Modeling Textured Motion : Particle, Wave and Sketch
Yizhou Wang Song Chun Zhu

Computer Science Department Department of Statistics
University of California, Los Angeles
Los Angeles, CA 90095

Abstract texture[12] and volume texture [17], are studied to simulate
fire, fluid and gaseous phenomena.

In this paper, we present a generative model for textured |, vision. Szummer and Picard studied a spatial-
motion phenomena, _SUCh as falling snow, wavy rver a,”dtemporal auto-regression (STAR) model [14], which is a
dancing grass, etc. Firstly, we represent an image as a lin- casal Gaussian Markov random field model (GMRF) in
ear superposition of image bases selected from a genericgpace and time. Bar-Josegh al. extended 2D texture syn-
and over-complete dictionary. The dictionary contains Ga- {hesjs work to generate volume texture using a tree struc-
bor bases for point/particle elements and Fourier bases for ,eq representation [1]. Soates. al. [13] represented
wave-elements. These bases compete to explain the inpW, image by linear combination of principal components
images. The transform from a raw image to a base or a to- \hich are computed from the training sequence. Then
ken representation leads to large dimension reduction. Sec-5, auto-regression (AR) model was applied to the coeffi-
ondly, we introduce a unified motion equation to charac- ¢ients of those principal components for motion dynamics.
terize the motion of these bases and the interactions be'Fitzgibbon [3] used a similar image representation with a

tween waves and particles, e.g. a ball floating on water. gjoha| camera motion component to analyze textured mo-
We use statistical learning algorithm to identify the struc- ons for registration purpose.

ture of moving objects and their trajectories. Then novel

sequences can be synthesized easily from the motion amrje lpegheen?:é)\ée W&gz’;?ib?ﬁ'ecerzg\r/éni?n(:e;ngmé arr?nilithlzr
image models. Thirdly, we replace the dictionary of Gabor P yp y 9 P P

and Fourier bases with symbolic sketches (also bases). Wit components. Such representations are either too local or
) r}oo global to capture the semantic structures of the objects

the same image and motion model, we can render realis-. . . ) . )
. . S . in the video sequences, despite their success in synthesis.
tic and stylish cartoon animation. In our view, cartoon and

sketch are symbolic visualization of the inner representation Recently, Wang and Zhu [16] proposed a generative model

for visual perception. The success of the cartoon animation,to represent an image with a number of Gabor bases. They

in turn, suggests that our image and motion models capture.compUtGd the moving objects, like snow flakes, by group-

the essence of visual percention of textured motion ing spatially close and temporally consistent trajectories of
P P ' the bases to form what they called the “movetons”. This

model, however, is inefficient to represent motion with in-
1 Introduction dlstlngU|§habIe eIement;, suph as Wa}tgr waves. It is gener-

ally considered challenging, in both vision and graphics, to
Natural scenes contain rich stochastic motion patternsmodel the interactions between particle objects and waves,

which are characterized by the movement of a large num-for example, a ball or a boat on a river.
ber of distinguishable or indistinguishable elements, suchas Motivated by these observations, this paper presents a
falling snow, flock of birds, river waves, etc. These motion general representation for textured motion in four aspects.
patterns, called textured motion [16], temporal texture [14] 1. Photometric model An image is represented as a su-
and dynamic textures[13] in the literature, cannot be ana-perposition of bases from an over-complete dictionary, in-
lyzed by conventional optical flow fields [6] and have stim- cluding Fourier bases and Gabor sin/cos bases at different
ulated growing interests in both graphics and vision. scales, orientations. As Fig.1 shows, the Gabor and Fourier
In graphics, the objective is to render photorealistic bases are selected through a competition and explain-away
video sequences or non-photorealistic but stylish cartoonmechanism and are effective for particle and wave patterns,
animations. Both physics-based[10] methods, such as parrespectively. It is shown in Table 1 that large dimension
tial differential equations, and image-based, such as videoreduction is achieved after transforming a raw image to a



Model Parameters to Remember Compression Ratio

Training Sequence 150 x 200(I) x 100(nfrm) = 3 x 10° NA
Video Textures 150 x 200(1) x 100(nfrm) = 3 x 105 1:1
Dynamic Textures | 150 x 200(7) + 150 x 200 x 20(PCA) + 20 x 20(A) + 20(c) ~ 6.3 x 10° 1:5

)
Textured Motion | 10%(magn)-+103(phase) x8(Cov)+10%(o)+[20(p)+20(7)+1(0. )] x8 ~ 107 1:300

Table 1: Comparison of the compress ratios among 3 typical models for wavy river sequence.

token representation. 2 Textured motion representation

2. Geometric modeEach object in the scene is represented
by a number of bases with deformable structures. For in'a discretized and time intervéd, 7] — {0,1,...,7}. For
stance, a ball is represented by a few Gabor bases movin% € [0,7], T(, v) or | (, v, ) € I[b 7] denc;te’s“é pix.el ona
together and a river is represented by a number of Fourierframe’ VY b ’
bases with displacements in phases.

Let 1[0, 7] denote an image sequence on a 2D latfice

3. Dynamic model We adopt a general motion equation
which includes an AR component for each base, external

forces and the interactionslwith. othgr bases.- For example,There are two genera| image Coding paradigms [2] in the lit-
a ball (Gabor bases) on a river is driven by wind and water erature: compact coding and sparse coding. Compact cod-
waves (Fourier bases). ing uses a complete basis/dictionary or tight frame, such as

4. Sketch modelWe replace the dictionary of Gabor and Fourier transform and wavelets. In this scheme, an input

Fourier bases with sketches (symbolic tokens), thus changesignal is represented by a combination of all bases in the

the photometric model to a sketch model. Together with the dictionary. Sparse coding uses an over-complete dictionary,
same motion model, we can render non-photorealistic and€-9- Gabor bases, LoG (Laplacian of Gaussian) bases. As
stylish cartoon animation. In our view, cartoon and sketch the basis is over complete, an input signal is represented by
are symbolic visualization of the inner representation for @ very small population of the bases which are experts for

visual perception. The success of the cartoon animation, inthe input signal. This leads to an effective representation

turn, suggests that our representation captures the essend¥th large dimension reduction.

of visual perception of textured motion. We employ the over-complete dictionary with both
Gabor and LoG baseA,, to represent point like objects

— particles and Fourier basés, ., for wave patterns.

2.1 Photometric model- particles vs waves

In summary, our representation is much more parsimo-
nious compared with other models. Table. 1 lists the com-
pression rates of each model for a wavy river sequence. A=Apa U Ayay.

The training sequence iH0-frame long and each frame
has150 x 200-pixels. The video texture method [12] stores |t is known what the Gabor bases are specified by vari-
the entire sequence, and synthesizes a new sequence by rabless = (x, y, o, ) for position, scale and orientation, the
ordering the training frames to achieve smooth transition. LoG bases are isotropic with variablgs= (x,y,c) and
Dynamic textures [13] characterizes the stochastic processourier bases are defined by spatial frequency and phase
by remembering a number of parameters, including 1 meang = (¢, n, ¢). So we obtain
image, 20 principle components of the frames, a dynamics
matrix A and 20 noise terms. Therefore, the model achieves A,; = {Gcos(u,v; 3), Gsin(u,v; 8), LoG(u,v; 3) : VG},
better compact rate of about: 5. Our model uses about A .~ = {FB(u,v;8): V3}.
1000 Fourier bases with 1000 magnitudes and 1000 phases
to represent the image without noticeable loss, and the dy-  Animagel is a superposition aV image bases.
namics are fitted by a0th (p) order AR model on the co-
efficients with some noise terms. The compression rate is N
aboutl : 300, due to the use of a generic dictionary. I = Z aji+n, Wy €A, (1)

j=1

In the following of the paper, we present four models se-
quentially — photometric, geometric, dynamic, and sketch. whereq; is a coefficient of base;, n is a noise process for
A number of synthesized movies and cartoon animation arethe residues. In general, we have
shown as results, which are better evaluated from the sup-
plementary file. |A| = O(100|A|), and N = O(]A|/100).
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Figure 1: Image reconstructions by Fourier badgs, and Gabor/LoG base&,.;. The curves plot the coefficients in the
match pursuit process. The thick curve is ;.

Thus a raw image is transformed into a parsimonious token  Figures 1 and 2 compare the particle badgs and the

representation, calldshse map wave bases\., by representing different textured mo-
) tion patterns. We select four typical images for illustration.
B={b; =(a;,0), j =12 N} @ From each image, we obtain two reconstructions: one by
Furthermore, we divide the base map into a particle mapWwave (Fourier) bases..., and the other by particle (Gabor
Bpa and a wave maB.yay . and LoG) based\,.;. We select the bases from each dictio-
nary using a match pursuit procedure[7]. This is a greedy
B =Bpa U Byay- algorithm that picks a base which has the highest response

on the current residue image. So at each step, it reduces
the reconstruction error in a steep descent way. We plot the
coefficients;, (j = 1,2, ..., N) of the selected bases from
Ay andAp. The slopes of the curves reflect the coding
efficiencies of the dictionary. The steeply decreasing curve
implies that the bases are very effective in reconstructing
the image and thus capture the essential objects in the im-

Similarly, we transform an image sequer 7] into a to-
ken representatioB[0, 7] where each bade; (t) is tracked
frame by frame. It is worth mentioning that each Fourier
baseFB can move only in one dimension [4], thus the 2D
spatial velocity is transformed to a 1D phase speed

¢; (1) dy
dt i

d
=&+ ®)
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Synth>esized sequence with fewer flying birds to show

age, whereas a flat curve means the opposite. video editing effect.
Fig. 1. a) is a flock of birds. In contrast with the roughly

reconstructed image h¥ = 300 Fourier bases, the image

with N = 216 particle bases is reconstructed very well. The

curve plot shows that the first few Fourier bases have large

responses capturing the global lighting effects in the sky.

Therefore, the best representation for this image is a few

Fourier bases for lighting plus the particle bases for individ- object in space, frequency and time by a representation

ual birds. Fig. 1.b) is a water wave image. The Fourier bases

are obviously better than the particle bases. Both the recon- Clth, 9] = (m(*), 7 ("), ..., w(9)).

structed images and the two curves serve as the evidence.

Fig.1.c) is a brick image. It has both periodic global struc- Thus we obtain a meaningful semantic representation of the

tures and local high contrast features. Given a small sizetextured motion in terms of the moving elements, their de-

of the image, the two dictionaries explain it about equally formation, and trajectories.

well. Finally, Fig.1.d) shows a ball floating on river. We

can see that neither type of bases alone is able to effectively W = (K, {Ci[t},t7],i = 1,2, ..., K}),

represent this image. However, Fig.2 exhibits a better re-

construction using a combination 86 Fourier bases and ~ WhereK is the number of objects in the sequence.
21 Gabor bases. In summary, we have the following generative model for

Figure 3. Example of modeling and synthesizing a flying-
bird sequence.

These examples demonstrate that textured motion sen imagd,
quences have both wave and particle patterns, and the com- ® A
bined dictionary representation is both concise and mean- W — {Byav, Bpa} — L
ingful.
orul This representation is not only low-dimensional and
) ) generic, but also captures the essence of visual perception of
2.2 Geometric model —the moving elements  textured motion. In Section 4, we use this generative model
to synthesize cartoon animation by only replacing the bases

In the photometric model, as the dictionakyis generic, a X i - N
B and moving elements with a symbolic representation.

particle object, like a bird or ball, is represented by a few
bases moving together with closely tangled trajectories. It
is also the case for the Fourier bases for waves as they als®.3  Dynamic model — the interactions

travel in groups [15]. The water waves that we observe are

summation of travelling sinusoid waves caused by differ- In this section, we present a dynamic model for the motion
ent sources of motion, such as wind, boat, earthquake, etcof moving elements and especially their interactions. We
Therefore, the moving elements are represented by a numare especially interested in two types of interactions. (1).
ber of basesr(,) with some deformable configuration in The influence of waves on particles. Particle elements in

space and phase domain. textured motion are often driven by waves, for example, a
ball floating on a wavy river. This kind of effect is previ-
7= (ny, {b; = (@;,0,),5 =1,2,...,mp}) ously hard to simulate [12, 13]. (2). The interactions among

wave components. The relative motion of different Fourier
Furthermore, as each moving element has a lifespanbases must be constrained to keep certain phase alignments.
[t®,t¢] C [0, 7] [16], e.., a bird can fly into our view attime ~ Other interactions, such as particle collision, particle-wave
t* and out of our view at time®, we represent the moving  collision (splash) are not considered in this paper.
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Synthesized sequence of wavy river. Synthesized sequence of grassland.

Figure 4: Results of river sequence. Figure 5: Results of grassland sequence.

Let 7 be the motion status (e.gr = z is the position .
for particles, andr = ¢ is the phase for Fourier bases). { o(t) = Zj:1 Vi ()e; + ne
The motion equation is a-th order AR model with coeffi- Y(t) = 35 At =) + gy

cientsa, driven by a simple Brownian motiamand a force wherey; is thejth eigen-phase vector with coefficien(t)

U(Bwav(t), Bpal(?)) from other bases. at framet, m is the number of eigen-phase vectogsis
P the order of AR model, and is the AR coefficient for the

7(t) = Z a;m(t—37)+U (Bwav (t), Bpai (t))+c(t)+n (4) eigen-phase coefficients:,, andn., are the noise of and
j=1 ~ respectively, which are both assumed to be Gaussian.

Case 3:Dynamic model for particles & waves - 0D-2D
case, e.g. floating ball or foams.

In this case, not only should particles motion in space
and waves motion in phase domain be modelled, but also
their interactions. Here we assume waves have more influ-
ence on particles instead of vice versa.

This general motion equation is reduced to four cate-
gories of special cases in the rest of this section.

Case 1:Dynamic model for free moving particles - 0D
case, e.g. falling snow, flying birds.

In this case, the location(¢) of a particle is the status
of the objectr(t) in Eg.4. By assuming there is minimum
interaction among particles, we obtain its motion equation w(t) = P au(t — j) + BAGEH) + c+n

as a degenerated case from Eq.4. o(t) ; Zqﬁ:l vi(t)p; + ng
=

V() =i At —d) +ny

Similar to the previous 2 cases, the first equation models the
motion of particles, and the rest equations are about waves.
] ] ) A regression modeBA¢(t) is introduced to describe the
where, the external force fieldt) is assumed to be spatially  hfluence of the waves on particle&s(t) is the phase shift

p
x(t) = Zajx(t —j)+c+n,
=1

and temporally constant. between framé andt — 1, 3 is the regression coefficient.
~ Case 2:Dynamic model for waves - 2D case, €.9. Wavy After we combine the two motions, the model becomes a
rver. coupled Gaussian Markov Random Field (GMRF).

In this case, Fourier bases are selected to represent the cage 4- Dynamic model for splines & waves - 1D-2D
image sequence. Their motion is characterized by phasg.ase, e.g. dancing grass.
change¢(t) in frequency domain [4]. Eq.3 shows thatif | this case, particles are elongated and elastic like
a wave travels at a constant velociy, is a line in phase-  gprings and are densely clustering together. Since the mo-
temporal domain. Once wrapped irjth 2r), it appears to  on of each grass is heavily constrained by a large number

be periodic. _ _ ~of its neighbors, the group action becomes obvious. Glob-
We model the motion of the Fourier bases by a Gaussiang)ly, you will see the wave pattern of a grassland. The mo-

Markov Random Field (GMRF). AR model is applied to o equations are derived as follows.

the coefficients of eigen-phase vectors which are extracted

from the covariance matrix of phases to estimate wave mo- z(t) = E;’:l a;z(t — j) + k(x — o)
tion. Thus ther(t) in Eq.4 is the coefficient of the principle +0sin[< wy, x(t) > +¢(t)] +n
components. As another special case of the general motion o(t) = 2L vi()ws +ng

equation, the dynamics of which is shown as follows. ~(t) = ?:1 Ayt — ) +ny



Observed sequence of floatlng ball.
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Synthesized sequence of floating ball. Synthesized sequence floating foams.

Gabor Moveton — the floating ball

Gabor Moveton — the Floatlng foarms

Floating foams’ birth map

The Moveton Trajectory

Floating foams’ death map  Floating foams’ moving trajectories

Figure 6: Learned results from floating-ball sequence.
Figure 7: Learned results from floating-foam sequence.

wherex describes the elasticity of a grass, of which the free

position of its tip iszy. To synthesize the photo-realistic divide our learning scheme into three parts. 1)“Particle
image, we use the method as described in Case 3. To genlearning” in the spatial-temporal domain. It includes com-
erate cartoon animation, we manually track several grassputing the forces created by the waves, which is resolved
tips at different location as particles. A regression model is by estimating the regression coefficightin Case 3 & 4.
applied to describe the influence of a group of grasses on2)“Wave learning” in frequency-temporal domain. 3) Fuse
a single grass, which is a function of both time and spa- waves and particles in the image domain. As the particles
tial location. Thus we introducein|[< w,,z(t) > +¢(t)] displacement will be influenced by the phases of the waves
to govern the variation in time and space, whereis the while the phases are also affected by the identified parti-
spatial frequency of the grassland. Then hundreds of newcles, the "particle learning” and "wave learning” processes
grasses are produced around those tracked grasses. Theye inseparable.

will follow the motion of their nearest tracked neighbor. Fi- The problem is posed as statistical learning by maximum
nally, spline curves are connected between the tips and thdikelihood estimate (MLE). The log-likelihood function for
corresponding roots of grasses as sketches of the grasslandn observed training sequeriqéi] is

. . _ obs _ . .
3 Learning and inference £(8) = logp(lfy7);©) = log / pU|W; @)p(W; L)aW

Given an input sequenc]f , our objective is to learn where© = (®,T) is the parameter governing the textured
both geometric and dynam|c models. The geometric modelmotion patterns, anid” denotes the hidden variables related
parameterized by identifies the moving elements in the to the specific sequen bST]. The goal of learning is to
sequence. The dynamic model specified by paraméters estimate© with maximum likelihood,
characterizes the motion of the moving elements. To learn
these models, we should also compute the hidden variables 0" = argmax L(0).
W andB from I‘[)'DS —the inner representation.

Based on the models and analysis described above, wdo solve the MLE in the above equation, we 3%% =0.
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Figure 8: From photorealistic to semantic representation. computediVj, ) from the input sequend%zﬁsTJ or Wio 7]

has been synthesized from the learned méileln photo-
realistic rendering, we use the dictionarigg. and Ay,
to render a motion sequence

It follows that

Ologp(1™*[W; ) dlogp(W:T)

obs, _
55 o I (W[17% @, T)dw = 0.

Apcly Awav
—

Wio,r Tjo,7-

We aQopF the sto_chastic gradient algorithm used in [5]. The 1q yender cartoon animation, it takes two steps. Firstly, we
learning iterates in three steps. extract a subset of hidden variablgg, _,, which is sup-
posed to capture the essential semantics, fiom),, to sim-
9 plify the description. For example, let € W be a snow
B,.1, grouping bases into movetons and tracking the flake, we represent .its geomgtric shape in the cartoon but
movetons. The computation is realized by Markov ignore |'_[s phptometrlc properties. Seco_ndly, we ,replace the
Chain Monte Carlo (MCMC) techniques. Part 2, Com- WO dictionariesA,q; andAy., by symbolic bases,, and
puting wave bases forming..... This is done by A respectively to render cartoon animatigip ) using

wav?
Fourier transformation on the remaining images after (€ generative model:
sift out the particles.

1. SampIinng)yf} ~ p(W1°%; & T'), which includes
two parts. Part 1, Computing particle bases formin

’ ’
Apcl7 Awav

. . W """ Sor
2. Update the motion dynamics paramdtdor both par- ’
ticles and waves at each step where S|, - is a sketch for an observed or newly synthe-
Dlog p(W2V" . T) sized sequence. This procedure is illustrated in Fig.8 and
ogp 5 i i
T(s+1)=(1-p)T(s)+p 81‘[07 ] ’ f1||% The animated cartoon is attached to the supplementary
) Now we briefly explain how we choose a symbolic repre-
3. Update the moveton parametérby clustering and

: i ; sentation for particles and waves. It is obvious thggl and
grouping. In this step, only the particles moveton A' yepresent the style of the cartoon. Therefore, (1). We
is concerned, because we assume each Fourier basgnger a particle element by a contour outline for birds
forms a moveton by itself. and by spline curves for grass. (2). As we cannot sketch
each individual Fourier base for waves, we combine all the
Fourier bases to generate a wave function instead:

9log p(1°"*|W*¥"; &
B(s+1) = (1— pa(s) + p2 8| ),
0P
Some learned results are shown in Fig.4, 5, 6, 7. And
more results can be seen from the attached video clips.

J= Zajwj’ wj S Awav~
j=1

We sketchJ by spline curves at the ridges and valleys
4 Sketch model V2J = 0. Fig.8 shows an example.
We claim that wave sketch is a almost sufficient seman-

In this section, we present a sketch model and a novel waytic image representation as we can recover the original im-
to render cartoon animation from the input and synthesizedage from those extracted sketches. Fig.9 shows an example
sequences. for the river image. For each poift, y) on the symbolic

In our view, cartoon is a simplified and symbolic visu- sketch, i.e.V2J(x,y) = 0, we remember the pixel inten-
alization of our inner representatidfi. Suppose we have sity J(z,y) and the slopeV/J(z,y). Then we interpolate



the rest of the image by spline or simple heat diffusion using [8] D. Marr, "Vision”, IW.H. Freeman, 1983
the sketch as boundary condition. This is related to Marr’s
conjecture of the primal sketch. Marr conjectured that the
zero-crossing and their slope are sufficient for recovering
band-pass filtered image.

Fig. 10 shows a combined cartoon animation. We choose[10] C. H. Perry and R. W. Picard, "Synthesizing Flames and
three natural sequences: flying birds, floating ball on ariver ~ Their Spreading,Proc. of the 5th Eurographics Workshop on
and wavy grassland, and learn the geometric and dynamic ~ Animation and Simulation, Oslo, Norway, Sept. 1994.
models for each of them. .Then we rengler synthesized seljrl] P. Saisan, G. Doretto, Y. Wu, and S. Soatto, "Dynamic Tex-
quences qnd gene.rate their cartoons using the skgtch mod ture Recognition,CVPR, 2001.

(The floating ball is replaced by a boat). A static back-

ground — mountain, sun, and river bank is drawn manually [12] A. Schodl, R. Szeliski, D. Salesin and I. Essa, "Video Tex-
(Fig. 10.a). Finally, we fill the three cartoons into the blank tures”, SIGGRAPH, 2000.

areas of the background image.

[9] B.A. Olshausen, D.J. Field, “Sparse coding with an over-
complete basis set: A strategy employed by VM%jon Re-
search, 37:3311-3325, 1997

[13] S. Soatto, G. Doretto, and Y. N. Wu, "Dynamic Texture”,
ICCV, 2001

5 Summary and future work [14] M. Szummer and R. W. Picard, "Temporal texture modeling”
, Int’l. Conf. on Image Proc., Vol. 3, pp. 823-826, Sept. 1996.

In this paper, we presented a generative model for textured ) )
motion and introduced an image representation scheme ustt®! R-AR. Tricker,Bores, Breakers, Waves and Wakémeri-
. . . . can Elsevier, New York, 1965.
ing over-complete generic basis to model natural images
containing local particles and global wave patterns. A gen-[16] Y. Wang, S. Zhu, "A Generative Method for Textured Mo-
eral motion equation is derived to characterize the interac-  tion: Analysis and SynthesisECCYV, 2002
tion of waves and particles. A sketch model for render-
ing non-photorealistic sequences from the learned geometlﬂ]
ric and dynamic models is also presented.

In the future, we would extend this work by (1) mod- [18] S. Zhu, C. Guo, Y. Wu, and Y. Wang, "What are Textons?”,
elling the interaction among particles, e.g. collision, (2) ECCV, 2002
studying the influence of particles on waves, e.g. splash
effect of a stone dropped into water.

L.Y. Wei and M. Levoy, "Fast Texture Synthesis using Tree-
structured Vector QuantizationSIGGRAPH, 2000.
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background image t=1 t =10 t =20

Figure 10: Synthesized cartoon sequence based on learned textured motions.



