
The Well-Founded Semantics for General Logic Programs�Allen Van GelderUniv. of Calif. at Santa Cruz Kenneth A. RossStanford Univ. John S. Schlipf yUniv. of Cincinnati
Journal of the ACM, Vol. 38, No. 3, July 1991, pp.620{650

AbstractA general logic program (abbreviated to \program" hereafter) is a set of rules that have both positiveand negative subgoals. It is common to view a deductive database as a general logic program consistingof rules (IDB) sitting above elementary relations (EDB, facts). It is desirable to associate one Herbrandmodel with a program and think of that model as the \meaning of the program," or its \declarativesemantics." Ideally, queries directed to the program would be answered in accordance with this model.Recent research indicates that some programs do not have a \satisfactory" total model; for such programs,the question of an appropriate partial model arises. We introduce unfounded sets and well-founded partialmodels, and de�ne the well-founded semantics of a program to be its well-founded partial model. If thewell-founded partial model is in fact a total model, we call it the well-founded model. We show that theclass of programs possessing a total well-founded model properly includes previously studied classes of\strati�ed" and \locally strati�ed" programs. We also compare our method with other proposals in theliterature, including Clark's \program completion," Fitting's and Kunen's 3-valued interpretations of it,and the \stable models" of Gelfond and Lifschitz.Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal De�nitions and Theory| semantics; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic | logicprogramming, model theory; I.2.3 [Arti�cial Intelligence]: Deduction and Theorem Proving | logicprogramming, nonmonotonic reasoning and belief revisionGeneral Terms: Languages, TheoryAdditional Key Words and Phrases: negation as failure, well-founded models, �xpoints, unfounded sets,stable models, three-valued logic1 IntroductionThere has been much recent work on extending Horn rule logic programs to include negative subgoals, givingwhat are called general logic programs. This research has proceeded in two general directions, which maybe summarized as the \program completion" approach and the \canonical model" approach.1.1 Program Completion SemanticsThe original \program completion" approach, due to Clark [6], and discussed in detail by Shepherdson [37,38], Kunen [17], and Lloyd [20], has been to de�ne a new program, called the completed program (sometimescalled the completed database). The completed program is treated simply as a �rst order formula (seeSection 4). Then the negative literals that are logical consequences of the completed program, and onlythose, should be considered true. The same applies to positive literals, so the completion treats positiveand negative literals symmetrically. A proof method that supports this approach, called SLDNF (SLD�A preliminary version of this paper was presented at the Seventh ACM Symposium on Principles of Database Systems,1988.yAuthors' Addresses: Kenneth A. Ross, Computer Science Dept., Stanford University, Stanford, CA 94305; John S. Schlipf,Computer Science Dept., University of Cincinnati, Cincinnati, OH 45221; Allen Van Gelder, Baskin Computer Science Center,University of California, Santa Cruz, CA 95064. 1

resolution plus the negation as failure rule) has been studied extensively. A closely related idea, the closedworld assumption, was introduced in the context of deductive databases by Reiter [33]. The generalizedclosed world assumption was proposed by Minker to handle disjunctive databases [25] without producing theinconsistency typical of the closed world assumption; it is discussed in Example 3.1.SLDNF is applied to the original program. Clark showed the procedure to be sound in the sense that if agoal has a �nite SLDNF derivation, then it is a logical consequence of the completed program. Ja�ar, Lassezand Lloyd showed that SLDNF was complete (in the same sense) for Horn programs with non-ounderingqueries consisting of a conjunction of positive and/or negative literals [15]. SLDNF was further investigatedfor general logic programs by Lloyd [20] (who coined the term SLDNF), Shepherdson [37, 38] (q.v. forfurther bibliography), and others. This approach is \logically" impeccable, but does not address the issue ofhow the compiler or the interpreter of the general logic program should treat atoms (goals) whose positiveand negative literals are neither logical consequences of the completion: the interpreter is not allowed toeither succeed or fail. Also, for some programs the completed program is inconsistent; for some others, thecompleted program is consistent but unintuitive. More importantly, on many natural examples it yields asurprisingly weak reasoning ability. We shall illustrate these claims with examples in Section 7.Fitting [9] and Kunen [17] gave markedly di�erent, more uniform, semantics by interpreting the completedprogram in a 3-valued constructive logic, elegantly eliminating some di�culties of the Clark programcompletion approach. The third truth value, ?, connotes unknown truth value and is \less informationthan" both true and false, which are incomparable. Fitting showed that the completion of every programhas a (unique) minimum 3-valued model, and suggested that this model be taken for the semantics of theprogram. Kunen describes a variant that is always recursively enumerable, and characterizes the 3-valuedlogical consequences of the completed program. From our point of view, however, these semantics are alsotoo weak to capture the \common sense" notion of negation as failure, as discussed later in the motivatingexamples (Section 7).A rather di�erent approach to negation is to interpret general rules as disjunctive clauses. In thiscontext, the generalized closed world assumption concludes that p is false if there is no minimal positivedisjunction p_q1_� � �_qk that is a (2-valued) logical consequence of the clauses [25]. Here k may be zero, sothat p is simply true. Disjunctive databases are quite di�erent from logic programs because clauses have no\direction". Thus a not b and b not a are treated alike, as a_b. Example 3.1 illustrates this distinction.1.2 Canonical Model SemanticsThe \canonical model," or \preferred model," approach has been to declare that a certain model of theoriginal program is presumed to be the \intended" one, i.e., the one that the programmer and program usershave in mind. The justi�cation for choosing the preferred model relies on an appeal to \common sense," andwhat people who write or read the program are likely to think it means. R. W. Topor and E. A. Sonenbergproposed the term \canonical model" to describe a model that is selected (often from many incomparableminimal models) to represent the \meaning" of a logic program or deductive database. The advantage ofassigning a canonical model to a program is that one now has a standard for correctness of an interpreter1on all goals { it must conform to the canonical model, and succeed or fail appropriately. See [41] for adiscussion of how the canonical model approach can bene�t application development.Another motivation for concentrating on canonical models is the view, expounded by Reiter [33], thatmany logic programs are appropriately thought of as having two components, an intensional database (IDB)that represents the reasoning component, and the extensional database (EDB) that represents a collectionof facts. Over the course of time, we may want to \apply" the same IDB to many quite di�erent EDBs.In this context the properties of the IDB merit careful study, and it makes sense to think of the IDB asimplicitly de�ning a transformation from an EDB to a set of derived facts; we would like the set of derivedfacts to be the canonical model. For �nite cases the computational complexity of this transformation can bestudied; see Section 8.One problem with the canonical model approach is that some programs may not have a canonical model,or if they do, it is unclear that the model matches the users' expectations. A further di�culty is that thecanonical model may be computationally infeasible. One line of research has been to look for a de�nition ofthe canonical model that will apply to as broad a class of programs as possible. Two classes of programs thathave been studied are called strati�ed and locally strati�ed . The strati�ed class has been treated in [4, 1, 19,1By \interpreter," we mean any mechanism for executing the program, including a compiler.2

40], and elsewhere. The locally strati�ed class, de�ned and studied by Przymusinski [31], is a superset ofthe class of strati�ed programs. He de�ned perfect models, and showed that every locally strati�ed programhas a unique perfect model. These classes are discussed further in Section 6.For a while there was a feeling that programs that were not at least locally strati�ed probably didnot really make good sense, that they were inherently ambiguous, and thus faulty. Thus failure to have aperfect model was thought to indicate a aw in the program rather than in the de�nition of perfect models.Recent experience has cast doubt on this attitude (see [11] for discussion), and spurred the search for furtherimprovements in the de�nition of the \canonical model."Gelfond and Lifschitz propose an elegant de�nition of a stable model that is closely related to our work[11]. Drawing on ideas in [10], they de�ne a \stable model" as one that is able to reproduce itself in a certainsense; a program may have zero, one, or many stable models. In their scheme, when a program has a uniquestable model, that is is considered to be its canonical model. They argue that the unique stable model isthe natural one to associate with a logic program, and describe some of its properties. Stable models arediscussed further in Section 5.1.3 Well-Founded SemanticsThis paper proposes a new de�nition of canonical model, which we call the well-founded model. We showthat for locally strati�ed programs the perfect model coincides with the well-founded model; in addition,certain programs that are not locally strati�ed have a well-founded model. Examples are given in Section 7.But even when a program has no well-founded total model, it has a well-founded partial model; thuswe de�ne the well-founded semantics of any general logic program to be that literals in the well-foundedpartial model are true, their complements are false, and other literals' truth values are not determined bythe program. Thus, a partial model can also be viewed as a model in 3-valued logic. This relationship isdiscussed in Section 4.While strati�cation is a syntactic property of the IDB, for an unstrati�ed IDB, whether the programhas a total well-founded model depends in general on the EDB. One view of well-founded semantics is asan attempt to give a reasonable meaning to as much of the program as possible in the unfavorable cases,when only a partial model exists, as an extension of the semantics for the favorable cases, which have a totalmodel.The key idea in our formulation is the concept of an \unfounded set," which is an adaptation of the\closed set" developed for disjunctive databases by Ross and Topor [34], and is essentially the same as the\securable set" in [36]. Unfounded sets are de�ned in Section 3.Since the preliminary version of this paper was presented at a conference [43], several alternativeformulations of negation that appear to be equivalent to the well-founded semantics have been developed[3, 8, 32, 42]. We believe that this indicates a robustness of the semantics, and provides evidence that itcoincides well with \common sense" and intuition.2 General Logic Programs and Partial InterpretationsIn this section we introduce our notation and basic de�nitions, and describe the class of general logic programsthat we shall be considering in this paper.De�nition 2.1. A general logic program is a �nite set of general rules , which may have both positive andnegative subgoals. A general rule is written with its head , or conclusion on the left, and its subgoals (body),if any to the right of the symbol \ ," which may be read \if." For example,p(X) a(X); not b(X):is a rule in which p(X) is the head, a(X) is a positive subgoal, and b(X) is a negative subgoal. This rulemay be read as \p(X) if a(X) and not b(X)." A Horn rule is one with no negative subgoals, and a Hornlogic program is one with only Horn rules.
3

Lloyd has recently adopted the word \normal" instead of \general" to describe rules whose bodies consistof a conjunction of literals, and programs of such rules [20]. He reserves the word \general" to allow moreinvolved constructs, such as w(X) m(X;Y); not (m(Y; Z); not w(Z)):where the �rst not applies to a conjunction rather than an atom. Although we avoid such constructs forsimplicity of presentation, the well-founded semantics is easily generalized to such syntax, so we continue touse the word \general."In keeping with Prolog's convention, logical variables begin with a capital letter; constants, functions,and predicates begin with a lowercase letter. We use the same symbol, e.g., p, to refer to both a predicateand its relation. The arguments of a predicate are terms as customarily de�ned in logic:1. A variable or constant is a term.2. A function symbol with terms as arguments is a term.Terms may also be viewed as data structures of the program, with function symbols serving as record names.The word ground is used as a synonym for \variable-free," in keeping with common practice. Often aconstant is treated as a function symbol of arity zero.The Herbrand universe is the set of ground terms that use the function symbols and constants thatappear in the program.2 The Herbrand base is the set of atomic formulas formed by predicate symbols inthe program whose arguments are in the Herbrand universe. If the program contains a function symbolof positive arity, then the Herbrand universe and Herbrand base are countably in�nite; otherwise they are�nite.We shall be considering atoms in the Herbrand base and ground rules whose variables have beeninstantiated to elements of the Herbrand universe, which we call instantiated rules.De�nition 2.2. The Herbrand instantiation of a general logic program is the set of rules obtained bysubstituting terms in the Herbrand universe for variables in every possible way. An instantiated rule is onein the Herbrand instantiation. Whereas \uninstantiated" logic programs are assumed to be a �nite set ofrules, instantiated logic programs may well be in�nite.Certain programs exhibit a property called unsafe negation, which can cause anomalous behavior ifinterpreted in the Herbrand universe. Appendix A explains a way to \augment" such programs byintroducing an extra rule that removes the anomalies by enlarging the Herbrand universe. Our developmentis independent of whether this augmentation is used or not.We shall be working extensively with sets of literals, for which we now introduce some notation andde�nitions. If p is an atomic formula (atom), then p is its positive literal, :p is its negative literal, and thesetwo literals are said to be complements of each other.De�nition 2.3. For a set of literals S we denote the set formed by taking the complement of each literalin S by : � S.� We say literal q is inconsistent with S if q 2 : � S.� Sets of literals R and S are inconsistent if some literal in R is inconsistent with S, i.e., ifR \ : � S 6= ;� A set of literals is inconsistent if it is inconsistent with itself; otherwise it is consistent .2If there is no constant symbol in the program, then one is added arbitrarily.4

De�nition 2.4. Given a program P, a partial interpretation I is a consistent set of literals whose atomsare in the Herbrand base of P. A total interpretation is a partial interpretation that contains every atom ofthe Herbrand base or its negation. We say a ground (variable-free) literal is true in I when it is in I andsay it is false in I when its complement is in I . Similarly, we say a conjunction of ground literals is true inI if all of the literals are true in I , and is false in I if any of its literals is false in I .De�nition 2.5. We say that an instantiated rule is satis�ed in a partial or total interpretation I if thehead is true in I or some subgoal is false in I ; it is falsi�ed if the head is false and all subgoals are true. Inaddition, if the head of the rule is false in I , but no subgoal is false in I then we say that the rule is weaklyfalsi�ed in I .De�nition 2.6. A total model of a program P is a total interpretation such that every instantiated rule ofP is satis�ed. A partial model of P is a partial interpretation that can be extended to a total model of P.Although it is customary to omit the adjective \total" when speaking of interpretations and models,because we shall be dealing with both 2-valued and 3-valued logics, we shall include it for clarity.Intuitively, a partial interpretation may contain incomplete information: the positive literals in it areconsidered to be true atomic facts; the negative literals denote atoms considered to be false; and the truthvalues of the rest of the atomic facts are unknown, or unspeci�ed, at least \at present." The natural orderingon partial interpretations is �. The idea is that I � I 0 if I 0 contains all the information in I , both positiveand negative, plus possibly more.For us, a partial model is a partial interpretation I such that some instantiated rules may not be satis�ed,but there is a (possibly empty) set of literals whose addition to the partial interpretation will satisfy all rules.Clearly, this is impossible if I falsi�es any instantiated rule. If I only weakly falsi�es some instantiated rule,then the addition of some negative literal to I may be necessary to satisfy that rule. Thus recognition ofpartial models containing weakly falsi�ed rules may be very di�cult. The following lemma shows that thesituation is much simpler if I does not weakly falsify any instantiated rule.Lemma 2.1. Let P be a program and let I be a partial interpretation. If I weakly falsi�es no instantiatedrule from P, then I is a partial model of P.Proof. Let I 0 be the total interpretation formed by adding to I all atoms in the Herbrand base that areneither true nor false in I . Let r be an instantiated rule from P. If I satis�es r, then clearly so does I 0. If Idoes not satisfy r, then the head of r cannot be false in I , so it is true in I 0. Hence I 0 is a total model.Our notion of partial model is not the same as the natural notions of models used in 3-valued logics,such as in the approaches of Fitting [9] and Kunen [17]. Nevertheless, the well-founded partial model weconstruct will also be a model in Fitting's 3-valued sense. We shall discuss 3-valued models in Section 4.3 Unfounded Sets and Well-Founded Partial ModelsIn this section we de�ne unfounded sets , which are a variation of closed sets that were de�ned for disjunctivedatabases by Ross and Topor in [34]. Unfounded sets provide the basis for negative conclusions in thewell-founded semantics.3.1 Unfounded SetsDe�nition 3.1. Let a program P, its associated Herbrand base H , and a partial interpretation I be given.We say A � H is an unfounded set (of P) with respect to I if each atom p 2 A satis�es the followingcondition: For each instantiated rule R of P whose head is p, (at least) one of the following holds:1. Some (positive or negative) subgoal q of the body is false in I .5

2. Some positive subgoal of the body occurs in A.A literal that makes (1) or (2) above true is called a witness of unusability for rule R (with respect to I).Intuitively, we regard I as what we already know about the intended model of P (possibly partial). Rulessatisfying condition (1) are not usable for further derivations since their hypotheses are already known to befalse.Condition (2) is the unfoundedness condition: of all the rules that still might be usable to derive somethingin the set A, each requires an atom in A to be true. In other words, there is no one atom in A that can be�rst to be established as true by the rules of P (starting from \knowing" I). Consequently, if we choose toinfer that some or all atoms in A are false, there is no way we could later have to infer one to be true.As described more formally later, the well-founded semantics uses conditions (1) and (2) to draw negativeconclusions. Essentially, it simultaneously infers all atoms in A to be false. By contrast, the semantics of [9]uses only condition (1) to draw negative conclusions. The closed sets of Ross and Topor [34] were de�nedonly with condition (2).Example 3.1. Consider the program consisting of the eight (instantiated) rules below.p(a) p(c); not p(b):p(b) not p(a):p(e) not p(d):p(c).p(d) q(a); not q(b):p(d) q(b); not q(c):q(a) p(d):q(b) q(a):The atoms fp(d); q(a); q(b); q(c)g form an unfounded set with respect to ;. In particular, fq(c)g is unfoundeddue to Condition (1); there is no rule usable to establish its truth. The set fp(d); q(a); q(b)g is unfoundeddue to Condition (2); we are given no way to establish p(d) without �rst establishing q(a) or establishing q(b)(whether we can establish :q(b) to support the �rst rule for p(d) is irrelevant for determining unfoundedness).Also, there is no way to establish q(a) without �rst establishing p(d), and no way to establish q(b) without�rst establishing q(a). Clearly q(c) can never be proven, but we can also see that among p(d), q(a), and q(b),none can be the �rst to be proven.In contrast, the pair fp(a); p(b)g does not form an unfounded set even though they depend on each other,because the only dependence is \through" negation. It is tempting to claim that the proof attempts for p(a)and p(b) will fail also, but such a claim is faulty.The di�erence between sets fp(d); q(a); q(b)g and fp(a); p(b)g is this: Declaring any of p(d), q(a), or q(b)false does not create a proof that any other element of the set is true. However, as soon as one of p(a) orp(b) is declared false, it becomes possible to prove the other is true. And if both are declared false at once,we have an inconsistency.The treatment of p(a) and p(b) has something of the avor of the generalized closed world assumption(GCWA), in that (p(a) _ p(b)) is a (2-valued) logical consequence of the program interpreted as inde�nitedisjunctive clauses; consequently GCWA also declines to consider them false. However, GCWA behaves quitedi�erently in general. For example, (p(e) _ p(d)) is also a logical consequence, so GCWA does not considerp(d) false, whereas the well-founded semantics does. Similar remarks apply to q(a) and q(b). (However, q(c)is considered false by GCWA; it is in the positive disjunction (q(c) _ p(d) _ p(e)), but this disjunction isnot minimal .) As a further di�erence, after p(d) is classi�ed as false in the well-founded semantics, p(e) willbecome derivable. It is a property of GCWA that the atoms considered false cannot be used to support anyfurther derivations.Simultaneously negating all the atoms in an unfounded set generalizes negation by failure in Horn clauseprograms; if H is the Herbrand base and I is the set of atoms that represents the minimum Herbrand modelof a Horn clause program [39], then H � I , the set of atoms not in I , is unfounded with respect to I .6

We now formalize the intuition of the preceding discussion. It is immediate that the union of arbitraryunfounded sets is an unfounded set. This leads naturally to:De�nition 3.2. The greatest unfounded set (of P) with respect to I , denoted UP (I), is the union of all setsthat are unfounded with respect to I .We now make some easy, but instructive, observations about unfounded sets. To a certain extent, there isa exibility between having :p 2 I and having p in an unfounded set. The following lemma shows that, givenan interpretation R, if we deduce that certain facts S are in an unfounded set A and add their complementsto R, other unfounded atoms remain unfounded.Lemma 3.1. Let R be a set of literals, and let A be an unfounded set of P with repect to R. For any subsetS � A, A� S is unfounded with respect to R [: � S.Proof. Any witness of unusability that was an atom in S is now a negative literal in : �S, and hence is stilla witness.The next lemma demonstrates a connection between (lack of) weak falsi�cation (De�nition 2.5) andunfounded sets. Recall from Lemma 2.1 that I in the next lemma is a partial model.Lemma 3.2. Let I be a partial interpretation consisting of positive literals Q and negative literals : �S. IfI does not weakly falsify any instantiated rule of program P, then S is an unfounded set with respect to Q.Proof. Let p 2 S and let R be any instantiated rule whose head is p. Because R is not weakly falsi�ed,some subgoal of R is false in I . If this subgoal is positive, it is also in S, so condition (2) of De�nition 3.1 issatis�ed. If this subgoal is negative, its positive version is in Q so condition (1) is satis�ed.3.2 Well-Founded Partial ModelsWe now consider a (possibly trans�nite) sequence that results from combining two set transformations. Thelimit of this sequence de�nes the well-founded semantics. In what follows the word transformation alwaysmeans a transformation between sets of literals, where their atoms are in the Herbrand base of a givenprogram P. We recall that a transformation T is called monotonic if T (I) � T (J), whenever I � J .De�nition 3.3. Transformations TP , UP , and WP are de�ned as follows:� p 2 TP (I) if and only if there is some instantiated rule R of P such that R has head p, and eachsubgoal literal in the body of R is true in I .� UP (I) is the greatest unfounded set of P with respect to I , as in De�nition 3.2.� WP (I) = TP (I) [: �UP (I).Lemma 3.3. TP , UP , and WP , are monotonic transformations.Proof. Immediate from de�nitions.We wish to emphasize that, unlike some other methods, our TP treats positive and negative subgoalssymmetrically. In deciding whether a negative subgoal not p is true, some methods look for the absence ofp from I . For us the presence or absence of p is immaterial for the truth of the subgoal not p; we requirethe presence of :p.De�nition 3.4. Let � range over all countable ordinals. The sets I� and I1, whose elements are literalsin the Herbrand base of a program P, are de�ned recursively by:1. For limit ordinal �, I� = [�<� I�Note that 0 is a limit ordinal, and I0 = ;. 7

2. For successor ordinal � = + 1, I+1 = WP (I)3. Finally, de�ne I1 = [� I�Following Moschovakis [29], for any literal p in I1, we de�ne the stage of p to be the least ordinal � suchthat p 2 I�. We observe that the stage is always a successor ordinal for literals in I1.Lemma 3.4. I� as de�ned in De�nition 3.4 is a monotonic sequence of partial interpretations (i.e., isconsistent).Proof. The proof is by induction on �. The basis, � = 0, is immediate. For � > 0, assume the lemma istrue for � < �.For monotonicity, �rst let � = + 1 be a successor ordinal. if literal q 2 I , there is a smallest � < such that q 2WP (I�) (even if is a limit ordinal). But WP is monotonic, so by the inductive hypothesisq 2WP (I). Monotonicity for limit � follows from the de�nition of I�.To show consistency for successor ordinal � = + 1, note that every literal in I� �rst appears in someI�+1, i.e., at a successor ordinal \stage". Let A be any set of positive ground literals that has a nonemptyintersection with (the positive literals of) I+1. It is su�cient to show that A is not unfounded w.r.t. I ,for then the greatest unfounded set of I is also disjoint from the positive part of I+1. Choose the earliestI�+1 that intersects A and select an atom p in that intersection. Then p was derived by some rule R all ofwhose subgoals are in I� . By the inductive hypothesis, those subgoals are also in I , and I is consistent,so none of the subgoals is false in I . By the choice of �, they are not in A. Thus rule R has no witness ofunusability, which demonstrates that A is not an unfounded set w.r.t. I .For limit ordinal � > 0, to show that I� is a partial interpretation, assume the lemma is true for � < �.If both q and :q are in I�, there is some successor ordinal + 1 < � such that the same is true. Thiscontradicts the inductive hypothesis.It follows by classical results of Tarski that I1 is the least �xed point of the operator WP . The Herbrandbase is countable, so for some countable ordinal �, I1 = I�.De�nition 3.5. The closure ordinal for the sequence I� is the least ordinal � such that I1 = I� (cf. [29]).Examples can be constructed where the closure ordinal is above !, but the authors believe such examplesto be very rare in practical logic programming. In the case of a function-free program with a �nite EDB,which is common in deductive databases, the limit is reached after a �nite ordinal. The \data complexity"of this case is discussed in Section 8.De�nition 3.6. The well-founded semantics of a program P is the \meaning" represented by the least�xed point of WP , or the limit I1 described above; every positive literal denotes that its atom is true,every negative literal denotes that its atom is false, and missing atoms have no truth value assigned by thesemantics.Lemma 3.5. Let I� be as de�ned in De�nition 3.4. Then I� does not weakly falsify (De�nition 2.5) anyinstantiated rule of P.Proof. Let R be any instantiated rule with head p such that :p 2 I�. We need to show that the body ofR is false in I�. By de�nition, p 2 UP (I�) for some � < �. By Lemma 3.4, I� � I�+1 � I�. Either thebody of R is false in I� , or some subgoal q of the body of R is in the greatest unfounded set w.r.t. I� . Inthe latter case, :q 2 I�+1, so the body of R is false in I�+1. In either case, it follows that the body of R isfalse in I�. 8

Theorem 3.6. For each countable ordinal �, I� in the sequence described in De�nition 3.4 is a partialmodel of P.Proof. Immediate by Lemmas 2.1 and 3.5.De�nition 3.7. Suppose that for each p in the Herbrand Base I1 contains either p or :p, i.e. I1 is a totalinterpretation. Then by the above theorem, I1 is a total model, and we call this the well-founded model ;otherwise we call I1 the well-founded partial model .Theorem 3.7. Every Horn program has a well-founded model I1, which is the minimum model in thesense of Van Emden and Kowalski [39], i.e., its positive literals are contained in every Herbrand model.Proof. Let H be the Herbrand base and let Q be the set of positive literals of I1. Q is a �xed point of TP[39]. In view of Theorem 3.6 it is su�cient to show that H �Q � UP (I1). Let p be any positive literal inH � Q. Each rule for p must have a positive subgoal that is also in H � Q, which subgoal is a witness ofunusability for this rule. Thus H �Q is unfounded w.r.t. ;, and a fortiori w.r.t. I1.4 Three-Valued Models of the Program CompletionThe relationship of the well-founded semantics to other methods based on program completion and 3-valuedlogics is discussed in this section. Clark introduced the completed program as a way of formalizing thenotion that facts not inferable from the rules in the program were to be regarded as false [6]. Fitting studiedmodels of the completed program in a 3-valued logic, and showed that all such models were �xed points ofa certain operator [9]. We show that the well-founded partial model is also a model in this logic, but oftennot the least model.The idea behind the Clark completion of a program is to collect all rules having the same head predicateinto a single rule whose body is a disjunction of conjunctions, then replace the \if" symbol, \ ," by \$."This states in e�ect that the predicate is completely de�ned by the given rules. The formal details, includinghandling of variables and introduction of axioms for equality, are described in several places [6, 2, 20, 9, 17].Example 4.1. Recall the last four rules of Example 3.1, whose atoms formed an unfounded set:p(d) q(a); not q(b):p(d) q(b); not q(c):q(a) p(d):q(b) q(a):The Clark completion combines the rules for p into one rule, combines the rules for q into another rule, thenreplaces \ " by \$". After some simpli�cations to eliminate bound variables, there results:p(d)$ (q(a) ^ :q(b)) _ (q(b) ^ :q(c)))8X [q(X)$ ((X = a) ^ p(d)) _ ((X = b) ^ q(a))]The equality freeness axioms (often called the Clark Equality Theory or CET) are also part of the completedprogram. Roughly, they require a one to one interpretation of the terms, so that q(c) cannot be made trueby setting c = a or c = b.The original \logical consequence" approach essentially declares that only conclusions that are logicalconsequences (in the classical, 2-valued sense) of the completed program should be inferred [6, 15, 20, 37].When the completed program is consistent, this approach implicitly de�nes a 3-valued interpretation: assignvalue true to instantiated atoms that are true in all (2-valued, not necessarily Herbrand) models of thecompleted program, false to instantiated atoms that are false in all models, and ? (unknown) to all otherinstantiated atoms. However, because the truth of each literal is based on traditional 2-valued logic, we callthis the 2-valued program completion (2PC) interpretation.9

The 3-valued interpretations were made explicit by Fitting [9] and Kunen [17], who also used 3-valuedlogic to evaluate formulas. Whereas (p _ :p) must be true in 2-valued logic, in 3-valued logic it may alsobe ?. In addition, the \$" produced by the program completion process was interpreted as Lukasiewicz'soperator of \having the same truth value," so that?$? evaluates to true. Fitting's and Kunen's treatmentseliminated some anomalies in the 2PC interpretation.Example 4.2. Consider the single rule programp not p; not q:The Clark completion is p$ (:p ^ :q)q $ falsewhich has no 2-valued model. (The second rule derives from false representing the empty disjunction of q'srule bodies.) However, if we add the \meaningless" rule, p p, the completed program changes to:p$ (:p ^ :q) _ pq $:truewhich has the unique 2-valued model, fp; :qg. If, instead, we add the \meaningless" rule, q q, thecompleted program changes to: p$ (:p ^ :q)q $ qwhich has a di�erent 2-valued model, f:p; qg. However, all three versions have 3-valued models in whichp = ?.Finally, as suggested by a referee, if we add several rules, giving:p not p; not q:q r:q s:r r:s s:the completed program becomes: p$ (:p ^ :q)q $ (r _ s)r $ rs$ sNow there are three 2-valued models, which vary on whether r or s or both are true. Their common part(intersection) is the same 2PC interpretation as above, f:p; qg. However, here the 2PC interpretation is nota 3-valued model .One principal result in [9] is that the completion of every program has a (unique) minimum 3-valuedHerbrand model. Fitting suggests that this model be taken for the semantics of the program, and hereafterwe call it the Fitting model . Thus the Fitting model is sometimes \less de�ned" than the 2PC interpretation,as in the previous example. However, Example A.1 in Appendix A shows that the 2PC interpretation canbe \less de�ned" than the Fitting model.To any partial interpretation I (in 2-valued logic) there corresponds the obvious 3-valued interpretationin which atoms missing from I are assigned the truth value ?. In this setting, our partial interpretationsare the same as Fitting's basic sets [9]. In 3-valued logic literals and conjunctions are true and false in I asspeci�ed in De�nition 2.4; in addition, the truth value ? may be assigned:De�nition 4.1. Literal q is called unde�ned in I , denoted by \?", if neither q nor its complement is in I .A conjunction of literals evaluates to unde�ned in I if no literal in the conjunction is false in I and at leastone is unde�ned in I . 10

De�nition 4.2. NP is de�ned as the transformation that, for I a 3-valued interpretation, gives as NP (I)the set of atoms p such that for every rule in the Herbrand instantiation of P with p as its head, the bodyis false in I , i.e., some subgoal of the rule is false in I . Note that NP is the portion of UP produced bycondition (1) of De�nition 3.1.Fitting also constructs 3-valued models with a �xed point operator [9]. For positive inferences, TP isas in De�nition 3.3. For negative inferences he uses (in e�ect) the transformation NP (I) de�ned above. Asecond main theorem of that approach is:Theorem 4.1. (Fitting) A 3-valued interpretation I is a 3-valued model of the completed program if andonly if I = TP (I) [: �NP (I).This immediately yields a �xed point construction for 3-valued models, and the Fitting model is the least�xed point. We now show that the well-founded partial model is also a 3-valued model in Fitting's sense.Theorem 4.2. Let I1 be as de�ned in De�nition 3.4. Then I1 = TP (I1) [: �NP (I1). Hence, I1 is a3-valued model of the completion of the logic program.Proof. Since I1 = TP (I1) [: �UP (I1), it follows that1. TP (I1) [: �NP (I1) � I1, and2. every positive literal in I1 is in TP (I1).It remains to show that every negative literal :p that is in I1 is also in : �NP (I1). But by Lemma 3.5each instantiated rule with head p has its body false in I1, so p 2 NP (I1).Corollary 4.3. The Fitting model is a subset of I1.I1 can indeed di�er from the smallest 3-valued model of the completion of the program, and need noteven be a subset of all 2-valued models, as shown by the one-rule program, p p, in which p is false in I1and is unde�ned in the Fitting model.Kunen describes a variant that di�ers from Fitting's in two important ways: (1) the iteration is alwaysstopped at !, and (2) the Herbrand universe is de�ned with respect to a language with an in�nite set offunction symbols, which properly includes those that occur in the program [17]. The resulting 3-valuedinterpretation is recursively enumerable, but may not be a 3-valued model. Kunen's main theorem is thatthis interpretation characterizes the 3-valued logical consequences of the completed program.5 Stable ModelsGelfond introduced an approach to negation through stable models [10], and motivated it by appealing toautoepistemic logic, as developed by Moore [26]. The theory has been further developed by Gelfond andLifschitz [11], and also by Marek and Truszczynski [24, 23].In this section we follow the de�nition of [11], which de�nes stability without reference to autoepistemiclogic. We show that if a program has a total well-founded model, that model is the unique stable model. Wealso discuss two programs which do not have total well-founded models but do have unique stable models.Whether inferring (or not inferring) the truth of these extra literals is \a bug or a feature" of either approachwe leave for the reader's judgement.Gelfond and Lifschitz [11] de�ne a stable model to be one that reproduces itself in a certain three stagetransformation, which we call the stability transformation. If a program has only one stable model, that iscalled its unique stable model. Stable models refer to 2-valued logic. When speaking of total, or 2-valued,interpretations, it is more common to represent models as sets of ground atoms, with the understandingthat missing atoms represent the negative literals. In this context a \minimal model" is one that has aminimal set of positive literals, and a \monotonic transformation" on total interpretations is one that ismonotonic in terms of the positive literals alone. However, for consistency with the rest of the paper, weshall represent models as sets of literals, and use the following notation for sets of positive and negativeatoms in interpretations. 11

De�nition 5.1. For any partial interpretation I , let Pos(I) be the set of positive literals in I , and letNeg(I) be the set of atoms that represent negative literals in I . Thus I = Pos(I) [: �Neg(I).De�nition 5.2. Given a general logic program P, and its Herbrand instantiation, PH , we de�ne S, thestability transformation from total interpretations into total interpretations. Given a total interpretation I ,its transformation S(I) is de�ned in the following three stages:1. De�ne P0 = T1(PH ; I)where T1 is the following transformation: For each rule instantiation, if it contains a negative subgoalthat is inconsistent with I , then the rule instantiation is discarded. The output of the transformationis the set of rule instantiations that remain.2. De�ne P00 = T2(P0)where T2 is the transformation by which all negative subgoals are dropped from rules of P0, leaving aHorn program. We call P00 the reduction of P with respect to I .3. Since P00 is a Horn program, we can form its minimum (2-valued) model as in the standard Van Emdenand Kowalski semantics [39]. In this context, \minimum," means that the set of positive literals isminimized, and hence the set of negative literals is maximized.We de�ne S(I) to be this minimum model of P00.Example 5.1. Let PH be p not p:a not b:b not a:and let M = fa; :b; pg, which is a minimal model of PH . Then P0 consists only ofa not b:because the other rules contain negative subgoals whose atoms are in Pos(M). Now P00 is the Horn rulea:Thus S(M) = fa; :b; :pg, which, incidentally, is not a model of PH .The name \stability transformation" is justi�ed in a sense by the following lemma, which shows that S isa \shrinking" transformation (on positive literals) when applied to total models. However, as shown above,it is possible that M is a model and S(M) is not a model; it may \shrink" too much.Lemma 5.1. Let M be a total model of general logic program P. Then Pos(S(M)) � Pos(M).Proof. Using the terminology of De�nition 5.2, M is a total model of P0 and also of P00, by theirconstruction. But S(M) is the minimum total model of P00.The models that are �xed points of S are of special interest.De�nition 5.3. A total model M of general logic program P is stable if it is a �xed point of S; that is, ifM = S(M). If program P has exactly one stable model, that model is called the unique stable model of P.12

It is immediate that a stable model is minimal (in terms of the set of positive literals), but not everyminimal model is stable, as shown in Example 5.1 above and in Example 5.3 below.Example 5.2. Let P1 be a not b:b not a:Both fa; :bg and fb; :ag are stable models, so P1 has no unique stable model. Its Fitting model, 2PCinterpretation, and well-founded partial model are ;.Example 5.3. For another example, let P2 be p not p:The only model of P2 is M = fpg. The one rule in the program drops out of the reduction, makingS(M) = f:pg the minimum model of the reduction of P2. Hence P2 has no stable model.As discussed in Example 4.2, the completed program is p$:p. Its 2PC interpretation in 2-valued logicis inconsistent. Its Fitting model and well-founded partial model are ;.There is a close relationship between stable models and well-founded (partial or total) models. As de�ned,a unique stable model is demonstrated only through the explicit enumeration of all minimal models followedby testing each for stability. We shall show that well-founded total models are unique stable models. Thiso�ers a method to generate the unique stable model directly3 in such programs. The next lemmas illustratethe close relationship by showing that, for total models, the negative part of the stability transformation Sagrees with the greatest unfounded set UP , while the positive part of S is contained in TP .Lemma 5.2. Let M be a total model of a program P. Then Neg(S(M)) = UP (M).Proof. Form Horn program P00 as in De�nition 5.2, and let M0 = S(M) be its minimum total model.First we show that UP (M) � Neg(M0). Since M0 is total, it su�ces to show that, for any positiveliteral p, if p 2 Pos(M0) then p 62 UP (M). We prove this by induction on the stages of the (Van Emdenand Kowalski type) construction of M0. It is true vacuously for stage 0, which is empty. For stage k > 0,suppose positive literal p is derived in stage k of the construction of M0. Then there is a rulep a1; : : : ; akin P00 such that the ai's have been derived in stages less than k. This rule corresponds to some rule in P0,p a1; : : : ; ak; not b1; : : : ; not bnsuch that each bj 2 Neg(M), which in turn corresponds to a rule in PH . By Lemma 5.1, all the ai's are alsoin Pos(M). Since M is consistent, none of the subgoals, the ai's or the not bj 's, are false in M. Finally,by the inductive hypothesis, none of the ai's are in UP (M). Hence, by virtue of this PH rule, p 62 UP (M).We prove that Neg(M0) � UP (M). It su�ces to show that Neg(M0) is an unfounded set of PH w.r.t.M. Suppose some p 2 Neg(M0) fails to satisfy some condition of unfoundedness, as de�ned in De�nition 3.1.Then there is a rule p a1; : : : ; ak; not b1; : : : ; not bnin PH such that the following facts hold:1. no ai is false in M2. no bj is true in M3. no ai is true in Neg(M0)3if you consider possibly trans�nite iteration direct! 13

the third fact being the negation of the \unfoundedness" condition. Since M is total, it follows from thesecond fact that each bj is in Neg(M). Hencep a1; : : : ; akis a rule in P00. SinceM0 is total, it follows from the third fact that each ai 2 Pos(M0). Hence p 2 Pos(M0),a contradiction.Lemma 5.3. Let M be a total model of P. Then Pos(S(M)) � TP (M).Proof. Form program P0 and Horn program P00 as in De�nition 5.2, and let M0 = S(M) be the minimumtotal model of P00. By Lemma 5.1, Pos(M0) � Pos(M), so we havePos(M0) = Pos(TP 00 (M0)) � Pos(TP 00(M))by monotonicity of TP 00 (on positive literals). Finally,Pos(TP 00 (M)) = Pos(TP 0(M)) = Pos(TP (M))by construction.The preceding lemmas lead to the next theorem that being a �xed point of S is equivalent to being a�xed point of WP for total models. In fact, this equivalence extends to all total interpretations becausebeing a �xed point of either transformation ensures that the interpretation is a model. As shown in a laterexample, it is possible that a �xed point of S is not the least �xed point of WP , but if it is the least �xedpoint, that stable model is obviously unique.Theorem 5.4. Let M be a total model of P. Then M is stable if and only if it is a �xed point of WP .Proof. Form Horn program P00 as in De�nition 5.2, and let M0 = S(M) be its minimum total model.(() We suppose M is a �xed point of WP and prove it is stable. Since M is a �xed point of WP , wehave Neg(M) = UP (M). But, by Lemma 5.2, Neg(M0) = UP (M), also. Hence M =M0.()) We suppose M is stable and prove it is a �xed point of WP . Since M = M0, by Lemma 5.3,Pos(M) = Pos(M0) � TP (M). But TP (M) � Pos(M), sinceM is a model of P. So TP (M) = Pos(M).Again, since M =M0, by Lemma 5.2, UP (M) = Neg(M).Corollary 5.5. Let I be a total interpretation of P. Then I is a �xed point of S if and only if it is a �xedpoint of WP .Proof. It is routine to show that if I is a �xed point of either S or WP , then every instantiated rule issatis�ed. Hence I is a model, and Theorem 5.4 applies.Corollary 5.6. If P has a well-founded total model, then that model is the unique stable model.Corollary 5.7. The well-founded partial model of P is a subset of every stable model of P.Proof. Every stable model is a �xed point of WP , and the well-founded partial model is the least �xedpoint.In Examples 5.4 and 5.5 below we show that the converse of Corollary 5.6 is not necessarily true.We agree with Gelfond and Lifschitz that a model that is intended to be associated with a programshould be able to \derive itself." However, as shown in later examples, the sense of \deriving itself" di�ersslightly between well-founded semantics and stable model semantics.5.1 Comparison of Stable and Well-Founded ApproachesWe now compare the well-founded semantics with the stable model semantics. On many programs they areidentical, and at �rst it appeared that the only di�erence was that the well-founded semantics de�ned a partialmodel when there were multiple stable models. However, it turns out that there also are programs with aunique stable model and only a partial well-founded model. In other words, the converse of Corollary 5.6 isnot necessarily true. These examples and others show that awkward situations arise for well-founded modelsand unique stable models when the factoring operation of resolution theorem proving (or the law of the14

excluded middle, in natural deduction) plays a part. Recall that \factoring" of a ground clause is simply theoperation of merging two identical literals.Factoring enters the picture with a rule of the formp not p; : : :because, as a disjunctive clause, it can be rewritten asp _ p : : :and then the two p literals can be merged. Another manifestation of this phenomenon occurs with a pair ofrules, p a; : : :p not a; : : :Again, as disjunctive clauses, they can be resolved on a, givingp _ p : : :and then the two p literals can be combined by factoring. Two-valued logical consequences that can bederived only by using factoring cannot be derived in either the well-founded semantics or the 3-valuedprogram completion approaches (cf. Examples 4.2 and 5.3).Example 5.4. Consider the program P3 given by the four rules:a not b:b not a:p not p:p not b:Let us �rst consider P03, consisting of just the �rst three rules above (cf. Example 5.1). The �rst two rulescomprise P1 of Example 5.2, which had two stable models; the third is P2 of Example 5.3, which had nostable model. Thus the �rst three rules alone have two minimal models, neither of which is stable:fa; :b; pg and f:a; b; pgThe program completion of P03 is inconsistent. (Just turn each \ " into \$".) Not too surprisingly, thewell-founded partial model and the Fitting model are empty.Adding the fourth rule would appear to be meaningless at �rst glance because p is already a (2-valued) logical consequence of the �rst three rules, and there is no apparent basis to conclude :b, anyway.Nevertheless, the fourth rule has a strange e�ect: it stabilizes precisely one of the two models, and soproduces a unique stable model for the full program! Moreover, the program completion of the full P3,a$:b:p$ (:p _ :b):now has a 2-valued model. Whereas its well-founded partial model and Fitting model remain empty, theunique stable model of P3 is M = fa; :b; pgTo verify this, we note that the reduction of P3 with respect to M isa:p:This model is also the 2PC model.
15

Example 5.5. Consider the program P4 given by the four rules:a not b:b not a:c a; b:a not c:Again the Fitting model and well-founded partial model are ;, while the unique stable model exists andagrees with the 2PC model: M = fa; :b; :cgTo verify this, we note that the reduction of P4 with respect to M is simplya:c a; b:a:
6 Strati�ed and Locally Strati�ed ProgramsA program is strati�ed if all of its predicates can be assigned a rank such that� no predicate depends positively on one of greater rank, and� no predicate depends negatively on one of equal or greater rankin any rule [4, 1, 19, 40]. In the context of an IDB and EDB, the EDB, being a set of simple facts, hasrank 0. IDB predicates whose de�ning rules involve no negation also have rank 0. IDB predicates whoseonly negative dependencies are on rank 0 predicates have rank 1, and so on. Strati�ability is easy to checksyntactically; in fact it can be checked by examination of the IDB alone.The strati�ed semantics of such a program is de�ned by �rst drawing all rank 0 inferences in the normalway for Horn programs, and concluding :p for all rank 0 atoms p that have not been inferred. Note thatthis is not the usual \negation by failure" because some of these atoms may not have failed �nitely ; cf.Example 7.2. The de�nition of strati�ed semantics is completed inductively: After all atoms of ranks lessthan k have been classi�ed as positive or negative, use these literals to derive positive rank k atoms; conclude:q for all rank k atoms q that have not been inferred. The result is called the strati�ed model .It is immediate from Theorem 3.7 that the strati�ed semantics agrees with the well-founded semanticsfor rank 0, and it is easy to see that the agreement extends to all ranks. We shall prove a somewhat strongerresult below. From another point of view, Van Gelder has shown that strati�ed programs that satisfy certainother conditions have a model based on \tight derivations" that coincides with the strati�ed model [40].Przymusinski carried the above idea to a �ner grain by de�ning a program to be locally strati�ed if eachatom in its Herbrand base can be assigned a countable ordinal rank such that no atom depends on an atomof greater rank or depends negatively on one of equal or greater rank in any instantiated rule [31]. Note thatthe program is strati�ed if all atoms with the same predicate symbol can be assigned the same rank. Theextension handles situations where the \recursive negation" is apparent, but not real. A typical example isthe program even(s(X)) not even(X):even(0):where each ground atom can be given a rank equal to the power of s in its argument.To give a semantics to locally strati�ed programs Przymusinski [31] has given a de�nition for perfectmodel . Essentially,M is a perfect model (for a given ranking of atoms) if for all other modelsM0, if positiveliteral p is the atom of least rank that is in one model, but not the other, then it is in M0. In other wordsthe perfect model minimizes positive literals of low rank in preference to positive literals of greater rank.Przymusinski has shown that all locally strati�ed programs have a perfect model, and that it isindependent of the ranking system chosen (within the constraints mentioned); moreover, on strati�edprograms, the perfect model agrees with the strati�ed model. We show that the well-founded semanticsis an extension of this approach in the following sense.16

Theorem 6.1. If P is locally strati�ed, then it has a well-founded model, which is identical to the perfectmodel.Proof. We take as the inductive hypothesis that for any atom p of rank k: if p is in the perfect model, it isin the well-founded partial model I1; and if p is not in the perfect model, then :p is in I1.The basis, k = 0, is immediate.For k > 0, �rst assume p is in the perfect model. Then we claim that there is an instantiated rule withp as head, say p q1; q2; : : : ; not r1; not r2; : : :such that all qi are in the perfect model and no rj is in the perfect model. For if this were not so, wecould remove p from the (supposedly) perfect model, and at worst have to add atoms of greater rank thanp (because they have a rule containing not p) to restore the model. Since the rj are of lower rank than p,the inductive hypothesis asserts that :rj are in I1. Also, any qi of lower rank than p are in I1.Now consider a program consisting of all instantiated rules for atoms of rank k whose subgoals of lowerrank are true in I1. We modify the rules by removing the subgoals of rank less than k, leaving a Hornprogram P00 (cf. De�nition 5.3). Clearly the minimum model of P00 will be precisely the atoms of rank k inthe perfect model. But all such atoms are also in I1. Moreover, the atoms of rank k not in the minimummodel of P00 form an unfounded set of P00 with respect to ; by Theorem 3.7. It follows from the constructionof P00 that these atoms also form an unfounded set of P with respect to I1, so their negations are in I1.7 Motivating ExamplesWhether a particular model is the \right" one really depends on people's expectations. After all, programsare tools whose behavior needs to be understood and manageable by people. In this section we comparewell-founded semantics with some other recent approaches based on canonical models, the stable modelsemantics outlined in Section 5, and strati�ed semantics, which has been studied by many researchers. Wepresent some examples to support our position that well-founded models are natural and intuitive.Example 7.1. This example is abstracted from the \Yale shootout" example due to Hanks and McDermott[13]. The program P is noise(T) loaded (T); shoots(T):loaded (0).loaded (T) succ(S; T); loaded (S); not shoots(S):shoots(T) triggers(T):triggers(1).succ(0; 1).We regard triggers and succ as EDB predicates, and the others as IDB. The Herbrand instantiation of Pcontains ground versions of the IDB rules as follows:noise(1) loaded (1); shoots(1):noise(0) loaded (0); shoots(0):loaded (1) succ(0; 1); loaded (0); not shoots(0):loaded (1) succ(1; 1); loaded (1); not shoots(1):loaded (0) succ(0; 0); loaded (0); not shoots(0):loaded (0) succ(1; 0); loaded (1); not shoots(1):shoots(1) triggers(1):shoots(0) triggers(0):Intuitively, since we have no information that shoots(0) holds, we are led to the (presumably) intendedminimal model: loaded (0);:shoots(0);:noise(0);loaded (1); shoots(1); noise(1)17

However, an alternate minimal model exists:loaded (0); shoots(0); noise(0);:loaded (1); shoots(1);:noise(1)Since noise(1) is not true in all minimal models, the circumscription approach does not allow it to beconcluded, which was a main point made in [13]. However, the well-founded model is the intended one.To compare with other approaches: The 2PC model and Fitting model are also the intended model here.The program is strati�ed, so the strati�ed semantics agrees with the well-founded semantics. The intendedmodel is also the unique stable model, as the alternate is not stable.In the preceding example, the 2PC and Fitting models were 2-valued, and gave the intended model. Thenext example typi�es the situation in which we consider the 2PC and Fitting models to be too weak anapproach.Example 7.2. Consider a program with the rules:p(X;Y) b(X;Y):p(X;Y) b(X;U); p(U; Y):e(X;Y) g(X;Y):e(X;Y) g(X;U); e(U; Y):a(X;Y) e(X;Y); not p(X;Y):and the facts about b and g: b(1; 2) g(2; 3)b(2; 1) g(3; 2)Apparently, p is the transitive closure of b and e is the transitive closure of g. We expect a to be the di�erenceof these two relations; in particular, it seems that a(2; 3) is true. This appears to be the intended model,and is indeed the well-founded model, as well as the strati�ed model.There is another minimal model, in which p(2; 3) and p(1; 3) are true and a(2; 3) is false. Moreover,this alternate model satis�es the Clark completion of the program as well. Thus by the method of logicalconsequences of the completion of the program, the status of a(2; 3) and other literals is either not addressed(2PC interpretation) or declared unde�ned (Fitting model, Kunen model).The criterion of stability reinforces the choice of the well-founded model. The alternate model is incapableof reproducing itself in the manner de�ned in De�nition 5.3, and the intended model emerges as the uniquestable model.In fact, Kunen has recently shown that in his 3-valued logical consequence semantics, a \strict" logicprogram without function symbols cannot de�ne a predicate that is true in the transitive closure, false inits complement, and nowhere unde�ned [18]. Informally, a \strict" program is one in which the dependenceof one predicate on another (or itself) is either through an even number of negations or through an oddnumber, but not both. Because Kunen's semantics is di�erent from Fitting's, even on programs withoutfunction symbols (see Example A.1 in the appendix), the question of whether a \strict" program is possiblein the Fitting semantics is open. Nonstrict programs in the Fitting semantics are known to exist, by thework of Immermann [14], but are quite complicated; details are discussed elsewhere by Van Gelder [42].As another motivational example, we consider a program that is not locally strati�ed, as de�ned inSection 6, yet has a well-founded model when the EDB relation is acyclic. A more involved example inwhich constraints on the EDB can be speci�ed to guarantee that the well-founded model is total is discussedelsewhere [41].Example 7.3. This example is essentially the same as one discussed by Gelfond and Lifschitz [11], and isone of the examples that led to the formulation of well-founded semantics, as well as stable models. Interestly,18

����F ZZZZZZZ~�������= ����T @@@@@R�����	����T�����	 @@@@@R����F ����F ����F ����T SSSSSw�����/ ����F����F(a)

����? ���� �-
����??����T?����F(b)

����F ���� �-
����T?����F(c)Figure 1: Graphs for Example 7.3: (a) Acyclic; (b) Cyclic with partial model; (c) Cyclic with total model.Entries T , F , and ? in the nodes indicate whether winning is true, false, or unde�ned in the well-founded(partial) model.this program turns out to be closely related to a game described by Kolaitis, and used to prove that thereare queries in �xpoint logic that are not expressible by strati�ed programs [16]. In this respect, the programcan be viewed as describing a game where one wins if the opponent has no moves, as in checkers (draughts).winning(X) move(X;Y);not winning(Y):Some sample move graphs are shown in Fig. 1. Whenever the move EDB relation is acyclic (e.g., part (a)of the �gure), the well-founded total model is easily found, by proceeding \up" the directed graph. Part(b) shows a cyclic case in which the well-founded model is partial, but even when a cycle is present in theEDB, there may be a well-founded total model (part (c)). For this program, the Fitting model and the 2PCinterpretation agree with the well-founded model.However, the program is not locally strati�ed because the Herbrand instantiation contains a rule in whichwinning depends negatively upon itself, as inwinning(a) move(a; a);not winning(a):This also destroys the perfect model even though move(a; a) does not occur in the EDB.4 Recently,Przymusinska and Przmusinski have de�ned weakly perfect models to handle programs such as this example[30].The next example was inspired by an informal presentation by K. Morris of Stanford University [27]. Itshows how the negation issues addressed by this paper might easily arise in practical settings.Example 7.4. We imagine a logic program that might be part of a VLSI CAD system, whose function is todisplay a VLSI chip that has been hierarchically de�ned. Each object is modeled as a series of layers, eachlayer being an array of grid points. The hierarchical de�nition speci�es basic and synthesized objects: basic4Except in the trivial case where the program has only one Herbrand model.19

a
b

ecdd ss
Figure 2: VLSI objects for Example 7.4: Object a is synthesized from b and c at level 1, and d and e at level2. The color of object a is \inherited" from c at the point represented by the lower dot; however this doesnot hold at the upper dot, because c is dominated by d there.objects are distinguished by having base colors , while the colors of synthesized objects are de�ned wholly interms of their components, and can vary from point to point. The entire chip is the \root" object. Figure 2shows an example in which root object a is synthesized from objects b, c, d and e, whose further details arenot shown.Assume the program uses these predicates, which may be treated as EDB relations for our purposes.� vecSum(P0; P1;Pt) is true when P0 + P1 = Pt as two-dimensional vectors, the details of whoserepresentation do not concern us.� component(Obj ; O1; P0; L) is true when object Obj has a component O1 whose origin, or referencepoint, is P0, and whose layer number is L. For example, the chip might have many identical ALUsat di�erent points; they would all be the same O1, but would have various values of P0. The ALUsmight have adders as components, and the adders would have still smaller components. Within thesame Obj components might overlap, so the layer number speci�es their relative \vertical" order.� baseColor (Obj ;Pt ; C) means that C is the color of basic object Obj at point Pt .To specify the color property in our rule syntax, we require two mutually recursive IDB relations. Theinterested reader can work out the equivalent rules using a single relation in a language that supports aricher syntax for rule bodies [21, 28].� color (Obj ;Pt ; C) means that the visible color of Obj at Pt is C (looking down from above).� dominated(Obj ;Pt ; O1; L1) holds when two objects that are components of the same Obj overlap atpoint Pt and the object O1 is in the lower layer L1. For the object in the higher layer to actuallyoverlap, it must have color de�ned at that point.

20

We now formulate rules for determining the color C of a component Obj at a grid point Pt .color (Obj ;Pt ; C) baseColor (Obj ;Pt ; C):color (Obj ;Pt ; C) component(Obj ; O1; P0; L1);vecSum(P0; P1;Pt);color (O1; P1; C);not dominated (Obj ;Pt ; O1; L1):dominated (Obj ;Pt ; O1; L1) component(Obj ; O2; P0; L2);L1 � L2;vecSum(P0; P2;Pt);color (O2; P2; C2):Note that color depends on itself negatively through the rule for dominated, as well as positively. The ruledesigner expects the component relation to be acyclic in its �rst and second arguments; i.e., O1 is expectedto be a subcomponent of Obj .When the expected acyclicity holds, the well-founded model is easily found, just working up the datastructure. In this case, the Fitting model is 2-valued, as is the 2PC model. However, there is no perfectmodel for essentially the same reason as in Example 7.3.When a cycle is present in the EDB, color cannot be established for anything in the cycle. For thisapplication, the cycle presumably represents a design error. However, the well-founded semantics still de�nescolor correctly in parts of the chip not a�ected by the error.A theme that runs through these examples is that well-founded semantics frequently agrees with othersemantics, but seems to avoid their awkward cases. In this sense it seems quite robust.8 Computational ComplexityNot only do we want to formulate a reasonable semantics for negation, we also want the set of statementsderivable to be \reasonably computable," as far as possible. Unfortunately, the well-founded partial modelis not necessarily recursively enumerable, a di�culty it shares with most of the semantics discussed here.However, for function-free logic programs (a class that has come to be known as Datalog), the Herbranduniverse is �nite and the construction is e�ective. In this section we show that the data complexity of thewell-founded semantics, as de�ned by Vardi [44], is polynomial. From this standpoint it is competitive withother methods, such as strati�ed semantics, whose data complexity has been studied elsewhere [5, 44, 12,14], and the Fitting model (as remarked below).In this discussion of complexity we restrict attention to function-free programs, so a program's Herbranduniverse is just the set of constants appearing in it. We consider a �xed IDB, PI (which we allow to be anygeneral function-free logic program). As discussed before, PI can be thought of as a set of inference rulesthat might be applied to various EDB's, or sets of facts. The predicates that appear as subgoals in PI , butdo not appear in the head of any rule, constitute the EDB predicates. We represent an EDB, PE , as a setof positive ground literals ranging over the EDB predicates. (The constants in PE may or may not appearin PI .) Given an EDB PE , we form a logic program P(PE) = PI [PE , and we denote its well-foundedpartial model by I1(PE). Finally, regard PI as de�ning the transformation from PE to I1(PE).De�nition 8.1. The data complexity of an IDB is de�ned as the computational complexity of decidingthe answer to a ground atomic query as a function of the size of the EDB; in the context of well-foundedsemantics, this means deciding whether the ground atom is positive in the well-founded partial model.Since the IDB is �xed, the predicates in the well-founded model have �xed number and arity (width,or number of argument places). Hence the Herbrand base has size that is polynomial in the size of theEDB. (Without function symbols, we may add any constants appearing only in the query to the Herbranduniverse without having a signi�cant e�ect on its size.) Also since the IDB is �xed, the size of the Herbrandinstantiation of the program is polynomial in the size of the EDB.21

Theorem 8.1. The data complexity of the well-founded semantics for function-free programs is polynomialtime.Proof. As usual in the proofs of such theorems, we shall show that the entire well-founded (partial) modelcan be constructed in polynomial time, after which any query can be answered immediately. The well-founded model is the least �xed point of the construction of I�, as described in De�nition 3.4. At each stageof the induction, until the �xed point is reached, at least one element of the Herbrand base H is added toI�+1, so the �xed point must be reached in a number of steps polynomial in the size of the EDB. This sortof argument is standard; see [5, 44, 12, 14], etc. Similar standard arguments show that calculating TP canbe done in polynomial time. So we need only show that each UP (I�) can be found in polynomial time.Clearly, we may restrict attention to �nite �. We shall actually give a polynomial time construction of theset of ground atoms in (H �UP (I�)).De�ne �(J) as the transformation on sets of ground atoms, with implicit parameter I�, such that: Aground atom p is in �(J) if and only if there is a ground instance of a rule in P, sayp b1; : : : ; bn; not c1; : : : ; not cmsuch that� no subgoal (bi or not cj) is false in I�, and� all bi are in J .Let J = �(;). Clearly � is monotonic, and J reaches a limit J1 at a that is polynomial in jH j.Suppose p 2 �(J) due to the rule shown above. This rule shows that if p were in UP (I�), then some bimust also be in that set. Thus by a trivial induction on , no atom in [J is in UP (I�).To show that the set of ground atoms in H � J1 is unfounded w.r.t. I�, let q be any such atom. Theneach rule with q as head has a subgoal that violates the condition that would put q in �(J), for any . If theviolation is that some subgoal is false in I�, this satis�es condition (1) for an unfounded set (De�nition 3.1);if the violation is that some positive subgoal is not in J for any , then that subgoal is in H�J1, satisfyingcondition (2) for an unfounded set.It follows that J1 = (H �UP (I�)).The key idea in the above proof, to inductively construct the complement of the greatest unfounded set,was �rst suggested to two of the authors by M. Y. Vardi, and later discovered independently by J. S. Schlipf.We remark that the Fitting model also has polynomial data complexity (for function-free programs). Theproof is identical to that of Theorem 8.1 above, except that a polynomial calculation of NP (see Def. 4.2)must be exhibited; but such a calculation is routine.In contrast, Marek and Truszczynski [23] have shown that, even for propositional general logic programsP, determining whether P has a stable model at all is NP-complete.9 The Final Frontier?The major shortcoming of the well-founded semantics that we have found concerns its inability to handleconclusions that can be reached only by using factoring or a similar technique, such as \ancestor resolution."Such techniques are known to be necessary for completeness of non-Horn proof systems, but not for sets ofHorn clauses. The need for factoring arises principally from \proof by cases", and sometimes from \proofby contradiction".However, factoring possibilities in the given program do not always carry over to the completed program,and a _ :a does not simplify to true in either 3-valued logic [9, 17] or intuitionistic logic [7]. Thus cautionis needed to keep a coherent system.The overly trivial P2 in Example 5.3 might lead one to believe that a factoring capability can be easily\patched in" by just checking for a negative subgoal that complements the head of the rule; this conclusionwould be incorrect, as shown by a not b:b not a:p a:p b:22

in which we cannot choose between a and b, but might reasonably be expected to notice that p musthold (in 2-valued logic). In general, recognizing that p is a (2-valued) logical consequence of a �nite setof instantiated rules is co-NP-complete. Furthermore, we normally start with rules that contain variables.Thus, any extension of logic program semantics that depends on \true non-Horn reasoning" needs to beundertaken with great caution, and represents a signi�cant open problem.10 ConclusionWe have presented a new semantics, the well-founded semantics , for general logic programs that extendsseveral earlier proposals, and has advantages over them in that1. It is applicable to all programs.2. Compared to several other methods, a larger portion of the Herbrand base tends to be classi�ed aseither true or false.3. Truth values are assigned (in the authors' judgement) in a reasonably predictable and intuitivelysatisfying way.Elsewhere, the expressive power of the well-founded semantics has been compared to several forms of �xpointlogic [42]. A corresponding procedural semantics has been reported for some classes of programs [35, 32].AcknowledgementsWe wish to thank Jerzy Jaromczyk, Phokion Kolaitis, Vladimir Lifschitz, Wiktor Marek, Rodney Topor, andMoshe Vardi for helpful discussions and comments about this work. We also thank the anonymous refereesfor their careful readings of the manuscript and many useful suggestions.The work of Kenneth Ross was supported in part by NSF grant IRI-8722886, by a grant from IBMCorporation, and by AFOSR under contract 880266. The work of John Schlipf was supported in part byNSF grants IRI-8705184 and IRI-8901566. The work of Allen Van Gelder was supported in part by NSFgrants CCR-8958590 and IRI-8902287.Appendix A Augmented ProgramsCertain programs exhibit undesirable behavior when interpreted in the Herbrand universe, due to theircontaining what is called unsafe negation. A simple way to remove this behavior is to augment the program,as described in this appendix. We proceed informally here, and refer to [22] for a formal discussion.De�nition A.1. Any general logic program P has an associated augmented program that is formed byadding the apparently nonsensical rule: $p($f($c)) $p($f($c)):where $p, $f , and $c are symbols that do not occur elsewhere in the program.Having the extra \$" terms in the augmented Herbrand universe adds in�nitely many elements to theHerbrand universe, elements that have no names in the original program. This ensures that goals with freevariables have \room to fail" when they should, even in their instantiated versions. Augmenting achieves ane�ect similar to Kunen's embedding the program in a language with in�nitely many function and constantsymbols.
23

Example A.1. In the following program, without inspecting the a relation, we would expect p to holdwherever a does. (Read d as \di�ers" and s as \same".)p(X) a(X); d(X;Y):d(X;Y) not s(X;Y):s(U;U):a(1):The underlying idea is that, looking at the rule for s, we expect the formula 8Y s(X;Y) to be false. But inthe unaugmented Herbrand universe of one element there is no \room" for s(1; Y) to fail because 1 is theonly term. As a result, p(1) fails. However, adding the apparently unrelated fact b(2) to the program meansthat s(1; Y) can fail, by setting Y = 2. This in turn provides a true instance d(1; 2), allowing a proof ofp(1). Augmenting the program avoids this bizarre behavior; s(1; $c) fails in all cases, making p(1) alwaysprovable, as intuition expects.To see why this program has unsafe negation, consider a top-down sequence of goal reductions beginningwith p(1). Using the rules, p(1) reduces to (a(1); d(1; Y)), a(1) reduces to true, then d(1; Y) reduces tonot s(1; Y). The occurrence of a free variable Y in the negative subgoal is called \unsafe" because it is notlimited to any domain. This derivation is said to have oundered [20].Finally, let us note that in the unaugmented program p(1) is false in the well-founded semantics and inthe Fitting semantics, but not in the 2PC semantics or Kunen semantics. Although p(1) is false in the only2-valued Herbrand model of the completed program, there are other 2-valued models in which p(1) is true.All of these semantics agree that p(1) is true in the augmented program.As noted, the Herbrand universe for the augmented program is in�nite. As a result, our proof ofpolynomial data complexity (Theorem 8.1) fails for the augmented program. But the result is still true foraugmented programs; we need only modify the proof slightly. The extra ground terms are all indiscerniblewith respect to the predicates of the original language, so we can carry out the same construction using onlya �xed, �nite number (dependent upon the IDB) of the extra ground terms. Essentially, we need as manydistinct $-terms as there are variables in a single rule.References[1] K. R. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge. In J. Minker, editor,Foundations of Deductive Databases and Logic Programming, pages 89{148. Morgan Kaufmann, LosAltos, CA, 1988.[2] K. R. Apt and M. H. Van Emden. Contributions to the theory of logic programming. JACM, 29(3):841{862, 1982.[3] F. Bry. Logic programming as constructiveism: a formalization and its application to databases. InEighth ACM Symposium on Principles of Database Systems, pages 34{50, 1989.[4] A. Chandra and D. Harel. Horn clause queries and generalizations. Journal of Logic Programming,2(1):1{15, 1985.[5] Ashok Chandra and David Harel. Structure and complexity of relational queries. JCSS, 25(1):99{128,1982.[6] K. L. Clark. Negation as failure. In Gallaire and Minker, editors, Logic and Databases, pages 293{322.Plenum Press, New York, 1978.[7] M. A. E. Dummett. Elements of Intuitionism. Clarendon Press, Oxford, 1977.[8] Ph. M. Dung and K. Kanchanasut. A natural semantics for logic programs with negation. Technicalreport, Asian Institute of Technology, Bankok 10501, Thailand, 1989. (manuscript).24

[9] M. Fitting. A Kripke-Kleene semantics for logic programs. Journal of Logic Programming, 2(4):295{312,1985.[10] M. Gelfond. On strati�ed autoepistemic theories. In Proc. AAAI, 1987.[11] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Fifth Int'l Conf.Symp. on Logic Programming, pages 1070{1080, Seattle, 1988.[12] Y. Gurevich and S. Shelah. Fixed-point extensions of �rst order logic. Annals of Pure and AppliedLogic, 32:265{280, 1986.[13] S. Hanks and D. McDermott. Default reasoning, nonmonotonic logics, and the frame problem. In AAAIConference, pages 328{333, 1986.[14] N. Immerman. Relational queries computable in polynomial time. Information and Control, 68(1):86{104, 1986.[15] J. Ja�ar, J.-L. Lassez, and J. Lloyd. Completeness of the negation-as-failure rule. In Int'l Joint Conf.on Arti�cial Intelligence, pages 500{506, 1983.[16] P. G. Kolaitis. The expressive power of strati�ed programs. Information and Computation, 90(1), 1991.[17] K. Kunen. Negation in logic programming. Journal of Logic Programming, 4(4):289{308, 1987.[18] K. Kunen. Some remarks on the completed database. Technical Report 775, Univ. of Wisconsin,Madison, WI 53706, 1988. (Abstract appeared in 5th Int'l Conf. Symp. on Logic Programming, Seattle,Aug. 1988).[19] V. Lifschitz. On the declarative semantics of logic programs with negation. In J. Minker, editor,Foundations of Deductive Databases and Logic Programming, pages 177{192. Morgan Kaufmann, LosAltos, CA, 1988.[20] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, New York, 2nd edition, 1987.[21] J. W. Lloyd and R. W. Topor. Making Prolog more expressive. Journal of Logic Programming, 1(3):225{240, 1984.[22] M. J. Maher. Equivalences of logic programs. In J. Minker, editor, Foundations of Deductive Databasesand Logic Programming, pages 388{402. Morgan Kaufmann, Los Altos, CA, 1988.[23] A. Marek and M. Truszczynski. Autoepistemic logic. Technical report, University of Kentucky, 1988.(manuscript).[24] W. Marek. Stable theories in autoepistemic logic. Technical report, University of Kentucky, 1986.(manuscript).[25] J. Minker. On inde�nite databases and the closed world assumption. In Sixth Conference on AutomatedDeduction, pages 292{308, New York, 1982. Springer-Verlag.[26] R. C. Moore. Semantical considerations on non-monotonic logic. Arti�cial Intelligence, 28:75{94, 1985.[27] K. Morris. Talk at Workshop XP8.3i, Oregon Graduate Center, July 1987.[28] K. Morris, J. D. Ullman, and A. Van Gelder. Design overview of the Nail! system. In Third Int'l Conf.on Logic Programming, pages 554{568, 1986.[29] Y. N. Moschovakis. Elementary Induction on Abstract Structures. North-Holland, New York, 1974.[30] H. Przymusinska and T. C. Przymusinski. Weakly perfect model semantics for logic programs. In FifthInt'l Conf. Symp. on Logic Programming, pages 1106{1120, Seattle, 1988.[31] T. C. Przymusinski. On the declarative semantics of deductive databases and logic programs. InJ. Minker, editor, Foundations of Deductive Databases and Logic Programming, pages 193{216. MorganKaufmann, Los Altos, CA, 1988. 25

[32] T. C. Przymusinski. Every logic program has a natural strati�cation and an iterated �xed point model.In Eighth ACM Symposium on Principles of Database Systems, pages 11{21, 1989.[33] R. Reiter. On closed world databases. In Gallaire and Minker, editors, Logic and Databases, pages55{76. Plenum Press, New York, 1978.[34] K. Ross and R. W. Topor. Inferring negative information from disjunctive databases. Journal ofAutomated Reasoning, 4:397{424, 1988.[35] K. A. Ross. A procedural semantics for well-founded negation in logic programs. In Eighth ACMSymposium on Principles of Database Systems, pages 22{33, 1989.[36] J. S. Schlipf. Negation by securable failure in logic programming. (manuscript), 1987.[37] J. C. Shepherdson. Negation as failure, II. Journal of Logic Programming, 2(3):185{202, 1985.[38] J. C. Shepherdson. Negation in logic programming. In J. Minker, editor, Foundations of DeductiveDatabases and Logic Programming, pages 19{88. Morgan Kaufmann, Los Altos, CA, 1988.[39] M. H. Van Emden and R. A. Kowalski. The semantics of predicate logic as a programming language.JACM, 23(4):733{742, 1976.[40] A. Van Gelder. Negation as failure using tight derivations for general logic programs. Journal ofLogic Programming, 6(1):109{133, 1989. Preliminary versions appeared in Third IEEE Symp. on LogicProgramming (1986), and Foundations of Deductive Databases and Logic Programming, J. Minker, ed.,Morgan Kaufmann, 1988.[41] A. Van Gelder. Modeling simultaneous events with default reasoning and tight derivations. Journal ofLogic Programming, 8(1):41{52, 1990.[42] A. Van Gelder. The alternating �xpoint of logic programs with negation. Journal of Computer andSystem Sciences, 1992. (to appear). Available as UCSC-CRL-89-39. Preliminary abstract appeared inEighth ACM Symposium on Principles of Database Systems, 1989.[43] A. Van Gelder, K. A. Ross, and J. S. Schlipf. Unfounded sets and well-founded semantics for generallogic programs. In ACM Symposium on Principles of Database Systems, pages 221{230, 1988.[44] Moshe Vardi. The complexity of relational query languages. In 14th ACM Symposium on Theory ofComputing, pages 137{145, 1982.

26

