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Summary

To understand the function of genetic regulatory networks in the development of cellular
systems, we must not only realise the individual network entities, but also the manner
by which they interact. Multi-valued networks are a promising qualitative approach for
modelling such genetic regulatory networks, however, at present they have limited formal
analysis techniques and tools. We present a flexible formal framework for modelling and
analysing multi-valued genetic regulatory networks using high-level Petri nets and logic
minimization techniques. We demonstrate our approach with a detailed case study in which
part of the genetic regulatory network responsible for the carbon starvation stress response
in Escherichia coli is modelled and analysed. We then compare and contrast this multi-
valued model to a corresponding Boolean model and consider their formal relationship.

1 Introduction

To understand the function of genetic regulatory networks in the development of cellular sys-
tems, we must not only realise the individual network entities (i.e. genes, proteins and metabo-
lites), but also the manner in which they interact. Given that many data resources are incom-
plete and inaccurate, the development and application of qualitative modelling techniques has
emerged as an important topic of research [6]. A range of qualitative modelling techniques
can be found in the literature, a few examples of which include: Boolean networks [30, 1, 27],
differential equations [25] and Petri nets [23, 4, 29, 13, 18].

Multi-valued networks [26] are a promising qualitative approach for modelling genetic regula-
tory networks [31], providing a compromise between the simplicity of Boolean networks and
the more detailed differential equational models. The idea is to extend the Boolean network
approach by allowing the state of each regulatory entity to be represented by a range of discrete
values. However, at present multi-valued networks appear to have limited formal techniques
and tools to comprehensively analyse a genetic regulatory model. In addition, the formal rela-
tionship between multi-valued models and their Boolean counterparts is not well understood,
for example, is often unclear when the Boolean approach is insufficient for a modelling task.

In this paper, we begin to address these concerns by extending and improving upon the Boolean
approach of [29]. We develop a generalized approach for modelling and analysing multi-valued
genetic regulatory networks using high-level Petri nets [2, 15]. High-level Petri nets are a well-
developed formalism for modelling concurrent systems that are supported by a wide range of
analysis techniques and tools [24]. We detail an approach for translating multi-valued models
in to high-level Petri nets and in particular, make use of logic minimization techniques [19,
26] to ensure the Petri net models are as compact as possible. The result is a flexible formal
framework for modelling and analysing multi-valued genetic networks which incorporates both
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the synchronous and asynchronous network update semantics [9], and which is able to cope with
the incomplete data that often occurs in practice.

We demonstrate our approach with a detailed case study in which part of the genetic regulatory
network responsible for the carbon starvation stress response in E. coli [25, 14] is modelled and
analysed. In particular, we aim to illustrate the type of analysis possible on our Petri net models,
from simple simulation tests to more detailed mutant analysis based on model checking tech-
niques [7, 17]. We compare and contrast our multi-valued case study model to a corresponding
Boolean model [28] and identify some subtle discrepancies between the two. This leads to a
number of interesting questions concerning the relationship between Boolean and multi-valued
models, and we present some initial work on formally investigating this relationship.

The rest of this paper is structured as follows. In Section 2, we give a brief introduction to the
theory of high-level Petri nets. In Section 3, we introduce multi-valued networks and multi-
valued logic minimization. In Section 4, we describe a framework for modelling multi-valued
genetic regulatory networks using high-level Petri nets, and then illustrate the approach with a
case study in Section 5. In Section 6, we compare and contrast the multi-valued and Boolean
network approaches, and present an initial investigation into the formal relationship between
them. Finally, Section 7 presents some concluding remarks.

2 High-Level Petri Nets

Petri nets [21, 20] are a well-founded formalism for modelling and reasoning about concurrent,
distributed systems that have been extensively used in computing science [22]. This section
provides a simplified introduction to HLPNs appropriate for this paper; for a more detailed
introduction we recommend [2, 15].

A high-level Petri net (HLPN) [8, 2, 15] is a directed, bipartite graph consisting of: places;
transitions; and arcs connecting places and transitions. An example of a HLPN is presented in
Figure 1. The state of a HLPN is represented by the tokens associated with the places of the
net. Tokens represent data values and each place has a type which specifies the tokens it can
hold. For example, in Figure 1 place p2 has token type {0..5} restricting tokens for that place
to numbers between 0 and 5, and we observe that p2 currently contains two tokens, namely 2
and 3. Note that multiple copies of the same token are allowed on places, i.e. places contain
multi-sets of tokens. The state of the whole HLPN is represented by a marking which maps
places to the multi-set of tokens they contain. In Figure 1, the current marking M is defined by
M(p1) = {1}, M(p2) = {2, 3} and M(p3) = {}.

p1

{0..5}

p2

{0..5}

a

b

c

{0..10}

p3

2  3

1

a<b & c=2*a
Arc

Transition

Place

Legend

Figure 1: An example of a simple high-level Petri net.

The dynamic behaviour of a HLPN is modelled by transitions which are able to consume and
produce new tokens. Each arc has an associated variable which binds to the token of the place
it comes from or goes to. Each transition has a Boolean expression called a guard which
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evaluates to either true or false for a given binding. A binding is said to enable a transition
if: i) the token value assigned to each input variable resides on the associated input place; and
ii) the transition’s guard evaluates to true with the binding. An enabled transition may fire by
removing tokens from each of its input places and adding a new token to each output place as
specified by the enabling binding. Note if more than one transition is enabled then a transition
is chosen non–deterministically to fire.

As an example, consider Figure 1 which contains a transition enabled by the binding {a 7→
1, b 7→ 3, c 7→ 2}. The transition can therefore fire resulting in token 1 and 3 being removed
from places p1 and p2 respectively, and a new token 2 being added to place p3. The net will
now have a new marking M ′ defined by M ′(p1) = {}, M ′(p2) = {2} and M ′(p3) = {2}.

A marking M2 is said to be reachable from a marking M1 if there exists a sequence of transi-
tions that can be fired starting from M1 that result in M2. The markings reachable in a HLPN
can be analysed by constructing its reachability graph [20] which captures the possible firing
sequences that can occur from a given initial marking. A range of techniques based on model
checking [7, 17] have been developed for efficiently analysing reachability properties.

3 Multi-Valued Networks

A multi-valued network [26] consists of a set of nodes G = {g1, g2, . . . , gn} representing regu-
latory entities. Each entity gi has an associated state space Sgi

= {0, 1, . . . , ki}, and we denote
by ĝi ∈ Sgi

the current state of gi. Furthermore, each entity gi has a neighbourhood N(gi) ⊆ G
of entities that can affect its state. The dynamic behaviour of gi is defined by a next state func-
tion which given the state of entities in N(gi) defines the next state of gi. Note the well–known
Boolean network [16, 1, 30] approach is simply a special case of multi-valued networks in
which Sgi

= {0, 1} for all entities gi.

The next state function associated with each entity can be defined using a state transition table
[26], which for each input state describes the next state the entity will enter. There are two
possible state update semantics [9]: synchronous where all entities update in unison; and asyn-
chronous where entities update independently. In this paper we concentrate on the synchronous
semantics which is widely used in the biological community. As an example, consider Figure
2 which presents a simple multi-valued network consisting of three entities g1, g2 and g3, with
state spaces Sg1 = {0, 1, 2}, Sg2 = {0, 1, 2} and Sg3 = {0, 1}.
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Figure 2: Multi-valued network with three entities g1, g2 and g3.

The state transition tables defining the next state function for each entity can be specified equa-
tionally [26, 19] by using Boolean terms called literals to formalise when an entity gi is in one
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of a set of states. Literals have the form giS, where S ⊆ Sgi
, and are defined to evaluate to true

when ĝi ∈ S and to false otherwise. These literals can be combined into product terms using the
Boolean operator and and these can then be used to represent input states in the state transition
table. For example, from the table in Figure 2 we can see that g1 will have next state 0 when
we are in state g1 = 0, g2 = 0, in other words, when product term g1{0}g2{0} is true. We can
combine all the product terms representing the states that result in a particular next state using
the or (denoted +) Boolean operator and the resulting term in disjuntive normal form [12] can
then be used to equationally specify that next state. Continuing with our example, we derive
the following equations which completely specify when g1’s next state will be 0, 1 and 2:

g1{0} = g1{0}g2{0}+ g1{0}g2{1}+ g1{1}g2{0}+ g1{1}g2{1}.
g1{1} = g1{0}g2{2}+ g1{2}g2{0}+ g1{2}g2{1},
g1{2} = g1{1}g2{2}+ g1{2}g2{2}.

The equational descriptions above can normally be simplified using multi-valued logic mini-
mization [26, 19], a process which syntactically simplifies logical terms while preserving their
meaning. This process is important to our work as it facilitates a compact equational represen-
tation of the functional behaviour of multi-valued networks which can then be translated into
a Petri net model. As an example, consider the first equation above which defines when the
next state of entity g1 will be 0 in our running example. The first two terms can be combined
together because they differ in only one literal g2, as can the last two terms. To complete the
simplification for when g1 goes to state 0 we combine the remaining two terms as they differ
only by literal g1. These steps are illustrated below:

g1{0} = g1{0}g2{0, 1}+ g1{1}g2{0}+ g1{1}g2{1}
g1{0} = g1{0}g2{0, 1}+ g1{1}g2{0, 1}.
g1{0} = g1{0, 1}g2{0, 1}

This systematic process can be repeated for when g1 goes to state 1 and 2, resulting in the
following minimized equations:

g1{1} = g1{0}g2{2}+ g1{2}g2{0, 1}
g1{2} = g1{1, 2}g2{2}.

This logic minimization process can be automated using the MVSIS tool, which can be down-
loaded at http://embedded.eecs.berkeley.edu/Respep/Research/mvsis.

4 Modelling Multi-Valued Networks using Petri Nets

The compact equations derived through logic minimization completely describe the regulatory
dynamics of a system, but are not amenable to analysis. In order to be able to understand and
investigate the regulatory behaviour they specify, we propose a method for translating these
equational descriptions into a HLPN model by building on existing work for Boolean networks
(see [4, 28, 29]). Our systematic approach to HLPN model construction can be seen as com-
plementary to [5], which focuses on using temporal logics to assist in the discovery of coherent
HLPN models of partial multi-valued models.
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The basic idea is to model each entity gi in a multi-valued network as a place in the HLPN
whose token type corresponds to the set of states Sgi

for that entity. A single transition with
an appropriate guard is then used to capture the dynamic synchronous behaviour of the multi-
valued network. Each place gi communicates with this transition using two arcs: one going
from the transition to the place labelled n(gi); and one going from the place to the transition
labelled c(gi). As an example, consider Figure 3 which depicts the topology of the HLPN for
the multi-valued network shown in Figure 2.

{0..2}

{0..1}

c(g1)

c(g2)

c(g3)

n(g1)

n(g2)

n(g3)

{0..2}

g1

g2 g3

Figure 3: High-level Petri net for the multi-valued network shown in Figure 2.

The key step in modelling the dynamical behaviour of the multi-valued network is the correct
construction of the guard for the single transition in the HLPN model. The idea is to translate
the compact equational specification of the network derived using logic minimization into an
appropriate transition guard. This approach takes each entity in turn, and translates its equations
into a corresponding guard formula. The resulting formulas are then composed using the and
(& in HLPN syntax [2]) Boolean operator. To illustrate this process we consider constructing
the guard for the multi-valued network example in Figure 2. The formula will have the form:

enc(g1) & enc(g2) & enc(g3)

where enc(gi) represents the sub-formula for entity gi. Taking g1 as an example, enc(g1) will
include three parts, one for each of its next states which are combined using the or Boolean
operator (denoted |). Thus, it has the form:

enc(g1{0}) | enc(g1{1}) | enc(g1{2})
where enc(gi{j}) represents the encoded behaviour of entity gi at next state j. Each sub-
formula enc(gi{j}) is then constructed by simply translating into HLPN syntax the right hand
side of the corresponding simplified equation derived from the process in Section 3. For exam-
ple, the sub-formula enc(g1{0}) is based on translating the right hand side of the equation for
when g1 updates to state 0 (see Section 3), resulting in the following HLPN formula:

(n(g1) = 0) & ((c(g1) = 0) | (c(g1) = 1)) & ((c(g2) = 0) | (c(g2) = 1)).

The above systematic construction results in a transition guard which describes the entire syn-
chronous system behaviour. The resulting HLPN is then amenable to a range of analysis tech-
niques [22], such as model checking [17]. A prototype tool to automate the Petri net construc-
tion from state transition tables is freely available for academic use [10]. This automation is
important as it allows large models not amenable to manual construction to be automatically
generated, allowing biologists to focus on model analysis.

Often, the data provided for a model is incomplete or inconsistent. Following the approach of
[28], we simply make use of the non–deterministic semantics of Petri nets to cope with this by
including all possible behaviours.
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5 Case Study: Carbon Starvation Response in E. coli

This section provides a detailed case study in which a range of Petri net techniques are used to
model and analyse the genetic regulatory network responsible for the carbon starvation stress
response in E. coli [14].

5.1 Response to Carbon Starvation in E. coli

Under normal conditions with sufficient nutrient availability, the bacterium E. coli is able to
develop rapidly entering an exponential growth phase [14]. However, under adverse conditions,
when the nutrient availability is depleted, E. coli enters a stationary phase in which a substantial
slow down in growth occurs to help the bacteria survive. The genetic network underlying this
response for carbon starvation is shown abstractly in Figure 4 (adapted from [25]).

CRP

Signal

GyrAB

TopA

Stable RNA

E

E

Legend

Entity

Implicit Entity

Activation

Inhibition

FisSuper
Coiling

cAMP.CRP

Cya

Figure 4: High-level regulatory network for the carbon starvation response network in E. coli.

The network has a single input signal indicating the presence of carbon starvation, which is
transduced by the activation of adenylate cyclase (Cya), an enzyme which results in the produc-
tion of the metabolite cAMP. This metabolite immediately binds with and activates the global
regulator protein CRP, and the resulting cAMP.CRP complex is responsible for controlling the
expression of key global regulators including Fis and CRP itself. The global regulatory protein
Fis is central to the stress response and is responsible for promoting the expression of stable
RNA from the rrn operon [14, 25]. Thus, during the exponential growth phase high levels of
Fis are normally observed and the mutual repression that occurs between Fis and cAMP.CRP is
thought to play a key role in the regulatory network [25]. The expression of fis is also promoted
by high levels of negative supercoiling being present in the DNA. The level of DNA super-
coiling is tightly regulated by two topoisomerases [14, 25]: GyrAB (composed of the products
of genes gyrA and gyrB) which promotes supercoiling; and TopA which removes supercoils.
An increase in DNA supercoiling results in increased expression of TopA and thus prevents
excessive supercoiling. A decrease in supercoiling results in increased expression of gyrA and
gyrB, and the resulting high level of GyrAB acts to increase supercoiling. For a more detailed
introduction to the carbon starvation stress response in E. coli see [25, 14].

5.2 Constructing the HLPN Model

From the comprehensive data provided in [25], we are able to derive a set of state transition
tables describing the multi-valued behaviour of each entity in the carbon starvation stress re-
sponse network. Note following the approach of [25], we do not explicitly model the level of
cAMP.CRP and DNA supercoiling as entities in our model. We then apply the techniques dis-
cussed in Section 3 to the state transition tables (using our tool support) to extract the simplified
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equational specifications for the network. The simplified equations are then used to construct a
HLPN model following the approach detailed in Section 4. As an example, consider the state

Fis 0 0 1 1 2 2 3 3 4 4 5 5
RRN 0 1 0 1 0 1 0 1 0 1 0 1
RRN 0 0 0 0 0 0 1 1 1 1 1 1

Figure 5: State transition table defining stable RNA behaviour.

transition table defining the level of stable RNA (denoted by RRN) with respect to Fis shown
in Figure 5 which results in the simplified equations shown below:

RRN{0} = Fis{0, 1}+ Fis{0, 2}
RRN{1} = Fis{3, 4, 5}

A complete listing of these equations can be found in the supplementary material. In addition,
the resulting HLPN model is omitted for brevity but is available at [10].

5.3 Model Analysis

We now consider analysing our HLPN model using a range of Petri net techniques and tools.
Our aim is to illustrate the type of analysis possible on our model, from simple validation tests
to more detailed mutant analysis.

(i) Validation
The first step in the analysis process is to validate our model to ensure it is a reasonable rep-
resentation of the genetic network under investigation. We do this by performing a range of
simple tests on the model to ensure it satisfies the basic properties detailed in the literature (see
[14, 25]). For example, we can check that our model correctly switches from exponential to
stationary growth phases in the presence of carbon stress. To do this we performed a simulation
test using the PEP tool [11] in which we initialised our model to a state representing the ex-
ponential growth phase but then activated the Signal entity to represent the presence of carbon
stress. The sequence of steps resulting from this simulation are shown in Figure 6; the first
column represents the initial state and each subsequent column represents the next observed
state. The results show that our model correctly switches growth phases by entering a strong
attractor cycle of period two that correctly represents the physiological conditions present in
the stationary growth phase [14]. In particular, we see as expected that the level of stable RNA
and Fis decline to very low levels with the increasing concentration of CRP [25].

RRN 1 1 1 0 0 0 0 0 0
Crp 1 1 1 1 1 2 3 3 3
Cya 3 3 3 3 3 3 3 3 3
TopA 0 0 0 0 0 0 0 0 0
Fis 4 3 2 1 0 0 0 0 0

Signal 1 1 1 1 1 1 1 1 1
GyrAB 2 3 2 3 2 3 2 3 2

Figure 6: Simulating the switch from exponential to stationary phase in E. coli.
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Further validation was successfully performed on the model, for example to check that the
model correctly returns to the exponential growth phase [25] when Signal is inactive.

(ii) Dynamic Properties
Next we consider using our model to investigate experimental hypotheses which we formulate
using the insights gained from the analysis so far and from the experimental literature. We make
use of powerful model-checking techniques and in particular, use the PEP extended reachability
tool [11] which allows the reachability of a system state to be checked.

As an example, it can be seen from the literature that the level of stable RNA and Fis should
remain low when Signal is active [25]. We checked this by setting the initial state of our model
such that Signal is active (state 1), stable RNA is inactive (state 0) and Fis is low (0 or 1). We
then use PEP to correctly confirm that no state is reachable satisfying the constraint RRN > 0
(i.e. in which stable RNA is active). A similar check can be performed to see if during the
stationary phase entities TopA and GyrAB can both become inactive (i.e. simultaneously have
state 0). Interestingly, it turns out that PEP is able to find a reachable state in which this occurs,
despite the literature indicating that the entities are mutually exclusive [25]. The model checker
returns a firing trace which leads to a witness state and this can be automatically simulated
using PEP to provide insight into how this behavour can occur.

(iii) Mutant Analysis
The final step in our analysis was to investigate the affect of “fixing” an entity in the model to
an explicit state. This corresponds to the experimental approach of creating mutants in which
genes are knocked out or overexpressed, and provides a means of investigating the robustness
of the network when key components do not function as normal. The idea is to ignore the state
transition table for the entity in question so that it becomes an input entity like Signal.

We investigated the affect that knocking out and overexpressing the entities crp, cya, gyrAB
and topA had on the production of Fis and consequently the expression of the rrn operon. In
particular, we considered two scenarios: firstly, in the absence of carbon stress (i.e. Signal is
inactive) can stable RNA be prevented from being expressed; and secondly, in the presence of
carbon stress (i.e. Signal is active) can stable RNA be expressed. We performed these tests
by first setting Signal, Fis and stable RNA to be inactive (state 0), and then knocking out and
overexpressing the remaining entities in turn. We then repeated the analysis with Signal set to
active. The observed results of this mutant analysis are summarised in Figure 7.

Entity KO OE KO (s) OE (s)
CRP Yes Yes Yes No
Cya Yes Yes Yes No

GyrAB No Yes No No
TopA Yes No No No

Figure 7: Results of knocking out (KO) and overexpressing (OE) entities (where (s) denotes the
presence of carbon stress).

When Signal is inactive, we notice that knockout and overexpression of crp and cya allows
for the production of stable RNA. However, knocking out and overexpressing gyrAB and topA
respectively does not. In the case of knocking out gyrAB, a low concentration of GyrAB pre-
vents an increase in negative DNA supercoiling; thus Fis production is reduced and so stable
RNA production is low [25] . Overexpression of topA inhibits the amount of negative DNA
supercoiling, thus reducing Fis production and therefore stable RNA production [25].

Journal of Integrative Bioinformatics, 4(3):60, 2007 8

http://journal.imbio.de/


Journal of Integrative Bioinformatics 2007 http://journal.imbio.de/

When Signal is active, we notice different behaviour; knocking out both crp and cya allows for
the production of stable RNA even under carbon stress. This is due to the reduced activation of
the implicit complex cAMP.CRP, which in turn does not repress fis so strongly, and thus stable
RNA is allowed to acculmulate. However, when we overexpress crp and cya, the opposite
occurs and stable RNA is not produced as expected [25].

6 Model Comparison

We now compare and contrast our multi-valued model to a corresponding Boolean model [29]
which was constructed using the same data source [25]. On inspection, both models of the car-
bon stress response in E. coli appear to capture similar fundamental behaviour: the switch from
the exponential growth phase to the stationary phase (and vice versa); and the mutual inhibition
between fis and crp [25]. However, an interesting observation is that TopA erroneously reaches
an activated level in the Boolean model during the switch from the exponential to the stationary
growth phase. In the multi-valued model, the level of TopA correctly remains low, allowing the
amount of DNA supercoiling to increase [25]. Infact, the only time when the level of TopA can
temporarily rise to an intermediate level of 1 in the multi-valued model is when it is currently at
state 0 and Fis and GyrAB are fully active [25]; TopA then immediately drops back to 0. Under
the Boolean abstraction, the conditions for TopA to be low and Fis and GyrAB to be high also
hold, but the ability for TopA to increase to an intermediate state is not possible, leading to
unrealistic results.

Another interesting comparison between the models concerns the results of mutant analysis. We
performed the same mutant analysis on the entities crp, cya, gyrAB and topA in the Boolean
model as in Figure 7 to compare how the production of stable RNA is affected. The results of
this analysis are shown in Figure 8, where the discrepencies between the models are highlighted
in brackets. The analysis shows that in a number of cases stable RNA reaches an activated level

Entity KO OE KO (s) OE (s)
CRP Yes Yes Yes (Yes)
Cya Yes Yes Yes (Yes)

GyrAB No Yes No (Yes)
TopA Yes No (Yes) No

Figure 8: Results of entity knock out (KO) and overexpression (OE) in the Boolean model.

(i.e. state 1) in the Boolean mutants which contradicts the results for the multi-valued model.
This appears to be due to the Boolean model being less restrictive with respect to the activation
of Fis.

Clearly, the Boolean model fails to capture some subtle aspects of the genetic network’s be-
haviour. This raises a number of interesting questions concerning the relationship between
these two qualitative modelling approaches, such as what it means for the behaviour of a
multi-valued model to be representable in the Boolean domain. The answers to these ques-
tions have real practical relevance, since the ability to refine a model into a simpler one eases
user-comprehension and allows a reduction in the models state space, providing important ad-
vantages for computation and analysis purposes.

To begin to address the above questions, we formalize the idea of a Boolean model B faithfully
representing the behaviour of a multi-valued model MV . We view the behaviour of any model
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X as the set of observable state traces T (X), where a trace is the sequence of states resulting
from a simulation of the model starting from a global initial state. To view the behaviour of
MV in the Boolean domain, we introduce a Boolean state mapping:

φ =< φgi
: Sgi

7→ {0, 1} | gi ∈ MV >

a family of surjective mappings which map the state space Sgi
of each entity gi of MV to the

Boolean states 0 and 1. We can apply φ to T (MV ) to translate the traces to the Boolean domain
resulting in the traces denoted by φ(T (MV )). We can now formalise the concept of B being a
Boolean refinement of MV as follows.

Definition 1 (Boolean Refinement). Let MV be a multi-valued model, B be a Boolean model
with the same structure as MV and φ be a Boolean state mapping for MV . A Boolean refine-
ment is a pair (B, φ) such that T (B) ⊆ φ(T (MV )).

Intuitively, the definition of a Boolean refinement says that the behaviour of B must be con-
tained within the behaviour of MV under φ. An important question is therefore whether we
can always find a Boolean refinement for a multi-valued model and this is answered by the
following theorem.

Theorem 1. Not every multi-valued model MV has a Boolean refinement (B, φ).

Proof. To prove this theorem, we need only find a single multi-valued model which does not
have a Boolean refinement. Consider Figure 9 which illustrates a simple multi-valued model
MV with three entities. The idea is that g2 inhibits the other entities (including itself); it inhibits
g1 when in state 2 and g3 when in state 1 or above. Since g1 and g3 are Boolean entities,

g1 g3g2

0    1

2    0
1    1

0    2
1    0
2    1

0    1

2    0
1    0

g2   g1 g2   g2 g2   g3

Figure 9: Multi-valued model MV with three entities g1, g2 and g3.

there are two possibilities for φg1 and φg3. Furthermore, g2 has three states and therefore six
possible mappings exist for φg2. This is compounded by the fact that for each of the 24 (i.e.
2 ∗ 6 ∗ 2) Boolean state mappings φ we have to consider 256 possible Boolean models in an
exhaustive search. To overcome this prohibitely large search space, we can limit the models
that need to be considered by making use of the following facts: i) isomorphic mappings can
be ignored (leaving only three mappings for φg2 and one for φg1 and φg3), and; ii) for each φ,
we can translate the state transition tables of MV into the Boolean tables φ(MV ) to restrict
the set of Boolean models to be considered. Taking this approach limits the total number of
possible Boolean refinements to just 16; we have 4 for φ2 = {0 7→ 0, 1 7→ 0, 2 7→ 1}, 4 for
φ2 = {0 7→ 0, 1 7→ 1, 2 7→ 1} and 8 for φ2 = {0 7→ 0, 1 7→ 1, 2 7→ 0}). We are able to show
that all these Boolean models fail to exhibit behaviour consistent with φ(T (MV )). Note for
brevity the details of these checks are omitted here.

The above result is important as it provides clear motivation for the use of multi-valued mod-
elling techniques and represents a first step in understanding the relationship between multi-
valued and Boolean models. Research is now ongoing to investigate the existence and con-
struction of Boolean refinements.
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7 Conclusions

In this paper, we have developed a formal framework for modelling and analysing multi-valued
models of genetic regulatory networks based on using high-level Petri nets. This extends the
Boolean approach of [29], providing important analysis support for the more realistic multi-
valued modelling approach. We see the key contributions of this paper as follows: i) Extending
Petri net models of Boolean networks [29] to multi-valued models; ii) A new systematic pro-
cess for constructing multi-valued models of genetic regulatory networks based on logic min-
imization; iii) Tool support to automate model construction; iv) A detailed case study which
explores the application of Petri net techniques [7, 17] to analysing a multi-valued model of a
genetic network; v) An initial investigation into the formal relationship between Boolean and
multi-valued models.

Work is now ongoing to further investigate the notion of model refinement with an emphasis
on results concerning the existence and automated construction of refinements. Such results
appear to be important if formal techniques like ours are to be able to cope with the challenges
of modelling large, realistic biological networks. We are also interested in exploring the idea
of compositional model construction and analysis in this context. A compositional approach to
model construction would be consistent with the biological intuition that genetic networks are
modular [32] and could lead to efficient analysis techniques. In particular, we see compositional
model checking techniques [3] as an important area of research here.
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Supplementary Material

This document provides a detailed listing of the E.coli carbon starvation model. The model
consists of 6 entities and an additional input entity Signal. These entities are listed below along
with their state space:

• RRN{0,1};

• Crp{0,1,2,3};

• Cya{0,1,2,3};

• Fis{0,1,2,3,4,5};

• GyrAB{0,1,2,3};

• TopA{0,1,2,3};

• Signal{0,1}.

A complete listing of the equations describing the dynamics of this model is provided below:

RRN{0} = Fis{0,1} + Fis{0,2}
RRN{1} = Fis{3,4,5}

Crp{1} = Crp{0} + Crp{0,1} Fis{2,3,4,5} + Crp{0,2} Fis{2,3,4,5} + Crp{0,1} Fis{1,4,5}
+ Crp{0,2} Fis{1,4,5}

Crp{2} = Crp{3} Fis{1,2,3,4,5} + Crp{1} Fis{0}
Crp{3} = Crp{2,3} Fis{0}

Cya{1} = Cya{0}
Cya{2} = Cya{1} + Crp{3} Cya{1,3} + Signal{1}
Cya{3} = Cya{2,3} Signal{0} + Cya{2} + Crp{0,1} Cya{2,3} + Crp{0,2} Cya{2,3}

Fis{0} = Crp{1,2,3} Cya{1,2,3} Fis{0,1} Signal{1}
Fis{1} = Fis{0} Signal{0} + Fis{0,1} Signal{0} TopA{2,3} + Fis{2} TopA{2,3}

+ Fis{0,1} GyrAB{0,1} Signal{0} + Fis{2} GyrAB{0,1} + Cya{0} Fis{0}
+ Crp{0} Fis{0} + Cya{0} Fis{0,1} TopA{2,3} + Crp{0} Fis{0,1} TopA{2,3}
+ Cya{0} Fis{0,1} GyrAB{0,1} + Crp{0} Fis{0,1} GyrAB{0,1} + Crp{1,3} Cya{1,3}
Fis{2} Signal{1} + Crp{2,3} Cya{1,3} Fis{2} Signal{1} + Crp{1,3} Cya{2,3}
Fis{2} Signal{1} + Crp{2,3} Cya{2,3} Fis{2} Signal{1}

Fis{2} = Fis{3} GyrAB{0,1} + Crp{1,2,3} Cya{1,2,3} Fis{3} Signal{1} + Fis{3}
TopA{2,3} + Crp{0} Fis{1} GyrAB{2,3} TopA{0,1} + Cya{0} Fis{1} GyrAB{2,3}
TopA{0,1} + Fis{1} GyrAB{2,3} Signal{0} TopA{0,1}

Fis{3} = Fis{4}GyrAB{0,1} + Crp{1,2,3} Cya{1,2,3} Fis{4} Signal{1} + Fis{4} TopA{2,3}
+ Crp{0} Fis{2} GyrAB{2,3} TopA{0,1} + Cya{0} Fis{2} GyrAB{2,3} TopA{0,1}
+ Fis{2} GyrAB{2,3} Signal{0} TopA{0,1}

Fis{4} = Fis{5} + Crp{0} Fis{3,5} GyrAB{2,3} TopA{0,1} + Cya{0} Fis{3,5} GyrAB{2,3}
TopA{0,1} + Fis{3,5} GyrAB{2,3} Signal{0} TopA{0,1}
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Fis{5} = Crp{0} Fis{4} GyrAB{2,3} TopA{0,1} + Cya{0} Fis{4} GyrAB{2,3} TopA{0,1}
+ Fis{4} GyrAB{2,3} Signal{0} TopA{0,1}

GyrAB{0} = Fis{4,5} GyrAB{0,1}
GyrAB{1} = Fis{4,5} GyrAB{2} + Fis{0,1,2,3} GyrAB{0}
GyrAB{2} = GyrAB{3} TopA{0} + Fis{0,2,3} GyrAB{1} + Fis{0,1} GyrAB{1}

+ Fis{4,5} GyrAB{3}
GyrAB{3} = Fis{0,1,2,3} GyrAB{2} + Fis{0,1,2,3} GyrAB{3} TopA{1,2,3}

TopA{0} = TopA{1} + GyrAB{0,1} TopA{0,1} + GyrAB{0,1} TopA{0,1} + Fis{0,2,3} TopA{0,1}
+ Fis{0,1} TopA{0,1}

TopA{1} = Fis{4,5} GyrAB{2,3} TopA{0,2} + TopA{2}
TopA{2} = TopA{3}.

The state transition tables and Petri net for this model can be downloaded by visisting our
project website at http://bioinf.ncl.ac.uk/gnapn.
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