
Computer Science Program, The University of Texas, Dallas

Lawrence Chung

Software Architectural Design:
Introduction

What is Architecture?

Current Practice in Software Architecture

A Model of Software Architecture

Why Software Architecture?

3 bedrooms,
2+1/2 bathrooms
1 living & 1 dining rooms
2-car garage
kitchen
backyard

✆

☛ Civil engineering

Customer engineer gets customer requirements

functional units: other considerations:
cost
esthetics
workmanship
neighborhood
maintainability
economics

✆ Architect starts thinking about architectural styles

Victorian, Duplex, Condominium, Townhouse, Catheral, Pyramidal, ...
architectural styles:

floor plans & elevations for functional units

other considerations:

Lawrence Chung

What is Architecture?

the underlying structure of things -� � � � � � � � � � 	
 � � � � � 	 � �
 � � � �
 � � � � � � � 	 � 	 � � � � 	
 � � � � � � �
 � � � � � � � � � � �

immense amount of details not present about various detailed design
considerations such as electrical wiring, plumbing, heating, etc.

Lawrence Chung

What is Architecture?

the underlying structure of things -� � � � � � � � � � 	
 � � � � � 	 � �
 � � � �
 � � � � � � � 	 � 	 � � � � 	
 � � � � � � �
 � � � � � � � � � � �

✆

☛ Civil engineering

Designers/Contractors think about detailed design considerations

electrical wiring, plumbing, heating, air-conditioning, carpeting, etc.

✆ Sub-contractors/Construction Workers:

electricians, plumbers, furnace installers, carpenters, locksmith,
brick layers, bathtub technicians, etc.

Reading Assignment: Chapter 1

Lawrence Chung

Current Practice in Software Architecture

� � � � � � � � � � � � � � � � � � ! � � � � � � � " � � # � � � �
$ � � % � � � & � � ! ! ' ! � � " ! � % (� ' ! � � � ! � � � " � ! � � ! � � % ! ' ! � � � � � # (� � ! # � � � � � " � � � ! � � %

❞

both locally and remotely to provide communication among applications and servers.

Camelot is based on the client-server model and uses remote procedure calls

� � ! � �) % ! � ' ! � � � ! �
* + , % � � � (� � # � � � � � � � ! � � � ! � � - . / 0 1 2 - . 3 4 5 5 6 7 8 3 1 2 8 4 7 9 8 7 2 : ; 1 3 2 8 4 7 5 : 3 0 1 7 8 < 5

- . / 0 1 2 = - . 3 > 8 : 7 2 < ? 1 @ @ > 8 3 1 2 8 4 7 < A B < : ; C : ; ? < A 1 < 3 4 5 @ 4 7 : 7 2 <

D E F G
H I J K L M N O F P Q N R S N R T U V N L W

V M Q F R M X E F N V V Y F Y W V M Q F R M X E F N V Z R U K N Q Q M O [W K U U Z N R Y F M S N Z R U K N Q Q M O [W
H I Y F \ Q Y K L M N O F L M] N W

Y F N R T M O Y L N T E L Y F U R W ^ Y V U T Y M O P Q Z N K M _ M K Y Z Z L M K Y F M U O W
H I Y F \ Q Y Q N R S N R L M] N W

Y _ M L N Q N R S N R W Y V X Q N R S N R W Y F R Y O Q Y K F M U O Q N R S N R W Y ` a b Q N R S N R W
H I J c d ` Q W

e I J O U F Q U K] N F Q W e I J O U F f g f Q W e I J O U F N S N O F Q W
H I Y F \ Q K U T T E O M K Y F N V W

h O J K U O Q F R Y M O F W
L M] N Z Y Q Q M S N H N X X R U e Q N R W L M] N K L M N O F P K N O F R M K i Y S Y W
L M] N Q N R S N R P K N O F R M K ` a b W L M] N ` g c D h W L M] N g j k l m n o l p n ` g f W
E O M P o X M P V M R N K F M U O Y L K U T T E O M K Y F M U O W T E L F M P Z Y R Y V M [T W
T E L F M P Z L Y F _ U R T W

V Y F Y W T N F Y V Y F Y W K U O F R U L W Z R U K N Q Q W U X q N K F W T E L F M T N V M Y W Y [N O F W

Y [R U E Z e Y R N W

Y F N R T M O Y L N T E L Y F U R WH I Y F \ Q Y K L M N O F L M] N W ^ Y V U T Y M O P Q Z N K M _ M K Y Z Z L M K Y F M U O WH I Y F \ Q Y Q N R S N R L M] N W Y V X Q N R S N R WY _ M L N Q N R S N R W Y ` a b Q N R S N R WY F R Y O Q Y K F M U O Q N R S N R W
r s t u v w u s x y z { { | } ~ y t u ~ z } { x y s t } ~ w { �

H I Y F \ Q K U T T E O M K Y F N V W
h O J K U O Q F R Y M O F WL M] N Z Y Q Q M S N H N X X R U e Q N R W

Y [R U E Z e Y R N W

L M] N Q N R S N R P K N O F R M K ` a b W L M] N ` g c D h WL M] N K L M N O F P K N O F R M K i Y S Y W
E O M P o X M P V M R N K F M U O Y L K U T T E O M K Y F M U O W T E L F M P Z Y R Y V M [T WT E L F M P Z L Y F _ U R T W

V Y F Y W T N F Y V Y F Y W K U O F R U L W Z R U K N Q Q W U X q N K F W T E L F M T N V M Y W Y [N O F W

L M] N g j k l m n o l p n ` g f W

f g f Q W N S N O F Q WQ U K] N F Q W

Lawrence Chung

Current Practice in Software Architecture

� � � � � � � � � � � � � � � � � � ! � � � � � � � " � � # � � � �
$ � � % � � � & � � ! ! ' ! � � " ! � % (� ' ! � � � ! � � � " � ! � � ! � � % ! ' ! � � � � � # (� � ! # � � � � � " � � � ! � � %

❞
Abstraction layering and system decomposition provide the appearance of system

uniformity to clients, yet allow Helix [distributed file system] to accommodate a

diversity of autonomous devices. The architecture encourages a client-server model

for the structuring of applications.

� � ! � �) % ! � ' ! � � � ! � - . / 0 1 2 = - . 3 > 8 : 7 2 < ? 1 @ @ > 8 3 1 2 8 4 7 < A B < : ; C : ; ? < A 1 < 3 4 5 @ 4 7 : 7 2 <
� � % � � � # � � � � � � � ! � � � � � � % � % � ! � ! # � � " � % � � � � �

� � � � � � � � " " ! � � � � # ! � � # # � � � � � � ! � � ' ! � % � � � � � � � � � � � � � � % ! ' � # ! %

D E F G H I J K L M N O F P Q N R S N R T U V N L WV M Q F R M X E F N V V Y F Y W V M Q F R M X E F N V Z R U K N Q Q M O [W K U U Z N R Y F M S N Z R U K N Q Q M O [W

- . / 0 � - . ; 1 2 8 4 7 1 > :
� � � � (! % � � � # � � � � � � � � � " " � � # � � � � � % �

Lawrence Chung

Current Practice in Software Architecture

� � � � � � � � � � � � � � � � � � ! � � � � � � � " � � # � � � �
$ � � % � � � & � � ! ! ' ! � � " ! � % (� ' ! � � � ! � � � " � ! � � ! � � % ! ' ! � � � � � # (� � ! # � � � � � " � � � ! � � %

❞
We have chosen a distributed, object-oriented approach to managing information.

� � � � � � � � � � � �
❀

❁ Software architectures are indeed used, very often but without even knowing it

It’s natural to use software architectures!

❁ carries some, and more often than not a lot of, information

❁ no explicit description of the structure

No clear basis for communication or reasoning!

Care must be exercised!

✇ constraints:

abstraction of architectural components from various specific architectures.

(Sometimes interchangeably used with patterns)

e.g., Unix OS, OSI protocol layer, Onion ring IS structure -> layering

✇ styles:

on the patterns (i.e., on components, connectors, layout)
e.g., temporal, cardinality, concurrency, (a)synchronous, etc.

✇ rationale:
describe why the particular architecture is chosen

Lawrence Chung

A Model of Software Architecture
� �

✇ elements (components/parts):
from which systems are built
e.g., process, data, object, agent

✇ patterns:
describe layout of elements and interactions, guiding their composition

✇ interactions (connections/connectors/glues/relationships):

between the elements
e.g., PCs, RPCs, MOMs, events

e.g., # of elements, # of connectors, order, topology, directionality

patterns:interactionselements

Lexer

source code (characters) connector
(stream of data)

process
tokens (name table)

(stream of data)
Parser

phrases (name table & abstract syntax tree)
process

Semantic Analyzer
correlated phrases

(name table & abstract syntax graph)

process

Optimizer (annotated) correlated phrases
(name table & annotated abstract syntax graph)

process

Coder process

a+ x * (1-1) +7

a plus x mult lParen 1 minus 1 rParen plus 7

a plus 7

a plus [x mult [1 minus 1]] plus 7

a plus [x mult [1 minus 1]] plus 7

load a; load 7; add

Lawrence Chung

A Model of Software Architecture
� � � � � � � � � ¡ � � ¢ � � � £ � � � � � �

patterns:interactionselements

Lexer

source code (characters) connector
(stream of data)

process
tokens (name table)

(stream of data)
Parser

phrases (name table & abstract syntax tree)
process

Semantic Analyzer
correlated phrases

(name table & abstract syntax graph)

process

Optimizer (annotated) correlated phrases
(name table & annotated abstract syntax graph)

process

Coder process

a+ x * (1-1) +7

a plus x mult lParen 1 minus 1 rParen plus 7

a plus 7

a plus [x mult [1 minus 1]] plus 7

a plus [x mult [1 minus 1]] plus 7

load a; load 7; add

Lawrence Chung

A Model of Software Architecture
� � � � � � � � � ¡ � � ¢ � � � £ � � � � � �

rationale: simplicity, process independence

{connector process}* connector

style: pipe&filter

each element does a local transformation to the input and produces output
each glue serves as a conduit for the data stream,

transmitting outputs of one process to inpts of another
constraints:

processes do not share state with other processes
processes do not know the identity of their upstream and downstream processes

(partial concurrency, or complete degenerate case)
=> Independent processes (other than stream availability)

Lawrence Chung

A Model of Software Architecture

Points to ponder about:

❐

❐ What alternative architectures are possible?

Lexer + Parser

Shared data + sequential

2 Semantic Analyzers (forward reference)

No Optimizer

Concurrent compiler (semantic analyzer || optimizer || coder)

What are disadvantages (& other advantages) of this architecture?

Time, Space, Reusability, Adaptability, etc.

❐ What are some other instances of this style?

Unix command processing: e.g., ls|sort|pr|lpr

Lawrence Chung

Common Architectural Styles

✇ Dataflow systems [topic 5: Data Flow]

✬ Batch sequential

✬ Pipe & Filter

✇ Call-and-return systems

✬ Main program & subroutine [topic 4: Modular Decomposition Issues]

✬ OO systems [topic 3: ADT]

✬ Hierarchical layers [topic 5 & 6 & 10 - Data Flow & Repositories & Middleware]

Independent components

✬ Communicating processes [topic 11?: Processes]

✬ Event systems [topic 4 & 7 - Modular Decomposition Issues & Events]

✇

✇

Virtual machines

✬ Interpreters

✬ Rule-based systems

✇ Data-centered systems [topic 6: Repositories]

✬ Databases

✬ Hypertext systems

✬ Blackboards

✇ Process-control paradigms [topic 8: Repositories]

Client-server✇ [topic 9]

Lawrence Chung

Why Software Architecture?

✜ Abstract solution to conquer complexity

... and many other conceptual reasons

functionality and performance (Non-functional requirements)

divide and conquer

✜ A shared, semantically-rich vocabulary between SEeers.

=>
X is primarily for stream transformation

E.g., instanceOf (X, pipe & filter)

functional behavior of X can be derived compositionally from
the behaviors of the constituent filters

issues of system latency and throughput can be addressed
in relatively straightforward ways

✜ supports reuse

✜ facilitates (integration) testing

✜ parallel development

✜ system evolvability

