
Sizing System Tests for Estimating Test Execution Effort

Eduardo Aranha
1,2

 and Paulo Borba
1

1
Informatics Center – Federal University of Pernambuco

PO Box 7851, Recife, PE, Brazil

{ehsa,phmb}@cin.ufpe.br

2
Mobile Devices R&D – Motorola Industrial Ltda

Rod SP 340 - Km 128,7 A - 13820 000 Jaguariuna/SP - Brazil

Abstract

In our researches, we developed a method to size tests based on

their specifications. This measure, called execution points, can be

used as input for test execution effort estimation models. Here, we

present our method for sizing tests that is based on test specifications

written in natural language.

We also presents the main functionalities of a tool developed for

supporting our measurement method. In addition, we discuss how

some techniques can be used for estimating test execution effort based

on the proposed test size measure. Some interesting results of an

empirical study run on the mobile application domain are also

discussed. For instance, we verified in this empirical study a high

linear correlation between test execution effort and execution points.

1. Introduction

In the development of complex systems, planning is essential for achieving results

within the schedule and budget. Several cost models were developed in order to support

this planning, such as the well known COCOMO II family [1][2]. These models usually

rely on software life cycles models and software size measures, achieving significant

estimation accuracy when regarding software development effort. When observing the

distribution of this effort, one of the most costly activities is testing.

Aiming at cost reduction and performance improvement, some organizations may

have teams exclusively allocated for executing system tests for several development

teams. Hence, test managers should plan their own test schedules and resources.

However, test managers have difficulties using existing cost models, since the effort to

execute tests are more related to the characteristics of the tests rather than characteristics

of the software.

In our researches, we developed a method to size tests based on their

specifications. This measure, called execution points, can be used as input for test

execution effort estimation models. For instance, we can define an estimation model that

its input is the test specifications of a test suite and its output is the estimated effort

required to execute all tests in the suite.

The proposed measure represents the test size and execution complexity of test

cases. Test size means the amount of steps required to execute the test. In addition, test

execution complexity is related to the relationship (complexity of interaction) between

the tester and the tested product required during the test. These definitions are adaptations

of the idea of size and development complexity for software products.

Considering test specifications written in a standardized way, we developed a

method and a tool for supporting test size and execution complexity measurement based

on a semi-automatic analysis of these test specifications. The measurement method is

based on the evaluation of test actions according to a set of characteristics which weights

are defined by expert judgment or historical data (Delphi assessment or Analysis of

Variance).

After sizing the tests, we can use the measure in different estimation models. For

instance, we can define a model in a similar way of the COCOMO, in which risk factors

(related to testing) are used for adjusting the test effort according to some characteristics

of personnel, test project, test environment and others.

The remaining of this paper is structured as follow. Section 2 presents our method

for sizing tests that is based on test specifications written in natural language. Then,

Section 3 lists some techniques to estimate test execution effort using our test size

measure. After that, we show in Section 4 the main functionalities of a tool developed for

supporting our measurement method. Also, we discuss in Section 5 some results of an

empirical study run on the mobile application domain. Finally, we present our

conclusions on Section 6.

2. Sizing system tests

Here, we propose a method to measure the size and execution complexity of test

cases in a test suite. Test size means the amount of steps required to execute the test. Test

execution complexity is related to the relationship (complexity of interaction) between

the tester and the tested product required during the test. These definitions are adaptations

of the idea of size and development complexity for software products [3][5][9]. The

proposed measure is given in execution points, a generic unit-of-work measure defined

by this work.

In practice, the execution points count of a test case gives us a quantitative

reference about its size and execution complexity. For instance, a test case rated with 700

execution points is bigger than others rated with 590 and 350. In addition, it allows us to

better compare test productivity or capacity. For example, a tester that executed 5 tests

rated with 500 execution points each one is faster than another that executed 15 tests

rated with 100 execution points during the same amount of time.

2.1. The measurement method

This section presents how we measure the size and execution complexity of a test

case. All required information is extracted from the test specification. Although not

essential, we consider in this paper that test specifications are written in natural language,

as discussed in Section 2.2.

Figure 1 illustrates how our measurement method works. First, (a) we individually

analyze each test step of the test specification. This step by step analysis was defined with

the objective to support the method automation. We analyze each test step according to a

list of characteristics (C1 to Cn).

Figure 1: Assigning execution points to test cases.

These characteristics represent some general functional and non-functional

requirements exercised when the test step is executed. Examples of possible

characteristics are number of navigations between screens, number of pressed keys and

use of network. The list of characteristics may not be the same for different application

domains.

Each characteristic considered by the model has an impact in the size and

execution complexity of the test and (b) this impact is rated using an ordinal scale (Low,

Average and High). We have to create guidelines to help us to objectively choose the

more appropriate impact level for each characteristic.

After that, (c) we assign execution points for each characteristic according to its

impact level. The objective here is to transform the qualitative rate (impact level) into a

quantitative value.

For instance, a characteristic Ci rated with the Low value could be assigned to 30

execution points. However, a more relevant characteristic rated with the same Low value

Test Specification

b

 Avg Lo Hig

3

c

...

...
Contribution of the Test Step:

22

d

... ...
35 17

88
0

Points Assigned
to the Test Case:

e

a

System Characteristics
Exercised by the Test Step

 C2 C1 … Cn

Screen
navigation
File manipulation
Pressed keys
Network usage
. . .

6

c

Influence
Levels

b

 Avg Lo Hig

may be assigned to a higher number of execution points. Here, guidelines need to be

provided for assigning the correct value for each possible characteristic value.

To calculate the total number of execution points of a test step, (d) we sum the

points assigned for each characteristic. Then, (e) we measure the size and execution

complexity of a test case by summing the execution points of each one of its test steps.

2.2. Test specification language

Tests are usually specified in terms of precondition, procedure (list of test steps

with inputs and expected outputs) and post-condition [7]. These specifications are

commonly written in natural language, often leading to problems such as ambiguity,

redundancy and lack of writing standard. All these problems make difficult test

understanding and execution complexity estimation. Nevertheless, they can be avoided

using controlled natural languages.

A controlled natural language (CNL) [10] is a subset of natural language with

restricted grammar and lexicon in order to have sentences written in a more concise and

standard way. This restriction reduces the number of possible ways to describe an event,

action or object.

The test specifications considered by this work are written in either NL (natural

language) or the CNL described here. In a simplified way, each sentence (test step) in the

specification conforms to the following structure: a main verb and zero or more

arguments. Table 1 shows an example of test procedure written in a controlled natural

language defined for the mobile application domain.

Table 1: Example of a test procedure written in a controlled natural language.

Step Description Expected Results

1 Start the message

center.

The phone is in message center.

2 Select the new

message option.

The phone is in message composer.

3 Insert a recipient

address into the

recipients field.

The recipients field is filled.

4 Insert a SMS content

into the message body.

The message body is populated.

5 Send the message. The send message transient is

displayed. The message is sent.

The verb identifies the action of the test step to be performed during the test. The

arguments provide additional information about the action represented by the verb. For

instance, the sentence Start the message center has the verb start (action of starting an

application) and the required argument the message center (application to be started).

The CNL can have its lexicon and grammar extended for specific application

domains. For example, the list of possible verbs and arguments may be different between

the mobile and the Web application domains. The CNL simplifies the use of our model

and also efficiently supports a high level of automation of our measurement method.

3. Using test size for estimating test execution effort

Several techniques can be used to estimate the effort to execute the test cases

based on our measure of test size and execution complexity. We are investigating and

comparing some of these techniques:

� COCOMO-based model: we are investigating the creation of a model similar to

the COCOMO model [1], where cost drivers and scale factors related to test

execution effort are used.

� Stepwise Regression Analysis (SWR): the stepwise regression analysis [6] can

find an equation relating the size of the tests and other variables considered

relevant by this technique.

� Case-Based Reasoning (CBR): using this technique [11], we can estimate effort

based on similar past projects. The size of the tests is one of the most important

attribute to be used when comparing test projects.

� Classification And Regression Trees (CART): this is a tree-building technique

[4], in which some attributes of the project (test size, cost drivers, etc.) are

selected to create the nodes (if-clauses) in order to split the data. Then, each leaf

of the tree groups test projects with similar effort.

4. Tool support

We developed the Test Effort Estimator Tool for supporting the activities of

sizing tests and estimating execution effort. Figure 2 presents a screen of the tool

showing the points assigned to the verbs send and click. This tool has the following

characteristics:

� Natural language processing: reads test cases written in natural language. All test

steps are evaluated and the verbs are identified, evaluated and registered in a

database.

� Management of exercised system characteristics: the user can set the system

characteristics to be used during the test size and execution complexity

measurement, as well all the guidelines and characteristic weights required by our

method.

� Measurement of the size of test cases: the test cases read into the tool are

automatically processed and the execution points of each test case are calculated.

� Estimations are performed based on the measured number of execution points and

the reported risk factors.

Figure 2: Execution points assigned to verbs.

5. Empirical study on the mobile application domain

This section overviews an empirical study we run using our test size measure on the

mobile application domain. First, we configured our measurement method for the target

domain. To define the list of characteristics to use, we invited 6 experienced testers. They

identified the relevant characteristics and defined the guidelines in a Delphi panel that

took only four hours (two sessions of two hours).

In addition, we have the cost to evaluate the size and execution complexity of test

steps. Although it will usually take less than a minute to evaluate a test step, there may

exist hundreds of test steps to be evaluated. In our case, we had more than 2 hundred of

verbs to evaluate, taking almost 5 hours of work. The list of verbs was automatically

extracted from the test specifications.

After that, we used the developed tool for sizing the test specifications. Then, we

analyzed the correlation between the execution points of the test cases and the effort to

execute them. Since the number of test cases is commonly used to estimate test execution

effort, we also analyzed its correlation. As shown in Figure 3, the linear correlation

between effort and execution points was very significative, achieving a Pearson´s

correlation of 0.89. This number was larger than the correlation between effort and

number of tests (0.79).

Figure 3: Correlation between test execution effort, execution points

and number of tests.

When using execution points instead of number of tests to calculate test

productivity and to estimate test execution effort, we reduced the mean magnitude of the

relative error (MMRE) in approximately 30% and increased the prediction at level 20%

(PRED(.20)) in approximately 61%, with statistical significance verified using t-tests.

6. Conclusions

Existing estimation models in the literature are based on system specifications and

they estimate the effort required to perform more activities than test execution, such as

defining and implementing tests. Then, they cannot be used to estimate the execution

effort of a given test case.

In this paper, we presented a method for sizing tests based on test specifications.

Our method sizes tests by analyzing the test steps according to a list of system

characteristics exercised during the test execution. Although it is not required, the use of

a controlled natural language reduces the ambiguity, helping the test size and execution

complexity measurement. Also, the method for measuring test execution complexity was

automated by a supporting tool.

For the mobile application domain, we defined the relevant system characteristics

exercised by the test cases and their weights. This definition used intuition and expert

judgment through a Delphi panel. We also analyzed the effort to analyze the verbs

according to the characteristics defined during the Delphi panel. We believe that this

effort is compensated by the accuracy achieved when using our proposed test size

measure. This accuracy was a result of the high correlation between execution points and

test execution effort.

Acknowledgments

The first author is partially supported by Motorola, grant BCT-0021-1.03/05,

through the Motorola Brazil Test Center Research Project. The second author is partially

supported by CNPq, grant 306196/2004-2. We would like to thank Filipe Almeida and

Vitor Fontes for the development of the tool used in our study.

References

[1] B. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. Clark, B. Steece, W. Brown, S.

Chulani, and C. Abts. Software Cost Estimation with COCOMO II. Prentice Hall,

2000.

[2] B. Boehm, D. Reifer, R. Valerdi. COSYSMO: A Systems Engineering Cost Model.

1st Conference on Systems Integration, March 2003.

[3] L. Briand, K. E. Emam, and S. Morasca. On the application of measurement theory

in software engineering. Empirical Software Engineering: An International Journal,

1(1):61–88, 1996.

[4] L. Brieman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression

Trees. Wadsworth Inc., Belmont, 1984.

[5] N. Fenton. Software measurement: A necessary scientific basis. IEEE Transactions

on Software Engineering, 20(3):199–206, 1994.

[6] R. Hocking. Methods and Applications of Linear Models: Regression and the

Analysis of Variance. Wiley-Interscience, 2003.

[7] P. Jorgensen. Software Testing, A Craftsmans Approach. CRC Press, second edition,

2002.

[8] H. Linstone and M. Turoff. The Delphi Method: Techniques and Applications.

http://is.njit.edu/pubs/delphibook, 2002.

[9] C. Pandian. Software Metrics: A Guide to Planning, Analysis, and Application. CRC

Press, Inc., 2003.

[10] R. Schwitter. English as a formal specification language. In Proceedings of the

13th International Workshop on Database and Expert Systems Applications

(DEXA02), pages 228–232, 2002.

[11] I. Watson. Applying Case-Based Reasoning: Techniques for Enterprise Systems.

Morgan Kaufmann, 1997.

