v_1 - v_2$ is small enough so as not to saturate the amplifier.

For the ideal operational amplifier, assume that the input currents are zero and that the gain A is infinite so when operating linearly $v_2 - v_1 = 0$.

For the two-source configuration with an ideal operational amplifier,

$$v_0 = -\frac{R_2}{R_1} v_a + \left(1 + \frac{R_2}{R_1}\right) v_b$$


If $v_a = 0$, we have a non-inverting amplifier with

$$v_0 = \left(1 + \frac{R_2}{R_1}\right) v_b$$

If $v_b = 0$, we have an inverting amplifier with

$$v_0 = -\frac{R_2}{R_1} v_a$$

Common Mode Rejection Ratio (CMRR)

Equivalent Circuit of an Ideal Op Amp

In the op amp circuit shown the differential input is defined as:

$$V_{id} = V_2 - V_1$$

The common-mode input voltage is defined as:

$$v_{lcm} = (v_1 + v_2)/2$$

The output voltage is given by:

$$v_{O} = Av_{id} + A_{cm}v_{Icm}$$

In an ideal op amp $A_{cm} = 0$. In a non-ideal op amp the CMRR is used to measure the relative degree of rejection between the differential gain and common-mode gain.

$$CMRR = \frac{|A|}{|A_{cm}|}$$

CMRR is usually expressed in decibels as:

$$CMRR = 20 \log_{10} \left[\frac{|A|}{|A_{cm}|} \right]$$

SOLID-STATE ELECTRONICS AND DEVICES

Conductivity of a semiconductor material:

$$\sigma = q (n\mu_n + p\mu_n)$$
, where

 $\mu_n \equiv$ electron mobility

 $\mu_n \equiv \text{hole mobility}$

 $n \equiv$ electron concentration

 $p \equiv \text{hole concentration}$

 $q \equiv \text{charge on an electron } (1.6 \times 10^{-19} \text{C})$

Doped material:

p-type material;
$$p_p \approx N_a$$

n-type material; $n_n \approx N_d$

Carrier concentrations at equilibrium

$$(p)(n) = n_i^2$$
, where

 $n_i \equiv \text{intrinsic concentration}$.

Built-in potential (contact potential) of a p-n junction:

$$V_0 = \frac{kT}{q} \ln \frac{N_a N_d}{n_i^2}$$

Thermal voltage

$$V_T = \frac{kT}{a} \approx 0.026 \text{ V} \text{ at } 300 \text{K}$$

 N_a = acceptor concentration

 N_d = donor concentration

T = temperature (K)

 $k = \text{Boltzmann's Constant} = 1.38 \times 10^{-23} \text{ J/K}$

Capacitance of abrupt p-n junction diode

$$C(V) = C_0 / \sqrt{1 - V/V_{bi}}$$
, where:

 C_0 = junction capacitance at V = 0

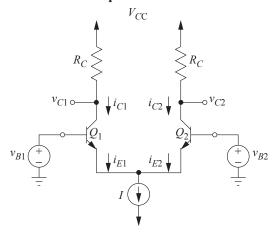
V =potential of anode with respect to cathode

 V_{bi} = junction contact potential

Resistance of a diffused layer is

$$R = R_s(L/W)$$
, where:

 R_s = sheet resistance = ρ/d in ohms per square

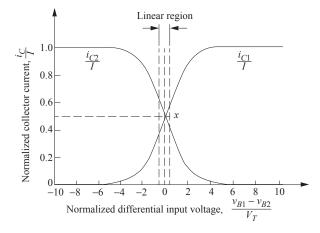

 ρ = resistivity

d =thickness

L = length of diffusion

W =width of diffusion

♦ Differential Amplifier



A Basic BJT Differential Amplifier

A basic BJT differential amplifier consists of two matched transistors whose emitters are connected and that are biased by a constant-current source. The following equations govern the operation of the circuit given that neither transistor is operating in the saturation region.

$$\begin{split} \frac{i_{E1}}{i_{E2}} &= e^{(v_{B1} - v_{B2})} / V_T \\ i_{E1} + i_{E2} &= I \\ i_{E1} &= \frac{I}{1 + e^{(v_{B2} - v_{B1})} / V_T} \\ i_{C1} &= \alpha I_{E1} \end{split} \qquad i_{E2} = \frac{I}{1 + e^{(v_{B1} - v_{B2})} / V_T} \\ i_{C2} &= \alpha I_{E2} \end{split}$$

The following figure shows a plot of two normalized collector currents versus normalized differential input voltage for a circuit using transistors with $\alpha \cong 1$.

Transfer characteristics of the BJT differential amplifier with $\alpha \cong 1$

Sedra, Adel, and Kenneth Smith, Microelectronic Circuits, 3rd ed., ©1991, pp. 408 and 412, by permission of Oxford University Press.

DIODES						
Device and Schematic Symbol	Ideal $I-V$ Relationship	Piecewise-Linear Approximation of the $I-V$ Relationship	Mathematical I – V Relationship			
(Junction Diode) $ \begin{array}{c cccc} i_D & & & & \\ \hline O & & & & \\ A & + & v_D & - & C \end{array} $	v_D	V_{B} V_{D} $(0.5 \text{ to } 0.7)V$ $V_{B} = \text{breakdown voltage}$	Shockley Equation $i_D \approx I_s \Big[e^{(v_D/\eta V_T)} - 1 \Big]$ where $I_s = \text{saturation current}$ $\eta = \text{emission coefficient, typically 1 for Si}$ $V_T = \text{thermal voltage} = \frac{kT}{q}$			
(Zener Diode) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\frac{-v_z}{ }$ $\frac{v_D}{ }$	v_{D} v_{D} $(0.5 \text{ to } 0.7)V$ $V_{Z} = \text{Zener voltage}$	Same as above.			

NPN Bipolar Junction Transistor (BJT)					
Schematic Symbol	Mathematical Relationships	Large-Signal (DC) Equivalent Circuit	Low-Frequency Small-Signal (AC) Equivalent Circuit		
i_B i_C i_E i_E NPN – Transistor	$i_E = i_B + i_C$ $i_C = \beta i_B$ $i_C = \alpha i_E$ $\alpha = \beta/(\beta + 1)$ $i_C \approx I_S e^{(V_{BE}/V_T)}$ $I_S = \text{emitter saturation current}$ $V_T = \text{thermal voltage}$ Note: These relationships are valid in the active mode of operation.	Active Region: base emitter junction forward biased; base collector juction reverse biased $ \begin{array}{c} C \\ \downarrow i_{B} \\ B \\ \downarrow i_{B} \end{array} $ Bo $\downarrow i_{I} \\ \downarrow i_{B} $ Saturation Region: both junctions forward biased $ \begin{array}{c} C \\ \downarrow i_{B} \end{array} $ $ \begin{array}{c} \downarrow i_{C} $ $ \begin{array}{c} \downarrow i_{C} \end{array} $ $ \begin{array}{c} \downarrow i_{C} $ $ \begin{array}{c} \downarrow i_{C} \end{array} $ $ \begin{array}{c} \downarrow i_{C} $ $ \begin{array}{c} \downarrow i_{C} $ $ \begin{array}{c} \downarrow i_{C} \end{array} $ $ \begin{array}{c} \downarrow i_{C} $ $ \begin{array}{c} \downarrow i_{C} $ $ \begin{array}{c} \downarrow i_{C} \end{array} $ $ \begin{array}{c} \downarrow i_{C} $ $ \begin{array}{c} \downarrow i_{C$	Low Frequency: $g_{m} \approx I_{CQ}/V_{T}$ $r_{\pi} \approx \beta/g_{m},$ $r_{o} = \left[\frac{\partial v_{CE}}{\partial i_{c}}\right]_{Q_{point}} \approx \frac{V_{A}}{I_{CQ}}$ where $I_{CQ} = \text{dc collector current at the } Q_{point}$ $V_{A} = \text{Early voltage}$ $i_{b}(t)$ R $r_{\pi} \geqslant g_{m}v_{be}$ $i_{e}(t)$ E		
B i_B i_C E E $PNP - Transistor$	Same as for NPN with current directions and voltage polarities reversed.	Cutoff Region: both junctions reverse biased C B E Same as NPN with current directions	Same as for NPN.		
		and voltage polarities reversed			

	N-Channel Junction Field Effect Transistors (JFETs)						
C-bb-l	and Depletion MOSFETs (Low and Medium						
Schematic Symbol	Mathematical Relationships	Small-Signal (AC) Equivalent Circuit					
N-CHANNEL JFET D O $ i_D$	$\frac{\text{Cutoff Region:}}{i_D = 0} \ v_{GS} < V_p$	$g_m = \frac{2\sqrt{I_{DSS}I_D}}{ V_p }$ in saturation region					
	Triode Region: $v_{GS} > V_p$ and $v_{GD} > V_p$ $i_D = (I_{DSS}/V_p^2)[2v_{DS}(v_{GS} - V_p) - v_{DS}^2]$ Saturation Region: $v_{GS} > V_p$ and $v_{GD} < V_p$ $i_D = I_{DSS}(1 - v_{GS}/V_p)^2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
P-CHANNEL JFET D i i i i i i i i i i i i i i i i i	where I_{DSS} = drain current with $v_{GS} = 0$ (in the saturation region) $=KV_p^2$, K = conductivity factor, and	where					
$G \circ \longrightarrow i_S$	V_p = pinch-off voltage.	$r_d = \left \frac{\partial v_{ds}}{\partial i_d} \right _{Q_{point}}$					
N-CHANNEL DEPLETION MOSFET (NMOS)							
$G \circ \longrightarrow \bigvee_{i_D}^{\mathbf{D}} \bigvee_{i_S}^{\mathbf{B}}$							
SIMPLIFIED SYMBOL							
$G \circ \longrightarrow \downarrow i_D$ i_S $g \circ \longrightarrow \downarrow i_S$							
P-CHANNEL DEPLETION MOSFET (PMOS)	Same as for N-Channel with current directions and voltage polarities reversed.	Same as for N-Channel.					
$G \circ \bigcup_{D} i_{D}$ $G \circ \bigcup_{S} i_{S}$							
SIMPLIFIED SYMBOL D i_D							
$G \circ \longrightarrow i_S$							

Enhancement MOSFET (Low and Medium Frequency)					
Schematic Symbol	Mathematical Relationships	Small-Signal (AC) Equivalent Circuit			
N-CHANNEL ENHANCEMENT MOSFET (NMOS) O O O O O O O O O O O O O	$\frac{\text{Cutoff Region: } v_{GS} < V_t}{i_D = 0}$ $\frac{\text{Triode Region: } v_{GS} > V_t \text{ and } v_{GD} > V_t}{i_D = K \left[2v_{DS} \left(v_{GS} - V_t \right) - v_{DS}^2 \right]}$ $\frac{\text{Saturation Region: } v_{GS} > V_t \text{ and } v_{GD} < V_t}{i_D = K \left(v_{GS} - V_t \right)^2}$ where $K = \text{conductivity factor}$ $V_t = \text{threshold voltage}$	$g_{m} = 2K(v_{GS} - V_{t}) \text{ in saturation region}$ $G \qquad \qquad \qquad D \qquad \qquad D \qquad \qquad P_{t} \qquad \qquad $			
P-CHANNEL ENHANCEMENT MOSFET (PMOS) D i _D i _S S	Same as for N-channel with current directions and voltage polarities reversed.	Same as for N-channel.			
G O I I I I I I I I I I I I I I I I I I					

NUMBER SYSTEMS AND CODES

An unsigned number of base-r has a decimal equivalent D defined by

$$D = \sum_{k=0}^{n} a_k r^k + \sum_{i=1}^{m} a_i r^{-i}$$
, where

 a_k = the (k + 1) digit to the left of the radix point and a_i = the *i*th digit to the right of the radix point.

Binary Number System

In digital computers, the base-2, or binary, number system is normally used. Thus the decimal equivalent, D, of a binary number is given by

$$D = a_k 2^k + a_{k-1} 2^{k-1} + \dots + a_0 + a_{-1} 2^{-1} + \dots$$

Since this number system is so widely used in the design of digital systems, we use a short-hand notation for some powers of two:

 2^{10} = 1,024 is abbreviated "k" or "kilo"

 2^{20} = 1.048.576 is abbreviated "M" or "mega"

Signed numbers of base-*r* are often represented by the radix complement operation. If M is an N-digit value of base-r, the radix complement R(M) is defined by

$$R(M) = r^N - M$$

The 2's complement of an *N*-bit binary integer can be written

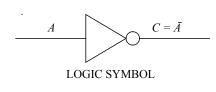
2's Complement
$$(M) = 2^N - M$$

This operation is equivalent to taking the 1's complement (inverting each bit of M) and adding one.

The following table contains equivalent codes for a four-bit binary value.

Binary Base-2	Decimal Base-10	Hexa- decimal Base-16	Octal Base-8	BCD Code	Gray Code
0000	0	0	0	0	0000
0001	1	1	1	1	0001
0010	2	2	2	2	0011
0011	3	3	3	3	0010
0100	4	4	4	4	0110
0101	5	5	5	5	0111
0110	6	6	6	6	0101
0111	7	7	7	7	0100
1000	8	8	10	8	1100
1001	9	9	11	9	1101
1010	10	Α	12		1111
1011	11	В	13		1110
1100	12	C	14		1010
1101	13	D	15		1011
1110	14	E	16		1001
1111	15	F	17		1000

LOGIC OPERATIONS AND BOOLEAN ALGEBRA

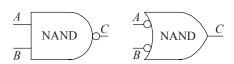

Three basic logic operations are the "AND (•)," "OR (+)," and "Exclusive-OR ⊕" functions. The definition of each function, its logic symbol, and its Boolean expression are given in the following table.

Function Inputs	A AND C	A OR C	A XOR C
A B	$C = A \cdot B$	C = A + B	$C = A \oplus B$
0 0	0	0	0
0 1	0	1	1
1 0	0	1	1
1 1	1	1	0

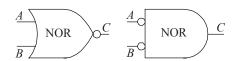
As commonly used, A AND B is often written AB or $A \bullet B$.

The not operator inverts the sense of a binary value $(0 \rightarrow 1, 1 \rightarrow 0)$

NOT OPERATOR

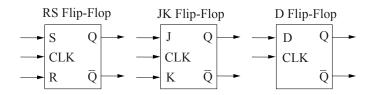

Input	Output
A	$C = \bar{A}$
0	1
1	0

De Morgan's Theorems


first theorem: $\overline{A + B} = \overline{A} \cdot \overline{B}$ second theorem: $\overline{A \cdot B} = \overline{A} + \overline{B}$

These theorems define the NAND gate and the NOR gate. Logic symbols for these gates are shown below.

NAND Gates:
$$\overline{A \bullet B} = \overline{A} + \overline{B}$$



NOR Gates:
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

FLIP-FLOPS

A flip-flop is a device whose output can be placed in one of two states, 0 or 1. The flip-flop output is synchronized with a clock (CLK) signal. Q_n represents the value of the flipflop output before CLK is applied, and Q_{n+1} represents the output after CLK has been applied. Three basic flip-flops are described below.

SR	Q_{n+1}	JK	Q_{n+1}	D	Q_{n+1}
00	Q_n no change	00	Q_n no change	0	0
01	0	01	0	1	1
10	1	10	1		
11	x invalid	11	\overline{Q}_n toggle		

	Composite Flip-Flop State Transition								
Q_n	Q_{n+1}	. S R J K							
0	0	0	X	0	X	0			
0	1	1	0	1	X	1			
1	0	0	1	X	1	0			
1	1	X	0	X	0	1			

Switching Function Terminology

Minterm, m_i – A product term which contains an occurrence of every variable in the function.

Maxterm, M_i – A sum term which contains an occurrence of every variable in the function.

Implicant – A Boolean algebra term, either in sum or product form, which contains one or more minterms or maxterms of a function

Prime Implicant – An implicant which is not entirely contained in any other implicant.

Essential Prime Implicant – A prime implicant which contains a minterm or maxterm which is not contained in any other prime implicant.

A function can be described as a sum of minterms using the notation

$$F(ABCD) = \sum m(h, i, j,...)$$

= $m_h + m_i + m_i + ...$

A function can be described as a product of maxterms using the notation

$$G(ABCD) = \Pi M(h, i, j,...)$$

= $M_h \bullet M_i \bullet M_j \bullet ...$

A function represented as a sum of minterms only is said to be in canonical sum of products (SOP) form. A function represented as a product of maxterms only is said to be in canonical product of sums (POS) form. A function in canonical SOP form is often represented as a minterm list, while a function in canonical POS form is often represented as a maxterm list.

A Karnaugh Map (K-Map) is a graphical technique used to represent a truth table. Each square in the K-Map represents one minterm, and the squares of the K-Map are arranged so that the adjacent squares differ by a change in exactly one variable. A four-variable K-Map with its corresponding minterms is shown below. K-Maps are used to simplify switching functions by visually identifying all essential prime implicants.

CI	D			
AB	00	01	11	10
00	m_0	m_1	m_3	m_2
01	m ₄	m ₅	m ₇	m ₆
11	m ₁₂	m ₁₃	m ₁₅	m ₁₄
10	m ₈	m ₉	m_{11}	m ₁₀

INDUSTRIAL ENGINEERING

LINEAR PROGRAMMING

The general linear programming (LP) problem is:

Maximize
$$Z = c_1 x_1 + c_2 x_2 + ... + c_n x_n$$

Subject to:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m$$

$$x_1, \dots, x_n \ge 0$$

An LP problem is frequently reformulated by inserting non-negative slack and surplus variables. Although these variables usually have zero costs (depending on the application), they can have non-zero cost coefficients in the objective function. A slack variable is used with a "less than" inequality and transforms it into an equality. For example, the inequality $5x_1 + 3x_2 + 2x_3 \le 5$ could be changed to $5x_1 + 3x_2 + 2x_3 + s_1 = 5$ if s_1 were chosen as a slack variable. The inequality $3x_1 + x_2 - 4x_3 \ge 10$ might be transformed into $3x_1 + x_2 - 4x_3 - s_2 = 10$ by the addition of the surplus variable s_2 . Computer printouts of the results of processing an LP usually include values for all slack and surplus variables, the dual prices, and the reduced costs for each variable.

Dual Linear Program

Associated with the above linear programming problem is another problem called the dual linear programming problem. If we take the previous problem and call it the primal problem, then in matrix form the primal and dual problems are respectively:

<u>Primal</u>	<u>Dual</u>
Maximize $Z = cx$	Minimize $W = yb$
Subject to: $Ax \le b$	Subject to: $yA \ge a$
$x \ge 0$	$y \ge 0$

It is assumed that if A is a matrix of size $[m \times n]$, then y is a $[1 \times m]$ vector, c is a $[1 \times n]$ vector, d is an $[m \times 1]$ vector, and d is an $[n \times 1]$ vector.

Network Optimization

Assume we have a graph G(N, A) with a finite set of nodes N and a finite set of arcs A. Furthermore, let

$$N = \{1, 2, \ldots, n\}$$

 x_{ii} = flow from node i to node j

 c_{ii} = cost per unit flow from i to j

 u_{ii} = capacity of arc (i, j)

 b_i = net flow generated at node i

We wish to minimize the total cost of sending the available supply through the network to satisfy the given demand. The minimal cost flow model is formulated as follows:

Minimize
$$Z = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

subject to

$$\sum_{i=1}^{n} x_{ij} - \sum_{i=1}^{n} x_{ji} = b_i \text{ for each node } i \in \mathbb{N}$$

and

$$0 \le x_{ii} \le u_{ii}$$
 for each arc $(i, j) \in A$

The constraints on the nodes represent a conservation of flow relationship. The first summation represents total flow out of node i, and the second summation represents total flow into node i. The net difference generated at node i is equal to b_i .

Many models, such as shortest-path, maximal-flow, assignment and transportation models, can be reformulated as minimal-cost network flow models.

PROCESS CAPABILITY

Actual Capability

$$PCR_k = C_{pk} = \min\left(\frac{\mu - LSL}{3\sigma}, \frac{USL - \mu}{3\sigma}\right)$$

Potential Capability (i.e., Centered Process)

$$PCR = C_p = \frac{USL - LSL}{6\sigma}$$
, where

 μ and σ are the process mean and standard deviation, respectively, and *LSL* and *USL* are the lower and upper specification limits, respectively.

QUEUEING MODELS

Definitions

 P_n = probability of *n* units in system

L = expected number of units in the system

 L_a = expected number of units in the queue

W = expected waiting time in system

 W_a = expected waiting time in queue

 λ = mean arrival rate (constant)

 $\tilde{\lambda}$ = effective arrival rate

u = mean service rate (constant)

 ρ = server utilization factor

s = number of servers

Kendall notation for describing a queueing system:

A/B/s/M

A =the arrival process

B =the service time distribution

s = the number of servers

M = the total number of customers including those in service

Fundamental Relationships

$$L = \lambda W$$

$$L_q = \lambda W_q$$

$$W = W_q + 1/\mu$$

$$\rho = \lambda/(s\mu)$$

Single Server Models (s = 1)

Poisson Input—Exponential Service Time: $M = \infty$

$$P_{0} = 1 - \lambda/\mu = 1 - \rho$$

$$P_{n} = (1 - \rho)\rho^{n} = P_{0}\rho^{n}$$

$$L = \rho/(1 - \rho) = \lambda/(\mu - \lambda)$$

$$L_{q} = \lambda^{2}/[\mu (\mu - \lambda)]$$

$$W = 1/[\mu (1 - \rho)] = 1/(\mu - \lambda)$$

$$W_{a} = W - 1/\mu = \lambda/[\mu (\mu - \lambda)]$$

Finite queue:
$$M < \infty$$

 $\tilde{\lambda} = \lambda (1 - P_m)$

$$P_0 = (1 - \rho)/(1 - \rho^{M+1})$$

$$P_n = [(1 - \rho)/(1 - \rho^{M+1})]\rho^n$$

$$L = \rho/(1 - \rho) - (M+1)\rho^{M+1}/(1 - \rho^{M+1})$$

$$L_q = L - (1 - P_0)$$

$$W = L/\tilde{\lambda}$$

$$W = W_a + 1/\mu$$

Poisson Input—Arbitrary Service Time

Variance σ^2 is known. For constant service time, $\sigma^2 = 0$.

$$P_0 = 1 - \rho$$

$$L_q = (\lambda^2 \sigma^2 + \rho^2)/[2 (1 - \rho)]$$

$$L = \rho + L_q$$

$$W_q = L_q / \lambda$$

$$W = W_q + 1/\mu$$

Poisson Input—Erlang Service Times, $\sigma^2 = 1/(k\mu^2)$

$$\begin{split} L_q &= [(1+k)/(2k)][(\lambda^2)/(\mu (\mu - \lambda))] \\ &= [\lambda^2/(k\mu^2) + \rho^2]/[2(1-\rho)] \\ W_q &= [(1+k)/(2k)]\{\lambda / [\mu (\mu - \lambda)]\} \\ W &= W_q + 1/\mu \end{split}$$

Multiple Server Model (s > 1)

Poisson Input—Exponential Service Times

$$P_{0} = \begin{bmatrix} \sum_{n=0}^{s-1} \frac{\left(\frac{\lambda}{\mu}\right)^{n}}{n!} + \frac{\left(\frac{\lambda}{\mu}\right)^{s}}{s!} \left(\frac{1}{1 - \frac{\lambda}{s\mu}}\right) \end{bmatrix}^{1}$$

$$= 1 / \begin{bmatrix} \sum_{n=0}^{s-1} \frac{\left(s\rho\right)^{n}}{n!} + \frac{\left(s\rho\right)^{s}}{s!(1 - \rho)} \end{bmatrix}$$

$$L_{q} = \frac{P_{0} \left(\frac{\lambda}{\mu}\right)^{s} \rho}{s!(1 - \rho)^{2}}$$

$$= \frac{P_{0}s^{s}\rho^{s+1}}{s!(1 - \rho)^{2}}$$

$$P_{n} = P_{0} \left(\frac{\lambda}{\mu}\right)^{n} / n! \qquad 0 \le n \le s$$

$$P_{n} = P_{0} \left(\frac{\lambda}{\mu}\right)^{n} / \left(s!s^{n-s}\right) \quad n \ge s$$

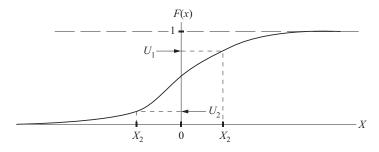
$$W_{q} = L_{q} / \lambda$$

$$W = W_{q} + 1 / \mu$$

$$L = L_{q} + \lambda / \mu$$

Calculations for P_0 and L_q can be time consuming; however, the following table gives formulas for 1, 2, and 3 servers.

S	P_0	L_q
1	$1-\rho$	$\rho^2/(1-\rho)$
2	$(1 - \rho)/(1 + \rho)$	$2\rho^{3}/(1-\rho^{2})$
3	$2(1-\rho)$	9ρ ⁴
	${2+4\rho+3\rho^2}$	$2+2\rho-\rho^2-3\rho^3$


SIMULATION

1. Random Variate Generation

The linear congruential method of generating pseudo-random numbers U_i between 0 and 1 is obtained using $Z_n = (aZ_{n-1} + C)$ \pmod{m} where a, C, m, and Z_0 are given nonnegative integers and where $U_i = Z_i/m$. Two integers are equal (mod m) if their remainders are the same when divided by m.

2. Inverse Transform Method

If *X* is a continuous random variable with cumulative distribution function F(x), and U_i is a random number between 0 and 1, then the value of X_i corresponding to U_i can be calculated by solving $U_i = F(x_i)$ for x_i . The solution obtained is $x_i = F^{-1}(U_i)$, where F^{-1} is the inverse function of F(x).

Inverse Transform Method for Continuous Random Variables

FORECASTING

Moving Average

$$\hat{d}_t = \frac{\sum_{i=1}^n d_{t-i}}{n}$$
, where

 \hat{d}_t = forecasted demand for period t

 d_{t-i} = actual demand for *i*th period preceding t

= number of time periods to include in the moving average

Exponentially Weighted Moving Average

$$\hat{d}_t = \alpha d_{t-1} + (1 - \alpha) \hat{d}_{t-1}$$
, where

= forecasted demand for t

= smoothing constant, $0 \le \alpha \le 1$

RANDOMIZED BLOCK DESIGN

The experimental material is divided into *n* randomized blocks. One observation is taken at random for every treatment within the same block. The total number of observations is N = nk. The total value of these observations is equal to T. The total value of observations for treatment i is T_i . The total value of observations in block j is B_i .

$$C = T^{2}/N$$

$$SS_{\text{total}} = \sum_{i=1}^{k} \sum_{j=1}^{n} x_{ij}^{2} - C$$

$$SS_{\text{blocks}} = \sum_{j=1}^{n} \left(B_{j}^{2}/k \right) - C$$

$$SS_{\text{treatments}} = \sum_{i=1}^{k} \left(T_{i}^{2}/n \right) - C$$

$$SS_{\text{error}} = SS_{\text{total}} - SS_{\text{blocks}} - SS_{\text{treatments}}$$

2ⁿ FACTORIAL EXPERIMENTS

Factors: $X_1, X_2, ..., X_n$

Levels of each factor: 1, 2 (sometimes these levels are represented by the symbols – and +, respectively)

= number of observations for each experimental condition (treatment)

 E_i = estimate of the effect of factor X_i , i = 1, 2, ..., n

 E_{ii} = estimate of the effect of the interaction between factors X_i and X_i

 \overline{Y}_{ik} = average response value for all $r2^{n-1}$ observations having X_i set at level k, k = 1, 2

 \overline{Y}_{ii}^{km} = average response value for all $r2^{n-2}$ observations having X_i set at level k, k = 1, 2, and X_j set at level m, m = 1, 2.

$$E_{i} = \overline{Y}_{i2} - \overline{Y}_{i1}$$

$$E_{ij} = \frac{\left(\overline{Y}_{ij}^{22} - \overline{Y}_{ij}^{21}\right) - \left(\overline{Y}_{ij}^{12} - \overline{Y}_{ij}^{11}\right)}{2}$$

ANALYSIS OF VARIANCE FOR 2ⁿ FACTORIAL DESIGNS

Main Effects

Let E be the estimate of the effect of a given factor, let L be the orthogonal contrast belonging to this effect. It can be proved that

$$E = \frac{L}{2^{n-1}}$$

$$L = \sum_{c=1}^{m} a_{(c)} \overline{Y}_{(c)}$$

$$SS_{L} = \frac{rL^{2}}{2^{n}}, \text{ where}$$

m = number of experimental conditions $(m = 2^n \text{ for } n \text{ factors})$

 $a_{(c)} = -1$ if the factor is set at its low level (level 1) in experimental condition c

 $a_{(c)} = +1$ if the factor is set at its high level (level 2) in experimental condition c

r = number of replications for each experimental condition

 $Y_{(c)}$ = average response value for experimental condition c

 $SS_L = \text{sum of squares associated with the factor}$

Interaction Effects

Consider any group of two or more factors.

 $a_{(c)}$ = +1 if there is an even number (or zero) of factors in the group set at the low level (level 1) in experimental condition c = 1, 2, ..., m

 $a_{(c)} = -1$ if there is an odd number of factors in the group set at the low level (level 1) in experimental condition c = 1, 2, ..., m

It can be proved that the interaction effect E for the factors in the group and the corresponding sum of squares SS_L can be determined as follows:

$$E = \frac{L}{2^{n-1}}$$

$$L = \sum_{c=1}^{m} a_{(c)} \overline{Y}_{(c)}$$

$$SS_L = \frac{rL^2}{2^n}$$

Sum of Squares of Random Error

The sum of the squares due to the random error can be computed as

$$SS_{error} = SS_{total} - \Sigma_i SS_i - \Sigma_i \Sigma_j SS_{ij} - \dots - SS_{12 \dots n}$$

where SS_i is the sum of squares due to factor X_i , SS_{ij} is the sum of squares due to the interaction of factors X_i and X_j , and so on. The total sum of squares is equal to

$$SS_{\text{total}} = \sum_{c=1}^{m} \sum_{k=1}^{r} Y_{ck}^2 - \frac{T^2}{N}$$

where Y_{ck} is the kth observation taken for the cth experimental condition, $m = 2^n$, T is the grand total of all observations, and $N = r2^n$.

RELIABILITY

If P_i is the probability that component i is functioning, a reliability function $R(P_1, P_2, ..., P_n)$ represents the probability that a system consisting of n components will work.

For *n* independent components connected in series,

$$R(P_1, P_2, \dots P_n) = \prod_{i=1}^n P_i$$

For *n* independent components connected in parallel,

$$R(P_1, P_2, ...P_n) = 1 - \prod_{i=1}^{n} (1 - P_i)$$

LEARNING CURVES

The time to do the repetition N of a task is given by

$$T_N = KN^s$$
, where

K = constant

 $s = \ln (\text{learning rate, as a decimal})/\ln 2$; or, learning rate = 2^s

If N units are to be produced, the average time per unit is given by

$$T_{\text{avg}} = \frac{K}{N(1+s)} [(N+0.5)^{(1+s)} - 0.5^{(1+s)}]$$

INVENTORY MODELS

For instantaneous replenishment (with constant demand rate, known holding and ordering costs, and an infinite stockout cost), the economic order quantity is given by

$$EOQ = \sqrt{\frac{2AD}{h}}$$
, where

 $A = \cos t$ to place one order

D = number of units used per year

h = holding cost per unit per year

Under the same conditions as above with a finite replenishment rate, the economic manufacturing quantity is given by

$$EMQ = \sqrt{\frac{2AD}{h(1 - D/R)}}$$
, where

R =the replenishment rate

FACILITY PLANNING

Equipment Requirements

$$M_j = \sum_{i=1}^n \frac{P_{ij}T_{ij}}{C_{ii}}$$
 where

 M_j = number of machines of type j required per production period

 P_{ij} = desired production rate for product i on machine j, measured in pieces per production period

 T_{ij} = production time for product i on machine j, measured in hours per piece

 C_{ij} = number of hours in the production period available for the production of product i on machine j

n = number of products

218 INDUSTRIAL ENGINEERING

People Requirements

$$A_j = \sum_{i=1}^n \frac{P_{ij}T_{ij}}{C_{ij}}$$
, where

 A_i = number of crews required for assembly operation j

 P_{ij} = desired production rate for product i and assembly operation j (pieces per day)

 T_{ij} = standard time to perform operation j on product i (minutes per piece)

 C_{ij} = number of minutes available per day for assembly operation j on product i

n = number of products

Standard Time Determination

$$ST = NT \times AF$$

where

NT = normal time

AF = allowance factor

Case 1: Allowances are based on the job time.

$$AF_{\text{iob}} = 1 + A_{\text{iob}}$$

 A_{job} = allowance fraction (percentage/100) based on *job time*.

Case 2: Allowances are based on workday.

$$AF_{\text{time}} = 1/(1 - A_{\text{day}})$$

 $A_{\rm day}$ = allowance fraction (percentage/100) based on workday.

- Predetermined time systems are useful in cases where either (1) the task does not yet exist or (2) changes to a task are being designed and normal times have not yet been established for all elements of the new task or changed task. In such cases no opportunity exists to measure the element time. Unfortunately, there is no scientific basis for predicting element times without breaking them down into motion-level parts. A task consists of elements. An organization may develop its own database of normal element durations, and normal times for new or changed tasks may be predicted if the tasks consist entirely of elements whose normal times are already in the database. But new elements can be decomposed into motions, for which scientifically predetermined times exist in databases called MTM-1, MTM-2, and MTM-3. These databases and software to manipulate them are commercially available. To use one of them effectively requires about 50 hours of training.
- Kennedy, W.J., and Daniel P. Rogers, Review for the Professional Engineers' Examination in Industrial Engineering, 2012.

Plant Location

The following is one formulation of a discrete plant location problem.

Minimize

$$z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} y_{ij} + \sum_{j=1}^{n} f_{j} x_{j}$$

subject to

$$\sum_{i=1}^{m} y_{ij} \leq mx_{j}, \qquad j = 1, ..., n$$

$$\sum_{i=1}^{n} y_{ij} = 1, i = 1, ..., m$$

 $y_{ii} \ge 0$, for all i, j

$$x_i = (0, 1)$$
, for all j, where

m = number of customers

n = number of possible plant sites

 y_{ij} = fraction or proportion of the demand of customer i which is satisfied by a plant located at site j; i = 1, ..., m; j = 1, ..., n

 $x_i = 1$, if a plant is located at site j

 $x_i = 0$, otherwise

 c_{ij} = cost of supplying the entire demand of customer i from a plant located at site j

 f_i = fixed cost resulting from locating a plant at site j

Material Handling

Distances between two points (x_1, y_1) and (x_2, y_2) under different metrics:

Euclidean:

$$D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Rectilinear (or Manhattan):

$$D = |x_1 - x_2| + |y_1 - y_2|$$

Chebyshev (simultaneous x and v movement):

$$D = \max(|x_1 - x_2|, |y_1 - y_2|)$$

Line Balancing

$$N_{\min} = \left(OR \times \sum_{i} t_{i} / OT\right)$$

= theoretical minimum number of stations

Idle Time/Station = CT - ST

Idle Time/Cycle = $\Sigma(CT - ST)$

Percent Idle Time =
$$\frac{\text{Idle Time/Cycle}}{N_{\text{actual}} \times CT} \times 100$$
, where

CT = cycle time (time between units)

OT =operating time/period

OR = output rate/period

ST = station time (time to complete task at each station)

 t_i = individual task times

N = number of stations

Job Sequencing

Two Work Centers—Johnson's Rule

- 1. Select the job with the shortest time, from the list of jobs, and its time at each work center.
- 2. If the shortest job time is the time at the first work center, schedule it first, otherwise schedule it last. Break ties arbitrarily.
- 3. Eliminate that job from consideration.
- 4. Repeat 1, 2, and 3 until all jobs have been scheduled.

CRITICAL PATH METHOD (CPM)

 d_{ii} = duration of activity (i, j)

 \overline{CP} = critical path (longest path)

T = duration of project

$$T = \sum_{(i,j) \in CP} d_{ij}$$

PERT

 (a_{ij}, b_{ij}, c_{ij}) = (optimistic, most likely, pessimistic) durations for activity (i, j)

 μ_{ii} = mean duration of activity (i, j)

 σ_{ii} = standard deviation of the duration of activity (i, j)

 μ = project mean duration

 σ = standard deviation of project duration

$$\mu_{ij} = \frac{a_{ij} + 4b_{ij} + c_{ij}}{6}$$

$$\sigma_{ij} = \frac{c_{ij} - a_{ij}}{6}$$

$$\mu = \sum_{(i,j) \in CP} \mu_{ij}$$

$$\sigma^2 = \sum_{(i,j) \in CP} \sigma_{ij}^2$$

TAYLOR TOOL LIFE FORMULA

$$VT^n = C$$
, where

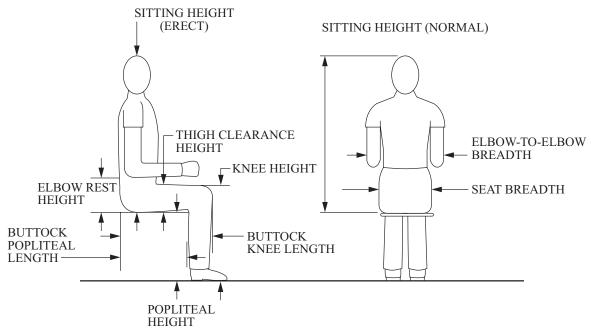
V = speed in surface feet per minute

T =tool life in minutes

C, n =constants that depend on the material and on the tool

WORK SAMPLING FORMULAS

$$D=Z_{lpha/2}\sqrt{rac{p(1-p)}{n}}$$
 and $R=Z_{lpha/2}\sqrt{rac{1-p}{pn}},$ where

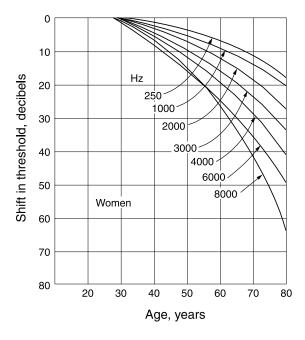

p = proportion of observed time in an activity

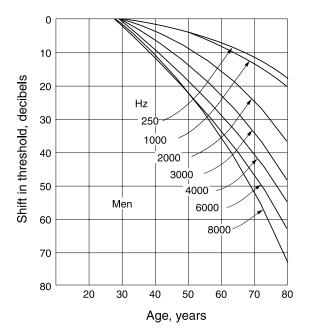
D = absolute error

R = relative error (R = D/p)

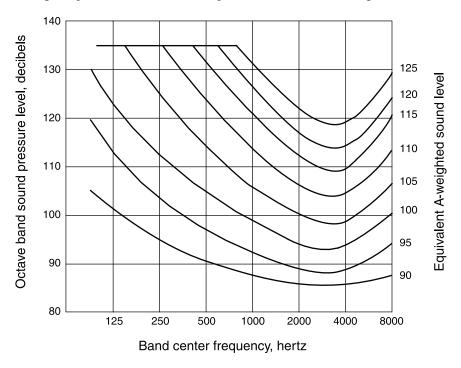
n = sample size

ANTHROPOMETRIC MEASUREMENTS

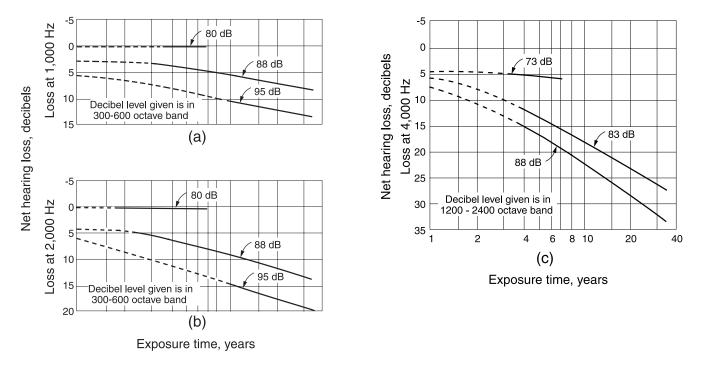

After Sanders and Mccormick, Human Factors In Design, McGraw-Hill, 1987.

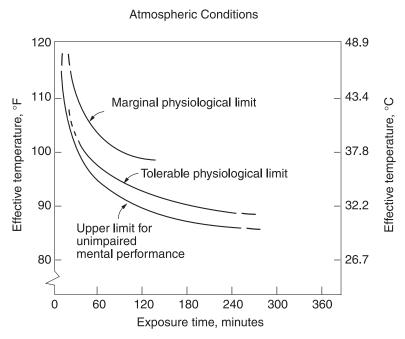

U.S. Civilian Body Dimensions, Female/Male, for Ages 20 to 60 Years (Centimeters)

(See Anthropometric Percentiles				
Measurements Figure)	5th	50th	95th	Std. Dev.
HEIGHTS				
Stature (height)	149.5 / 161.8	160.5 / 173.6	171.3 / 184.4	6.6 / 6.9
Eye height	138.3 / 151.1	148.9 / 162.4	159.3 / 172.7	6.4 / 6.6
houlder (acromion) height	121.1 / 132.3	131.1 / 142.8	141.9 / 152.4	6.1 / 6.1
Elbow height	93.6 / 100.0	101.2 / 109.9	108.8 / 119.0	4.6 / 5.8
Knuckle height	64.3 / 69.8	70.2 / 75.4	75.9 / 80.4	3.5 / 3.2
Height, sitting (erect)	78.6 / 84.2	85.0 / 90.6	90.7 / 96.7	3.5 / 3.7
bye height, sitting	67.5 / 72.6	73.3 / 78.6	78.5 / 84.4	3.3 / 3.6
Shoulder height, sitting	49.2 / 52.7	55.7 / 59.4	61.7 / 65.8	3.8 / 4.0
Elbow rest height, sitting	18.1 / 19.0	23.3 / 24.3	28.1 / 29.4	2.9 / 3.0
Knee height, sitting	45.2 / 49.3	49.8 / 54.3	54.5 / 59.3	2.7 / 2.9
Popliteal height, sitting	35.5 / 39.2	39.8 / 44.2	44.3 / 48.8	2.6 / 2.8
Thigh clearance height	10.6 / 11.4	13.7 / 14.4	17.5 / 17.7	1.8 / 1.7
DEPTHS				
Chest depth	21.4 / 21.4	24.2 / 24.2	29.7 / 27.6	2.5 / 1.9
Elbow-fingertip distance	38.5 / 44.1	42.1 / 47.9	46.0 / 51.4	2.2 / 2.2
Buttock-knee length, sitting	51.8 / 54.0	56.9 / 59.4	62.5 / 64.2	3.1 / 3.0
Buttock-popliteal length, sitting	43.0 / 44.2	48.1 / 49.5	53.5 / 54.8	3.1 / 3.0
Forward reach, functional	64.0 / 76.3	71.0 / 82.5	79.0 / 88.3	4.5 / 5.0
BREADTHS				
Elbow-to-elbow breadth	31.5 / 35.0	38.4 / 41.7	49.1 / 50.6	5.4 / 4.6
Seat (hip) breadth, sitting	31.2 / 30.8	36.4 / 35.4	43.7 / 40.6	3.7 / 2.8
HEAD DIMENSIONS				
Head breadth	13.6 / 14.4	14.54 / 15.42	15.5 / 16.4	0.57 / 0.59
Head circumference	52.3 / 53.8	54.9 / 56.8	57.7 / 59.3	1.63 / 1.68
nterpupillary distance	5.1 / 5.5	5.83 / 6.20	6.5 / 6.8	0.4 / 0.39
HAND DIMENSIONS				
Hand length	16.4 / 17.6	17.95 / 19.05	19.8 / 20.6	1.04 / 0.93
Breadth, metacarpal	7.0 / 8.2	7.66 / 8.88	8.4 / 9.8	0.41 / 0.47
Circumference, metacarpal	16.9 / 19.9	18.36 / 21.55	19.9 / 23.5	0.89 / 1.09
Thickness, metacarpal III	2.5 / 2.4	2.77 / 2.76	3.1 / 3.1	0.18 / 0.21
Digit 1				
Breadth, interphalangeal	1.7 / 2.1	1.98 / 2.29	2.1 / 2.5	0.12 / 0.13
Crotch-tip length	4.7 / 5.1	5.36 / 5.88	6.1 / 6.6	0.44 / 0.45
Digit 2				
Breadth, distal joint	1.4 / 1.7	1.55 / 1.85	1.7 / 2.0	0.10 / 0.12
Crotch-tip length	6.1 / 6.8	6.88 / 7.52	7.8 / 8.2	0.52 / 0.46
Digit 3				
Breadth, distal joint	1.4 / 1.7	1.53 / 1.85	1.7 / 2.0	0.09 / 0.12
Crotch-tip length	7.0 / 7.8	7.77 / 8.53	8.7 / 9.5	0.51 / 0.51
Digit 4				
Breadth, distal joint	1.3 / 1.6	1.42 / 1.70	1.6 / 1.9	0.09 / 0.11
Crotch-tip length	6.5 / 7.4	7.29 / 7.99	8.2 / 8.9	0.53 / 0.47
Digit 5				
Breadth, distal joint	1.2 / 1.4	1.32 / 1.57	1.5 / 1.8	0.09/0.12
Crotch-tip length	4.8 / 5.4	5.44 / 6.08	6.2 / 6.99	0.44/0.47
OOT DIMENSIONS				
oot length	22.3 / 24.8	24.1 / 26.9	26.2 / 29.0	1.19 / 1.28
oot breadth	8.1 / 9.0	8.84 / 9.79	9.7 / 10.7	0.50 / 0.53
ateral malleolus height	5.8 / 6.2	6.78 / 7.03	7.8 / 8.0	0.59 / 0.54
_				
Weight (kg)	46.2 / 56.2	61.1 / 74.0	89.9 / 97.1	13.8 / 12.6


ERGONOMICS—HEARING

The average shifts with age of the threshold of hearing for pure tones of persons with "normal" hearing, using a 25-year-old group as a reference group.




Equivalent sound-level contours used in determining the A-weighted sound level on the basis of an octave-band analysis. The curve at the point of the highest penetration of the noise spectrum reflects the A-weighted sound level.

Estimated average trend curves for net hearing loss at 1,000, 2,000, and 4,000 Hz after continuous exposure to steady noise. Data are corrected for age, but not for temporary threshold shift. Dotted portions of curves represent extrapolation from available data.

Tentative upper limit of effective temperature (ET) for unimpaired mental performance as related to exposure time; data are based on an analysis of 15 studies. Comparative curves of tolerable and marginal physiological limits are also given.

Effective temperature (ET) is the dry bulb temperature at 50% relative humidity, which results in the same physiological effect as the present conditions.

MECHANICAL ENGINEERING

MECHANICAL DESIGN AND ANALYSIS

Springs

Mechanical Springs

Helical Linear Springs: The shear stress in a helical linear spring is

$$\tau = K_s \frac{8FD}{\pi d^3}$$
, where

d = wire diameter

F = applied force

D = mean spring diameter

$$K_s = (2C + 1)/(2C)$$

C = D/d

The deflection and force are related by F = kx where the spring rate (spring constant) k is given by

$$k = \frac{d^4G}{8D^3N}$$

where G is the shear modulus of elasticity and N is the number of active coils.

Spring Material: The minimum tensile strength of common spring steels may be determined from

$$S_{ut} = A/d^m$$

where S_{ut} is the tensile strength in MPa, d is the wire diameter in millimeters, and A and m are listed in the following table:

Material	ASTM	m	A
Music wire	A228	0.163	2060
Oil-tempered wire	A229	0.193	1610
Hard-drawn wire	A227	0.201	1510
Chrome vanadium	A232	0.155	1790
Chrome silicon	A401	0.091	1960

Maximum allowable torsional stress for static applications may be approximated as

$$S_{sy} = \tau = 0.45 S_{ut}$$
 cold-drawn carbon steel (A227, A228, A229)

 $S_{sv} = \tau = 0.50 S_{ut}$ hardened and tempered carbon and low-alloy steels (A232, A401)

Compression Spring Dimensions

Type of Spring Ends					
Term Plain		Plain and Ground			
End coils, N_e	0	1			
Total coils, N_t	N	N+1			
Free length, L_0	pN+d	p(N+1)			
Solid length, L_s	$d(N_t+1)$	dN_t			
Pitch, p	$(L_0-d)/N$	$L_0/(N+1)$			

Term	Squared or Closed	Squared and Ground
End coils, N_e	2	2
Total coils, N_t	N+2	N+2
Free length, L_0	pN + 3d	pN+2d
Solid length, L_s	$d(N_t+1)$	dN_t
Pitch, p	$(L_0-3d)/N$	$(L_0-2d)/N$

Helical Torsion Springs: The bending stress is given as

$$\sigma = K_i [32Fr/(\pi d^3)]$$

where F is the applied load and r is the radius from the center of the coil to the load.

 K_i = correction factor

$$= (4C^2 - C - 1) / [4C(C - 1)]$$

$$C = D/d$$

The deflection θ and moment Fr are related by

$$Fr = k\theta$$

where the spring rate k is given by

$$k = \frac{d^4E}{64DN}$$

where k has units of N•m/rad and θ is in radians.

Spring Material: The strength of the spring wire may be found as shown in the section on linear springs. The allowable stress σ is then given by

$$S_y = \sigma = 0.78S_{ut}$$
 cold-drawn carbon steel (A227, A228, A229)

 $S_y = \sigma = 0.87 S_{ut}$ hardened and tempered carbon and low-alloy steel (A232, A401)

Bearings

Ball/Roller Bearing Selection

The minimum required *basic load rating* (load for which 90% of the bearings from a given population will survive 1 million revolutions) is given by

$$C = PL^{1/a}$$
, where

C = minimum required basic load rating

P =design radial load

L =design life (in millions of revolutions)

a = 3 for ball bearings, 10/3 for roller bearings

When a ball bearing is subjected to both radial and axial loads, an equivalent radial load must be used in the equation above. The equivalent radial load is

$$P_{eq} = XVF_r + YF_q$$
, where

 P_{eq} = equivalent radial load

 F_r = applied constant radial load

 F_a = applied constant axial (thrust) load

For radial contact, deep-groove ball bearings:

V = 1 if inner ring rotating, 1.2 if outer ring rotating,

If
$$F_a/(VF_r) > e$$
, $X = 0.56$, and $Y = 0.840 \left(\frac{F_a}{C_0}\right)^{-0.247}$ where $e = 0.513 \left(\frac{F_a}{C_0}\right)^{0.236}$

 C_0 = basic static load rating from bearing catalog

If
$$F_a/(VF_r) \le e$$
, $X = 1$ and $Y = 0$.

Power Screws

<u>Square Thread Power Screws:</u> The torque required to raise, T_R , or to lower, T_L , a load is given by

$$\begin{split} T_R &= \frac{Fd_m}{2} \left(\frac{l + \pi \mu d_m}{\pi d_m - \mu l} \right) + \frac{F\mu_c d_c}{2} \\ T_L &= \frac{Fd_m}{2} \left(\frac{\pi \mu d_m - l}{\pi d_m + \mu l} \right) + \frac{F\mu_c d_c}{2}, \text{ where} \end{split}$$

 d_c = mean collar diameter

 d_m = mean thread diameter

l = lead

F = load

 μ = coefficient of friction for thread

 μ_c = coefficient of friction for collar

The efficiency of a power screw may be expressed as

$$\eta = Fl/(2\pi T)$$

Power Transmission

Shafts and Axles

Static Loading: The maximum shear stress and the von Mises stress may be calculated in terms of the loads from

$$\tau_{\text{max}} = \frac{2}{\pi d^3} \left[(8M + Fd)^2 + (8T)^2 \right]^{1/2},$$

$$\sigma' = \frac{4}{\pi d^3} [(8M + Fd)^2 + 48T^2]^{1/2}$$
, where

M = the bending moment

F = the axial load

T = the torque

d = the diameter

Fatigue Loading: Using the maximum-shear-stress theory combined with the Soderberg line for fatigue, the diameter and safety factor are related by

$$\frac{\pi d^3}{32} = n \left[\left(\frac{M_m}{S_y} + \frac{K_f M_a}{S_e} \right)^2 + \left(\frac{T_m}{S_y} + \frac{K_{fs} T_a}{S_e} \right)^2 \right]^{1/2}$$

where

d = diameter

n =safety factor

 M_a = alternating moment

 M_m = mean moment

 T_a = alternating torque

 T_m = mean torque

 S_a = fatigue limit

 S_y = yield strength

 K_f = fatigue strength reduction factor

 K_{fs} = fatigue strength reduction factor for shear

Gearing

Involute Gear Tooth Nomenclature

Circular pitch $p_c = \pi d/N$

Base pitch $p_b = p_c \cos \phi$

Module m = d/N

Center distance $C = (d_1 + d_2)/2$

where

N = number of teeth on pinion or gear

d = pitch circle diameter

 ϕ = pressure angle

Gear Trains: Velocity ratio, m_v , is the ratio of the output velocity to the input velocity. Thus, $m_v = \omega_{\text{out}}/\omega_{\text{in}}$. For a two-gear train, $m_v = -N_{\text{in}}/N_{\text{out}}$ where N_{in} is the number of teeth on the input gear and N_{out} is the number of teeth on the output gear. The negative sign indicates that the output gear rotates in the opposite sense with respect to the input gear. In a compound gear train, at least one shaft carries more than one gear (rotating at the same speed). The velocity ratio for a compound train is:

$$m_v = \pm \frac{\text{product of number of teeth on driver gears}}{\text{product of number of teeth on driven gears}}$$

A simple planetary gearset has a sun gear, an arm that rotates about the sun gear axis, one or more gears (planets) that rotate about a point on the arm, and a ring (internal) gear that is concentric with the sun gear. The planet gear(s) mesh with the sun gear on one side and with the ring gear on the other. A planetary gearset has two independent inputs and one output (or two outputs and one input, as in a differential gearset).

Often one of the inputs is zero, which is achieved by grounding either the sun or the ring gear. The velocities in a planetary set are related by

$$\frac{\omega_L - \omega_{\text{arm}}}{\omega_f - \omega_{\text{arm}}} = \pm m_v$$
, where

 ω_f = speed of the first gear in the train

 ω_I = speed of the last gear in the train

 ω_{arm} = speed of the arm

Neither the first nor the last gear can be one that has planetary motion. In determining m_{yy} it is helpful to invert the mechanism by grounding the arm and releasing any gears that are grounded.

Dynamics of Mechanisms

Gearing

Loading on Straight Spur Gears: The load, W, on straight spur gears is transmitted along a plane that, in edge view, is called the *line of action*. This line makes an angle with a tangent line to the pitch circle that is called the *pressure angle* φ. Thus, the contact force has two components: one in the tangential direction, W_r , and one in the radial direction, W_r . These components are related to the pressure angle by

$$W_r = W_t \tan(\phi)$$
.

Only the tangential component W_t transmits torque from one gear to another. Neglecting friction, the transmitted force may be found if either the transmitted torque or power is known:

$$W_t = \frac{2T}{d} = \frac{2T}{mN},$$

$$W_t = \frac{2H}{d\omega} = \frac{2H}{mN\omega}, \text{ where}$$

 W_t = transmitted force (newtons)

T = torque on the gear (newton-mm)

d = pitch diameter of the gear (mm)

N = number of teeth on the gear

m = gear module (mm) (same for both gears in mesh)

H = power (kW)

 ω = speed of gear (rad/s)

Stresses in Spur Gears: Spur gears can fail in either bending (as a cantilever beam, near the root) or by surface fatigue due to contact stresses near the pitch circle. AGMA Standard 2001 gives equations for bending stress and surface stress. They are:

$$\sigma_b = \frac{W_t}{FmJ} \frac{K_a K_m}{K_v} K_S K_B K_I$$
, bending and

$$\sigma_c = C_p \sqrt{\frac{W_t}{FId} \frac{C_a C_m}{C_v} C_s C_f}$$
, surface stress, where

 σ_b = bending stress

 σ_c = surface stress

 W_t = transmitted load

F = face width

m = module

J = bending strength geometry factor

 K_a = application factor

 K_{R} = rim thickness factor

 K_{I} = idler factor

 K_m = load distribution factor

 $K_{\rm s} = {\rm size \ factor}$

 $K_{y} = \text{dynamic factor}$

 C_n = elastic coefficient

I =surface geometry factor

d = pitch diameter of gear being analyzed

 $C_{\rm f}$ = surface finish factor

 C_a , C_m , C_s , and C_v are the same as K_a , K_m , K_s , and K_v , respectively.

Joining Methods

Threaded Fasteners: The load carried by a bolt in a threaded connection is given by

$$F_b = CP + F_i \qquad F_m < 0$$

while the load carried by the members is

$$F_m = (1 - C) P - F_i$$
 $F_m < 0$, where

C = joint coefficient

$$= k_b/(k_b + k_m)$$

 F_b = total bolt load

 F_i = bolt preload

 F_m = total material load

P =externally applied load

 k_b = effective stiffness of the bolt or fastener in the grip

 k_m = effective stiffness of the members in the grip

Bolt stiffness may be calculated from

$$k_b = \frac{A_d A_t E}{A_d l_t + A_t l_d}$$
, where

 A_d = major-diameter area

 A_t = tensile-stress area

E = modulus of elasticity

 l_d = length of unthreaded shank

 l_t = length of threaded shank contained within the grip

If all members within the grip are of the same material, *member stiffness* may be obtained from

$$k_m = dEAe^{b(d/l)}$$
, where

d = bolt diameter

E =modulus of elasticity of members

l = grip length

Coefficients A and b are given in the table below for various joint member materials.

Material	A	b
Steel	0.78715	0.62873
Aluminum	0.79670	0.63816
Copper	0.79568	0.63553
Gray cast iron	0.77871	0.61616

The approximate tightening torque required for a given preload F_i and for a steel bolt in a steel member is given by $T = 0.2 F_i d$.

<u>Threaded Fasteners – Design Factors:</u> The bolt load factor is

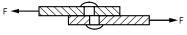
$$n_b = (S_p A_t - F_i)/CP$$
, where

 $S_n = \text{proof strength}$

The factor of safety guarding against joint separation is

$$n_{a} = F_{i} / [P(1 - C)]$$

<u>Threaded Fasteners – Fatigue Loading:</u> If the externally applied load varies between zero and *P*, the alternating stress is

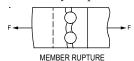

$$\sigma_a = CP/(2A_t)$$

and the mean stress is

$$\sigma_m = \sigma_a + F_i / A_t$$

Bolted and Riveted Joints Loaded in Shear:

Failure by Pure Shear


FASTENER IN SHEAR

$$\tau = F/A$$
, where

F =shear load

A =cross-sectional area of bolt or rivet

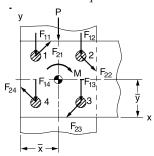
Failure by Rupture

 $\sigma = F/A$, where

F = load

A = net cross-sectional area of thinnest member

Failure by Crushing of Rivet or Member


MEMBER OR FASTENER CRUSHING

$$\sigma = F/A$$
, where

F = load

A = projected area of a single rivet

Fastener Groups in Shear

FASTENER GROUPS

The location of the centroid of a fastener group with respect to any convenient coordinate frame is:

$$\overline{x} = \frac{\sum_{i=1}^{n} A_i x_i}{\sum_{i=1}^{n} A_i}, \ \overline{y} = \frac{\sum_{i=1}^{n} A_i y_i}{\sum_{i=1}^{n} A_i}, \text{ where }$$

n = total number of fasteners

i = the index number of a particular fastener

 A_i = cross-sectional area of the *i*th fastener

 $x_i = x$ -coordinate of the center of the *i*th fastener

 $y_i = y$ -coordinate of the center of the *i*th fastener

The total shear force on a fastener is the **vector** sum of the force due to direct shear P and the force due to the moment M acting on the group at its centroid.

The magnitude of the direct shear force due to *P* is

$$|F_{1i}| = \frac{P}{n}$$
.

This force acts in the same direction as P.

The magnitude of the shear force due to M is

$$|F_{2i}| = \frac{Mr_i}{\sum_{i=1}^{n} r_i^2}.$$

This force acts perpendicular to a line drawn from the group centroid to the center of a particular fastener. Its sense is such that its moment is in the same direction (CW or CCW) as M.

Press/Shrink Fits

The interface pressure induced by a press/shrink fit is

$$p = \frac{0.5\delta}{\frac{r}{E_o} \left(\frac{r_o^2 + r^2}{r_o^2 - r^2} + v_o\right) + \frac{r}{E_i} \left(\frac{r^2 + r_i^2}{r^2 - r_i^2} - v_i\right)}$$

where the subscripts *i* and *o* stand for the inner and outer member, respectively, and

p = inside pressure on the outer member and outside pressure on the inner member

 δ = the diametral interference

r =nominal interference radius

 r_i = inside radius of inner member

 r_o = outside radius of outer member

E =Young's modulus of respective member

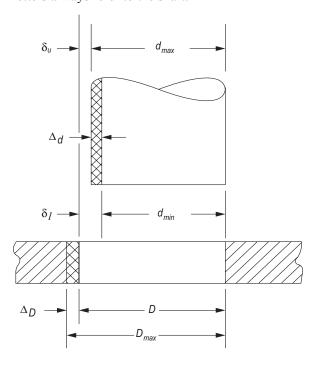
v = Poisson's ratio of respective member

The *maximum torque* that can be transmitted by a press fit joint is approximately

$$T = 2\pi r^2 \mu p l$$
,

where r and p are defined above,

T =torque capacity of the joint


 μ = coefficient of friction at the interface

l = length of hub engagement

MANUFACTURABILITY

Limits and Fits

The designer is free to adopt any geometry of fit for shafts and holes that will ensure intended function. Over time, sufficient experience with common situations has resulted in the development of a standard. The metric version of the standard is newer and will be presented. The standard specifies that uppercase letters always refer to the hole, while lowercase letters always refer to the shaft.

Definitions

Basic Size or nominal size, D or d, is the size to which the limits or deviations are applied. It is the same for both components.

Deviation is the algebraic difference between the actual size and the corresponding basic size.

Upper Deviation, δ_u , is the algebraic difference between the maximum limit and the corresponding basic size.

Lower Deviation, δ_l , is the algebraic difference between the minimum limit and the corresponding basic size.

Fundamental Deviation, δ_F , is the upper or lower deviation, depending on which is closer to the basic size.

Tolerance, Δ_D or Δ_d , is the difference between the maximum and minimum size limits of a part.

International tolerance (IT) grade numbers designate groups of tolerances such that the tolerance for a particular IT number will have the same relative accuracy for a basic size.

Hole basis represents a system of fits corresponding to a basic hole size. The fundamental deviation is H.

Some Preferred Fits

Clearance	
Free running fit: not used where accuracy	H9/d9
is essential but good for large temperature variations, high running speeds, or heavy journal loads.	115/45
Sliding fit: where parts are not intended to run freely but must move and turn freely and locate accurately.	H7/g6
Locational clearance fit: provides snug fit for location of stationary parts, but can be freely assembled and disassembled.	H7/h6
Loose running fit: for wide commercial tolerances or allowances on external members	H11/c11
Close running fit: for running on accurate machines and for accurate location at moderate speeds and journal pressures	H8/f7
Transition	
Locational transition fit: for accurate location, a compromise between clearance and interference	H7/k6
Locational transition fit: for more accurate location where greater interface is permissible	H7/n6
Interference	
Location interference fit: for parts requiring rigidity and alignment with prime accuracy of location but without special bore pressure requirements.	H7/p6
Medium drive fit: for ordinary steel parts or shrink fits on light sections. The tightest fit usable on cast iron.	H7/s6
Force fit: suitable for parts which can be highly stressed or for shrink fits where the heavy pressing forces required are impractical.	H7/u6

For the hole

$$D_{\text{max}} = D + \Delta_D$$
$$D_{\text{min}} = D$$

For a shaft with clearance fits d, g, h, c, or f

$$d_{\text{max}} = d + \delta_F$$

$$d_{\text{min}} = d_{\text{max}} - \Delta_d$$

For a shaft with transition or interference fits k, p, s, u, or n

$$d_{\min} = d + \delta_F$$
$$d_{\max} = d_{\min} + \Delta_d$$

where

basic size of hole basic size of shaft upper deviation = lower deviation

fundamental deviation tolerance grade for hole tolerance grade for shaft

International Tolerance (IT) Grades

Lower limit < Basic Size ≤ Upper Limit All values in mm

Basic Size	Tolerance Grade, $(\Delta_D \text{ or } \Delta_d)$				
Dasic Size	IT6	IT7	IT9		
0–3	0.006	0.010	0.025		
3–6	0.008	0.012	0.030		
6–10	0.009	0.015	0.036		
10–18	0.011	0.018	0.043		
18–30	0.013	0.021	0.052		
30–50	0.016	0.025	0.062		
Source: Preferred Metric Limits and Fits, ANSI B4.2-1978					

Deviations for shafts

Lower limit < Basic Size ≤ Upper Limit All values in mm

Basic Size				L	ower Do	eviation	Letter, (δ_l)		
J.L.C	с	d	f	g	h	k	n	p	S	u
0-3	-0.060	-0.020	-0.006	-0.002	0	0	+0.004	+0.006	+0.014	+0.018
3-6	-0.070	-0.030	-0.010	-0.004	0	+0.001	+0.008	+0.012	+0.019	+0.023
6-10	-0.080	-0.040	-0.013	-0.005	0	+0.001	+0.010	+0.015	+0.023	+0.028
10-14	-0.095	-0.050	-0.016	-0.006	0	+0.001	+0.012	+0.018	+0.028	+0.033
14-18	-0.095	-0.050	-0.016	-0.006	0	+0.001	+0.012	+0.018	+0.028	+0.033
18-24	-0.110	-0.065	-0.020	-0.007	0	+0.002	+0.015	+0.022	+0.035	+0.041
24-30	-0.110	-0.065	-0.020	-0.007	0	+0.002	+0.015	+0.022	+0.035	+0.048
30-40	-0.120	-0.080	-0.025	-0.009	0	+0.002	+0.017	+0.026	+0.043	+0.060
40-50	-0.130	-0.080	-0.025	-0.009	0	+0.002	+0.017	+0.026	+0.043	+0.070
Source: A	Source: ASME B4.2:2009									

As an example, 34H7/s6 denotes a basic size of D = d = 34mm, an IT class of 7 for the hole, and an IT class of 6 and an "s" fit class for the shaft.

Maximum Material Condition (MMC)

The maximum material condition defines the dimension of a part such that the part weighs the most. The MMC of a shaft is at the maximum size of the shaft while the MMC of a hole is at the minimum size of the hole

Least Material Condition (LMC)

The least material condition or minimum material condition defines the dimensions of a part such that the part weighs the least. The LMC of a shaft is the minimum size of the shaft while the LMC of a hole is at the maximum size of the hole.

Intermediate- and Long-Length Columns

The slenderness ratio of a column is $S_r = l/r$, where *l* is the length of the column and r is the radius of gyration. The radius of gyration of a column cross-section is, $r = \sqrt{I/A}$ where I is the area moment of inertia and A is the cross-sectional area of the column. A column is considered to be intermediate if its slenderness ratio is less than or equal to $(S_r)_D$, where

$$(S_r)_D = \pi \sqrt{\frac{2E}{S_y}}$$
, and

E =Young's modulus of respective member $S_v =$ yield strength of the column material

For intermediate columns, the critical load is

$$P_{cr} = A \left[S_y - \frac{1}{E} \left(\frac{S_y S_r}{2\pi} \right)^2 \right]$$
, where

 P_{cr} = critical buckling load

A =cross-sectional area of the column

 S_{y} = yield strength of the column material

E =Young's modulus of respective member

 S_r = slenderness ratio

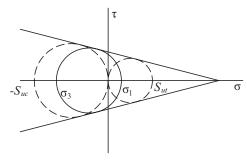
For long columns, the critical load is

$$P_{cr} = \frac{\pi^2 EA}{S_r^2}$$

where the variables are as defined above.

For both intermediate and long columns, the effective column length depends on the end conditions. The AISC recommended design values for the effective lengths of columns are, for: rounded-rounded or pinned-pinned ends, $l_{\it eff}$ = l; fixed-free, $l_{\it eff}$ = 2.1l; fixed-pinned, $l_{\it eff}$ = 0.80l; fixed-fixed, $l_{\it eff}$ = 0.65l. The effective column length should be used when calculating the slenderness ratio.

STATIC LOADING FAILURE THEORIES


Brittle Materials

Maximum-Normal-Stress Theory

The maximum-normal-stress theory states that failure occurs when one of the three principal stresses equals the strength of the material. If $\sigma_1 \ge \sigma_2 \ge \sigma_3$, then the theory predicts that failure occurs whenever $\sigma_1 \ge S_{ut}$ or $\sigma_3 \le -S_{uc}$ where S_{ut} and S_{uc} are the tensile and compressive strengths, respectively.

Coulomb-Mohr Theory

The Coulomb-Mohr theory is based upon the results of tensile and compression tests. On the σ , τ coordinate system, one circle is plotted for S_{ut} and one for S_{uc} . As shown in the figure, lines are then drawn tangent to these circles. The Coulomb-Mohr theory then states that fracture will occur for any stress situation that produces a circle that is either tangent to or crosses the envelope defined by the lines tangent to the S_{ut} and S_{uc} circles.

If $\sigma_1 \ge \sigma_2 \ge \sigma_3$ and $\sigma_3 < 0$, then the theory predicts that yielding will occur whenever

$$\frac{\sigma_1}{S_{ut}} - \frac{\sigma_3}{S_{uc}} \ge 1$$

Ductile Materials

Maximum-Shear-Stress Theory

The maximum-shear-stress theory states that yielding begins when the maximum shear stress equals the maximum shear stress in a tension-test specimen of the same material when that specimen begins to yield. If $\sigma_1 \ge \sigma_2 \ge \sigma_3$, then the theory predicts that yielding will occur whenever $\tau_{\text{max}} \ge S_y/2$ where S_y is the yield strength.

$$\tau_{max} = \frac{\sigma_1 - \sigma_3}{2}.$$

Distortion-Energy Theory

The distortion-energy theory states that yielding begins whenever the distortion energy in a unit volume equals the distortion energy in the same volume when uniaxially stressed to the yield strength. The theory predicts that yielding will occur whenever

$$\left[\frac{\left(\sigma_{1} - \sigma_{2}\right)^{2} + \left(\sigma_{2} - \sigma_{3}\right)^{2} + \left(\sigma_{1} - \sigma_{3}\right)^{2}}{2} \right]^{1/2} \ge S_{y}$$

The term on the left side of the inequality is known as the effective or Von Mises stress. For a biaxial stress state the effective stress becomes

$$\sigma' = \left(\sigma_A^2 - \sigma_A \sigma_B + \sigma_B^2\right)^{1/2}$$
or

$$\sigma' = (\sigma_x^2 - \sigma_x \sigma_y + \sigma_y^2 + 3\tau_{xy}^2)^{1/2}$$

where σ_A and σ_B are the two nonzero principal stresses and σ_x , σ_y , and τ_{xy} are the stresses in orthogonal directions.

VARIABLE LOADING FAILURE THEORIES

Modified Goodman Theory: The modified Goodman criterion states that a fatigue failure will occur whenever

$$\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_{ut}} \ge 1$$
 or $\frac{\sigma_{\text{max}}}{S_v} \ge 1$, $\sigma_m \ge 0$,

where

 S_e = fatigue strength

 S_{ut} = ultimate strength

 S_v = yield strength

 σ_a = alternating stress

 σ_m = mean stress

 $\sigma_{max} = \sigma_m + \sigma_a$

Soderberg Theory: The Soderberg theory states that a fatigue failure will occur whenever

$$\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_v} \ge 1 \qquad \sigma_m \ge 0$$

Endurance Limit for Steels: When test data is unavailable, the endurance limit for steels may be estimated as

$$S'_{e} = \begin{cases} 0.5 S_{ut}, S_{ut} \leq 1,400 \text{ MPa} \\ 700 \text{ MPa}, S_{ut} > 1,400 \text{ MPa} \end{cases}$$

Endurance Limit Modifying Factors: Endurance limit modifying factors are used to account for the differences between the endurance limit as determined from a rotating beam test, S'_{e} , and that which would result in the real part, S_{e} .

$$S_{e} = k_{a}k_{b}k_{c}k_{d}k_{e}S'_{e}$$

where

Surface Factor, $k_a = aS_{ut}^b$

Surface	Fact	Exponent b		
Finish	Finish kpsi MPa		L'aponent b	
Ground	1.34	1.58	-0.085	
Machined or CD	2.70	4.51	-0.265	
Hot rolled	14.4	57.7	-0.718	
As forged	39.9	272.0	-0.995	

Size Factor, k_b :

For bending and torsion:

$$d \le 8 \text{ mm};$$
 $k_b = 1$

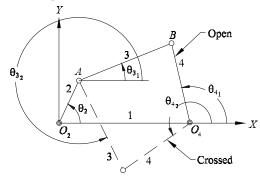
8 mm
$$\leq d \leq$$
 250 mm; $k_b = 1.189 d_{eff}^{-0.097}$

$$d > 250 \text{ mm};$$
 $0.6 \le k_b \le 0.75$

For axial loading: $k_b = 1$

Load Factor, *k*_c:

$$k_c = 0.923$$
 axial loading, $S_{ut} \le 1,520$ MPa $k_c = 1$ axial loading, $S_{ut} > 1,520$ MPa $k_c = 1$ bending $k_c = 0.577$ torsion


Temperature Factor, k_d : for T \leq 450°C, $k_d = 1$

Miscellaneous Effects Factor, k_e : Used to account for strength reduction effects such as corrosion, plating, and residual stresses. In the absence of known effects, use $k_e = 1$.

KINEMATICS, DYNAMICS, AND VIBRATIONS

Kinematics of Mechanisms

Four-Bar Linkage

The four-bar linkage shown above consists of a reference (usually grounded) link (1), a crank (input) link (2), a coupler link (3), and an output link (4). Links 2 and 4 rotate about the fixed pivots O_2 and O_4 , respectively. Link 3 is joined to link 2 at the moving pivot A and to link 4 at the moving pivot B. The lengths of links 2, 3, 4, and 1 are a, b, c, and d, respectively.

Taking link 1 (ground) as the reference (X-axis), the angles that links 2, 3, and 4 make with the axis are θ_2 , θ_3 , and θ_4 , respectively. It is possible to assemble a four-bar in two different configurations for a given position of the input link (2). These are known as the "open" and "crossed" positions or circuits.

Position Analysis. Given a, b, c, and d, and θ_2

$$\theta_{4_{1,2}} = 2 \arctan\left(\frac{-B \pm \sqrt{B^2 - 4AC}}{2A}\right)$$

where
$$A = \cos \theta_2 - K_1 - K_2 \cos \theta_2 + K_3$$

$$B = -2\sin\theta_2$$

$$C = K_1 - (K_2 + 1)\cos\theta_2 + K_3$$

$$K_1 = \frac{d}{a}, K_2 = \frac{d}{c}, K_3 = \frac{a^2 - b^2 + c^2 + d^2}{2ac}$$

In the equation for θ_4 , using the minus sign in front of the radical yields the open solution. Using the plus sign yields the crossed solution.

$$\theta_{3_{1,2}} = 2 \arctan\left(\frac{-E \pm \sqrt{E^2 - 4DF}}{2D}\right)$$

where
$$D = \cos \theta_2 - K_1 + K_4 \cos \theta_2 + K_5$$

$$E = -2\sin\theta_2$$

$$F = K_1 + (K_4 - 1) \cos \theta_2 + K_5$$

$$K_4 = \frac{d}{b}, K_5 = \frac{c^2 - d^2 - a^2 - b^2}{2ab}$$

In the equation for θ_3 , using the minus sign in front of the radical yields the open solution. Using the plus sign yields the crossed solution.

Velocity Analysis. Given a, b, c, and d, θ_2 , θ_3 , θ_4 , and ω_2

$$\omega_3 = \frac{a\omega_2}{b} \frac{\sin(\theta_4 - \theta_2)}{\sin(\theta_3 - \theta_4)}$$

$$\omega_4 = \frac{a\omega_2}{c} \frac{\sin(\theta_2 - \theta_3)}{\sin(\theta_4 - \theta_3)}$$

$$V_{Ax} = -a\omega_2 \sin \theta_2$$
, $V_{Ay} = a\omega_2 \cos \theta_2$

$$V_{BAx} = -b\omega_3\sin\theta_3, \qquad V_{BAy} = b\omega_3\cos\theta_3$$

$$V_{Bx} = -c\omega_4 \sin \theta_4, \qquad V_{By} = c\omega_4 \cos \theta_4$$

Acceleration Analysis. Given a, b, c, and d, θ_2 , θ_3 , θ_4 , and ω_2 , ω_3 , ω_4 , and α_2

$$\alpha_3 = \frac{CD - AF}{AE - BD}$$
, $\alpha_4 = \frac{CE - BF}{AE - BD}$, where

$$A = c\sin\theta_A$$
, $B = b\sin\theta_3$

$$C = a\alpha_2 \sin \theta_2 + a\omega_2^2 \cos \theta_2 + b\omega_3^2 \cos \theta_3 - c\omega_4^2 \cos \theta_4$$

$$D = c\cos\theta_4$$
, $E = b\cos\theta_3$

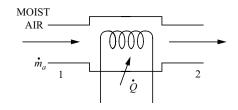
$$F = a\alpha_2\cos\theta_2 - a\omega_2^2\sin\theta_2 - b\omega_3^2\sin\theta_3 + c\omega_4^2\sin\theta_4$$

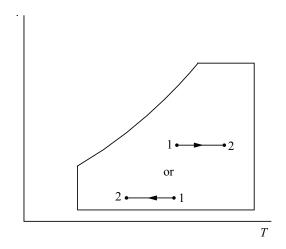
HVAC

Nomenclature

h = specific enthalpy

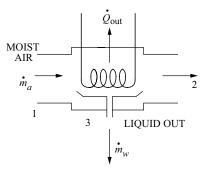
 h_f = specific enthalpy of saturated liquid

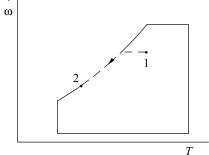

 $\dot{m}_a = \text{mass flow rate of dry air}$


 $\dot{m}_w = \text{mass flow rate of water}$

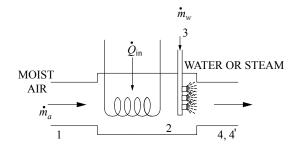
 \dot{Q} = rate of heat transfer

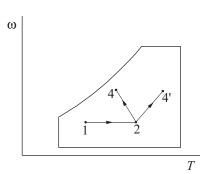
 $T_{\rm wb}$ = wet bulb temperature ω = specific humidity (absolute humidity, humidity ratio)


HVAC—Pure Heating and Cooling



$$\dot{Q} = \dot{m}_a (h_2 - h_1)$$

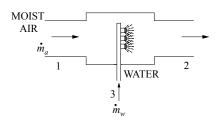

Cooling and Dehumidification

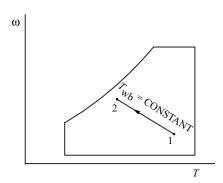


$$\dot{Q}_{\text{out}} = \dot{m}_a \left[(h_1 - h_2) - h_{f3} (\omega_1 - \omega_2) \right]$$

$$\dot{m}_w = \dot{m}_a (\omega_1 - \omega_2)$$

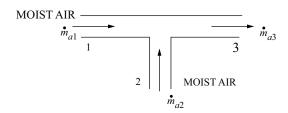
Heating and Humidification

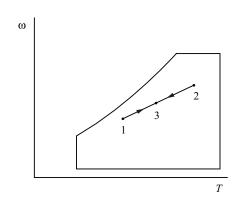




$$\dot{Q}_{\text{in}} = \dot{m}_a (h_2 - h_1)$$

$$\dot{m}_w = \dot{m}_a (\omega_4 - \omega_2) \text{ or } \dot{m}_w = \dot{m}_a (\omega_4 - \omega_2)$$


Adiabatic Humidification (evaporative cooling)

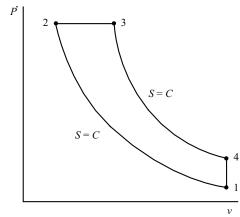


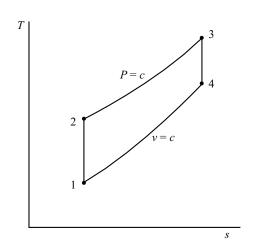
$$\begin{split} h_2 &= h_1 + h_3 \big(\omega_2 - \omega_1\big) \\ \dot{m}_w &= \dot{m}_a \big(\omega_2 - \omega_1\big) \\ h_3 &= h_f \text{ at } T_{\text{wb}} \end{split}$$

Adiabatic Mixing

$$\dot{m}_{a3} = \dot{m}_{a1} + \dot{m}_{a2}$$

$$h_3 = \frac{\dot{m}_{a1}h_1 + \dot{m}_{a2}h_2}{\dot{m}_{a3}}$$


$$\omega_3 = \frac{\dot{m}_{a1}\omega_1 + \dot{m}_{a2}\omega_2}{\dot{m}_{a3}}$$


distance $\overline{13} = \frac{\dot{m}_{a2}}{\dot{m}_{a3}} \times \text{distance } \overline{12} \text{ measured on}$ psychrometric chart

Cycles and Processes

Internal Combustion Engines

Diesel Cycle

$$r = V_1/V_2$$

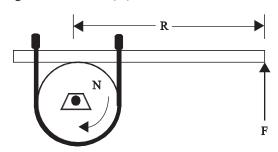
$$r_c = V_3/V_2$$

$$\eta = 1 - \frac{1}{r^{k-1}} \left[\frac{r_c^k - 1}{k(r_c - 1)} \right]$$

$$k = c_p/c_v$$

Brake Power

$$\dot{W}_b = 2\pi TN = 2\pi FRN$$
, where


 \dot{W}_b = brake power (W)

 $T = \text{torque}(N \cdot m)$

N = rotation speed (rev/s)

= force at end of brake arm (N)

R = length of brake arm (m)

Indicated Power

$$\dot{W}_i = \dot{W}_b + \dot{W}_f$$
, where

 $\dot{W}_i = indicated power(W)$

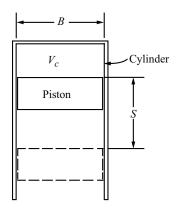
 \dot{W}_f = friction power (W)

Brake Thermal Efficiency

$$\eta_b = \frac{\dot{W}_b}{\dot{m}_f(HV)}, \text{ where }$$

 η_b = brake thermal efficiency

 \dot{m}_f = fuel consumption rate (kg/s)


HV = heating value of fuel (J/kg)

Indicated Thermal Efficiency

$$\eta_i = \frac{\dot{W}_i}{\dot{m}_f(HV)}$$

Mechanical Efficiency

$$\eta_i = \frac{\dot{W}_b}{\dot{W}_i} = \frac{\eta_b}{\eta_i}$$

Displacement Volume

$$V_d = \frac{\pi B^2 S}{4}$$
, m³ for each cylinder

Total volume =
$$V_t = V_d + V_c \text{ (m}^3\text{)}$$

$$V_c$$
 = clearance volume (m³)

Compression Ratio

$$r_c = V_t / V_c$$

Mean Effective Pressure (mep)

$$mep = \frac{\dot{W}n_s}{V_d n_c N}$$
, where

 n_s = number of crank revolutions per power stroke

 n_c = number of cylinders

 V_d = displacement volume per cylinder

mep can be based on brake power (bmep), indicated power (imep), or friction power (fmep).

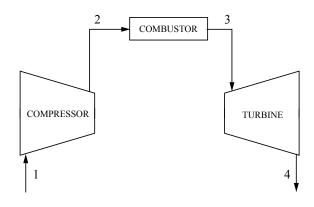
Volumetric Efficiency

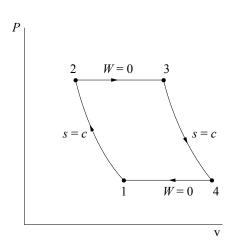
$$\eta_{\nu} = \frac{2\dot{m}_a}{\rho_a V_d n_c N}$$
 (four-stroke cycles only)

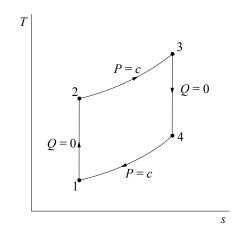
where

 \dot{m}_a = mass flow rate of air into engine (kg/s)

 $\rho_a = \text{density of air (kg/m}^3)$

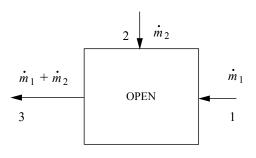

Specific Fuel Consumption (SFC)

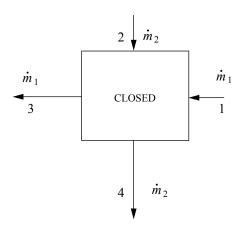

$$sfc = \frac{\dot{m}_f}{W} = \frac{1}{\eta HV}, \, \text{kg/J}$$


Use η_b and \dot{W}_b for *bsfc* and η_i and \dot{W}_i for *isfc*.

Gas Turbines

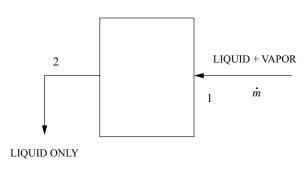
Brayton Cycle (Steady-Flow Cycle)



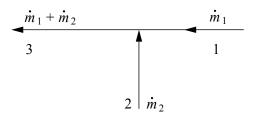

$$\begin{split} w_{12} &= h_1 - h_2 = c_p \left(T_1 - T_2 \right) \\ w_{34} &= h_3 - h_4 = c_p \left(T_3 - T_4 \right) \\ w_{\text{net}} &= w_{12} + w_{34} \\ q_{23} &= h_3 - h_2 = c_p \left(T_3 - T_2 \right) \\ q_{41} &= h_1 - h_4 = c_p \left(T_1 - T_4 \right) \\ q_{\text{net}} &= q_{23} + q_{41} \\ \eta &= w_{\text{net}} / q_{23} \end{split}$$

Steam Power Plants

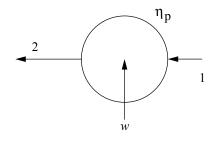
Feedwater Heaters



$$\dot{m}_1 h_1 + \dot{m}_2 h_2 = h_3 (\dot{m}_1 + \dot{m}_2)$$


$$\dot{m}_1 h_1 + \dot{m}_2 h_2 = \dot{m}_1 h_3 + \dot{m}_2 h_4$$

Steam Trap


$$h_2 = h_1$$

Junction

$$\dot{m}_1 h_1 + \dot{m}_2 h_2 = h_3 (\dot{m}_1 + \dot{m}_2)$$

Pump

$$w = h_1 - h_2 = (h_1 - h_{2S})/\eta_P$$

$$h_{2S} - h_1 = v(P_2 - P_1)$$

$$w = -\frac{v(P_2 - P_1)}{\eta_P}$$

INDEX

A	air-to-cloth ratio for baghouses (table) 179
AASHTO soil classification (table) 145	aldehyde 52, 61
AASHTO structural number equation 168	algebra, Boolean 213
absolute dynamic viscosity 99	algebra of complex numbers 19
absolute humidity 86	algebraic projection 183
absolute maximum moment 147	alignment charts 158
absolute pressure 99	alternate depths 163
absorption 138	AM, amplitude modulation 204
absorptivity 118	amorphous materials 61
acceleration 68, 69	amplifier, differential 209
acceleration due to gravity 163	amplifiers, operational 208
acceleration of gravity 85, 100, 101, 103, 108	amplitude modulation (AM) 204
acceleration, non-constant 70	anaerobic digestion 187
acceleration, normal 68, 69	analog filter circuits 206–207
acceleration, tangential 68, 69	analog-to-digital conversion 123
acceleration, variable angular 70	analysis, earned-value 173
ac circuits 197, 198	analysis, job safety 5
acetylene 52	analysis, steady-state 123
acids 50	analysis of variance 218
acids, carboxylic 52	analysis of variance, one-way 36
ac machines 200	angle modulation 204
ac power 199–200	angular impulse and momentum 74
activated carbon adsorption 188	anion 55
activated sludge 186	annual effective interest rate 127
activated-sludge treatment (table) 186	annulus, circular 115
activation energy 56, 58	anode 55
activity coefficient 88	anode reaction (oxidation) 56
activity, daughter product 184	ANOVA 36
acutely lethal doses, comparative (table) 9	ANOVA tables 37
acyclic hydrocarbons, unsaturated 52	anthropometric measurements (figure) 220
A/D converter 123	anthropometric measurements (table) 221
addition, matrix 30	applied engineering stress 58
additives 61	applied force 58
additives, polymer 61	approximate values of effective length factor (table) 158
adiabatic 86, 119	approximations, statistical (table) 48
adiabatic compression 106	aqueous solutions 50
adiabatic humidification 233	aquifer 161
adiabatic lapse rate, dry 174	arbitrary fixed axis, rotation about an 73
adiabatic mixing 233	arc definition 166
adiabatic process 87	Archimedes principle 100
adiabatic turbine 107	arc length 69
adsorption, activated carbon 188	area formulas 167
aeration basin volume 186	area, net 154
aeration tank 186	area, watershed 161
aerobic digestion 187	arithmetic mean 33
aerodynamics 109	arithmetic progression 26
affinity laws 107	Arrhenius equation 134
agitated oil (graph) 60	aspect ratio 109
agitated water (graph) 60	assessment, hazard 6
air-entrained concrete 61	associative law 33
air entrainment 61	ASTM standard practice for classification of soils for engineering
airfoil 109	purposes (unified soil classification system) (table) 146
air-fuel ratio 88	asymptotes 125
air pollution 174–179	atmosphere, orifice discharging freely into 103
air, properties of 174	atmospheric dispersion modeling (Gaussian) 174
air refrigeration cycle (diagrams) 96	atmospheric pressure 99, 100, 105
air stripping 188	atmospheric stability (tables) 175, 177

biomass concentration 186

atomic bonding 56 biomechanics of the human body 16 atomic number 50 biotower 187 austenite 56 bipolar junction transistor (BJT), NPN (table) 210 BJT differential amplifier 209 availability 87 available moment (table) 157 BJT, NPN bipolar junction transistor (table) 210 available, net positive suction head 105 black body 118, 119 available strengths 154, 160 (table) blades, fixed and moving 104 average end area formula 167 block shear 154 average flow velocity 100 blowers 186 average particle diameter 103 bode plots 203 average shifts with age of the threshold of hearing for pure tones body, black 118 of persons with "normal" hearing (graphs) 222 body dimensions, female/male, for ages 20 to 60 years, U.S. average velocity 101 civilian (table) 221 Avogadro's number 50 body, gray 118 axial compression (table) 160 body, opaque 118 axially oriented 59 body temperature 114 boiler 86, 95 (diagrams) axis, rigid body motion about a fixed 73 axis, rotation about an arbitrary fixed 73 boiling 115-116 axle load, gross (table) 168 bolt diameter 154 axles 225 bolted and riveted joints loaded in shear 227 bolted members 154 B bolt stiffness 227 backward curved fans 106 bonds 128 baffling factors (table) 192 bonds, primary 56 baghouse 179 book value 127, 128 baghouses, air-to-cloth ratio for (table) 179 Boolean algebra 213 balanced three-phase (3-φ) systems 199 Boyle's law 85 ball/roller bearing 225 braced frame (chart) 158 band-pass filters (diagram) 207 bracing, lateral (table) 153 band-reject filters (diagram) 207 brake power 234 barometer, simple 100 brake power, pump 105 bars quenched (graphs) 60 brake thermal efficiency 234 bases 50 Brayton cycle 235 basic cycles 86 break-even analysis 127 basic load rating 225 break-through time 183 basin retention 161 Brinell hardness 59 basins, sedimentation (table) 189 brittle materials 230 batch reactor 134-135 Buckingham Pi theorem 108 Bayes' theorem 34 buckled shape (table) 158 beam 78-79, 81 (table), 82 (table), 147, 150, 153 buckling 79 beams, deflection of 79 buckling, flexural 153 beam slopes and deflections, cantilevered (table) 82 buckling, lateral-torsional 153 beam slopes and deflections, simply supported (table) 81 buckling stress 79 beams, shear 151 buckling stress, elastic 153 beams, simply supported (table) 153 bulk fluid temperature 113 beams, singly-reinforced 150 bulk modulus 108 beam stiffness 147 buoyancy 100 bearing, ball/roller 225 C belt friction 64 bending moment 78 calculus 23-24 bending stresses 79 canonical product of sums (POS) 214 benefit-cost analysis 128 canonical sum of products (SOP) 214 Bernoulli equation 101 cantilevered beam slopes and deflections (table) 82 binary number system 213 capability, process 215 capacitance 56 binary phase diagrams 62 binder grading system (table) 169 capacities, heat 59, 61, 83, 114 binomial distribution 35 capacitor 56, 196-198 binomial probabilities, cumulative (table) 46-47 capacitor, parallel plate 56, 196 biological half-life 184 capacitors and inductors in parallel and series 197

2000;1100;400	alassification of atmostrass 140
capillarity 99	classification of structures 148
capillary 99	Clausius-Clapeyron equation 89
capillary rise 99	Clausius, inequality of 87
capitalized costs 128	Clausius' statement of second law 87
capital recovery (table) 127	corollary to Clausius 87
carbide 56	closed-loop characteristic equation 123
carbide phase diagram, iron-iron 62	closed-system exergy 87
carbon black 61	closed thermodynamic system 85
carboxylic acid 52	coefficient
carcinogens 10	concavity 142
Carnot cycle 86, 95 (diagram)	contraction 108
Cartesian coordinates 68	convection heat transfer 113, 114, 117
catalyst 50	determination 36
· ·	diffusion 56, 136, 183
catastrophic crack propagation 58	
cathode 55	discharge 103
cathode reactions (reduction) 56	drag 102, 109, 112 (graph)
cation 55	friction 64, 72
Cauchy number 108	fugacity 88
cement 61	Hazen-Williams 164
center of buoyancy 100	heat transfer 117
center of curvature 69	kinetic friction 72
center of pressure 100	lift 109
central limit theorem 35	Manning's roughness 163
centrifugal pump 105	meter 108
centroid 26, 63, 65–67 (tables), 75 (table), 79, 100, 103	octanol-water partition 181
centroidal axis 64	organic carbon partition 181
centroidal x-axis 100	orifice 108
centroid of area 63, 100	overall 136
centroid, asymptote 125	partition 181
centroid of the total mass 63	performance (COP) 86
channels, rectangular 163	permeability 142, 183
Charles' law 85	permeability of soil 161
Charpy impact test 60	Rankine earth pressure 144
chemical engineering 134–141	restitution 72
chemical equilibrium constant 89	roughness 102, 163
chemical equilibrium, Le Chatelier's principle for 50	runoff 161
chemical interaction effects, selected (table) 9	sample correlation 36
chemical process industry 124, 125	soil-water partition 181
chemical reaction 134	static friction 64, 72
chemical reaction equilibrium 89	stoichiometric 89
chemical reaction, equilibrium constant of a 50	storage 161
chemical sensors (table) 122	thermal expansion 61, 117
chemicals, industrial (table) 54	uniformity 142
chemistry 50–55	variation 33
chemostat 180	velocity 107
chlorinated phosphates 61	yield 186
circle 23	cold working 56
circuits, ac 197, 198	columns 79, 151, 153
circuits, analog filter 206–207	columns, intermediate- and long-length 229
circular annulus 115	column strength interaction 152
circular cone, right 21	combinations 33
circular cylinder, right 22	combustion in air 88
circular motion, plane 69	combustion efficiency 179
circular pipe head loss equation 164	combustion equation 88
circular sector 21	combustion, heats of reaction, solution, formation, and 50
circular segment 21	combustion, incomplete 88
circular sewers (graph) 162	combustion processes 88
civil engineering 142–173	common mode rejection ratio (CMRR) 208
Clapeyron equation 89	communication theory 202–205
clarifier 189	communication theory 202 203
CIMITION 107	

comparison of steady-state performance for decay reactions of cone, right circular 21 different order (table) 182 confidence interval 40, 41 comparison of steady-state retention times for decay reactions of confidence interval for intercept 36 different order (table) 182 configuration factor 118 compensator, lag or lead 124 configurations, flow 102 complex numbers, algebra of 19 confined aquifer 161 complex power 199 confined space safety 7 components, steel 153 conic section equation 23 composite materials 59 conic sections 22-23 composite plane wall 113 connection eccentricity 154 composite sections 79 consecutive holes 154 composites, fiber-reinforced 59 conservation of angular momentum 74 compound amount (table) 127 conservation of energy theorem 70 compounding, non-annual 127 consistency index 99 constant acceleration 69 compounds 61 compounds, families of organic (table) 53 constant acceleration equations 70 compressibility factors (graph) 94 constant angular acceleration 69 compressible flow 104-105 constant, Stefan-Boltzmann's 113, 118, 208 compressible fluid 107 constant of a chemical reaction, equilibrium 50 constant, curve-fit (table) 177 compression, axial (table) 160 compression, isothermal 106 constant density systems 182 compression members (table) 159 constant entropy 83 compression ratio 234 constant fluid temperature 114 compression spring dimensions (tables) 224 constant, gas 1, 56, 83, 104 constant, Henry's law 136, 188 compressive normal stress components 77 constant, ideal gas law 58 compressive strength, design 153 compressive strength (graphs) 61 constant, impeller (table) 191 compressor 95 (diagram), 96 (diagram), 106, 107 constant, kinetic 186 compressor, adiabatic 106 constant mass 70 compressor efficiency, isentropic 106 constant, monod growth rate 181 compressor isentropic efficiency 106 constant, pre-exponential 58 computer engineering, electrical and 195-214 constant pressure heat capacity 61 concavity coefficient 142 constant, proportionality 56 concentration change in a vessel, sweep-through 14 constant system pressure 85 concentration of vaporized liquid 14 constant temperature 85 concept of weight 70 constant, universal gas 106, 136 constant volume 61, 85 concrete 61 concrete, air-entrained 61 constant volume heat capacity 61 concrete, non air-entrained 61 construction 172-173 concrete, reinforced 149 continuity equation 100 continuous distillation (binary system) 137 ASTM standard reinforcing bars (table) 149 continuous-stirred tank reactor (CSTR) 135 concrete strength 61 concurrent forces 64 continuous-time convolution 202 concurrent-force system 64 contraction, coefficient of 108 condensation of a pure vapor, film 116 contractions 102, 104 condenser (diagrams) 95, 96 controller, PID 124 condensers 86 controls 120 conditioning, signal 123 control, statistical quality 48 conduction 113-114 control system models 124-125 conduction, Fourier's law of 113 control system negative feedback, 123 conduction resistance, cylindrical wall 113 control systems 123-126 conduction resistance, plane wall 113 control, tests for out of 48 conduction through a cylindrical wall 113 control volume 103 conduction, transient 114 convection 113, 114-118, 136 convection heat transfer coefficient 113, 114, 117 conductivity 56, 208 conductivity, hydraulic 142, 161, 183 convection, natural (free) 117 conductivity impedance (table) 122 convection resistance 113 conductivity, thermal 113, 114, 116 convection surface area 113 conduct, professional 3 conversion 89 cone 167

conversion factors (table) 2 conversions, temperature (table) 1 conveyance systems 101 conveyance systems 102 cooling 232 cooling 232 cooling 232 cooling 232 cooling 232 cooling 232 cooling rates for bars quenched in agitated oil (graph) 60 coordinates, Cartesian, 68 coordinate system, polar 19 copers 80, 120, 227 coollary to Kelvin-Planck 87 corollary	conversion, analog-to-digital 123	curves, horizontal (table) 165
conveyance systems 101 convolution 202 cooling 232 cooling 232 cooling, everyors tive 233 cooling, newton's law of 113 cooling, revoprative 233 cooling, newton's law of 113 cooling rates for bars quenched in agitated water (graph) 60 coordinates, Cartesian, 68 coordinates, 69 (diagram) cycle, Bankine 86, 95 (diagram) cycle,	conversion factors (table) 2	curves, vertical (table) 165
convolution 302 cooling 232 cooling, evaporative 233 cooling rate 59, 60 (graphs) cooling rate 59 for bus quenched in agitated oil (graph) 60 cooling rates for bus quenched in agitated water (graph) 60 cooling rates for bus quenched in agitated water (graph) 60 cooling rates for bus quenched in agitated water (graph) 60 cooling rates for bus quenched in agitated water (graph) 60 cooling rates for bus quenched in agitated water (graph) 60 cooling rates for bus quenched in agitated water (graph) 60 cooling rates for bus quenched in agitated water (graph) 60 cooling rates for bus quenched in agitated water (graph) 60 cooling rates for bus quenched in agitated water (graph) 60 cooling rates for bus quenched in agitated water (graph) 60 cooling rates for bus quenched in agitated oil (graph) 60 cooling rates for bus quenched in agitated water (graph) 60 cooling rates for bus quenched in agitated oil	conversions, temperature (table) 1	curvilinear motion, particle 68
convolution 202 cooling 223 cooling evaporative 233 cooling area 59, 60 (graphs) cooling rate 59, 60 (graphs) cooling rates for bars quenched in agitated water (graph) 60 cooling rates for bars quenched in agitated water (graph) 60 cooling rates for bars quenched in agitated water (graph) 60 cooling rates for bars quenched in agitated water (graph) 60 cooling rates for bars quenched in agitated water (graph) 60 cordinate, Cartesian, 68 corrolator to Clausus 87 corollary to Kelvin-Planck 86 corosino 52 corosino 120 coroction 120 cost estimation 140-141 coulomb-Mohr theory 230 counterflow 17 contection 40-10-14 coulomb-Mohr theory 230 counterflow 17 counterflow concentric tube heat eschanger 118 coupling multiplier (table) 16 CPM precedence 172 crack length 87 crack l	conveyance systems 101	cycle, air refrigeration (diagrams) 96, 233
cooling 232 cooling, newton's law of 113 cooling newton's law of 113 cooling rates for bars quenched in agitated oil (graph) 60 cooling rates for bars quenched in agitated water (graph) 60 cooling rates for bars quenched in agitated water (graph) 60 cooling rates for bars quenched in agitated water (graph) 60 cooling rates for bars quenched in agitated water (graph) 60 cordinates, Cartesian, 68 coordinate system, polar 19 corper 80, 120, 227 corollary to Clausius 87 correction factor, kinetic emergy 163 corrections, kinetic temperature 181 correlation coefficient, sample 36 corrosion 76 corrosion 56 corrosion reactions (table) 55 cosines 19 cost 127 cost 127 cost 127 conterflow concentric table heat exchanger 118 couples 63 coupling multiplier (table) 16 CPM precedence 172 crack length 58 creep 16 critical rotation and in the 104 critical poth method (CPM) 220 critical poth beat special probabilities (table) 45 cross flow 115 critical poth method (CPM) 220 critical poth beat special probabilities (table) 45 cross flow 115 critical poth method (CPM) 220 critical poth method (CPM) 220 critical poth beat special probabilities (table) 45 cross flow 115 critical poth method (CPM) 220 critical poth meth	convolution 202	
cooling, evaporative 233 cooling rate 59, 60 (graphs) cooling rate 59 for bars quenched in agitated water (graph) 60 cooling rates for bars quenched in agitated water (graph) 60 cooling rates for bars quenched in agitated water (graph) 60 cooling rates for bars quenched in agitated water (graph) 60 cooling rates for bars quenched in agitated water (graph) 60 cooling rates for bars quenched in agitated water (graph) 60 cooling rates for bars quenched in agitated water (graph) 60 cooling rates for bars quenched in agitated water (graph) 60 cooling rates for bars quenched in agitated water (graph) 60 complex for the cooling to Clausius 87 corollary to Kelvin-Planek 89 cycle, Saadis-86 cycle, Saadis-86 cycle, Saadis-86 cycle, taxady-flow 235 cycle, claads 88 cycle, taxady-flow 235 cycle, claads 88 cycle, taxady-flow 235 cycle, statesy-86 cycle, stakeny-80 cycle, sharks 86, 95 (diagram) cycles, sharks 86, 95 (diagram) cycles, sharks 86 cycle, stakeny-80 cycle, sharks 86, 95 (diagram) cycles, sharksy-80 cycle, sharksy-80 cycle, sharksy-80 cycle, sharksy-80 cycle, sharksy-80 cycle, stakey-80 cycle, sharksy-80 cycle, stakey-80 cycle, sharksy-80 cycle, stakey-80 cycl		
cooling Newton's law of 113 cooling rates for bars quenched in agitated oil (graph) 60 coordinates, Cartesian, 68 coordinates yeten, polar 19 coordinates yeten, polar 19 corrections, kinetic emergy 163 corrections, kinetic temperature 181 correlation coefficient, sample 36 corrosion 56 corrosion factorion factori, kinetic emergy 163 corrosion 56 corrosion reactions (table) 55 corrosion factorion reactions (table) 55 corrosion reactions (table) 55 corrosion factorion reactions (table) 55 corrosion factorion factorion factorion reactions (table) 55 corrosion factorion factorion factorion reactions (table) 55 corrosion reactions (table) 50 controsion reactions (table) 50 controsion reactions (table) 50 controsion reactions (table) 50 corrosion reactions (table) 50 corrosion factorion reactions (table) 50 corrosion factorion reactions (table) 50 corrosion factorion (table) 50 corrosion reactions (table) 50 corrosion factorion (table) 160 controsion reactions (table) 160 coupling multiplier (table) 160 coupling multiplier (table) 160 deflection of beams 79 deflections, cauntilevered beam slopes and (table) 81 deflection of beams 79 deflections, cauntilevered beam slopes and (table) 82 deflection of beams 79 deflections, cauntilevered beam slopes and (table) 81 deflection reactions (table) 182 decibed 70 deflections in simply supported beam slopes and (table) 82 deflection of beams 79 deflections, cauntilevered beam slopes and (table) 82 deflection of beams 79 deflections, cauntilevered beam slopes and (table) 82 deflect	•	
cooling rate 59, 60 (graphs) cooling rates for bars quenched in agitated oil (graph) 60 cooling rates for bars quenched in agitated water (graph) 60 cooling rates for bars quenched in agitated water (graph) 60 coordinates, Cartesian, 68 coordinates, Cartesian, 68 coordinate system, polar 19 copper 80, 120, 227 corollary to Kelvin-Planck 87 corollary to Kelvin-Plan		, y ,
cooling rates for bars quenched in agitated water (graph) 60 coordinates, Cartesian, 68 coordinates, Cartesian, 68 coordinate system, polar 19 coper 50, 120, 227 corollary to Clausius 87 correction factor, kinetic emergy 163 corrections, fixine temperature 181 correlation coefficient, sample 36 corrosion 56 corrosion 76 corrosion 77 corrosion 77 corrosion 77 corrosion 78 correctination 100-141 counterflow concentric tube heat exchanger 118 couples 63 couples 63 couples 63 coupling multiplier (table) 16 CPM precedence 172 crack length 58 crack propagation, catastrophic 58 crack propagation (table) 38, 39 criteria for rejection (tables) 38, 39 criteria for rejection (tables) 38, 39 criteria for rejection (table) 38, 39 criteria for rejection (tables) 38, 30 criteria for rejection (tab	<u> </u>	
cooling rates for bars quenched in agitated water (graph) 60 coordinates (zartssim, 68 coordinate system, polar 19 copper 80, 120, 227 corollary to Clausius 87 corollary 18		
coordinates, Cartesian, 68 coordinates yastem, polar 19 copper 80, 120, 227 corollary to Clausius 87 correction factor, kinetic emergations of the first institution radius 113 correlation coefficient, sample 36 corrosion 56 corrosion reactions (table) 55 corosine reactions (table) 55 corosine reactions (table) 55 corosine reactions (table) 65 corosine selful cost indexes 140 Coulomb-Mohr theory 230 counterflow 117 counterflow concentric tube heat exchanger 118 couples 63 coupling multiplier (table) 16 CPM precedence 172 crack length 58 crack propagation, catastrophic 58 crack propagation, catastrophic 58 crack propagation, catastrophic 58 crack propagation, catastrophic 58 crack inficial insulation radius 113 critical path method (CPM) 220 critical aph method (CPM) 220 critical path method (CPM) 220 critical path method (CPM) 220 critical values of X² distribution (table) 45 cross flow 115 crystalline materials 56 crystalline soils 61 CT values (tables) 194 cubic EOS 84 cumvature 24 curvature 24 curvature 24 curvature 24 curvature 24 curvature 24 curvature 195 curve formulas, horizontal 166 curve formulas, vertical 167		
coordinate system, polar 19 corpolar 91, 20, 227 corollary to Clausius 87 corollary to Clausius 87 corollary to Clausius 87 corollary to Kelvin-Planck 87 correction factor, kinetic energy 163 corrections, kinetic temperature 181 corrections factor, kinetic energy 163 corrison 56 corrosion 56 corrosion 56 corrosion reactions (table) 55 cosines 19 cost 127 cotal to a correction 190 cost 127 coulomb-Mohr theory 230 counterflow concentric tube heat exchanger 118 couples 63 coupling multiplier (table) 16 CPM precedence 172 crack length 58 creep 58 critical axial load 79 critical adpth 163 critical insulation radius 113 critical axial load 79 critical adpth 163 critical insulation radius 113 critical parts better 106 critical stress 153, 159 (table) critical values of the F distribution (table) 45 cross flow 115 crystalline materials 56 crystalline solids 61 CT values (tables) 194 cubic EOS 84 cumulative binomial probabilities (table) 46–47 cumulative distribution functions 34 current 195 curvature 24 curvature 24 curvature 194 curvafure or rectangular coordinates 24 curvature 195 curvature 24 curvature in rectangular coordinates 24 curvature in rectangular coordinates 24 curve-fit constants as a function of atmospheric stability (table) 177 curve formulas, horizontal 166 curve formulas, vertical 167		
copper 80, 120, 227 corollary to Kelvin-Planck 87 corrollary to Kelvin-Planck 87 corrections, kimetic temperature 181 correlation coefficient, sample 36 corrosion 56 corrosion 56 corrosion reactions (table) 55 cosines 19 cost estimation 140–141 cost estimation 140–141 cost estimation 140–147 counterflow concentric tube heat exchanger 118 couples 63 coupling multiplier (table) 16 CPM precedence 172 crack length 58 crack propagation, catastrophic 58 crack propagation, catastrophic 58 crack propagation, catastrophic 58 crack propagation, catastrophic 58 crack propagation (table) 38, 39 critical axial load 79 critical depth 163 critical heat flux 116 critical path method (CPM) 220 critical pressure 116 critical insulation radius 113 critical path method (CPM) 220 critical pressure 116 critical risulation radius 13 critical pressure 116 Crystalline materials 56 crystalline solids 61 Cl values (tables) 194 cumulative binomial probabilities (table) 46-47 cumulative distribution functions 34 curr, vectors, gradient, divergence, and 31 current 195 curvature 24 curvature action factor of atmospheric stability (table) 177 curve formulas, vertical 167 cyclinder, right circular 22 cylindrical pressure vessel 76 cylindrical pressures vessel 76 cylindrical pressure vessel 76 cyclindrical pressure vessel 76 cyclindrical p		
corollary to Clausius 87 correction factor, kinetic energy 163 corrosion 56 corrosion 56 corrosion 56 corrosion 56 corsion 59 cost 127 cost estimation 140–141 cost indexes 140 counterflow 177 cost estimation 140–181 counterflow concentric tube heat exchanger 118 couples 63 counterflow concentric tube heat exchanger 118 couples 63 counterflow 172 crack length 58 creep 58 creep 58 critical axial load 79 critical depth 163 critical insulation radius 113 critical part flush (112) critical pressure 116 critical insulation radius 113 critical part flush (112) critical results 25 crystalline solids 61 CT values (tables) 194 cubic EOS 84 cumulative binomial probabilities (table) 46–47 cumulative binomial probabilities (table) 46–47 cumulative isinomial probabilities (table) 46–47 cumulative isinomial probabilities (table) 44 curvature 24 curvature 24 curvature 24 curvature 195 curve formulas, horizontal 166 curve formulas, horizontal 166 curve formulas, horizontal 166 curve formulas, horizontal 166 curve formulas, vertical 167 curvature 24 curvature discovered formulas for fine formulas and current 195 curve formulas, vertical 167 curvature 24 curvature discovered formulas formulation of atmospheric stability determinants 31 current 195 curve formulas, vertical 167 curve formulas,	· · · · · · · · · · · · · · · · · · ·	
corolarly to Kelvin-Planck 87 corrections, kinetic energy 163 corrections, kinetic temperature 181 correlation coefficient, sample 36 corrosion 56 corrosion feactions (table) 55 corrosion reactions (table) 55 corrosion reactions (table) 55 corrosion feactions (table) 55 corrosion feactions (table) 55 corrosion feactions (table) 55 cosines 199 cost 127 cost estimation 140–141 cost indexes 140 Coulomb-Mohr theory 230 counterflow 117 counterflow concentric tube heat exchanger 118 couples 63 coupling multiplier (table) 16 CPM precedence 172 creak length 58 crack propagation, catastrophic 58 creep 58 critical axial load 79 critical day late 163 critical heat flux 116 critical heat flux 116 critical heat flux 116 critical path method (CPM) 220 critical gressure 116 critical strust 153, 159 (table) critical values of the F distribution (table) 45 cross flow 115 cross flow 115 cross flow 15 cross flow 15 CV average (and the continual structions) 34 curn-critical insulation functions 34 curn-less (ables) 194 cubic EOS 84 cumulative hinomial probabilities (table) 46–47 cumulative distribution functions 34 currostrus 24 curvature 24 curvature 24 curvature 24 curvature in rectangular coordinates 24 curvature in rectangular coordinates 24 curver-fit constants as a function of atmospheric stability (table) 177 curve formulas, porizontal 166 cylindrical pressure lesses 17 cylindrical pressure lesses 17 cylindrical pressure lesses 17 cylindrical pressure (pQO) for sampling soils and solids (table) 184 daughter product activity 184 de machines 200 decay reactions (table) 182 decibels 203 deflection of beams 79 deflection of beams 79 deflection of beams 79 deflections, simply supported beam slopes and (table) 81 deflection of beams 79 deflections, simply supported beam slopes and (table) 81 deformation 38, 76 deformation 38, 76 deformation 38, 76 deformation 232 De Morgan's law 33 De Morgan's theorems 213 density functions: means and variances, probability and (table) 49 density systems, constant 182 depth of sorption zone 188 d		· ·
correction factor, kinetic emergy 163 corrections, kinetic temperature 181 correlation coefficient, sample 36 corrosion 56 corrosion 56 corrosion 56 corrosion 56 corrosion 56 cost 127 cost estimation 140–141 cost indexes 140 data quality objectives (DQO) for sampling soils and solids (table) 184 daughter product activity 184 dc machines 200 counterflow 117 counterflow concentric tube heat exchanger 118 couples 63 deflection of beams 79 deflections, cantilevered beam slopes and (table) 82 deflections, pagasticus, catastrophic 58 creep 58 criteria for rejection (tables) 38, 39 criteria for rejection (tables) 38, 39 criteria for rejection (tables) 38, 39 criteria for rejection (tables) 40 deforming, plastically 56 degree-of-freedom, single 74 dehumidification 232 be Morgan's law 33 critical path method (CPM) 220 critical values of the F distribution (table) 45 cross flow 115 critical values of the F distribution (table) 45 cross flow 115	· ·	· ·
corrections, kimetic temperature 181 corrolation coefficient, sample 36 corrosion 56 corrosion reactions (table) 55 cost estimation 140–141 cost indexes 140 coulomb-Mohr theory 230 counterflow 117 counterflow concentric tube heat exchanger 118 couples 63 coupling multiplier (table) 16 corrosion for proceeding multiplier (table) 16 deflection angle 166 deflection (table) 82 deflections, cantilevered beam slopes and (table) 81 deformation 58, 76 deforming, plastically 56 degree-of-freedom, single 74 dehumidification 232 De Morgan's law 33 De Morgan's theorems 213 density functions: means and variances, probability and (table) 49 density systems, constant 182 depreciation 127, 128 modified accelerated cost recovery system (MACRS) 128 straight line 128 derivative 23 derivative 23 derivative 23 derivative 23 design and operational parameters for activated-sludge treatment of municipal varieties of size straight 153 design compressive strength 153 design superpave mixture (table) 180 determinancy 148 determinants 31 determinants	· ·	
correlation coefficient, sample 36 corrosion 56 corrosion facetions (table) 55 cosines 19 cost 127 cost estimation 140–141 cost indexes 140 daughter product activity 184 de machines 200 decay reactions (table) 184 counterflow concentric tube heat exchanger 118 couples 63 coupling multiplier (table) 16 deflection angle 166 deflection angle 166 deflections, cantilevered beam slopes and (table) 82 deflections, simply supported beam slopes and (table) 82 deflections, simply supported beam slopes and (table) 81 deformation 88, 76 deformation 88, 76 deformation 88, 76 deformation 38, 76 deformation 31 density systems, constant 182 den		*
corrosion 56 corrosion reactions (table) 55 cosines 19 cost 127 cost 127 cost taintation 140–141 cost indexes 140 Coulomb-Mohr theory 230 counterflow concentric tube heat exchanger 118 couples 63 couples 63 coupling multiplier (table) 16 CPM precedence 172 crack length 58 crack propagation, catastrophic 58 creep 58 creep 58 creep 58 critical axial load 79 critical akial load 79 critical akial load 79 critical heat flux 116 critical insulation radius 113 critical heat flux 116 critical insulation radius 113 critical path theold (CPM) 220 critical gressure 116 critical stress 153, 159 (table) critical values of the F distribution (table) 44 critical values of X2 distribution (table) 45 cross flow 115 crystalline materials 56 crystalline materials 56 crystalline materials 56 crystalline materials 56 crystalline solids 61 CT values (tables) 194 cubic EOS 84 cumulative binomial probabilities (table) 46–47 cumulative distribution functions 34 curl, vectors, gradient, divergence, and 31 currived for romulas, vertical 166 curve formulas, vertical 167 cost forming, plastically 56 defections, simply supported beam slopes and (table) 81 deflection of beams 79 deflections, cantilevered beam slopes and (table) 82 deflections, simply supported beam slopes and (table) 81 deflections, simply supported beam slopes and (table) 81 deflections, simply supported beam slopes and (table) 81 deformation 58, 76 deformation 58, 76 deformation 58, 76 deformation 58, 76 deformation 78, 79 deflections, simply supported beam slopes and (table) 81 deformation 58, 76 deforma	*	cylindrical wall, conduction through a 113
Corrosion reactions (table) 55 cosines 19 cost 127 cost estimation 140–141 cost indexes 140 Coulomb-Mohr theory 230 counterflow 17 counterflow concentric tube heat exchanger 118 couples 63 couples 63 coupling multiplier (table) 16 CPM precedence 172 crack length 58 crack propagation, catastrophic 58 crack propagation, catastrophic 58 critical axial load 79 critical axial load 79 critical apth 163 critical heat flux 116 critical pressure 116 critical sulues of Yc distribution (table) 45 cross flow 115 crystalline materials 56 crystalline materials 56 crystalline materials 56 crystalline solids 61 CT values (tables) 194 cumulative binomial probabilities (table) 46–47 cumulative distribution functions 34 curl, vectors, gradient, divergence, and 31 curry (corrulas, vertical 166 curve formulas, shorizontal 166 curve formulas, vertical 167 contenting the project size modified cacelering (table) 172 data quality objectives (DQO) for sampling soils and solids (table) 184 daughter product activity 184 decib		n
cosines 19 cost 127 cost 127 cost estimation 140–141 cost indexes 140 Coulomb-Mohr theory 230 counterflow concentric tube heat exchanger 118 couples 63 couples 63 coupling multiplier (table) 16 CPM precedence 172 crack length 58 crack propagation, catastrophic 58 crack propagation, catastrophic 58 creep 58 critical axial load 79 critical aptensure 116 critical insulation radius 113 critical insulation radius 113 critical insulation radius 113 critical pressure 116 critical aptensure 116 critical aylaues of the F distribution (table) 44 critical values of the F distribution (table) 45 cross flow 115 crystalline materials 56 crystalline materials 56 crystalline materials 56 crystalline monial probabilities (table) 46–47 cumulative binomial probabilities (table) 46–47 cumulative distribution functions 34 curl, vectors, gradient, divergence, and 31 curve-firo-mulas, vertical 167 curve formulas, vertical 167 detarchines 200 decay reactions (table) 184 daughter product activity 184 daughter product activity 184 daughter product activity 184 deaughter product activity 184 decibles 108 decibles 203 deflections (able) 182 decibles 203 deflections (able) 182 decibles 203 deflections, santilevered beam slopes and (table) 82 deflections, samtilevered beam slopes and (table) 82 deflections, simply supported b		_
cost 127 cost estimation 140–141 cost indexes 140 Coulomb-Mohr theory 230 counterflow concentric tube heat exchanger 118 couples 63 coupling multiplier (table) 16 CPM precedence 172 crack length 58 creep 58 criteria for rejection (tables) 38, 39 criteria for rejection (tables) 38, 39 critical depth 163 critical heat flux 116 critical arban tender (CPM) 220 critical pressure 116 critical ratio arban tender 53, 159 (table) critical values of the F distribution (table) 44 critical values of the F distribution (table) 45 crystalline materials 56 crystalline materials 56 crystalline materials 56 curvature 24 curvature 24 curvature 24 curvature 24 curvature 24 curvature 24 curvature 16 curve formulas, vertical 167 curve formulas, vertical 167 curve formulas, vertical 167 counterflow on contentic tube heat exchanger 118 data quality objectives (DQO) for sampling soils and solids (table) 184 daughter product activity 184 deag daughter product activity 184 de aduphines 200 decay reactions (table) 182 demactions (table) 182 demactions (table) 182 deflection angle 166 deflection of peams 79 deflections, cantilevered beam slopes and (table) 82 deflections, simply supported beam slopes and (table) 82 deflections, simply supported beam slopes and (table) 81 deflection of peams 79 deflections, cantilevered beam slopes and (table) 82 deflections, simply supported beam slopes and (table) 82 deflections, cantilevered beam slopes and (table) 82 deflections, cantilevered beam slopes and (table) 82 deflections, cantilevered beam slopes and (table) 84 deflections, cantilevered beam slopes and (table) 84 deflections, cantilevered beam slopes and (table) 94 deflections of beams 79 deflections, cantilevered beam slopes and (table) 81 deflections of beams 79 deflections, cantilevered be	corrosion reactions (table) 55	·
cost estimation 140–141 cost indexes 140 Coulomb-Mohr theory 230 counterflow concentric tube heat exchanger 118 couples 63 coupling multiplier (table) 16 CPM precedence 172 crack length 58 crack propagation, catastrophic 58 creep 58 critical a full tube 163 critical a full tube 164 critical a full tube 165 critical a full tube 165 critical stress 153, 159 (table) 45 critical a stress 153, 159 (table) 45 cross flow 115 cross flow 115 crystalline materials 56 crystalline solids 61 CT values (tables) 194 cumulative distribution functions 34 current 195 curvature 24 curvature 19 curvature 24 curvature in rectangular coordinates 24 curve formulas, vertical 167 determinang, 148 deaughter product activity 184 daughter product activity 184 daughter product activity 184 deaughter product activity 184 de daughter product activity 184 de machines 200 decay reactions (table) 182 decibels 203 deflection angle 166 deflection angle 166 deflection of beams 79 deflections, cantilevered beam slopes and (table) 82 deflections, simply supported beam slopes and (table) 81 deformation 58, 76 deforming, plastically 56 degree-of-freedom, single 74 dehumidification 232 De Morgan's law 33 De Morgan's theorems 213 density functions: means and variances, probability and (table) 49 density systems, constant 182 depreciation 127, 128 modified accelerated cost recovery system (MACRS) 128 straight line 128 depth, critical 163 depth of sorption zone 188 derivative 23 derivative 23 derivative 23 derivative 23 derivative 23 derivative 23 design compressive strength 153 design compressive strength 153 design provisions 150 design shear strength 153 design provisions 150 design shear strength 153 design provisions 150 design, superpaye mixture (table) 170 determinancy 148 determinancy 149 determinancy 148	cosines 19	· · · · · · · · · · · · · · · · · · ·
cost indexes 140 Coulomb-Mohr theory 230 counterflow the properties of the propertie	cost 127	
Coulomb-Mohr theory 230 counterflow 117 counterflow concentric tube heat exchanger 118 couples 63 coupling multiplier (table) 16 CPM precedence 172 crack length 58 crack propagation, catastrophic 58 crack propagation, catastrophic 58 critical axial load 79 critical axial load 79 critical axial load 79 critical heat flux 116 critical insulation radius 113 critical land them thod (CPM) 220 critical pets unter 60 critical yalues of the F distribution (table) 45 cross flow 115 cross fl	cost estimation 140–141	
counterflow concentric tube heat exchanger 118 counterflow concentric tube heat exchanger 118 couples 63 coupling multiplier (table) 16 CPM precedence 172 crack length 58 creep 58 criteria for rejection (tables) 38, 39 critical airl load 79 critical airl load 116 critical heat flux 116 critical path method (CPM) 220 critical path method (CPM) 220 critical values of the F distribution (table) 45 critical values of the F distribution (table) 45 crystalline materials 56 crystalline materials 50 curvature 24 cumulative distribution functions 34 current 195 curvature 195 curvature 195 curvature 195 curvature in rectangular coordinates 24 curve-fit constants as a function of atmospheric stability (table) 177 curve formulas, vertical 167 decay reactions (table) 182 decibels 203 deflection angle 166 deflection of beams 79 deflections of beams 79 deflections, cantilevered beam slopes and (table) 82 deflections, cantilevered beam slopes and (table) 81 deflections, cantilevered beam slopes and (table) 82 deflections, simply supported beam slopes and (table) 81 deflections, simply supported beam slopes and (table) 81 deflections, simply supported beam slopes and (table) 82 deflections, simply supported beam	cost indexes 140	• •
counterflow 117 counterflow concentric tube heat exchanger 118 couples 63 coupling multiplier (table) 16 CPM precedence 172 crack length 58 crack length 58 crack propagation, catastrophic 58 creep 58 criteria for rejection (tables) 38, 39 critical depth 163 critical depth 163 critical heat flux 116 critical path method (CPM) 220 critical path method (CPM) 220 critical path method (CPM) 220 critical values of K² distribution (table) 44 critical values of X² distribution (table) 45 crystalline materials 56 crystalline materials 56 crystalline materials 56 crystalline materials 56 crystalline in terms and path silvation functions 34 curnulative distribution functions 34 curnulative distribution functions 34 curvature 24 curvature 195 curvature 195 curvature 195 curvature 197 curve formulas, horizontal 166 curve formulas, vertical 167 decides a decilection angle 166 deflection of beams 79 deflections, sampls ventioned beam slopes and (table) 82 deflections, simply supported beam slopes and (table) 48 deflections, simply supported beam slopes and (table) 48 deflections, simply supported beam slopes and (table) 48 deflections, simply supported beam slopes and (table) 82 deflections, simply supported beam slopes and (table) 82 deflections, simply supported beam slopes and (table) 49 deflections, simply supported beam slopes and (table) 82 deflect	Coulomb-Mohr theory 230	dc machines 200
couples 63 coupling multiplier (table) 16 CPM precedence 172 crack length 58 crack propagation, catastrophic 58 creep 58 crietia for rejection (tables) 38, 39 critical axial load 79 critical depth 163 critical abath method (CPM) 220 critical path method (CPM) 220 critical pressure 116 critical pressure 116 critical values of the F distribution (table) 45 crystalline materials 56 crystalline materials 56 crystalline materials 56 crystalline solids 61 CT values (tables) 194 curl, vectors, gradient, divergence, and 31 current 195 curvature 24 curvature 194 curve-fit constants as a function of atmospheric stability (table) 177 curve formulas, horizontal 166 curvature in rectangular coordinates 24 curve formulas, horizontal 166 curvature in rectangular coordinates 24 curve formulas, horizontal 166 curvature in rectangular, catastrophic 58 deflection angle 166 deflection of beams 79 deflections, samile 166 deflections, samile 166 deflections, samily vedeflections, simply supported beam slopes and (table) 82 deflections, samily supported beam slopes and (table) 82 deflections, samily supported beam slopes and (table) 82 deflections, samily supported beam slopes and (table) 82 deflections, simply supported beam slopes and (table) 82 deflections, samily supported beam slopes and (table) 82 deflections, samily supported beam slopes and (table) 82 deflections, samily supported beam slopes and (table) 82 deflections, simply supported beam slopes and (table) 81 deflections, samily supported beam slopes and (table) 81 deflections, samily supported beam slopes and (table) 81 deflections, simply supported beam slopes and (table) 81 deflections, samily supported beam slopes and (table) 81 deflections, simply supported beam slopes and (table) 94 def	counterflow 117	decay reactions (table) 182
couples 63 coupling multiplier (table) 16 CPM precedence 172 crack length 58 crack propagation, catastrophic 58 crack syropagation, catastrophic 58 critical axial load 79 critical axial load 79 critical depth 163 critical heart flux 116 critical path method (CPM) 220 critical pressure 116 critical syress 153, 159 (table) critical values of the F distribution (table) 44 critical values of X2 distribution (table) 45 crystalline materials 56 crystalline materials 56 crystalline solids 61 CT values (tables) 194 cumulative distribution functions 34 current 195 curvature 24 curvature 195 curvature 24 curvature in rectangular coordinates 24 curve formulas, horizontal 166 curve formulas, vertical 167 deflections of beams 79 deflections, cantilevered beam slopes and (table) 82 deflections, simply supported beam slopes and (table) 82 deflections, simply supported beam slopes and (table) 81 deflections, simply supported beam slopes and (table) 81 deflections, simply supported beam slopes and (table) 82 deflections, simply supported beam slopes and (table) 81 deflections, simply supported beam slopes and (table) 82 deflections, simply supported beam slopes and (table) 81 deflections, simply supported beam slopes and (table) 81 deflections, simply supported beam slopes and (table) 81 deformation 58, 76 deformation 58, 72 defundification 232 density functions: means and variances, probability and (table) 49 d	counterflow concentric tube heat exchanger 118	decibels 203
coupling multiplier (table) 16 CPM precedence 172 deflections, cantilevered beam slopes and (table) 82 crack length 58 crack propagation, catastrophic 58 creep 58 criteria for rejection (tables) 38, 39 critical axial load 79 critical aph method (CPM) 220 critical path method (CPM) 220 critical stress 153, 159 (table) critical values of the F distribution (table) 45 cross flow 115 crystalline materials 56 crystalline solids 61 CT values (tables) 194 cumulative distribution functions 34 current 195 curvature 24 curvature in rectangular coordinates 24 curvature in rectangular coordinates 24 curve formulas, horizontal 166 curve formulas, vertical 167 deflections, cantilevered beam slopes and (table) 82 deflections, cantilevered beam slopes and (table) 82 deflections, simply supported beam slopes and (table) 81 deflections, cantilevered beam slopes and (table) 82 deflections, cantilevered beam slopes and (table) 82 deflections, cantilevered beam slopes and (table) 81 deflections, simply supported beam slopes and (table) 82 deflections, cantilevered beam slopes and (table) 81 deforming, plastically 56 degree-of-freedom, single 74 dehumidification 232 De Morgan's law 33 De Morgan's law 33 De Morgan's law 33 density functions: means and variances, probability and (table) 49 density systems, constant 182 deprication 127, 128 modified accelerated cost recovery system (MACRS) 128 straight line 128 deprication 127, 128 deprication 127		deflection angle 166
CPM precedence 172 crack length 58 crete popagation, catastrophic 58 crete propagation, catastrophic 58 criteria for rejection (tables) 38, 39 critical axial load 79 critical depth 163 critical heat flux 116 critical insulation radius 113 critical path method (CPM) 220 critical pressure 116 critical stress 153, 159 (table) critical values of the F distribution (table) 45 cross flow 115 crystalline materials 56 crystalline materials 56 crystalline solids 61 CT values (tables) 194 cumulative distribution functions 34 cumulative distribution functions 34 current 195 current 195 curvature 24 curvature 124 curve formulas, porizontal 166 curve formulas, vertical 167 defections, simply supported beam slopes and (table) 81 deformation 58, 76 deforming, plastically 56 degree-of-freedom, single 74 cfricadom, single 74 defections, simply supported beam slopes and (table) 93 deformation 58, 76 deformation 58, 76 deformation 52, 74 defections, simply supported beam slopes and (table) 81 deformation 52, 74 defections, simply supported beam slopes and (table) 81 deformation 52, 74 defections, simply supported beam slopes and (table) 81 densitical yeas defections, single 74 deformation 52, 74 defections, single 74 defections, singl		deflection of beams 79
crack length 58 crack propagation, catastrophic 58 crack propagation, catastrophic 58 critical control (tables) 38, 39 critical axial load 79 critical axial load 79 critical heat flux 116 critical insulation radius 113 critical path method (CPM) 220 critical path method (CPM) 220 critical ystessure 116 critical stress 153, 159 (table) critical values of the F distribution (table) 44 critical values of the F distribution (table) 45 crystalline materials 56 crystalline solids 61 CT values (tables) 194 cumulative binomial probabilities (table) 46–47 cumulative binomial probabilities (table) 46–47 cumulative distribution functions 34 current 195 curvature in rectangular coordinates 24 curvature in rectangular coordinates 24 curve formulas, horizontal 166 curve formulas, vertical 167 defermation 58, 76 deformation 58, 76 deforming, plastically 56 degree-of-freedom, single 74 dehumidification 232 De Morgan's law 33 De Morgan's law 33 De Morgan's law 33 density systems, constant 182 density functions: means and variances, probability and (table) 49 density systems, constant 182 desprictation 127, 128 despreciation 127, 128 straight line 128 depth, critical 163 depth of sorption zone 188 derivative 23 derivative 23 derivative 23 design and operational parameters for activated-sludge treatment of municipal wastewater (table) 186 design criteria for sedimentation basins (table) 189 design flexural strength 153 design provisions 150 design shear strength 15		deflections, cantilevered beam slopes and (table) 82
crack propagation, catastrophic 58 creep 58 criteria for rejection (tables) 38, 39 critical axial load 79 critical depth 163 critical heat flux 116 critical insulation radius 113 critical path method (CPM) 220 critical path method (CPM) 220 critical values of the F distribution (table) 44 critical values of the F distribution (table) 45 crystalline materials 56 crystalline materials 56 crystalline solids 61 CT values (tables) 194 curlo EOS 84 cumulative binomial probabilities (table) 46–47 curroet formulas, horizontal 166 curve formulas, borizontal 166 curve formulas, vertical 167 deformation 58, 76 deformation 58, 76 deformation 58, 76 deforming, plastically 56 degree-of-freedom, single 74 deforming, plastically 56 deforming, plastically 52 deforming, plastically 56 degree-of-freedom, single 74 denoundification 232 De Morgan's theorems 213 density functions 34 density functions man and variances, probability and (table) 49 density systems, constant 182 density systems, constant 182 deritical prastical 163 density systems, constant 182 deritical prastical 163 density functions and variances, probability and (table) 49 density systems, constant 182 deritical results and variances, probability of density systems, constant 182 density systems, constant 182 deritical prastical 163 density functions and variances, probability of density systems, constant 182 density systems	•	deflections, simply supported beam slopes and (table) 81
deforming, plastically 56 criteria for rejection (tables) 38, 39 critical axial load 79 critical depth 163 critical depth 163 critical heat flux 116 critical insulation radius 113 critical path method (CPM) 220 critical pressure 116 critical yresure 116 critical values of the F distribution (table) 44 critical values of the F distribution (table) 45 critical values of X ² distribution (table) 45 crystalline materials 56 crystalline solids 61 CT values (tables) 194 curb Leo S 84 cumulative binomial probabilities (table) 46–47 cumulative distribution functions 34 current 195 curvature in rectangular coordinates 24 curvature in rectangular coordinates 24 curve formulas, horizontal 166 curve formulas, vertical 167 deforming, plastically 56 degree-of-freedom, single 74 dehunidification 232 De Morgan's theorems 213 density systems, constant 182 density functions: means and variances, probability and (table) 49 density systems, constant 182 dersity and variances, probability and (table) 49 density systems, constant 182 dersity functions: means and variances, probability and (table) 49 density systems, constant 182 dersity successity systems, constant 182 dersity successity systems, constant 1		
criteria for rejection (tables) 38, 39 critical axial load 79 critical axial load 79 critical depth 163 critical heat flux 116 critical insulation radius 113 critical path method (CPM) 220 critical pressure 116 critical stress 153, 159 (table) critical values of the F distribution (table) 45 critical values of W15 crystalline materials 56 crystalline materials 56 crystalline solids 61 CT values (tables) 194 curulative binomial probabilities (table) 46–47 curulative distribution functions 34 curry (curve formulas, horizontal 166 curve formulas, vertical 167 degree-of-freedom, single 74 dehumidification 232 De Morgan's law 33 De Morgan's theorems 213 density functions: means and variances, probability and (table) 49 density systems, constant 182 depreciation 127, 128 modified accelerated cost recovery system (MACRS) 128 straight line 128 depth, critical 163 depth of sorption zone 188 derivative 23 depth, critical 163 derivative 23 derivative 24 design and operational parameters for activated-sludge treatment of municipal wastewater (table) 186 design compressive strength 153 design criteria for sedimentation basins (table) 189 design flexural strength 153 design provisions 150 design shear strength 153 design superpave mixture (table) 170 determinants 31 determinants 31 determinants 31 determinants 31 determinants 31 determinants 31 determining the project size modifier (table) 172		
critical axial load 79 critical depth 163 critical heat flux 116 critical insulation radius 113 critical path method (CPM) 220 critical pressure 116 critical stress 153, 159 (table) critical values of the F distribution (table) 45 critical values of X ² distribution (table) 45 crystalline materials 56 crystalline materials 56 crystalline solids 61 CT values (tables) 194 curile distribution functions 34 cumulative binomial probabilities (table) 46–47 current 195 curvature 24 curvetors, gradient, divergence, and 31 curvet 195 curvature in rectangular coordinates 24 curve-fit constants as a function of atmospheric stability (table) 177 curve formulas, horizontal 166 curve formulas, vertical 167 dehumidification 232 De Morgan's law 33 De Morgan's law 32 De Morgan's law 33 De Morgan's law 32 De Morsan's law 42 De Morgan's law 42 De Morsan's law 42 De Morgan's law 42 De Morsan's law 42 De Morgan's law 42 De Morsan's	•	
critical depth 163 critical heat flux 116 critical insulation radius 113 critical path method (CPM) 220 critical pressure 116 critical stress 153, 159 (table) critical values of the F distribution (table) 44 critical values of X² distribution (table) 45 cross flow 115 crystalline materials 56 crystalline solids 61 CT values (tables) 194 cumulative binomial probabilities (table) 46–47 cumulative binomial probabilities (table) 46–47 curvature in rectangular coordinates 24 curvature in rectangular coordinates 24 curve-fit constants as a function of atmospheric stability (table) 177 curve formulas, vertical 167 De Morgan's law 33 De Morgan's theorems 213 density functions: means and variances, probability and (table) 49 density systems, constant 182 derivative systems constant 182 derivative systems constant 182 depth, critical 163 depth of sorption zone 188 derivative 23 derivative 23 derivative 23 derivatives and indefinite integrals 25 design and operational parameters for activated-sludge treatment of municipal wastewater (table) 186 design criteria for sedimentation basins (table) 189 design flexural strength 153 design provisions 150 design shear strength 153 design, superpave mixture (table) 170 destruction and removal efficiency 179 determinancy 148 determinants 31 determining the project size modifier (table) 172		
critical heat flux 116 critical insulation radius 113 critical path method (CPM) 220 critical pressure 116 critical stress 153, 159 (table) critical values of the F distribution (table) 44 critical values of X² distribution (table) 45 crystalline materials 56 crystalline solids 61 CT values (tables) 194 cubic EOS 84 cumulative binomial probabilities (table) 46–47 cumulative binomial probabilities (table) 46–47 cumulative distribution functions 34 curl, vectors, gradient, divergence, and 31 current 195 curvature 24 curvature in rectangular coordinates 24 curvature in rectangular coordinates 24 curve-fit constants as a function of atmospheric stability (table) 177 curve formulas, horizontal 166 curve formulas, vertical 167 De Morgan's theorems 213 density functions: means and variances, probability and (table) 49 density functions: means and variances, probability and (table) 49 density functions: means and variances, probability and (table) 49 density functions: means and variances, probability and (table) 49 density functions: means and variances, probability and (table) 49 density functions: means and variances, probability functions: means and variances, probability and (table) 49 density functions: means and variances, probability and (table) 49 density systems, constant 182 density systems, constant 182 depth of sorption zone 188 detrivative 23 depth, critical 163 depth of sorption zone 188 detrivative 23 derivative 23 derivative 23 derivatives and indefinite integrals 25 design and operational parameters for activated-sludge treatment of municipal wastewater (table) 186 design		
critical insulation radius 113 critical path method (CPM) 220 critical pressure 116 critical stress 153, 159 (table) critical stress 153, 159 (table) critical values of the F distribution (table) 44 critical values of X² distribution (table) 45 critical values of X² distribution value valu	•	•
critical path method (CPM) 220 critical pressure 116 critical stress 153, 159 (table) critical values of the F distribution (table) 44 critical values of the F distribution (table) 45 cross flow 115 crystalline materials 56 crystalline solids 61 CT values (tables) 194 cumulative binomial probabilities (table) 46–47 curve torrs, gradient, divergence, and 31 current 195 curvature 24 curvature 24 curvature in rectangular coordinates 24 curve fict constants as a function of atmospheric stability (table) 177 curve formulas, horizontal 166 curvative formulas, vertical 167 density systems, constant 182 depreciation 127, 128 modified accelerated cost recovery system (MACRS) 128 straight line 128 depth, critical 163 depth of sorption zone 188 depth of sorption 200 destination 163 design and operational parameters for activated-sludge treatment of municipal wastewater (table) 186 design compressive strength 153 design compressive strength 153 design provisions 150 design provisions 150 design shear strength 153 design flow provisions 150 design shear strength 153 design provisions		5
critical pressure 116 critical stress 153, 159 (table) critical values of the F distribution (table) 44 critical values of X ² distribution (table) 45 crystalline materials 56 crystalline solids 61 CT values (tables) 194 cumulative binomial probabilities (table) 46–47 cumulative distribution functions 34 curr, vectors, gradient, divergence, and 31 current 195 curvature 24 curvature in rectangular coordinates 24 curve formulas, horizontal 166 curve formulas, vertical 167 depreciation 127, 128 modified accelerated cost recovery system (MACRS) 128 straight line 128 depth, critical 163 depth of sorption zone 188 derivative 23 derivative 23 derivatives and indefinite integrals 25 design and operational parameters for activated-sludge treatment of municipal wastewater (table) 186 design compressive strength 153 design criteria for sedimentation basins (table) 189 design flexural strength 153 design shear strength 153 design shear strength 153 design, superpave mixture (table) 170 determinancy 148 determinancy 148 determinants 31 determining the project size modifier (table) 172		
critical stress 153, 159 (table) critical stress 153, 159 (table) critical values of the F distribution (table) 44 critical values of X ² distribution (table) 45 cross flow 115 crystalline materials 56 crystalline solids 61 CT values (tables) 194 cumulative binomial probabilities (table) 46–47 cumulative distribution functions 34 curr, vectors, gradient, divergence, and 31 current 195 curvature 24 curvature 24 curvature 24 curvature 195 curvature 24 curvature in rectangular coordinates 24 curve formulas, horizontal 166 curve formulas, vertical 167 modified accelerated cost recovery system (MACRS) 128 straight line 128 depth, critical 163 depth of sorption zone 188 derivative 23 derivatives and indefinite integrals 25 design and operational parameters for activated-sludge treatment of municipal wastewater (table) 186 design compressive strength 153 design criteria for sedimentation basins (table) 189 design flexural strength 153 design provisions 150 design shear strength 153 design, superpave mixture (table) 170 determinancy 148 determinants 31 curve formulas, horizontal 166 determining the project size modifier (table) 172	1 , , ,	
critical values of the F distribution (table) 44 critical values of X ² distribution (table) 45 cross flow 115 crystalline materials 56 crystalline solids 61 CT values (tables) 194 cumulative binomial probabilities (table) 46–47 cumulative distribution functions 34 current 195 curvature 24 curvature 24 curvature in rectangular coordinates 24 curve formulas, horizontal 166 critical values of the F distribution (table) 45 depth, critical 163 depth of sorption zone 188 derivative 23 derivatives and indefinite integrals 25 design and operational parameters for activated-sludge treatment of municipal wastewater (table) 186 design compressive strength 153 design criteria for sedimentation basins (table) 189 design flexural strength 153 design provisions 150 design shear strength 153 design, superpave mixture (table) 170 destruction and removal efficiency 179 determinancy 148 determinants 31 determining the project size modifier (table) 172	1	•
critical values of X² distribution (table) 45 cross flow 115 crystalline materials 56 crystalline solids 61 CT values (tables) 194 cumulative binomial probabilities (table) 46–47 cumulative distribution functions 34 curl, vectors, gradient, divergence, and 31 current 195 curvature 24 curvature in rectangular coordinates 24 curve-fit constants as a function of atmospheric stability (table) 177 curve formulas, horizontal 166 curve formulas, vertical 163 depth, critical 163 depth of sorption zone 188 derivative 23 derivatives and indefinite integrals 25 design and operational parameters for activated-sludge treatment of municipal wastewater (table) 186 design compressive strength 153 design criteria for sedimentation basins (table) 189 design flexural strength 153 design provisions 150 design shear strength 153 design, superpave mixture (table) 170 determinancy 148 determinants 31 determining the project size modifier (table) 172		
cross flow 115 crystalline materials 56 crystalline solids 61 CT values (tables) 194 cubic EOS 84 cumulative distribution functions 34 curl, vectors, gradient, divergence, and 31 current 195 curvature 24 curvature 24 curvature in rectangular coordinates 24 curve-fit constants as a function of atmospheric stability (table) 177 curve formulas, horizontal 166 curve formulas, vertical 167 depth of sorption zone 188 derivative 23 derivatives and indefinite integrals 25 design and operational parameters for activated-sludge treatment of municipal wastewater (table) 186 design compressive strength 153 design criteria for sedimentation basins (table) 189 design flexural strength 153 design provisions 150 design shear strength 153 design, superpave mixture (table) 170 determinancy 148 determinants 31 determining the project size modifier (table) 172		•
crystalline materials 56 crystalline solids 61 CT values (tables) 194 cubic EOS 84 cumulative binomial probabilities (table) 46–47 cumulative distribution functions 34 curl, vectors, gradient, divergence, and 31 current 195 curvature 24 curvature in rectangular coordinates 24 curve-fit constants as a function of atmospheric stability (table) 177 curve formulas, horizontal 166 curve formulas, vertical 167 derivative 23 derivative 23 derivative 23 derivative 23 design and operational parameters for activated-sludge treatment of municipal wastewater (table) 186 design compressive strength 153 design criteria for sedimentation basins (table) 189 design provisions 150 design shear strength 153 design, superpave mixture (table) 170 determinancy 148 determinants 31 determinants 31 determining the project size modifier (table) 172		•
crystalline solids 61 CT values (tables) 194 cubic EOS 84 cumulative binomial probabilities (table) 46–47 cumulative distribution functions 34 curr, vectors, gradient, divergence, and 31 current 195 curvature 24 curvature in rectangular coordinates 24 curve-fit constants as a function of atmospheric stability	cross flow 115	
CT values (tables) 194 cubic EOS 84 cumulative binomial probabilities (table) 46–47 cumulative distribution functions 34 current 195 curvature 24 curvature in rectangular coordinates 24 curve-fit constants as a function of atmospheric stability		
cubic EOS 84 cumulative binomial probabilities (table) 46–47 cumulative distribution functions 34 curl, vectors, gradient, divergence, and 31 current 195 curvature 24 curvature in rectangular coordinates 24 curve-fit constants as a function of atmospheric stability (table) 177 curve formulas, horizontal 166 curve formulas, vertical 167 of municipal wastewater (table) 186 design compressive strength 153 design criteria for sedimentation basins (table) 189 design flexural strength 153 design provisions 150 design shear strength 153 design, superpave mixture (table) 170 determinancy 148 determinancy 148 determinants 31 determinants 31 determining the project size modifier (table) 172	crystalline solids 61	
cumulative binomial probabilities (table) 46–47 cumulative distribution functions 34 curl, vectors, gradient, divergence, and 31 current 195 curvature 24 curvature in rectangular coordinates 24 curve-fit constants as a function of atmospheric stability (table) 177 curve formulas, horizontal 166 curve formulas, vertical 167 design compressive strength 153 design criteria for sedimentation basins (table) 189 design flexural strength 153 design provisions 150 design shear strength 153 design, superpave mixture (table) 170 determinancy 148 determinancy 148 determinants 31 determinants 31 determining the project size modifier (table) 172	CT values (tables) 194	• • •
cumulative distribution functions 34 curl, vectors, gradient, divergence, and 31 current 195 curvature 24 curvature in rectangular coordinates 24 curve-fit constants as a function of atmospheric stability (table) 177 curve formulas, horizontal 166 curve formulas, vertical 167 design criteria for sedimentation basins (table) 189 design flexural strength 153 design provisions 150 design shear strength 153 design, superpave mixture (table) 170 determinancy and removal efficiency 179 determinancy 148 determinants 31 determinants 31 determining the project size modifier (table) 172	cubic EOS 84	* '
curl, vectors, gradient, divergence, and 31 current 195 curvature 24 curvature in rectangular coordinates 24 curve-fit constants as a function of atmospheric stability (table) 177 curve formulas, horizontal 166 curve formulas, vertical 167 design flexural strength 153 design provisions 150 design shear strength 153 design, superpave mixture (table) 170 destruction and removal efficiency 179 determinancy 148 determinants 31 determinants 31 determinants 31	cumulative binomial probabilities (table) 46–47	
current 195 curvature 24 curvature in rectangular coordinates 24 curve-fit constants as a function of atmospheric stability (table) 177 curve formulas, horizontal 166 curve formulas, vertical 167 design provisions 150 design shear strength 153 design, superpave mixture (table) 170 destruction and removal efficiency 179 determinancy 148 determinants 31 determinants 31 determining the project size modifier (table) 172	cumulative distribution functions 34	
current 195 curvature 24 curvature in rectangular coordinates 24 curve-fit constants as a function of atmospheric stability (table) 177 curve formulas, horizontal 166 curve formulas, vertical 167 design provisions 150 design shear strength 153 design, superpave mixture (table) 170 destruction and removal efficiency 179 determinancy 148 determinants 31 determinants 31 determining the project size modifier (table) 172	curl, vectors, gradient, divergence, and 31	•
curvature 24 design shear strength 153 curvature in rectangular coordinates 24 design, superpave mixture (table) 170 curve-fit constants as a function of atmospheric stability		design provisions 150
curvature in rectangular coordinates 24 design, superpave mixture (table) 170 curve-fit constants as a function of atmospheric stability		design shear strength 153
curve-fit constants as a function of atmospheric stability (table) 177 curve formulas, horizontal 166 curve formulas, vertical 167 destruction and removal efficiency 179 determinancy 148 determinants 31 determining the project size modifier (table) 172		design, superpave mixture (table) 170
(table) 177 determinancy 148 curve formulas, horizontal 166 determinants 31 curve formulas, vertical 167 determining the project size modifier (table) 172		
curve formulas, horizontal 166 determinants 31 determining the project size modifier (table) 172		
curve formulas, vertical 167 determining the project size modifier (table) 172		
valve formation, volume 107		
		/

dual linear program 215

ductile to brittle transition 60 Deutsch-Anderson equation 179 deviations for shafts (table) 229 ductile materials 230 deviation, standard 33, 48 (charts) ductility 56, 58 dew-point temperature 86 ducts, noncircular 115 dielectric constant 56 Dupuit's formula 161 diesel cycle 233 durability 61 difference between two means, confidence interval for the 40 dynamic fields, electromagnetic 201 difference equations 32, 201 dynamics 68-75, 231 differential amplifier 209 dynamics of mechanisms 226 differential calculus 23-24 dynamic similarity 108 dynamic viscosity 101, 108, 114, 115, 116 differential distance 99 differential equation 27, 74 dynamic viscosity, absolute 99, 110 (tables) differential equations, numerical solution of ordinary 32 Е differential gearset 226 earned-value analysis 173 differential (simple or Rayleigh) distillation 137 earthwork formulas 167 differential velocity 99 eccentricity, connection 154 diffuse-gray surfaces 119 economics, engineering 127-133 diffusion coefficient 56, 136, 183 economics factors (table) 127 diffusion of a gas A through a second stagnant gas, effective area 154 unidirectional 136 effective half-life 184 digital signal processing 202 effective length (table) 160 digraphs of relation 18 dilatant 99 effective length factor (table) 158 effectiveness, heat exchanger 117 dimensional analysis 108 effective porosity 161 dimensional homogeneity 108 effective slenderness ratio 153 dimensionless 103 efficiency, brake thermal 234 dimensionless group equation (Sherwood) 136 efficiency, compressor isentropic 106 diodes (table) 210 efficiency, cyclone collection (particle removal) 178 direct costs (table) 140 efficiency, destruction and removal 179 directed graphs 18 efficiency, electrostatic precipitator 179 discharge, coefficient of 103 efficiency, indicated thermal 234 discharge pressure 106 efficiency, isentropic compressor, 106 discharging freely into atmosphere, orifice 103 efficiency, mechanical 234 discrete math 18 efficiency, power and 70 discrete-time convolution 202 efficiency, turbine isentropic 107 disinfection 192 effluent flow rate 186 dispersion 33 effluent suspended solids concentration 186 displaced fluid volume 100 elastic buckling stress 153 displacement 69, 70 elastic curve (tables) 81, 82 displacement, lateral 153 elastic force 108 displacement volume 234 elasticity, modulus of 58, 76, 77, 80 (tables) distance, sight (tables) 165 elastic loading 58 distance, stopping sight 164 elastic longitudinal deformation 76 distillation 137-138 elastic modulus 58, 79 distortion-energy theory 230 elastic potential energy 71 distribution 34-35 elastic spring 71 distribution, binomial 35 elastic strain energy 79 distribution, Gaussian 35 electrical 56 distribution, normal 35, 38 (table), 39 (tables), 42 (table) electrical and computer engineering 195-214 distribution, student's t- (table) 43 electrical safety (table) 8 distributive law 33 electrical units 195 dose-response curves 9 electrochemistry 55 double-sideband modulation (DSB) 204 electrode 55 downwind distance as a function of stability class (graph) 177 electrolytes 192 drag coefficient 102, 109, 112 (graph) electromagnetic dynamic fields 201 drag force 102 electronics, solid-state 208-212 drift velocity terminal 179 electrons 55 dry adiabatic lapse rate 174 electrostatic fields 195 DSB, double-sideband modulation 204

electrostatic precipitator efficiency 179 difference 32, 201 electrostatics 195 differential 27, 74 elemental semiconductors, extrinsic (table) 58 energy 101 Ergun 103 elements, hydraulic (graph) 162 elevation 85 field 101 elevation heads 101 filtration 190 ellipse 20, 22 first-order linear difference 32 elongation 76, 80 (table) fixed-film 187 elongation, percent 58 Hagen-Poiseuille 102 emissivity 113, 118 Hazen-Williams 102, 163 empirical constant 183 heat transfer 117 endogenous decay rate constant 180 heat transfer rate 113 endurance limit 230 Kline-McClintock 123 energy 72 lime-soda softening 191 energy, activation 56, 58 linear difference 201 energy content of waste (table) 179 Manning's 102, 163 energy, elastic potential 71 of motion 73 energy, elastic strain 79 population projection 183 energy equation 101 pump power 106 energy exchange 118, 119 residential exposure 12 energy, kinetic 70, 71, 74 Rose 190 energy levels, impurity (table) 58 settling 190 energy line 101 of state (EOS) 84 energy, potential 71, 101 straight line 18 energy, principle of work and 70, 71 traffic safety 171 equilibrium 100 energy, specific 163 energy, specific internal 83 equilibrium constant 89 energy theorem, conservation of 70 equilibrium constant of a chemical reaction 50 energy, work 74 equilibrium phases 56 energy, work and 71 equilibrium requirements 63 equilibrium (VLE), vapor-liquid 88-89 engineering economics 127–133 engineering economics factors (table) 127 equimolar counter-diffusion 136 engineering strain 56, 61, 76 equivalent codes for a four-bit binary value (table) 213 engineering stress 58 equivalent, Norton 196 engineering stress, applied 58 ergonomics 15-17 engines, internal combustion 233 ergonomics, hearing 222-223 Ergun equation 103 enhancement MOSFET (low and medium frequency) (table) 212 enlargements 104 error analysis, steady-state 124 enthalpy 83, 86, 87, 90 (table), 116, 232 essential prime implicant 214 enthalpy change for phase transitions 89 estimate, standard error of 36 enthalpy change of reaction, standard 89 ether 52 enthalpy, pressure (diagram) 92 ethics 3-4 enthalpy, specific 83 Euler's approximation 32 entropy 83, 87, 90 (table) Euler's formula 79 entropy change 89 Euler's identity 19 entropy change for solids and liquids 87 eutectic reaction 62 entropy, constant 83 eutectoid reaction 62 entropy principle, increase of 87 evaporation 115 entropy, specific 83 evaporative cooling 233 environmental engineering 174-194 evaporator 86, 95 (diagram), 96 (diagram) exchangers, heat 86, 96 (diagrams), 117 equation AASHTO structural number 168 exergy 87 Arrhenius 134 expansions 102 Bernoulli 101 expansion valve (diagrams) 95, 96 circular pipe head loss 164 expected values 34-35 experimental constant 116 Clapeyron 89 closed-loop characteristic 123 exponential growth 183 conic section 23 exponentially weighted moving average 217 continuity 100 exposure limits for selected compounds (table) 9

Deutsch-Anderson 179

exposure, noise 17	fixed axis, rigid body motion about a 73
external flow 114	fixed axis, rotation about an arbitrary 73
external moment 64	fixed blade 104
extrinsic elemental semiconductors (table) 58	fixed-film equation 187
extrinsic semiconductors 58	flame retardants 61
F	flammability 6
	flammable limits 6
facility planning 218–220 facultative pond 187	flash (or equilibrium) distillation 137
failure by crushing of rivet or member 227	flat bars 154
failure, fatigue 58	flexural buckling 153
failure by rupture 227	flexural strength, design 153 flip-flops 214
failure theories 230–231	floating body 100
families of organic compounds (table), 53	floculator 191
fan 106, 107	flow
Fanning friction factor 102	compressible 104–105
Faraday's law 50, 195, 197	configurations 102
fastener groups in shear 227	cross-sectional area of 100, 103, 107, 161, 163
fasteners, threaded 226, 227	external 114
fate 180	fluid 101–102, 103
fatigue 58	internal 115
fatigue failure 58	isentropic 105
fatigue loading 225	laminar 101, 102, 103, 115
F distribution, critical values of the (table) 44	machinery, fluid flow 105–107
feedwater heaters 235 ferrite 56	measurement, fluid flow 107
fiber-reinforced composites 59	noncircular conduits 102
field effect transistors (JFETs) and depletion MOSFETs (low and	one-dimensional fluid flow 100–101
medium frequency), N-channel junction (table) 211	open-channel 102, 163
field equation 101	over a sphere 115
field, pressure 99	pipe 102 rate, mass 85, 100, 107
fields, electromagnetic dynamic 201	ratio curves, sewage (graph) 162
fields, electrostatic 195	reactors, steady state 135
fields, magnetic 195	relationships, traffic 165
fillers 61	subsonic 105
film boiling 116	supersonic 105
film condensation of a pure vapor 116	steady incompressible 101
filter circuits, analog 206–207	through a packed bed 103
filters, band-pass (diagram) 207	turbulent 101, 103, 115
filters, band-reject (diagram) 207	uniform 163
filters, first-order high-pass (diagram) 206	volumetric 100, 103, 106, 107
filters, first-order low-pass (diagram) 206	fluid density 100, 101, 102, 103, 105, 107, 109
filtration equations 190	fluid flow 101–102, 103
final value theorem 123 finite state machine 18	fluid flow machinery 105–107
fin, pin 114	fluid flow measurement 107
fin, rectangular 114	fluid flow, one-dimensional 100–101
fins 114	fluid mechanics 99–112
first law of thermodynamics 84–86	fluid power 105 fluid, power law (non-Newtonian) 99
first-order control system models 124	fluid pressure (head) 106
first-order high-pass filters (diagram) 206	fluid streamline 101
first-order irreversible reaction 134	fluid temperature 114
first-order linear difference equation 32	fluid vapor pressure 105
first-order low-pass filters (diagram) 206	fluid velocity 104, 105
first-order rate constant 184	fluid viscosity 103
first-order reversible reactions 134	flux 184
fit, goodness of 35–36	flux, critical heat 116
fits 228	flux density, magnetic 195
fits, preferred (table) 228	flux, gas 183
fits, press/shrink 228	

flux, heat 115, 116	frequency, Nyquist 123, 205
flux, minimum heat 116	frequency response 124, 203 (diagram), 206 (diagram), 207
flux, peak heat 116	(diagram)
flux, salt 192	frequency, undamped natural 74, 125
flux, water 192	Freundlich isotherm 188
FM, frequency modulation 205	friction 64, 72
force 63	friction, belt 64
concurrent 64	friction, coefficient of 72
convection boiling 115	friction, coefficient of kinetic 72
resolution of a 63	friction, coefficient of static 72
shearing 78	friction effect 101
and strains (diagram) 150	friction factor 102
surface 99	Darcy 102
systems of 63	Fanning 102
forecasting 217	Moody 102, 139
formability 61	Stanton 102
formation, and combustion, heats of reaction, solution, 50	friction force 64
formula	friction, limiting 64
area 167	friction losses 105
average end area 167	Froude number 108, 163
Dupuit's 161	fugacity coefficient 88
earthwork 167	fugacity, pure component 88
horizontal curve 166	function, gamma 35
kiln 179	function, open-loop transfer 123, 124
NIOSH 15	function, probability density 34
prismoidal 167	functions, cumulative distribution 34
rational 161	fundamental constants 1
Taylor tool life 220	future worth 127
vertical curve 167	G
Weir 163	_
work sampling 220	gage factor (GF) 121
fouling factor 117	gage pressure 99
four-bar linkage 231	gage setup (table) 121
Fourier series 28, 203	gages, metallic strain 121
Fourier's law of conduction 113	gage, strain 121
Fourier transform 27, 202	gain margin (GM) 124
Fourier transform, inverse of 29	gamma function 35
Fourier transform pairs (table) 29	gas constant 1, 56, 83, 104
Fourier transform theorems (table) 29	gas constant, universal 106, 136
4-LOG inactivation (table) 194	gas-filled porosity 183
fraction, mole 84, 88	gas flux 183
fraction of a substance, mole 50	gas, ideal 83, 85, 89, 104, 106, 107, 117
fracture 154	gas law constant, ideal 58, 88
fracture toughness 58, 59 (table)	gas mixtures, ideal 84
frame, braced (chart) 158	gasoline engine (diagram) 95
frame deflection 147	gas phase mass transfer coefficient 136, 138
frame, moment (chart) 158	gas phase mass velocity 138 gas phase solute mole fraction 138
frame, plane 148	
free convection boiling 115	gas turbines 235
free discharge 163	gate, NAND 213
free energy, Gibbs 83, 87	gate, NOR 213
free energy, Helmholtz 83, 87	Gaussian 174
free-falling body 69	Gaussian distribution 35 Gauss' law 195
free stream velocity 114	
free vibration 74	gearing 226
freezing point depression 50	gearset, differential 226
frequency deviation 204	gearset, planetary 226
frequency-deviation ratio 205	gear trains 225 general character of probability 33
frequency modulation (FM) 205	general character of probability 33
frequency multiplier (table) 15	

hearing, ergonomics 222–223 hearing loss (graphs) 223

general inflation rate 127 heat 84, 139 generalized compressibility EOS 84 heat capacity 59, 61, 83, 114 generalized compressibility factors (graph) 94 heat of combustion 87-88 generators 200 heaters, feedwater 235 geometrical factor 58 heat exchanger 86, 96 (diagrams), 117 heat exchanger, counterflow concentric tube 118 geometric growth 183 heat exchanger effectiveness 117 geometric progression 26 geotechnical 142-146 heat exchanger, parallel flow concentric tube 118 giardia cysts (table) 194 heat flux 115, 116 Gibbs energy change of reaction 89 heating 232 Gibbs free energy 83, 87 heats of reaction 87-88 Gibbs phase rule 89 heats of reaction, solution, formation, and combustion 50 glass fibers, chopped 61 heat, specific 61, 106, 116 heat transfer 113-119, 139, 232 glass transition temperature 61 Goodman theory, modified 230 heat transfer coefficient 117 goodness of fit 35-36 heat transfer coefficient, convection 113, 114, 117 grade line 101 heat transfer rate equations 113 grades, algebraic difference in 164 helical springs 224 gradient, divergence, and curl, vectors 31 Helmholtz free energy 83, 87 gradient, hydraulic 101 Henry's constant 89 grading system, binder (table) 169 Henry's law constant 136, 188 grain-boundary surface 59 Henry's law at constant temperature 88 grain growth 56 HFC-134a (diagram) 92 grain size 59 high-pass filters (diagram) 206 granular storage 7 highway pavement design 168 highway pavement design, load equivalency factors for gravitational acceleration 116 gravitational constant 105 (table) 168 gravity, acceleration due to 163 homogeneity, dimensional 108 gravity, acceleration of 85, 100, 101, 103, 108 Hooke's law 58, 77 gravity field 71 horizontal curve formulas 166 gravity force 108 horizontal curves (table) 165 gravity, local acceleration of 70 horizontal orifice meter 108 gravity model 170 horizontal sight line offset (table) 165 gray body 118 horizontal standard deviations of a plume (graph) 176 gray surfaces, diffuse- 119 horizontal stress 144 gross area 154 hot working 56 human body, biomechanics of the 16 gross width of member 154 growth, exponential 183 humidification 232 growth, geometric 183 humidification, adiabatic 233 growth, log 183 humidity 86 gyration, least radius of (table) 160 HVAC 96, 232-236 gyration, mass radius of 73 HVAC two-stage cycle, refrigeration and (diagrams) 96 gyration, radius of 64, 65–67 (tables), 75 (table), 79 hydraulic conductivity 142, 161, 183 gyratory compaction effort, superpave (table) 170 hydraulic depth 163 hydraulic diameter 102 Н hydraulic-elements graph for circular sewers 162 Hagen-Poiseuille equation 102 hydraulic grade line 101 half-life 184 hydraulic gradient 101 hardenability curves, Jominy (graph) 59 hydraulic head 161, 183 hardness, Brinell 59 hydraulic radius 102, 163 hazard assessment 6 hydraulic residence time 186 hazardous waste compatibility chart 11 hydrocarbons, unsaturated acyclic 52 Hazen-Williams coefficient 164 hydrology 161-164 Hazen-Williams equation 102, 163 hyperbola 23 head 107 hypothesis (tables) 38, 39 head loss 101, 102, 103 hypothesis testing 36–40 head loss due to flow 102 head loss equation, circular pipe 164

I	internal energy 83, 90 (table)
ideal gas 83, 85, 89, 104, 106, 107, 117	internal flow 115
ideal gas EOS 84	internal pressure 104
ideal gas law constant 58, 88	international tolerance (IT) grades (table) 229
ideal gas mixtures 84	intersection angle 166
ideal-impulse sampling 205	inventory models 218
identities, trigonometric 20	inverse of Fourier transform 29
identities, vectors 31	inverse, matrix 30
identity matrix 30	inverse natural frequency 125
immiscible fluids 100	inverse square law 184
impact 72	inverse transform method 217
impact test, Charpy 60	iron-iron carbide phase diagram 62
impeller constant (table) 191	irreversibility 87
impeller diameter 107	isentropic 86
imperier diameter 107 impermeable layer (diagram) 142	isentropic compressor 106
implicant 214	isentropic efficiency 86
impulse and momentum 71	isentropic efficiency, turbine 107
impulse-momentum principle 103–104	isentropic exit temperature 106
impulse response 203	isentropic flow 105
impulse turbine 104	isentropic process 85, 87, 105
impurity energy levels for extrinsic semiconductors (table) 58	isothermal compression 106
inactivation requirements, removal and (table) 193	
incidence rates 17	J
incineration 179	jet propulsion 104
incomplete combustion 88	JFETs and depletion MOSFETs (low and medium frequency),
incompressible flow 108	N-channel junction field effect transistors (table) 211
incompressible flow, steady 101	job safety analysis 5
incompressible fluid 107	job sequencing 220
increase of entropy principle 87	Johnson's rule 220
indefinite integrals, derivatives and 25	joining methods 226–228
indicated power 234	Jominy hardenability curves for six steels (graph) 59
indicated thermal efficiency 234	junction 236
induced voltage 195	K
inductors 196–198	
industrial chemicals (table) 54	Karnaugh map (K-map) 214
industrial engineering 215–223	Kelvin-Planck statement of second law 87
inequality of Clausius 87	corollary to Kelvin-Planck 87
inertia force 108	Kendall notation 215
inertia, mass moment of 73, 74, 75 (table)	Kennedy's rule 72
inertia, moment of 26, 63–64, 65–67 (table), 78, 79, 100	ketone 52
inertia parallel axis theorem, moment of 64	kiln formula 179
inertia, product of 64, 65–67 (tables), 75 (table)	kinematics 68, 231
inflation 128	kinematics of mechanisms 231
influence lines 147	kinematics, particle 68–70
influent flow rate 186	kinematics of a rigid body 72–73
inlet gas density 106	kinematic viscosity 99, 101
inplane shear stress 77	kinetic constant 186
instantaneous center of rotation 72	kinetic energy 70, 71, 74
instantaneous frequency 204	kinetic energy correction factor 163
instantaneous phase 204	kinetic friction, coefficient of 72
instantaneous radius of curvature 69	kinetics, microbial 180
	kinetics, monod 180
instant center 72	kinetics, particle 70–72
instrumentation, measurement, and controls 120–126	kinetics for planar problems, normal and tangential 70
intake, EPA recommended values for estimating (table) 13	kinetics of a rigid body 73–74
integral calculus 24	kinetic temperature corrections 181
interaction diagram 152 interest rate 127	Kirchhoff's laws 196
interest rate 127 interest rate factor tables 129–133	Kline-McClintock equation 123
DUCIEN LAIE DACIOL DADIES 1/9-133	

intermediate- and long-length columns 229

internal combustion engines 233

liquid metals 115

L	liquid phase 116
lag or lead compensator 124	liquid phase mass transfer coefficient 136
laminar flow 101, 102, 103, 115	liquid phase mass velocity 138
landfill 183	liquid, static 99
Langmuir isotherm 188	liquid surface 100, 103
Laplace transform 30, 124, 126	liquids, vaporized 14
Laplace transform pairs 30	liquid-vapor interface 116
latent heat 116	live load reduction 148
lateral-torsional buckling 153	load combinations 148
law	load, critical axial 79
associative 33	load equivalency factors for highway pavement design
Charles' 85	(table) 168
compound or joint probability 34	loading and deformation, uniaxial 76
ideal gas constant 58, 88	loading failure theories, static 230
Darcy's 161	loading failure theories, variable 230–231
De Morgan's 33	loading, fatigue 225
distributive 33	loading, static 225
Faraday's 50, 195, 197	loading on straight spur gears 226
friction 72	loadings, Weir 189
Gauss' 195	local acceleration of gravity 70
Henry's 188	local velocity 101
Hooke's 58, 77	locus branches 125
inverse square 184	locus, root 125
Kirchhoff's 196	logarithm, natural 161
probability 33–34	logarithms 19
Stokes' 190	log growth 183
thermodynamics, first 84–86	logic operations 213
thermodynamics, second 87	logit models 170
total probability 33	log mean temperature difference 117
leachate 183	long chord 166
lead compensator, lag or 124	longitudinal deformation, elastic 76
learning curves 218	longitudinal spacing 154
least material condition (LMC) 229	longitudinal welds 154
least squares 35–36	long-length columns, intermediate- and 229
Le Chatelier's principle for chemical equilibrium 50	lossless transmission lines 201
Le Chatelier's rule 6	low-emissivity shield 119
Leidenfrost point 116	low molecular weight polymers 61
length, arc 69	low-pass filters (diagram) 206
length, column effective 153	low-pass message 205
length, crack 58	lumped capacitance model 114
lethal doses, comparative acutely (table) 9	
Lever rule 62	M
L'Hospital's Rule 24	machinery, fluid flow 105–107
lift coefficient 109	Mach number 104, 105, 107
lift force 109	MACRS, modified accelerated cost recovery system 128
lime-soda softening equations 191	magnetic fields 195
limiting friction 64	magnetic flux density 195
limiting reactant 89	magnitude 63
limits 228	magnitude response 203
	Manning's equation 102, 163
limit states 154	Manning's roughness coefficient 163
linear difference equation 201	manometers 100, 122
linear projection 182	manufacturability 228–229
linear projection 183	MARR, minimum acceptable rate-of-return 128
linear regression 35–36	mass 63
linear velocity profile 99	mass balance, steady state 186
line balancing 219	mass density 101
linkage, four-bar 231	mass diffusivity 136
liquid, mass flow rate of 14	mass flow rate 85, 100, 107
liquid, mass of 83	

mass flow rate of liquid 14 method, inverse transform 217 mass of fluid within the system 85 method joints, plane truss 64 mass fraction 84 method sections, plane truss 64 mass of gas 83 methods, numerical 32 massless rod 74 metric prefixes (table) 1 mass of liquid 83 microbial death rate 180 mass moment of inertia 73, 74 microbial death ratio 186 mass radius of gyration 73 microbial kinetics 180 mass transfer 136-139 middle ordinate 166 mass of vapor 83 mild steel, stress-strain curve for 76 material condition (LMC), least 229 minimization, Newton's method of 32 material condition (MMC), maximum 229 minimum acceptable rate-of-return (MARR) 128 material handling 219 minimum detectable relative difference 184, 185 (table) material properties (table) 80 minimum heat flux 116 material safety data sheets (MSDS) 7 minterm 214 materials, brittle 230 mode 33 materials, crystalline 56 model, gravity 170 materials, ductile 230 modeling, atmospheric dispersion 174 materials, mechanics of 76–82 modeling, population 183 model, lumped capacitance 114 materials, properties of 56 materials science 56-62 Model Rules 3-4 mathematics 18-32 models, logit 170 matrices 30 models, queueing 215-216 matrix of relation 18 modified accelerated cost recovery system (MACRS) 128 matrix transpose 30 modified Goodman theory 230 matter, structure of 56-62 modifier, project size (table) 172 maximum material condition (MMC) 229 modular ratio 79 maximum-normal-stress theory 230 modulation (AM), amplitude 204 maximum power-transfer theorem 198 modulation, angle 204 maximum-shear-stress theory 230 modulation (DSB), double-sideband 204 maxterm 214 modulation (FM), frequency 205 modulation index 204 mean 33 mean effective pressure (mep) 234 modulation, (PAM) pulse-amplitude 205 modulation (PCM), pulse-code 205 mean temperature difference, log 117 modulation (PM), phase 205 mean velocity 114 measurement and controls, instrumentation 120-126 modulation (SSB), single-sideband 204 measurement uncertainty 123 modulus 58, 61 mechanical design 224-228 modulus, bulk 108 modulus of elasticity 58, 76, 77, 80 (tables) mechanical efficiency 234 mechanical engineering 224-236 modulus, shear 76, 77 modulus, Young's 58, 59, 76, 228, 229 mechanical processing 56 mechanical properties 58 Mohr's circle 77 mechanical properties of typical engineering materials (table) 80 mol 50 mechanical springs 224 molality of solutions 50 mechanics of materials 76–82 molar air-fuel ratio 88 mechanisms, dynamics of 226 molar flux 136 median 33 molar heat capacity 87 member fixed-end moments 147 molarity of solutions 50 member, gross width of 154 molar volume of an ideal gas 50 members, bolted 154 molecular diffusion 136 member stiffness 227 molecular formulas with molecular weight (table) 191 members, welded 154 molecular weight 84, 106, 174 member thickness 154 mole fraction 84, 88 mole fraction of a substance 50

mensuration of areas and volumes 20–22 message, low-pass 205 messages, sampled 205 metals, liquid 115

metals, properties of (table) 57 meter, coefficient of the 108

meters, venturi 107

moment of area 63

moment, absolute maximum 147

moment, aerodynamic 109

moment, available (table) 157

moment carryover 147	network, two-port 199
moment coefficient 109	Newtonian fluid 101
moment frame (chart) 158	Newtonian fluid film 99
moment of inertia 26, 63-64, 65-67 (table), 78, 79, 100	Newton's law of cooling 113
moment of inertia formulas for some standard shapes (table) 75	Newton's method of minimization 32
moment of inertia, mass 73, 74, 75 (table)	Newton's method for root extraction 32
moment of inertia parallel axis theorem 64	Newton's second law 16, 70, 73
moment of momentum 71	NIOSH formula 15
moments 63	noise exposure 17
moments, member fixed-end 147	noise pollution 17
momentum 72, 103, 139	nominal annual interest rate 127
momentum, angular 71	nominal hole diameter 154
momentum, angular impulse and 74	nominal resistance 121
momentum, conservation of angular 74	nominal shear strength 151
momentum, impulse and 71	nominal value for head loss 102
momentum, moment of 71	noncarcinogens 10
momentum principle, impulse- 103–104	non-Newtonian fluid, power law 99
momentum transfer 139	nonzero principal stresses 77 NOR gate 213
monitoring 184–185 monod growth rate constant 181	normal acceleration 68, 69
monod kinetics 180	normal distribution 35, 38 (table), 39 (table), 42 (table)
monomers 61	normal distribution, confidence interval 40
Moody diagram 102	normality of solutions 50
Moody friction factor 102, 139	normal shock relationships 105
Moody (Stanton) diagram 111	normal and tangential components 69
MOSFET, enhancement (table) 212	normal and tangential kinetics for planar problems 70
motion about a fixed axis, rigid body 73	Norton equivalent 196
motion about an instant center 74	NPN bipolar junction transistor (BJT) (table) 210
motion, equations of 73	NRCS (SCS) 161
motion, particle curvilinear 68	nucleate boiling 115, 116
motion of a particle, one-dimensional 70	number
motion, particle rectilinear 68	atomic 50, 51 (table)
motion, planar 68	binary number system 213
motion, plane circular 69	Cauchy 108
motion, projectile 70	curve number 161
motion, relative 68	Froude 108, 163
motion of a rigid body, plane 72	Mach 104, 105, 107
motor efficiency 105	Nusselt 114, 139
moving average 217	Prandtl 114, 116, 139
moving average, exponentially weighted 217	Rayleigh 117
moving blade 104	Reynolds 101, 102, 108, 111 (table), 112 (graph), 139
MSDS 7	Schmidt 139
multipath pipeline 103	Sherwood 136, 139 Stanton 139
multiplication of two matrices 30 municipal wastewater (table) 186	system, binary number 213
Murphree plate efficiency 138	systems and codes, number 213
music wire (table) 224	Weber 108
music wife (tubic) 224	numerical integration 32
N	numerical methods 32
NAND gate 213	numerical solution of ordinary differential equations 32
natural (free) convection 117	Nusselt number 114, 139
natural logarithm 161	Nyquist frequency 123, 205
N-channel junction field effect transistors (JFETs) and depletion	Nyquist's (Shannon's) sampling theorem 123
MOSFETs (low and medium frequency) (table) 211	
negative feedback control system 123	0
negative ion 55	one-dimensional fluid flow 100–101
net area 154	one-dimensional motion of a particle 70
net positive suction head available 105	one-way analysis of variance 36
network equations, two-port (table) 199	one-way ANOVA table 37
network optimization 215	

opaque body 118	peritectic reaction 62
open-channel flow 102, 163	peritectoid reaction 62
open-loop transfer function 123, 124	permeability, coefficient of 142, 183
open-system exergy 87	permittivity 56
open systems, special cases of 85	permutations 33
open thermodynamic system 85	pert 220
operational amplifiers 208	pesticide toxicity categories (table) 7
ordinary differential equations, numerical solution of 32	pH 50
organic carbon partition coefficient 181	phase
•	•
organic chemicals (table) 54	binary 62
organic chemistry 52–54	deviation 204
organic compounds, families of (table) 53	equilibrium 56
orifice coefficient 108	margin (PM) 124
orifice discharging freely into atmosphere 103	modulation (PM) 205
orifice opening 103	relations 89
orifices 108	relationships 142
orifice, submerged 103	response 203
	phase transitions 89
OSHA 5, 7, 17	•
osmosis, reverse 192	phasor transforms of sinusoids 197
osmotic pressure 192	P-h diagram for refrigerant HFC-134a 92
Otto cycle 86, 95 (diagram)	phenomena, transport 139
overall coefficients 136	photoelectric effect 56
overburden pressure 183	pH sensor 122
oxidation, anode reaction 56	PID controller 124
oxidation potentials (table) 55	piezoelectric effect 56
ontained potentials (more) so	piezometers 101, 122
P	•
packed bed 103	piezometer water columns 101
pairs, Fourier transform (table) 29	pin fin 114
	pipe bends 104
pairs, Laplace transform (table) 30	pipe fittings 102
(PAM) pulse-amplitude modulation 205	pipe flow 102
parabola 20, 22	pipeline, multipath 103
parabola constant 167	pitch angle 64
paraboloid of revolution 22	Pitot tube 107
parallel-axis theorem 64, 73	planar motion 68
parallel centroidal axis 64	planar problems, normal and tangential kinetics for 70
parallel flow 117	
parallel flow concentric tube heat exchanger 118	planar slip (diagram) 145
parallelogram 21	plane circular motion 69
	plane frame 148
parallel plate capacitor 56, 196	plane motion of a rigid body 72–74
parallel, resistors in series and 196	plane stress 77
parallel resonance 198	planetary gearset 226
parallel and series, capacitors and inductors in 197	plane truss 148
parameters, two-port 199	plane truss: method of joints 64
Parseval's theorem 203	plane truss: method of sections 64
particle bed 103	plane wall conduction resistance 113
particle curvilinear motion 68	
particle kinematics 68–70	plastically deforming 56
•	plasticity index 142
particle kinetics 70–72	plasticizers 61
particle rectilinear motion 68	plug-flow reactor (PFR) 135
partition coefficient 181	PM, phase modulation 205
pavement design, highway 168	POHC, principal organic hazardous contaminant 179
payback period 127	point of application 63
PCM, pulse-code modulation 205	Poisson input 216
peak discharge 161	•
peak heat flux 116	Poisson's ratio 76, 77, 80 (tables), 228
performance-graded (PG) binder grading system (table) 169	polar coordinate system 19
	polar moment of inertia 63, 74
perimeter, wetted 163	pollution, air 174–179
periodic table of elements 51	pollution, noise 17
period of vibration, undamped natural 74	

principal stresses 77

polygon, regular 21	principle, impulse-momentum 103–104
polymers 61	principle of work and energy 70, 71
polytropic process 85	prismoid 21
pool boiling 115	prismoidal formula 167
population modeling 183	probabilities, cumulative binomial (table) 46-47
population projection equations 183	probability density function 34
porosity 103, 183	probability and density functions: means and variances (table) 49
porosity, effective 161	probability functions 34–35
position vector 68	probability, general character of 33
positive ion 55	probability, law of compound or joint 34
positive suction head available, net 105	probability, laws of 33–34
potential energy 71, 101	probability and statistics, engineering 33-49
power 106, 107	process capability 215
power, ac 199–200	processes 233
power, brake 234	processing, digital signal 202
power, complex 199	processing, mechanical 56
power and efficiency 70	processing, thermal 56
power, indicated 234	process, isentropic 85, 87, 105
Power law fluid 101	process safety 7
power law index 99	product activity, daughter 184
power law (non-Newtonian) fluid 99	product of inertia 64
power plants, steam 235	professional conduct 3–4
power, pump (brake) 105	progression, arithmetic 26
power screws 225	progression, geometric 26
power series 26	projected area 102
power-transfer theorem, maximum 198	projectile motion 70
power transmission 225–226	projection, algebraic 183
power of the turbine 104	projection, linear 183
Prandtl number 114, 116, 139	project size modifier (table) 172
precedence, CPM 172	propagation, catastrophic crack 58
precipitation 161	properties, mechanical 58
precipitator efficiency, electrostatic 179	properties of air 174
pre-exponential constant 58	properties of gases (table) 93
preferred fits (table) 228	properties of liquids (table) 93
present worth (table) 127	properties of materials 56
press/shrink fits 228	properties of metals (table) 57
pressure 83, 92 (diagram), 99, 100, 101, 107, 108, 136	properties of series 26
absolute 83, 99	properties, thermal 61
atmospheric 99, 100, 105	properties of water (English units) (table) 110
center of 100	properties of water (SI metric units) (table) 110
drop 101, 102	proportionality constant 56
enthalpy diagram 92	propulsion, jet 104
field 99	propulsive force 104
force 108	prototype system 108
indicators 122	pseudo plastic 99
loss 103	psychrometric chart, ASHRAE (English units) 98
overburden 183	psychrometric chart, ASHRAE (metric units) 97
partial 84, 136	psychrometrics 86
rise 106, 107 senders 122	pulse-code modulation (PCM) 205
senders 122 sensors 122	pump 107, 236
transducers 122	pump (brake) power 105 pump, centrifugal 105
transmitters 122	pump efficiency 105
	· · ·
vapor 100	pump inlet 105
vessel, cylindrical 76 prevention, safety 5	pump power equation 106 purchased power 105
primary bonds 56	pure component fugacity 88
prime implicant 214	PVT behavior 83–84
principal organic hazardous contaminant (POHC) 179	1 V 1 UCHAVIOI 03-04
principal organic nazardous contaminant (1 OTIC) 1/9	

Q	recovery (stress relief) 56
quadratic equation 18	recrystallization 56
quadric surface (sphere) 18	rectangular channels 163
quality control, statistical 48	rectangular fin 114
quenching 56	rectified sine wave 197
queueing models 215–216	rectilinear motion, particle 68
queueing system 215	recycled sludge suspended solids concentration 186
	recycle flow rate 186
R	recycle ratio 186
radial and transverse components 68	reduction in area 76
radiation 113, 118–119, 184	reduction, cathode reactions 56
radiation intensity 184	reduction, live load 148
radioactive half-life 184	reel and paddle 191
radius 24	reference dose 10
radius, critical insulation 113	reflectivity 118
radius of gyration 64	reflux ratio 137
radius of gyration, least (table) 160	refrigerant 83
radius of gyration, mass 73	refrigerant (diagram) 92
radius, hydraulic 163	refrigerant HFC-134a 92
radius vector 63	refrigeration 95 (diagram), 96
rainfall intensity 161	refrigeration cycles 86
rainfall-runoff 161	regulatory agencies, safety (table)
random error, sum of squares of 218	reinforced concrete 149
randomized block design 217	ASTM standard reinforcing bars (table) 149
random variables 34	reinforcements 151
random variate generation 217	reinforcing bars, ASTM standard (table) 149
Rankine 86	relative acceleration 68
Rankine earth pressure coefficient 144	relative compaction 142
Rankine cycle 86, 95 (diagram)	relative density 142
range charts, statistical average and 48	relative humidity 86
Raoult's law for vapor-liquid equilibrium 88	relative volatility 137
rapid mix 191	reliability 218
rate heat transfer 85	reradiating surface 119
rate reaction 134	residential exposure equations 12
rate-of-return 128	resistance 56, 120
rate work 85	resistance factors 150
ratio, compression 234	resistance, oxidation 61
ratio, effective slenderness 153	resistance temperature detector (RTD) 120
ratio, humidity 86	resistance, thermal 113
ratio, microbial death 186	resistive element 196
rational formula 161	resistivity 56, 196
ratio, sewage flow (graph) 162	resistor 56
ratio, turns 200	resistors in series and parallel 196
ratio, water-cement (W/C) 61	resolution of a force 63
Rayleigh number 117	resonance 198
RC and RL transients 198	restitution, coefficient of 72
reactant, limiting 89	resultant 63
reaction, eutectic 62	retardation factor 181
reaction, eutected 62	retention, basin 161
reaction, first-order irreversible 134	retention times, steady-state (table) 182
reaction, heats of 87–88	reversed Carnot cycle (diagram) 95
reaction order 134	reverse osmosis 192
reaction peritectic, 62	revolution, paraboloid of 22
•	Reynolds number 101, 102, 108, 111 (table), 112 (graph), 139
reaction peritectoid, 62	right circular cone 21
reactions in parallel 135	right circular cylinder 22
reactions in series 135	rigid body, kinematics of a 72–73
reactions of shifting order 135	rigid body, kinetics of a 72–73
reactor, parameters, steady-state 182	
real gas 84	rigid body, plane motion of a 72–74

reciprocity relations 118

rigorous vapor-liquid equilibrium 88	sedimentation basins (table) 189
risk 127	seepage velocity 161
risk assessment/toxicology 9-10	selectivity 89
riveted joints loaded in shear, bolted and 227	semiconductors, extrinsic (table) 58
roller bearing, ball/ 225	semicrystalline 61
root locus 125	sensors, pressure 122
roots 19	series resonance 198
Rose equation 190	servomotors 200
rotating axis 69	settling equations 190
rotation about an arbitrary fixed axis 73	severity rates 17
rotational speed 107	sewage flow ratio curves 162
rotation, instantaneous center of 72	sewers, circular (graph) 162
roughness coefficient 102, 163	shafts 225
roughness coefficient, Manning's 163	shape factor 118
roughness factor 102	shapes dimensions and properties, W- (table) 155
Routh test 124	shapes, W 156 (AISC table), 157 (table)
runoff 161	shear 153, 154
S	shear modulus 76, 77
	shear modulus of elasticity 74
safety 5–17	shear strain 76, 77, 78
confined space safety 7 definition of 5	shear strength, design 153
electrical safety (table) 8	shear strength, nominal 151
prevention 5	shear stress 76, 77, 224
safety/regulatory agencies (table) 5	shear stress at failure 143
safety equations, traffic 171	shear stresses 101
safety/regulatory agencies (table) 5	shear stress, inplane 77
salt flux 192	shear stress-strain 76
salvage value 127	shear stress, transverse 78
sample coefficient of variation 33	Sherwood number 136, 139
sample correlation coefficient 36	shield, low-emissivity 119
sample distributions 40	short columns 151
sampled messages 205	shrink fits, press/ 228
sample geometric mean 33	sidesway inhibited (chart) 158
sample root-mean-square value 33	sidesway uninhibited (chart) 158 sight distance related to curve length, vertical curves and horizon-
sample size 40	tal curves (tables) 165
sample standard deviation 33	signal change interval, vehicle 164
sample variance 33	signal conditioning 123
sampling 123, 184–185	signal processing, digital 202
sampling frequency 123	similitude 108
sampling rate 123	simple barometer 100
sampling soils and solids, data quality objectives (DQO) for	simple or Rayleigh distillation, differential 137
(table) 184	simply supported beam slopes and deflections (table) 81
sampling theorem, Nyquist's (Shannon's) 123	simply supported beams (table) 153
saturated boiling 115	Simpson's 1/3 rule 167
saturated liquid, specific volume of 83	simulation 217
saturated temperature 116	sine-cosine relations 197
saturated vapor, specific volume of 83	sines 19
saturation line, phase transition 89	single degree-of-freedom 74
saturation pressure 88	single payment (table) 127
saturation temperature 116	single-sideband modulation (SSB) 204
scalar equations 70	singly-reinforced beams 150
scaling laws 107	sinusoidal voltage 197
Schmidt number 139	sinusoidal waveform 197
screw thread 64	sinusoids, phasor transforms of 197
second law of thermodynamics 87	slant distance 100
second moment of area 63	slenderness ratio 79
second-order control system models 125	slenderness ratio, effective 153
second-order irreversible reaction 134	slope (tables) 81, 82
sections, conic 22	

slope of energy grade line 102 standard deviation 33, 41, 48 (charts) slope failure (diagram) 145 standard deviations of a plume, horizontal (graph) 176 slopes and deflections, cantilevered beam (table) 82 standard deviations of a plume, vertical (graph) 176 slopes and deflections, simply supported beam (table) 81 standard enthalpy change of reaction 89 sludge, activated 186 standard error of estimate 36 sludge production rate 186 standard time determination 219 socioeconomic adjustment factor 170 Stanton diagram 102 Soderberg theory 230 Stanton friction factor 102 soil classification, AASHTO (table) 145 Stanton number 139 soil classification system (table) 146 state diagram 18 soil consolidation curve (graph) 143 state, equations of (EOS) 84 soil landfill cover water balance 183 state functions 83 soils and solids, data quality objectives (DQO) for sampling states, limit 154 (table) 184 state-variable control system models 125 soil-water partition coefficient 181 statically determinate truss 64 solid-liquid interface 115 static equilibrium 74 solids loading rate 186 static friction, coefficient of 64, 72 solid-state electronics 208–212 static head 105 solubility product 50 static liquid 99-100 sorption zone, depth of 188 static loading 225 sound, speed of 104 static loading failure theories 230 spacing, longitudinal 154 static pressure 107 spacing, stirrup (table) 151 statics 63-67 spacing, transverse 154 static temperature 105 span drag coefficient 109 statistical approximations (table) 48 special cases of open systems 85 statistical average and range charts 48 special cases of steady-flow energy equation 86 statistical quality control 48 specific capacity 161 statistics, engineering probability and 33-49 specific discharge 161 statistics, test 38 (table), 39 (table), 41 specific energy 163 steady-flow cycle 235 specific enthalpy 83 steady-flow systems 85 specific entropy 83 steady incompressible flow 101 specific gravity 99 steady-state analysis 123 specific gravity of soil solids 142 steady-state error analysis 124 specific heat 61, 106, 116 steady-state gain 124, 125 specific humidity 86, 232 steady state mass balance 186 steady-state reactor parameters 182 specific internal energy 83 specific internal energy of system 85 steady-state retention times (table) 182 specific volume 83, 88, 90 (table), 99 steam power plants 235 specific volume change upon vaporization 83 steam tables 90, 91 specific volume of saturated liquid 83 steam trap 235 specific volume of saturated vapor 83 steel components 153 specific volume of a two-phase system 83 Stefan-Boltzmann constant 113, 118, 208 specific weight 99 stiffness, bolt 227 specific weight of water at standard conditions 99 stiffness, creep (table) 169 speed, design 164 stiffness, member 227 speed of sound 104 stirrup spacing (table) 151 speed-torque curve 200 stoichiometric coefficient 89 speed, vehicle approach 164 stoichiometric combustion 88 sphere 21 stoichiometric (theoretical) air-fuel ratio 88 sphere, quadric surface 18 Stokes' law 190 spiral transition length 164 stopping sight distance 164 springs 224 storage coefficient 161 square thread power screws 225 storativity 161 SSB, single-sideband modulation 204 straight line depreciation 128 stability 148 straight line equation 18 stability, atmospheric (tables) 175, 177 strain 56 stability class (graph) 177 strain conditions (diagram) 150 stagnation pressure 107 strain energy, elastic 79

stagnation temperature 105

strain, engineering 56, 61, 76	surface area 113, 114, 118
strain, shear 76, 77, 78	surface area, convection 113
strain, stress and 77	surface force 99
strain, torsional 78	surface, reradiating 119
strain, true 56	surfaces, submerged 100
strain, uniaxial stress- 76	surface stress vector 99
stream modeling 180	surface temperature 116
Streeter Phelps 180	surface tension 99, 108, 116
strength, column 151	surface tension force 108
strength, concrete 61	sustainability 4
strength design 148	sweep-through concentration change in a vessel 14
<u> </u>	switching function 214
strength, design compressive 153	•
strength, design flexural 153	symbols, mathematic 18
strength, design shear 153	system pressure 88
strength interaction diagram, column 152	Т
strength, nominal shear 151	tangent distance 166
strength, temperature dependent 61	tangential 70
strength, tensile 58, 59	tangential acceleration 68, 69
strength, yield 58, 80 (table)	•
stress 58, 99, 101	tangential components, normal and 69
stress, applied engineering 58	tangential kinetics for planar problems, normal and 70
stress, critical 153, 159 (table)	tangential stress components 99
stress, elastic buckling 153	tangential velocity 69
stress, engineering 58	tangent offset 167
stresses in beams 78	taxation 128
stresses in spur gears 226	Taylor's series 26
stresses, nonzero principal 77	Taylor tool life formula 220
stress intensity 58	t-distribution 35
stress relief, recovery 56	t-distribution, student's (table) 43
stress sensitivity 58	temperature 136
stress, shear 76, 77 (diagram), 143, 224	absolute 56, 58, 83, 86, 88, 89, 104, 113, 117, 118
stress and strain 77	bulk fluid 113
stress-strain curve for mild steel 76	change in 61
stress-strain, shear 76	coefficient 120
stress-strain, uniaxial 76	coefficient of expansion 76
stress, torsion 78	constant fluid 114
stress, true 58	conversions (table) 1
stripping, air 188	corrections, kinetic 181
structural analysis 147	curve, volume 61
structural design 148	dependent strength 61
structural number equation, AASHTO 168	dew-point 86
structure of matter 56–62	entropy 87
structures, classification of 148	glass transition 61
	saturated water (table) 90
student's t-distribution (table) 43	saturation 116
sub-chord 166	stagnation 105
sub-cooled boiling 115	static 105
submerged orifice 103	variation 114
submerged surfaces 100	wall surface 113
subsonic flows 105	wet bulb 86, 232
suction head available, net positive 105	tensile normal stress components 77
suction pressure 106	÷
summation rule 118	tensile strength 58, 59 tensile test curve 58
sum of squares of random error 218	
superelevation 164	tension 56, 154
superficial fluid velocity 103	tension members 154
superficial velocity 161	tension, surface 99, 108, 116
superpave 169	terminal drift velocity 179
superpave mixture design: compaction requirements (table) 170	test, Charpy impact 60
superplasticizers 61	test, impact 60
supersonic flows 105	

test, Routh 124 toughness, fracture 58, 59 (table) toxicology, risk assessment 9–10 tests for out of control 48 test statistics 38 (table), 39 (table), 41 traffic flow relationships 165 theorem traffic safety equations 171 transducer 120 Bayes' 34 Buckingham Pi 108 transducer sensitivity 120 transducers, pressure 122 central limit 35 of corresponding states 84 transfer coefficient, heat 117 De Morgan's 213 transfer function, open-loop 123, 124 final value 123 transfer, heat 113-119, 139, 232 Fourier transform (table) 29 transfer, mass 136–139 maximum power-transfer 198 transfer units 118 moment of inertia parallel axis 64 transformed section 79 Nyquist's (Shannon's) sampling 123 transformers (ideal) 200 parallel-axis 64, 73 transform, Fourier 27, 202 Parseval's 203 transform pairs, Laplace (table) 30 sampling 123 transforms, Laplace 30, 124, 126 thermal conductivity 113, 114, 116 transient conduction 114 thermal deformations 76 transients, RC and RL 198 thermal efficiency, brake 234 transistor (BJT), NPN bipolar junction (table) 210 thermal efficiency, indicated 234 transitional flow 101 thermal expansion coefficient 61 transition boiling 116 thermal expansion, coefficient of 80 (tables), 117 transition length, spiral 164 thermal and physical property tables 93 transitions, phase 89 thermal processing 56 transition temperature 60 thermal properties 61 transition temperature, glass 61 thermal resistance 113 transmission lines, lossless 201 thermal voltage 208 transmission, power 225-226 thermocouple (TC) 120 transmissivity 118 thermodynamic cycles (diagrams) 95 transmitters, pressure 122 thermodynamics 83-98 transport 180 thermodynamics, first law of 84-86 transportation 164–171 thermodynamics, second law of 87 transport phenomena 139 thermodynamic system 85 transpose, matrix 30 thermoplastic polymer 61 transverse components, radial and 68 thermoplastics 61 transverse shear stress 78 thermosets 61 transverse spacing 154 Thévenin equivalent 196 transverse welds 154 thickness of fluid film 99 trapezoidal rule 167 thickness, member 154 trap, steam 235 threaded fasteners 226, 227 treatment, wastewater 186–187 thread, screw 64 treatment, water 188-194 3-LOG inactivation (table) 194 trigonometric identities 20, 197 threshold limit value (TLV) 10 trigonometry 19-20 throttling processes 86 true strain 56 true stress 58 throttling valves 86 tied columns 151 truss deflection 147 time, break-through 183 trusses 147 time constant 124 truss, plane 148 TLV, threshold limit value 10 truss, plane: method of joints 64 truss, plane: method of sections 64 tolerance values 120 torque curve, speed- 200 truss, statically determinate 64 torsion 78 turbine (diagrams) 95, 96 torsional buckling, lateral- 153 turbine, adiabatic 107 torsional stiffness 74 turbine, impulse 104 torsional strain 78 turbine isentropic efficiency 107 torsional vibration 74 turbines 107 torsion stress 78 turbines, gas 235 total efficiency 106 turbulent flow 101, 103, 115

total head line 101

velocity ratio 225

velocity, seepage 161 turbulent flow impeller mixer 191 turns ratio 200 velocity, superficial 161 two-film theory 136 velocity, tangential 69 two-force body in static equilibrium 64 venturi meters 107 2ⁿ factorial experiments 217 vertical curve formulas 167 two-phase (vapor-liquid) systems 83 vertical curves (table) 165 two-port network 199 vertical distance 100, 101 two-stage cycle, refrigeration and HVAC 96 vertical standard deviations of a plume (graph) 176 two-way ANOVA table 37 vertical stress 144 vibration, free 74 U vibrations 231 ultimate tensile strength 58 vibration, torsional 74 ultrafiltration 192 vibration, undamped natural period of 74 ultraviolet or visible light resistance 61 view factor 118 unbraced segment 153 virial EOS 84 uncertainty, measurement 123 viruses (table) 193, 194 unconfined aquifer 161 viscosity 99, 101, 116 undamped natural frequency 74, 125 viscosity, absolute 174 uniaxial case 77 viscosity, absolute dynamic 99 uniaxial loading and deformation 76 viscosity, dynamic 101, 108, 114, 116 unidirectional diffusion of a gas a through a second stagnant viscous force 108 gas 136 visible light resistance, ultraviolet or 61 uniform flow 163 V-notch 163 uniform series (table) 127 void fraction 103 unimpaired mental performance (graph) 223 voltage 56, 120, 195 unit hydrograph 161 voltage, induced 195 unit load method 147 voltage, sinusoidal 197 unit normal distribution (table) 42 volume 83 units of measure 1 volume change 89 unit vectors 68 volume, displacement 234 universal gas constant 106, 136 volume fraction 59 unsaturated acyclic hydrocarbons 52 volume, humid 86 U.S. civilian body dimensions, female/male, for ages 20 to 60 volume, specific 83, 88, 99 years (table) 221 volume temperature curve 61 volumetric flow 103, 106 V volumetric flow rate 100, 107 vacuum gage 99 volumetric gas flow rate 179 vapor, film condensation of a pure 116 W vaporization 116 vaporization rate 14 wall surface area 113 vaporization, specific volume change upon 83 wall surface temperature 113 vaporized liquid, concentration of 14 wall thickness 113 vapor-liquid equilibrium (VLE) 88-89 waste sludge flow rate 186 vapor, mass of 83 waste sludge suspended solids concentration 186 vapor pressure 100, 110 (tables) wastewater, municipal (table) 186 variable angular acceleration 70 wastewater treatment 186-187 variable loading failure theories 230-231 water balance, soil landfill cover 183 variables, random 34 water-cement (W/C) ratio 61 vector 31, 63 water flux 192 vector quantities 69 water resources 161-164 vehicle approach speed 164 watershed area 161 vehicle signal change interval 164 water treatment 188-194 velocity 68, 69, 85, 86, 101, 102, 104, 108, 109 waveform, sinusoidal 197 velocity at boundary condition 99 Weber number 108 velocity, coefficient of 107 weight, concept of 70 velocity, Darcy 161 weighted arithmetic mean 33 velocity, free stream 114 weight limit 15 velocity as a function of position 69 weight, molecular 84, 106, 174 velocity of plate on film 99 weight, specific 99, 100, 101, 104,183

Weir formulas 163 Weir loadings 189 welded 154 welded members 154 well drawdown 161 wet bulb temperature 86, 232 wet sludge density 186 wetted perimeter 163 wetted side 100 Wheatstone bridge 122 work 70, 84 work energy 74 work and energy, principle of 70, 71 working, cold 56 working, hot 56 work sampling formulas 220 W shapes, AISC table 156 W shapes available moment vs. unbraced length (table) 157 W shapes, available strength in axial compression, kips (table) 160 W-shapes dimensions and properties (table) 155

X

 $\chi 2$ - distribution 35 X^2 distribution, critical values of (table) 45

Y

yield 89 yield coefficient 186 yielding 154 yield strength 58 Young's modulus 58, 59, 76, 228, 229

Z

Zener diode 210 zero lift 109 zero-order irreversible reaction 134 z-transforms 201

APPENDIX FE EXAM SPECIFICATIONS

Chemical	262
Civil	265
Electrical "cpf "Eqo r wgt	269
Environmental	272
Industrial	275
Mechanical	278
Other Disciplines	282

Fundamentals of Engineering (FE) CHEMICAL CBT Exam Specifications

- The FE exam is a computer-based test (CBT). It is closed book with an electronic reference.
- Examinees have 6 hours to complete the exam, which contains 110 multiple-choice questions. The 6-hour time also includes a tutorial, a break, and a brief survey at the conclusion.
- The FE exam uses both the International System of Units (SI) and the US Customary System (USCS).

Knowled	lge	Number of Questions
A. B. C.	athematics Analytic geometry Roots of equations Calculus Differential equations	8–12
A. B. C. D	robability and Statistics Probability distributions (e.g., discrete, continuous, normal, binomial) Expected value (weighted average) in decision making Hypothesis testing Measures of central tendencies and dispersions (e.g., mean, mode, standard deviation) Estimation for a single mean (e.g., point, confidence intervals) Regression and curve fitting	4–6
A. B. C.	Applications of vector analysis (e.g., statics) Basic dynamics (e.g., friction, force, mass, acceleration, momentum) Work, energy, and power (as applied to particles or rigid bodies) Electricity and current and voltage laws (e.g., charge, energy, current, voltage, power, Kirchhoff, Ohm)	4–6
A. B.	omputational Tools Numerical methods and concepts (e.g., convergence, tolerance) Spreadsheets for chemical engineering calculations Simulators	4–6
A. B.	aterials Science Chemical, electrical, mechanical, and physical properties (e.g., effect of temperature, pressure, stress, strain) Material types and compatibilities (e.g., engineered materials, ferrous a nonferrous metals) Corrosion mechanisms and control	

6.	Ch	emistry	8–12
		Inorganic chemistry (e.g., molarity, normality, molality, acids, bases, redox reactions, valence, solubility product, pH, pK, electrochemistry, periodic table) Organic chemistry (e.g., nomenclature, structure, qualitative and quantitative analyses, belonged equations, reactions, synthesis.	
		quantitative analyses, balanced equations, reactions, synthesis, basic biochemistry)	
7.	A.	aid Mechanics/Dynamics Fluid properties	8–12
		Dimensionless numbers (e.g., Reynolds number) Mechanical energy balance (e.g., pipes, valves, fittings, pressure losses across packed beds, pipe networks)	
		Bernoulli equation (hydrostatic pressure, velocity head) Laminar and turbulent flow	
	G.	Flow measurement (e.g., orifices, Venturi meters) Pumps, turbines, and compressors Compressible flow and non-Newtonian fluids	
8.		ermodynamics	8–12
		Thermodynamic properties (e.g. specific volume, internal energy,	
	В.	enthalpy, entropy, free energy) Properties data and phase diagrams (e.g. steam tables, psychrometric charts, T-s, P-h, x-y, T-x-y)	
		Thermodynamic laws (e.g., 1st law, 2nd law)	
		Thermodynamic processes (e.g., isothermal, adiabatic, isentropic) Cyclic processes and efficiency (e.g., power, refrigeration, heat pump)	
	F.	Phase equilibrium (e.g., fugacity, activity coefficient)	
		Chemical equilibrium Heats of reaction and mixing	
9.		Iterial/Energy Balances	8–12
Э.		Mass balance (steady and unsteady state)	0-12
	B.	Energy balance (steady and unsteady state)	
		Recycle/bypass processes Recycle/bypass processes	
40		Reactive systems (e.g., combustion)	0.40
10.		at Transfer Conductive heat transfer	8–12
		Convective heat transfer (natural and forced)	
		Radiation heat transfer	
		Heat transfer coefficients (e.g., overall, local, fouling) Heat transfer equipment, operation, and design (e.g., double pipe,	
	ш.	shell and tube, fouling, number of transfer units, log-mean temperature difference, flow configuration)	
11.		ess Transfer and Separation	8–12
		Molecular diffusion (e.g., steady and unsteady state, physical property estimation)	
		Convective mass transfer (e.g., mass transfer coefficient, eddy diffusion)	
	C.	Separation systems (e.g., distillation, absorption, extraction, membrane processes)	

	efficiency) E. Continuous contact methods (e.g., number of transfer units, height equivalent to a theoretical plate, height of transfer unit, number of theoretical plates)	
	F. Humidification and drying	
12.	 Chemical Reaction Engineering A. Reaction rates and order B. Rate constant (e.g., Arrhenius function) C. Conversion, yield, and selectivity D. Type of reactions (e.g., series, parallel, forward, reverse, homogeneous, heterogeneous, catalysis, biocatalysis) E. Reactor types (e.g., batch, semibatch, continuous stirred tank, plug flow, gas phase, liquid phase) 	8–12
13.	 Process Design and Economics A. Process flow diagrams and piping and instrumentation diagrams B. Equipment selection (e.g., sizing and scale-up) C. Cost estimation D. Comparison of economic alternatives (e.g., net present value, discounted cash flow, rate of return, expected value and risk) E. Process design and optimization (e.g., sustainability, efficiency, green engineering, inherently safer design, evaluation of specifications) 	8–12
14.	 Process Control A. Dynamics (e.g., time constants and 2nd order, underdamped, and transfer functions) B. Control strategies (e.g., feedback, feed-forward, cascade, ratio, and PID) C. Control loop design and hardware (e.g., matching measured and manipulated variables, sensors, control valves, and conceptual process control) 	5–8
15.	 Safety, Health, and Environment A. Hazardous properties of materials (e.g., corrosivity, flammability, toxicity, reactivity, handling and storage), including MSDS B. Industrial hygiene (e.g., noise, PPE, ergonomics) C. Process safety and hazard analysis [e.g., layer of protection analysis, hazard and operability studies (HazOps), fault-tree analysis or event tree] D. Overpressure and underpressure protection (e.g., relief, redundant control, intrinsically safe) E. Waste minimization, waste treatment, and regulation (e.g., air, water, solids, RCRA, CWA, EPA, OSHA) 	5–8
16.	Ethics and Professional Practice A. Codes of ethics (professional and technical societies) B. Agreements and contracts C. Ethical and legal considerations D. Professional liability E. Public protection issues (e.g., licensing boards)	2–3

D. Equilibrium stage methods (e.g., graphical methods, McCabe-Thiele,

Fundamentals of Engineering (FE) CIVIL CBT Exam Specifications

- The FE exam is a computer-based test (CBT). It is closed book with an electronic reference.
- Examinees have 6 hours to complete the exam, which contains 110 multiple-choice questions. The 6-hour time also includes a tutorial, a break, and a brief survey at the conclusion.
- The FE exam uses both the International System of Units (SI) and the US Customary System (USCS).

Knowledge		Number of Questions	
A B C	lathematics . Analytic geometry . Calculus . Roots of equations . Vector analysis	7–11	
A B C	robability and Statistics . Measures of central tendencies and dispersions (e.g., mean, mode, standard deviation) . Estimation for a single mean (e.g., point, confidence intervals) . Regression and curve fitting . Expected value (weighted average) in decision making	4–6	
A	computational Tools . Spreadsheet computations . Structured programming (e.g., if-then, loops, macros)	4–6	
A B C D E	thics and Professional Practice Codes of ethics (professional and technical societies) Professional liability Licensure Sustainability and sustainable design Professional skills (e.g., public policy, management, and business) Contracts and contract law	4–6	
A B C	ngineering Economics Discounted cash flow (e.g., equivalence, PW, equivalent annual worth, FW, rate of return) Cost (e.g., incremental, average, sunk, estimating) Analyses (e.g., breakeven, benefit-cost, life cycle) Uncertainty (e.g., expected value and risk)	4–6	
A B C	tatics . Resultants of force systems . Equivalent force systems . Equilibrium of rigid bodies . Frames and trusses	7–11	

	F. Area moments of inertia G. Static friction	
7.	Dynamics A. Kinematics (e.g., particles and rigid bodies) B. Mass moments of inertia C. Force acceleration (e.g., particles and rigid bodies) D. Impulse momentum (e.g., particles and rigid bodies) E. Work, energy, and power (e.g., particles and rigid bodies)	4–6
8.	Mechanics of Materials A. Shear and moment diagrams B. Stresses and strains (e.g., axial, torsion, bending, shear, thermal) C. Deformations (e.g., axial, torsion, bending, thermal) D. Combined stresses E. Principal stresses F. Mohr's circle G. Column analysis (e.g., buckling, boundary conditions) H. Composite sections I. Elastic and plastic deformations J. Stress-strain diagrams	7–11
9.	 Materials A. Mix design (e.g., concrete and asphalt) B. Test methods and specifications (e.g., steel, concrete, aggregates, asphalt, wood) C. Physical and mechanical properties of concrete, ferrous and nonferrous metals, masonry, wood, engineered materials (e.g., FRP, laminated lumber, wood/plastic composites), and asphalt 	4–6
10.	Fluid Mechanics A. Flow measurement B. Fluid properties C. Fluid statics D. Energy, impulse, and momentum equations	4–6
11.	 Hydraulics and Hydrologic Systems A. Basic hydrology (e.g., infiltration, rainfall, runoff, detention, flood flows, watersheds) B. Basic hydraulics (e.g., Manning equation, Bernoulli theorem, open-channel flow, pipe flow) C. Pumping systems (water and wastewater) D. Water distribution systems E. Reservoirs (e.g., dams, routing, spillways) F. Groundwater (e.g., flow, wells, drawdown) G. Storm sewer collection systems 	8–12
12.	Structural Analysis A. Analysis of forces in statically determinant beams, trusses, and frames B. Deflection of statically determinant beams, trusses, and frames C. Structural determinacy and stability analysis of beams, trusses, and frames	6–9

	loads, tributary areas) E. Elementary statically indeterminate structures	
13.	 Structural Design A. Design of steel components (e.g., codes and design philosophies, beams, columns, beam-columns, tension members, connections) B. Design of reinforced concrete components (e.g., codes and design philosophies, beams, slabs, columns, walls, footings) 	6–9
14.	 Geotechnical Engineering A. Geology B. Index properties and soil classifications C. Phase relations (air-water-solid) D. Laboratory and field tests E. Effective stress (buoyancy) F. Stability of retaining walls (e.g., active pressure/passive pressure) G. Shear strength H. Bearing capacity (cohesive and noncohesive) I. Foundation types (e.g., spread footings, deep foundations, wall footings, mats) J. Consolidation and differential settlement K. Seepage/flow nets L. Slope stability (e.g., fills, embankments, cuts, dams) M. Soil stabilization (e.g., chemical additives, geosynthetics) N. Drainage systems O. Erosion control 	9–14
15.	Transportation Engineering A. Geometric design of streets and highways B. Geometric design of intersections C. Pavement system design (e.g., thickness, subgrade, drainage, rehabilitation) D. Traffic safety E. Traffic capacity F. Traffic flow theory G. Traffic control devices H. Transportation planning (e.g., travel forecast modeling)	8–12
16.	Environmental Engineering A. Water quality (ground and surface) B. Basic tests (e.g., water, wastewater, air) C. Environmental regulations D. Water supply and treatment E. Wastewater collection and treatment	6–9

D. Loads and load paths (e.g., dead, live, lateral, influence lines and moving

17.	Co	enstruction	4–6
	A.	Construction documents	
	В.	Procurement methods (e.g., competitive bid, qualifications-based)	
		Project delivery methods (e.g., design-bid-build, design build, construction management, multiple prime)	
	D.	Construction operations and methods (e.g., lifting, rigging, dewatering and pumping, equipment production, productivity analysis and improvement, temporary erosion control)	
	E.	Project scheduling (e.g., CPM, allocation of resources)	
		Project management (e.g., owner/contractor/client relations)	
		Construction safety	
	Н.	Construction estimating	
18.	Su	ırveying	4–6
	A.	Angles, distances, and trigonometry	
	B.	Area computations	
	C.	Earthwork and volume computations	
	D.	Closure	

E. Coordinate systems (e.g., state plane, latitude/longitude)F. Leveling (e.g., differential, elevations, percent grades)

Fundamentals of Engineering (FE) ELECTRICAL AND COMPUTER CBT Exam Specifications

- The FE exam is a computer-based test (CBT). It is closed book with an electronic reference.
- Examinees have 6 hours to complete the exam, which contains 110 multiple-choice questions. The 6-hour time also includes a tutorial, a break, and a brief survey at the conclusion.
- The FE exam uses both the International System of Units (SI) and the US Customary System (USCS).

Knowledge		Number of Questions
	Mathematics A. Algebra and trigonometry B. Complex numbers C. Discrete mathematics D. Analytic geometry E. Calculus F. Differential equations G. Linear algebra H. Vector analysis	11–17
	 Probability and Statistics A. Measures of central tendencies and dispersions (e.g., mean, mode, standard deviation) B. Probability distributions (e.g., discrete, continuous, normal, binomial) C. Expected value (weighted average) in decision making D. Estimation for a single mean (e.g., point, confidence intervals, conditional probability) 	4–6
	Ethics and Professional Practice A. Codes of ethics (professional and technical societies) B. NCEES Model Law and Model Rules C. Intellectual property (e.g., copyright, trade secrets, patents)	3–5
	Engineering Economics A. Time value of money (e.g., present value, future value, annuities) B. Cost estimation C. Risk identification D. Analysis (e.g., cost-benefit, trade-off, breakeven)	3–5
	Properties of Electrical Materials A. Chemical (e.g., corrosion, ions, diffusion) B. Electrical (e.g., conductivity, resistivity, permittivity, magnetic permeability) C. Mechanical (e.g., piezoelectric, strength) D. Thermal (e.g., conductivity, expansion)	4–6

6.	 Engineering Sciences A. Work, energy, power, heat B. Charge, energy, current, voltage, power C. Forces (e.g., between charges, on conductors) D. Work done in moving a charge in an electric field (relationship between voltage and work) E. Capacitance F. Inductance 	6–9
7.	Circuit Analysis (DC and AC Steady State) A. KCL, KVL B. Series/parallel equivalent circuits C. Thevenin and Norton theorems D. Node and loop analysis E. Waveform analysis (e.g., RMS, average, frequency, phase, wavelength) F. Phasors G. Impedance	10–15
8.	Linear Systems A. Frequency/transient response B. Resonance C. Laplace transforms D. Transfer functions E. 2-port theory	5–8
9.	Signal Processing A. Convolution (continuous and discrete) B. Difference equations C. Z-transforms D. Sampling (e.g., aliasing, Nyquist theorem) E. Analog filters F. Digital filters	5–8
10.	 Electronics A. Solid-state fundamentals (e.g., tunneling, diffusion/drift current, energy bands, doping bands, p-n theory) B. Discrete devices (diodes, transistors, BJT, CMOS) and models and their performance C. Bias circuits D. Amplifiers (e.g., single-stage/common emitter, differential) E. Operational amplifiers (ideal, non-ideal) F. Instrumentation (e.g., measurements, data acquisition, transducers) G. Power electronics 	7–11
11.	Power A. Single phase and three phase B. Transmission and distribution C. Voltage regulation D. Transformers E. Motors and generators F. Power factor (pf)	8–12

12.	A. Maxwell equations B. Electrostatics/magnetostatics (e.g., measurement of spatial relationships, vector analysis) C. Wave propagation D. Transmission lines (high frequency) E. Electromagnetic compatibility	5–8
13.	Control Systems A. Block diagrams (feed-forward, feedback) B. Bode plots C. Closed-loop and open-loop response D. Controller performance (gain, PID), steady-state errors E. Root locus F. Stability G. State variables	6–9
14.	Communications A. Basic modulation/demodulation concepts (e.g., AM, FM, PCM) B. Fourier transforms/Fourier series C. Multiplexing (e.g., time division, frequency division) D. Digital communications	5–8
15.	Computer Networks A. Routing and switching B. Network topologies/frameworks/models C. Local area networks	3–5
16.	Digital Systems A. Number systems B. Boolean logic C. Logic gates and circuits D. Logic minimization (e.g., SOP, POS, Karnaugh maps) E. Flip-flops and counters F. Programmable logic devices and gate arrays G. State machine design H. Data path/controller design I. Timing (diagrams, asynchronous inputs, races, hazards)	7–11
17.	Computer Systems A. Architecture (e.g., pipelining, cache memory) B. Microprocessors C. Memory technology and systems D. Interfacing	4–6
18.	Software Development A. Algorithms B. Data structures C. Software design methods (structured, object-oriented) D. Software implementation (e.g., procedural, scripting languages) E. Software testing	4–6

Fundamentals of Engineering (FE) ENVIRONMENTAL CBT Exam Specifications

- The FE exam is a computer-based test (CBT). It is closed book with an electronic reference.
- Examinees have 6 hours to complete the exam, which contains 110 multiple-choice questions. The 6-hour time also includes a tutorial, a break, and a brief survey at the conclusion.
- The FE exam uses both the International System of Units (SI) and the US Customary System (USCS).

Knowledge		Number of Questions
1.	Mathematics A. Analytic geometry B. Numerical methods C. Roots of equations D. Calculus E. Differential equations	4–6
2.	 Probability and Statistics A. Measures of central tendencies and dispersions (e.g., mean, mode, standard deviation) B. Probability distributions (e.g., discrete, continuous, normal, binomial) C. Estimation (point, confidence intervals) for a single mean D. Regression and curve fitting E. Expected value (weighted average) in decision making F. Hypothesis testing 	3–5
3.	Ethics and Professional Practice A. Codes of ethics (professional and technical societies) B. Agreements and contracts C. Ethical and legal considerations D. Professional liability E. Public protection issues (e.g., licensing boards) F. Regulations (e.g., water, wastewater, air, solid/hazardous waste, groundwater/soils)	5–8
4.	 Engineering Economics A. Discounted cash flow (e.g., life cycle, equivalence, PW, equivalent annual worth, FW, rate of return) B. Cost (e.g., incremental, average, sunk, estimating) C. Analyses (e.g., breakeven, benefit-cost) D. Uncertainty (expected value and risk) 	4–6
5.	Materials Science A. Properties (e.g., chemical, electrical, mechanical, physical) B. Corrosion mechanisms and controls C. Material selection and compatibility	3–5

6.	 Environmental Science and Chemistry A. Reactions (e.g., equilibrium, acid base, oxidation-reduction, precipitation) B. Stoichiometry C. Kinetics (chemical, microbiological) D. Organic chemistry (e.g., nomenclature, functional group reactions) E. Ecology (e.g., Streeter-Phelps, fluviology, limnology, eutrophication) F. Multimedia equilibrium partitioning (e.g., Henry's law, octonal partitioning coefficient) 	11–17
7.	Risk Assessment	5–8
	A. Dose-response toxicity (carcinogen, noncarcinogen)B. Exposure routes	
8.	Fluid Mechanics A. Fluid statics B. Closed conduits (e.g., Darcy-Weisbach, Hazen-Williams, Moody) C. Open channel (Manning) D. Pumps (e.g., power, operating point, parallel and series) E. Flow measurement (e.g., weirs, orifices, flowmeters) F. Blowers (e.g., power, operating point, parallel, and series)	9–14
9.	Thermodynamics	3–5
	A. Thermodynamic laws (e.g., 1st law, 2nd law)	
	B. Energy, heat, and work	
	C. Ideal gases D. Mixture of nonreacting gases	
	E. Heat transfer	
10.	Water Resources	10–15
	A. Demand calculations	
	B. Population estimations	
	C. Runoff calculations (e.g., land use, land cover, time of concentration, duration, intensity, frequency)	
	D. Reservoir sizing	
	E. Routing (e.g., channel, reservoir)	
	F. Water quality and modeling (e.g., erosion, channel stability, stormwater quality management)	
11.	Water and Wastewater	14–21
• • •	A. Water and wastewater characteristics	17-21
	B. Mass and energy balances	
	C. Conventional water treatment processes (e.g., clarification, disinfection,	
	filtration, flocculation, softening, rapid mix)	
	D. Conventional wastewater treatment processes (e.g., activated sludge, decentr	alized
	wastewater systems, fixed-film system, disinfection, flow equalization,	
	headworks, lagoons) E. Alternative treatment process (e.g., conservation and reuse, membranes,	
	nutrient removal, ion exchange, activated carbon, air stripping)	
	F. Sludge treatment and handling (e.g., land application, sludge digestion,	
	sludge dewatering)	

12.	Aiı	r Quality	10–15
	A.	Chemical principles (e.g., ideal gas, mole fractions, stoichiometry,	
		Henry's law)	
	B.	Mass balances	
	C.	Emissions (factors, rates)	
	D.	Atmospheric sciences (e.g., stability classes, dispersion modeling, lapse rate	s)
	E.	Gas handling and treatment technologies (e.g., hoods, ducts, coolers,	
		biofiltration, scrubbers, adsorbers, incineration)	
	F.	Particle handling and treatment technologies (e.g., baghouses, cyclones,	
		electrostatic precipitators, settling velocity)	
13.	So	lid and Hazardous Waste	10–15
	A.	Composting	
	B.	Mass balances	
	C.	Compatibility	
	D.	Landfilling (e.g., siting, design, leachate, material and energy recovery)	
	E.	Site characterization and remediation	
	F.	Hazardous waste treatment (e.g., physical, chemical, thermal)	
	G.	Radioactive waste treatment and disposal	
14.	Gr	oundwater and Soils	9–14
	A.	Basic hydrogeology (e.g., aquifers, permeability, water table, hydraulic conductivity, saturation, soil characteristics)	
	B.	Drawdown (e.g., Jacob, Theis, Thiem)	
		Groundwater flow (e.g., Darcy's law, specific capacity, velocity, gradient)	
	~.	ordinariated from (o.g., Euroj o farri, specific capacity, volocity, gradient)	

D. Soil and groundwater remediation

dispersion)

F. Hypothesis testing

G. Regression (linear, multiple)

E. Estimation (e.g., point, confidence intervals)

Fundamentals of Engineering (FE) INDUSTRIAL CBT Exam Specifications

Effective Beginning with the January 2014 Examinations

- The FE exam is a computer-based test (CBT). It is closed book with an electronic reference.
- Examinees have 6 hours to complete the exam, which contains 110 multiple-choice questions. The 6-hour time also includes a tutorial, a break, and a brief survey at the conclusion.
- The FE exam uses both the International System of Units (SI) and the US Customary System (USCS).

Knowledge		umber of Questions
1.	Mathematics A. Analytic geometry B. Calculus C. Matrix operations D. Vector analysis E. Linear algebra	6–9
2.	Engineering Sciences A. Work, energy, and power B. Material properties and selection C. Charge, energy, current, voltage, and power	5–8
3.	Ethics and Professional Practice A. Codes of ethics and licensure B. Agreements and contracts C. Professional, ethical, and legal responsibility D. Public protection and regulatory issues	5–8
4.	Engineering Economics A. Discounted cash flows (PW, EAC, FW, IRR, amortization) B. Types and breakdown of costs (e.g., fixed, variable, direct and indirect lal C. Cost analyses (e.g., benefit-cost, breakeven, minimum cost, overhead) D. Accounting (financial statements and overhead cost allocation) E. Cost estimation F. Depreciation and taxes G. Capital budgeting	10–15 por)
5.	Probability and Statistics A. Combinatorics (e.g., combinations, permutations) B. Probability distributions (e.g., normal, binomial, empirical) C. Conditional probabilities	10–15

D. Sampling distributions, sample sizes, and statistics (e.g., central tendency,

	H. System reliability (e.g., single components, parallel and series systems) I. Design of experiments (e.g., ANOVA, factorial designs)	
6.	Modeling and Computations A. Algorithm and logic development (e.g., flow charts, pseudocode) B. Databases (e.g., types, information content, relational) C. Decision theory (e.g., uncertainty, risk, utility, decision trees) D. Optimization modeling (e.g., decision variables, objective functions, and constraints) E. Linear programming (e.g., formulation, primal, dual, graphical solutions) F. Mathematical programming (e.g., network, integer, dynamic, transportation, assignment) G. Stochastic models (e.g., queuing, Markov, reliability) H. Simulation	8–12
7.	ndustrial Management A. Principles (e.g., planning, organizing, motivational theory) B. Tools of management (e.g., MBO, reengineering, organizational structure) C. Project management (e.g., scheduling, PERT, CPM) D. Productivity measures	8–12
8.	Manufacturing, Production, and Service Systems A. Manufacturing processes B. Manufacturing systems (e.g., cellular, group technology, flexible) C. Process design (e.g., resources, equipment selection, line balancing) D. Inventory analysis (e.g., EOQ, safety stock) E. Forecasting F. Scheduling (e.g., sequencing, cycle time, material control) G. Aggregate planning H. Production planning (e.g., JIT, MRP, ERP) I. Lean enterprises J. Automation concepts (e.g., robotics, CIM) K. Sustainable manufacturing (e.g., energy efficiency, waste reduction) L. Value engineering	8–12
9.	Facilities and Logistics A. Flow measurements and analysis (e.g., from/to charts, flow planning) B. Layouts (e.g., types, distance metrics, planning, evaluation) C. Location analysis (e.g., single- and multiple-facility location, warehouses) D. Process capacity analysis (e.g., number of machines and people, trade-offs) E. Material handling capacity analysis F. Supply chain management and design	8–12
10.	Human Factors, Ergonomics, and Safety A. Hazard identification and risk assessment B. Environmental stress assessment (e.g., noise, vibrations, heat) C. Industrial hygiene D. Design for usability (e.g., tasks, tools, displays, controls, user interfaces) E. Anthropometry F. Biomechanics C. Cumulative trauma disorders (e.g., low back injuries, carpal tunnel syndrome)	8–12

		Systems safety Cognitive engineering (e.g., information processing, situation awareness, human error, mental models)	
11.	A. B. C. D.	rk Design Methods analysis (e.g., charting, workstation design, motion economy) Time study (e.g., time standards, allowances) Predetermined time standard systems (e.g., MOST, MTM) Work sampling Learning curves	8–12
12.	A. B. C. D. E. F.	Six sigma Management and planning tools (e.g., fishbone, Pareto, QFD, TQM) Control charts Process capability and specifications Sampling plans Design of experiments for quality improvement Reliability engineering	8–12
13.	A. B. C. D. E. F. G.	Requirements analysis System design Human systems integration Functional analysis and allocation Configuration management Risk management Verification and assurance System life-cycle engineering	8–12

Fundamentals of Engineering (FE) MECHANICAL CBT Exam Specifications

- The FE exam is a computer-based test (CBT). It is closed book with an electronic reference.
- Examinees have 6 hours to complete the exam, which contains 110 multiple-choice questions. The 6-hour time also includes a tutorial, a break, and a brief survey at the conclusion.
- The FE exam uses both the International System of Units (SI) and the US Customary System (USCS).

Knowledge		Number of Questions
1.	Mathematics A. Analytic geometry B. Calculus C. Linear algebra D. Vector analysis E. Differential equations F. Numerical methods	6–9
2.	Probability and Statistics A. Probability distributions B. Regression and curve fitting	4–6
3.	Computational Tools A. Spreadsheets B. Flow charts	3–5
4.	Ethics and Professional Practice A. Codes of ethics B. Agreements and contracts C. Ethical and legal considerations D. Professional liability E. Public health, safety, and welfare	3–5
5.	Engineering Economics A. Time value of money B. Cost, including incremental, average, sunk, and estimating C. Economic analyses D. Depreciation	3–5
6.	Electricity and Magnetism A. Charge, current, voltage, power, and energy B. Current and voltage laws (Kirchhoff, Ohm) C. Equivalent circuits (series, parallel) D. AC circuits E. Motors and generators	3–5

8-12

	 A. Resultants of force systems B. Concurrent force systems C. Equilibrium of rigid bodies D. Frames and trusses E. Centroids F. Moments of inertia G. Static friction 	
8.	Dynamics, Kinematics, and Vibrations A. Kinematics of particles B. Kinetic friction C. Newton's second law for particles D. Work-energy of particles E. Impulse-momentum of particles F. Kinematics of rigid bodies G. Kinematics of mechanisms H. Newton's second law for rigid bodies I. Work-energy of rigid bodies J. Impulse-momentum of rigid bodies K. Free and forced vibrations	9–14
9.	Mechanics of Materials A. Shear and moment diagrams B. Stress types (axial, bending, torsion, shear) C. Stress transformations D. Mohr's circle E. Stress and strain caused by axial loads F. Stress and strain caused by bending loads G. Stress and strain caused by torsion H. Stress and strain caused by shear I. Combined loading J. Deformations K. Columns	3–12
10.		8–12

7.

Statics

	M. Ductile or brittle behaviorN. FatigueO. Crack propagation	
11.	Fluid Mechanics A. Fluid properties B. Fluid statics C. Energy, impulse, and momentum D. Internal flow E. External flow F. Incompressible flow G. Compressible flow H. Power and efficiency I. Performance curves J. Scaling laws for fans, pumps, and compressors	9–14
12.	Thermodynamics A. Properties of ideal gases and pure substances B. Energy transfers C. Laws of thermodynamics D. Processes E. Performance of components F. Power cycles, thermal efficiency, and enhancements G. Refrigeration and heat pump cycles and coefficients of performance H. Nonreacting mixtures of gases I. Psychrometrics J. Heating, ventilating, and air-conditioning (HVAC) processes K. Combustion and combustion products	13–20
13.	Heat Transfer A. Conduction B. Convection C. Radiation D. Thermal resistance E. Transient processes F. Heat exchangers G. Boiling and condensation	9–14
14.	Measurements, Instrumentation, and Controls A. Sensors B. Block diagrams C. System response D. Measurement uncertainty	5–8
15.	Mechanical Design and Analysis A. Stress analysis of machine elements B. Failure theories and analysis C. Deformation and stiffness D. Springs E. Pressure vessels F. Beams G. Piping	9–14

- H. Bearings
- I. Power screws
- J. Power transmission
- K. Joining methods
- L. Manufacturability
- M. Quality and reliability
- N. Hydraulic components
- O. Pneumatic components
- P. Electromechanical components

Fundamentals of Engineering (FE) OTHER DISCIPLINES CBT Exam Specifications

Effective Beginning with the January 2014 Examinations

- The FE exam is a computer-based test (CBT). It is closed book with an electronic reference.
- Examinees have 6 hours to complete the exam, which contains 110 multiple-choice questions. The 6-hour time also includes a tutorial, a break, and a brief survey at the conclusion.
- The FE exam uses both the International System of Units (SI) and the US Customary System (USCS).

Knowledge		Number of Questions
1.	 Mathematics and Advanced Engineering Mathematics A. Analytic geometry and trigonometry B. Calculus C. Differential equations (e.g., homogeneous, nonhomogeneous, Laplace transforms) D. Numerical methods (e.g., algebraic equations, roots of equations, approximations, precision limits) E. Linear algebra (e.g., matrix operations) 	12–18
2.	 Probability and Statistics A. Measures of central tendencies and dispersions (e.g., mean, mode, variance, standard deviation) B. Probability distributions (e.g., discrete, continuous, normal, binomial) C. Estimation (e.g., point, confidence intervals) D. Expected value (weighted average) in decision making E. Sample distributions and sizes F. Goodness of fit (e.g., correlation coefficient, least squares) 	6–9
3.	 Chemistry A. Periodic table (e.g., nomenclature, metals and nonmetals, atomic structure of matter) B. Oxidation and reduction C. Acids and bases D. Equations (e.g., stoichiometry, equilibrium) E. Gas laws (e.g., Boyle's and Charles' Laws, molar volume) 	7–11
4.	 Instrumentation and Data Acquisition A. Sensors (e.g., temperature, pressure, motion, pH, chemical constituen B. Data acquisition (e.g., logging, sampling rate, sampling range, filtering amplification, signal interface) C. Data processing (e.g., flow charts, loops, branches) 	
5.	Ethics and Professional Practice A. Codes of ethics B. NCEES Model Law	3–5

C. Public protection issues (e.g., licensing boards)

	A. Industrial hygiene (e.g., carcinogens, toxicology, MSDS, lower	
	exposure limits) B. Basic safety equipment (e.g., pressure relief valves, emergency shut-offs, fire prevention and control, personal protective equipment)	
	C. Gas detection and monitoring (e.g., O ₂ , CO, CO ₂ , CH ₄ , H ₂ S, Radon) D. Electrical safety	
7.	Engineering Economics A. Time value of money (e.g., present worth, annual worth, future worth,	7–11
	rate of return) B. Cost (e.g., incremental, average, sunk, estimating)	
	C. Economic analyses (e.g., breakeven, benefit-cost, optimal economic life)	
	D. Uncertainty (e.g., expected value and risk)	
	E. Project selection (e.g., comparison of unequal life projects, lease/buy/make, depreciation, discounted cash flow)	
8.	Statics	8–12
	A. Resultants of force systems and vector analysis	
	B. Concurrent force systemsC. Force couple systems	
	D. Equilibrium of rigid bodies	
	E. Frames and trusses E. Area proportion (e.g. controller moments of inertic radius of grantion)	
	F. Area properties (e.g., centroids, moments of inertia, radius of gyration)	
	G. Static friction	
9.	Dynamics	7–11
9.	Dynamics A. Kinematics	7–11
9.	Dynamics A. Kinematics B. Linear motion (e.g., force, mass, acceleration)	7–11
9.	Dynamics A. Kinematics B. Linear motion (e.g., force, mass, acceleration) C. Angular motion (e.g., torque, inertia, acceleration) D. Mass moment of inertia	7–11
9.	Dynamics A. Kinematics B. Linear motion (e.g., force, mass, acceleration) C. Angular motion (e.g., torque, inertia, acceleration) D. Mass moment of inertia E. Impulse and momentum (linear and angular)	7–11
9.	Dynamics A. Kinematics B. Linear motion (e.g., force, mass, acceleration) C. Angular motion (e.g., torque, inertia, acceleration) D. Mass moment of inertia	7–11
9.	Dynamics A. Kinematics B. Linear motion (e.g., force, mass, acceleration) C. Angular motion (e.g., torque, inertia, acceleration) D. Mass moment of inertia E. Impulse and momentum (linear and angular) F. Work, energy, and power	7–11
9.	Dynamics A. Kinematics B. Linear motion (e.g., force, mass, acceleration) C. Angular motion (e.g., torque, inertia, acceleration) D. Mass moment of inertia E. Impulse and momentum (linear and angular) F. Work, energy, and power G. Dynamic friction H. Vibrations Strength of Materials	7–11 8–12
	Dynamics A. Kinematics B. Linear motion (e.g., force, mass, acceleration) C. Angular motion (e.g., torque, inertia, acceleration) D. Mass moment of inertia E. Impulse and momentum (linear and angular) F. Work, energy, and power G. Dynamic friction H. Vibrations Strength of Materials A. Stress types (e.g., normal, shear, bending, torsion)	
	Dynamics A. Kinematics B. Linear motion (e.g., force, mass, acceleration) C. Angular motion (e.g., torque, inertia, acceleration) D. Mass moment of inertia E. Impulse and momentum (linear and angular) F. Work, energy, and power G. Dynamic friction H. Vibrations Strength of Materials	
	Dynamics A. Kinematics B. Linear motion (e.g., force, mass, acceleration) C. Angular motion (e.g., torque, inertia, acceleration) D. Mass moment of inertia E. Impulse and momentum (linear and angular) F. Work, energy, and power G. Dynamic friction H. Vibrations Strength of Materials A. Stress types (e.g., normal, shear, bending, torsion) B. Combined stresses C. Stress and strain caused by axial loads, bending loads, torsion, or shear D. Shear and moment diagrams	
	Dynamics A. Kinematics B. Linear motion (e.g., force, mass, acceleration) C. Angular motion (e.g., torque, inertia, acceleration) D. Mass moment of inertia E. Impulse and momentum (linear and angular) F. Work, energy, and power G. Dynamic friction H. Vibrations Strength of Materials A. Stress types (e.g., normal, shear, bending, torsion) B. Combined stresses C. Stress and strain caused by axial loads, bending loads, torsion, or shear D. Shear and moment diagrams E. Analysis of beams, trusses, frames, and columns	
	Dynamics A. Kinematics B. Linear motion (e.g., force, mass, acceleration) C. Angular motion (e.g., torque, inertia, acceleration) D. Mass moment of inertia E. Impulse and momentum (linear and angular) F. Work, energy, and power G. Dynamic friction H. Vibrations Strength of Materials A. Stress types (e.g., normal, shear, bending, torsion) B. Combined stresses C. Stress and strain caused by axial loads, bending loads, torsion, or shear D. Shear and moment diagrams E. Analysis of beams, trusses, frames, and columns F. Deflection and deformations (e.g., axial, bending, torsion) G. Elastic and plastic deformation	
	Dynamics A. Kinematics B. Linear motion (e.g., force, mass, acceleration) C. Angular motion (e.g., torque, inertia, acceleration) D. Mass moment of inertia E. Impulse and momentum (linear and angular) F. Work, energy, and power G. Dynamic friction H. Vibrations Strength of Materials A. Stress types (e.g., normal, shear, bending, torsion) B. Combined stresses C. Stress and strain caused by axial loads, bending loads, torsion, or shear D. Shear and moment diagrams E. Analysis of beams, trusses, frames, and columns F. Deflection and deformations (e.g., axial, bending, torsion)	

11.		terials Science	6–9
	Α.	Physical, mechanical, chemical, and electrical properties of ferrous metals	
	B.	Physical, mechanical, chemical, and electrical properties of nonferrous metals	
	C.	Physical, mechanical, chemical, and electrical properties of engineered materials (e.g., polymers, concrete, composites)	
	D.	Corrosion mechanisms and control	
12.	FΙι	iid Mechanics and Dynamics of Liquids	8–12
		Fluid properties (e.g., Newtonian, non-Newtonian)	
		Dimensionless numbers (e.g., Reynolds number, Froude number) Laminar and turbulent flow	
		Fluid statics	
		Energy, impulse, and momentum equations (e.g., Bernoulli equation)	
	F.	Pipe flow and friction losses (e.g., pipes, valves, fittings, Darcy-Weisbach equation, Hazen-Williams equation)	
	G.	Open-channel flow (e.g., Manning equation, drag)	
	Н.	Fluid transport systems (e.g., series and parallel operations)	
		Flow measurement	
		Turbomachinery (e.g., pumps, turbines)	
13.		rid Mechanics and Dynamics of Gases	4–6
		Fluid properties (e.g., ideal and non-ideal gases) Dimensionless numbers (e.g., Reynolds number, Mach number)	
		Laminar and turbulent flow	
		Fluid statics	
		Energy, impulse, and momentum equations	
	-	**	
		Duct and pipe flow and friction losses	
	G.	**	
	G. H.	Duct and pipe flow and friction losses Fluid transport systems (e.g., series and parallel operations)	
14.	G. H. I.	Duct and pipe flow and friction losses Fluid transport systems (e.g., series and parallel operations) Flow measurement Turbomachinery (e.g., fans, compressors, turbines)	7–11
14.	G. H. I.	Duct and pipe flow and friction losses Fluid transport systems (e.g., series and parallel operations) Flow measurement	7–11
14.	G. H. I. Ele A. B.	Duct and pipe flow and friction losses Fluid transport systems (e.g., series and parallel operations) Flow measurement Turbomachinery (e.g., fans, compressors, turbines) ectricity, Power, and Magnetism Electrical fundamentals (e.g., charge, current, voltage, resistance, power, energy) Current and voltage laws (Kirchhoff, Ohm)	7–11
14.	G. H. I. Ele A. B. C.	Duct and pipe flow and friction losses Fluid transport systems (e.g., series and parallel operations) Flow measurement Turbomachinery (e.g., fans, compressors, turbines) ectricity, Power, and Magnetism Electrical fundamentals (e.g., charge, current, voltage, resistance, power, energy) Current and voltage laws (Kirchhoff, Ohm) DC circuits	7–11
14.	G. H. I. Ele A. B. C. D.	Duct and pipe flow and friction losses Fluid transport systems (e.g., series and parallel operations) Flow measurement Turbomachinery (e.g., fans, compressors, turbines) ctricity, Power, and Magnetism Electrical fundamentals (e.g., charge, current, voltage, resistance, power, energy) Current and voltage laws (Kirchhoff, Ohm) DC circuits Equivalent circuits (series, parallel, Norton's theorem, Thevenin's theorem)	7–11
14.	G. H. I. Ele A. B. C. D. E.	Duct and pipe flow and friction losses Fluid transport systems (e.g., series and parallel operations) Flow measurement Turbomachinery (e.g., fans, compressors, turbines) **Ctricity, Power, and Magnetism Electrical fundamentals (e.g., charge, current, voltage, resistance, power, energy) Current and voltage laws (Kirchhoff, Ohm) DC circuits Equivalent circuits (series, parallel, Norton's theorem, Thevenin's theorem) Capacitance and inductance	7–11
14.	G. H. I. Ele A. B. C. D. E.	Duct and pipe flow and friction losses Fluid transport systems (e.g., series and parallel operations) Flow measurement Turbomachinery (e.g., fans, compressors, turbines) ctricity, Power, and Magnetism Electrical fundamentals (e.g., charge, current, voltage, resistance, power, energy) Current and voltage laws (Kirchhoff, Ohm) DC circuits Equivalent circuits (series, parallel, Norton's theorem, Thevenin's theorem)	7–11
14.	G. H. I. Ele A. C. D. E. F.	Duct and pipe flow and friction losses Fluid transport systems (e.g., series and parallel operations) Flow measurement Turbomachinery (e.g., fans, compressors, turbines) ctricity, Power, and Magnetism Electrical fundamentals (e.g., charge, current, voltage, resistance, power, energy) Current and voltage laws (Kirchhoff, Ohm) DC circuits Equivalent circuits (series, parallel, Norton's theorem, Thevenin's theorem) Capacitance and inductance AC circuits (e.g., real and imaginary components, complex numbers,	7–11

9-14

15. Heat, Mass, and Energy Transfer

- A. Energy, heat, and work
- B. Thermodynamic laws (e.g., 1st law, 2nd law)
- C. Thermodynamic equilibrium
- D. Thermodynamic properties (e.g., entropy, enthalpy, heat capacity)
- E. Thermodynamic processes (e.g., isothermal, adiabatic, reversible, irreversible)
- F. Mixtures of nonreactive gases
- G. Heat transfer (e.g., conduction, convection, and radiation)
- H. Mass and energy balances
- I. Property and phase diagrams (e.g., T-s, P-h)
- J. Phase equilibrium and phase change
- K. Combustion and combustion products (e.g., CO, CO₂, NO_X, ash, particulates)
- L. Psychrometrics (e.g., relative humidity, wet-bulb)