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3 bedrooms, 
2+1/2 bathrooms
1 living & 1 dining rooms
2-car garage
kitchen
backyard

✆

☛ Civil engineering

Customer engineer gets customer requirements

functional units: other considerations:
cost
esthetics
workmanship
neighborhood
maintainability
economics 

✆ Architect starts thinking about architectural styles

Victorian, Duplex, Condominium, Townhouse, Catheral, Pyramidal, ...
architectural styles:

floor plans & elevations for functional units

other considerations:
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What is Architecture?

the underlying structure of things -� � � � � � � � � � 	 
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immense amount of details not present about various detailed design
considerations such as electrical wiring, plumbing, heating, etc.
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✆

☛ Civil engineering

Designers/Contractors think about detailed design considerations

electrical wiring, plumbing, heating,  air-conditioning, carpeting, etc.

✆ Sub-contractors/Construction Workers:

electricians, plumbers, furnace installers, carpenters, locksmith,
brick layers, bathtub technicians, etc.

Reading Assignment: Chapter 1
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❞

both locally and remotely to provide communication among applications and servers.

Camelot is based on the client-server model and uses remote procedure calls
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❞
Abstraction layering and system decomposition provide the appearance of system

uniformity to clients, yet allow Helix [distributed file system] to accommodate a

diversity of autonomous devices. The architecture encourages a client-server model

for the structuring of applications.
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❞
We have chosen a distributed, object-oriented approach to managing information.

� � � � � � � � � � � �
❀

❁ Software architectures are indeed used, very often but without even knowing it

It’s natural to use software architectures!

❁ carries some, and more often than not a lot of, information

❁ no explicit description of the structure

No clear basis for communication or reasoning!

Care must be exercised!



✇ constraints:

abstraction of architectural components from various specific architectures.

(Sometimes interchangeably used with patterns)

e.g., Unix OS, OSI protocol layer, Onion ring IS structure -> layering

✇ styles:

on the patterns (i.e., on components, connectors, layout)
e.g., temporal, cardinality, concurrency, (a)synchronous, etc.

✇ rationale:
describe why the particular architecture is chosen
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A Model of Software Architecture
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✇ elements (components/parts):
from which systems are built
e.g., process, data, object, agent

✇ patterns:
describe layout of elements and interactions, guiding their composition

✇ interactions (connections/connectors/glues/relationships):

between the elements
e.g., PCs, RPCs, MOMs, events

e.g., # of elements, # of connectors, order, topology, directionality

patterns:interactionselements

Lexer

source code (characters) connector
(stream of data)

process
tokens (name table)

(stream of data)
Parser

phrases (name table & abstract syntax tree)
process

Semantic Analyzer
correlated phrases

(name table & abstract syntax graph)

process

Optimizer (annotated) correlated phrases
(name table & annotated abstract syntax graph)

process

Coder process

a+   x   *  (1-1)    +7

a plus x mult lParen 1 minus 1  rParen plus 7

a plus 7

a plus [x mult  [1 minus 1] ] plus 7

a plus [x mult  [1 minus 1] ] plus 7

load a; load 7; add
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rationale: simplicity, process independence

{connector process}* connector

style: pipe&filter

each element does a local transformation to the input and produces output
each glue serves as a conduit for the data stream,

transmitting outputs of one process to inpts of another
constraints:

processes do not share state with other processes
processes do not know the identity of their upstream and downstream processes

(partial concurrency, or complete degenerate case)
=> Independent processes (other than stream availability)
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A Model of Software Architecture

Points to ponder about:

❐

❐ What alternative architectures are possible?

Lexer + Parser

Shared data + sequential

2 Semantic Analyzers (forward reference)

No Optimizer

Concurrent compiler (semantic analyzer || optimizer || coder)

What are disadvantages  (& other advantages) of this architecture?

Time, Space, Reusability, Adaptability, etc.

❐ What are some other instances of this style?

Unix command processing: e.g., ls|sort|pr|lpr
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Common Architectural Styles

✇ Dataflow systems [topic 5: Data Flow]

✬ Batch sequential

✬ Pipe & Filter

✇ Call-and-return systems

✬ Main program & subroutine [topic 4: Modular Decomposition Issues]

✬ OO systems [topic 3: ADT]

✬ Hierarchical layers [topic 5 & 6 & 10 - Data Flow & Repositories & Middleware]

Independent components

✬ Communicating processes [topic 11?: Processes]

✬ Event systems [topic 4 & 7 - Modular Decomposition Issues & Events]

✇

✇

Virtual machines

✬ Interpreters

✬ Rule-based systems

✇ Data-centered systems [topic 6: Repositories]

✬ Databases

✬ Hypertext systems

✬ Blackboards

✇ Process-control paradigms [topic 8: Repositories]

Client-server✇ [topic 9]
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Why Software Architecture?

✜ Abstract solution to conquer complexity

... and many other conceptual reasons

functionality and performance (Non-functional requirements)

divide and conquer

✜ A shared, semantically-rich vocabulary between SEeers.

=>
X is primarily for stream transformation

E.g., instanceOf (X, pipe & filter)

functional behavior of X can be derived compositionally from
the behaviors of the constituent filters

issues of system latency and throughput can be addressed
in relatively straightforward ways

✜ supports reuse

✜ facilitates (integration) testing

✜ parallel development

✜ system evolvability


