
Two Methods for Voxel Detail Enhancement
Adam M. Smith

Hacker Dojo
140A South Whisman Road

Mountain View, California 94041
+1 (408) 335-0362

adam.smith@hackerdojo.com

ABSTRACT

In this paper I describe a novel technique called voxel detail en-

hancement that, inspired by pixel art scaling algorithms for 2D

images, produces finely detailed (3D) voxel maps from the coars-

er maps that would be edited by a player’s actions during gamep-

lay. I describe two methods which deterministically generate fine

voxel fragments that depend only on the occupancy of a local

window of coarse voxels. Enhanced voxel maps can provide at-

tractive visuals for voxel-based games without requiring the play-

er to manipulate the world at a finer scale. Decoupling the geome-

try used in graphics and physics from the construction and de-

struction mechanics of the game opens up new gameplay possibil-

ities in the design space occupied by games like Minecraft and

Voxelstein 3D.

Categories and Subject Descriptors

K.8.0 [Personal Computing]: General – Games.

General Terms

Algorithms, Design.

Keywords

Games, procedural content generation, voxels, pixel art.

1. INTRODUCTION
Voxels (volumetric picture elements) are the 3D generalization of

pixels; they represent objects with shape and texture by specifying

colors and/or density values for each point on a regular grid.

Where triangle meshes are a very popular vector representation

for geometry in videogames (with display often accelerated by

dedicated hardware designed around the triangle representation),

voxels are the raster-graphics equivalent. Recently, general pur-

pose programmable graphics hardware has enabled acceleration

for interactive rendering of voxel data [4].

In this paper I introduce a novel technique which I call voxel de-

tail enhancement that can be used to generate detailed, high-

resolution voxel maps from coarser voxel maps in a visually cohe-

rent, computationally deterministic and parallelizable manner.

This technique opens up new possibilities in an already-

underappreciated region in the space of game designs.

1.1 Voxel-based Gameplay
Games with player-editable voxel worlds are uncommon, but they

allow the player much greater flexibility in creating (or destroy-

ing) 3D shapes than a vector representation affords because sur-

face topology is represented implicitly rather than explicitly.

Voxelstein 3D [2] is a voxel-based first-person shooter inspired by

Wolfenstein 3D [1] in which the environment is modeled with

cubes approximately four centimeters on a side. While the detail

level of the voxel graphics of Voxelstein is similar to that of the

pixel graphics in Wolfenstein, a one-to-one mapping between

player actions and voxel edits implies that would-be trivial opera-

tions in another game, such as cutting through thin metal bars,

take tens of actions in Voxelstein (slowing down an otherwise

action-oriented game).

Minecraft [3] is a sandbox survival and construction game that

uses a much coarser level of detail in its use of voxels. Mine-

craft’s world is modeled in cubes that are approximately one me-

ter on a side in relation to the player’s avatar. While this scale is

appropriate for the large-scale geography and player-created arc-

hitectural works for which the game is known, this design choice

bars the player from influencing finer-scale visual details (a

workbench object, for example, is represented by a single unit

voxel).

1.2 Pixel Art Scaling Algorithms
Towards decoupling display-voxels from editable-voxels (merg-

ing Voxelstein’s visual details with Minecraft’s construction me-

chanics), I was inspired by the pixel art scaling algorithms used in

arcade and console game emulators. These algorithms upsample

the carefully-crafted pixel art of classic games for display on

modern, high-resolution screens in a manner that attempts pre-

serve the character of the original work. In contrast to standard

image scaling algorithms that introduce blur into the scaled output

via interpolation, pixel art scaling algorithms preserve flat patches

and angled edges in the original work when rendering output pix-

els.

Edge detection and related logic in these algorithms operates by

examining a small window of pixels in the source image to decide

which features (lines, edges, corners, gradients, etc.) are present in

the original and should be reproduced in finer detail in the output.

In particular, the basic Scale2x1 algorithm used in several emula-

tors produces a 2x2 patch of output pixels for each pixel in the

input (conditioned on its eight surrounding pixels). Any power-of-

two expansion factor can be achieved using algorithms similar to

Scale2x by repeated scaling with the same algorithm.

1 http://scale2x.sourceforge.net/index.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

PCGames 2011, June 28, 2011, Bordeaux, France.
Copyright 2011 ACM 978-1-4503-0804-5/11/06…$10.00.

Another family of pixel art scaling algorithms, the hqnx2 family,

works by determining which determining which of a source pixels

neighbors are similar to it, and then applying a hand-crafted loo-

kup table to decide the appropriate action to take in the output

image. One instantiation, hq4x, examines 4x4 patches centered on

each pixel of the input to produce 4x4 output. This algorithm is

able to exactly reproduce lines of several distinct slopes and

present them, anti-aliased, in the output. Further, it is able to

smooth dithered gradients from the source images where pixel

colors are similar, yielding an appropriate mixture of sharp and

soft details in the output.

The inherently two-dimensional logic of these algorithms does not

directly generalize to voxel maps (primarily because the shape

and size of adjacency neighborhoods changes when adding anoth-

er dimension). However, it is possible to translate their basic in-

tent to 3D, yielding a kind of voxel art scaling.

1.3 Voxel Art Scaling Algorithms
Currently, there exist no algorithms that do for voxels what pixel

art scaling algorithms do for pixels. If such algorithms existed,

they could be used to programmatically rescale the art in games

employing voxel sprites (such as the in-development arcade shoo-

ter Voxatron3 by Lexaloffle Games), saving artist effort and enabl-

ing novel visual effects. Further, voxel art scaling algorithms

2 http://www.hiend3d.com/hq3x.html

3 http://www.lexaloffle.com/voxatron.php

should allow detail-preserving rotation of voxel sprites akin to the

use of pixel art scaling in the RotSprite4 utility for 2D sprites.

Instead of addressing the full complexity of voxel art scaling, this

paper focuses on simply expanding voxels maps in a way that

preserves the character of the input while elaborating with plausi-

ble details on the finer scale. Voxel detail enhancement refers to

this simpler problem.

1.4 Vocabulary
In the description of my techniques to follow, I will refer to the

inputs to each algorithm as the “input map” composed of coarse

“voxels” over which I imagine a player having direct control (as

in Minecraft). The “output map” is composed of fine “fragments”

which the player can see and interact with (via walk-

ing/driving/climbing) but not destructively manipulate. I assume

the input map encodes the density at each voxel as a single bit

(either solid or empty) and that every solid voxel is made of a

diffuse white material for the purposes of shading.

2. RECURSIVE SUBDIVISION
My first method of voxel detail enhancement, recursive subdivi-

sion, is most similar to the Scale2x pixel algorithm. Recursive

subdivision works by producing a 2x2x2 patch of fragments for

each input voxel. To decide whether an output fragment is turned

on (solid vs. empty) I examine the occupancy of the source voxel

and its three immediately neighboring voxels in the direction of

the fragment in question. Concretely, when generating the front-

top-right fragment of a voxel, I examine the source voxel’s front,

4 http://info.sonicretro.org/RotSprite

Figure 1. Enhancing a 16x16x16 input voxel map (left) to produce a detailed, 256x256x256 output fragment map (right) using

the recursive subdivision operator. Below a certain altitude, a single threshold value was used (1), and above, two other values

were vertically alternated (3 and 4) to yield a variety of terrain types. The input map was initialized with 3D Perlin noise, and

both maps were lit with the same lighting algorithm based on wandering particles (see Section 4.4 for lighting details).

top, and right neighbors. By comparing the count of solid voxels

in this neighborhood to a constant (described later), I set the out-

put fragment’s occupancy bit.

In computing the eight output fragments, only the source voxel

and its six face-adjacent neighboring voxels need be considered.

The fragments of one voxel do not depend on the fragments of

another. This implies that voxel detail enhancement is an embar-

rassingly parallelizable process.

As with Scale2x, higher levels of refinement can be achieved by

applying the refinement operator several times (using the frag-

ment output of one level as the voxel input to another), assuming

a power-of-two scaling factor is desired. Figure 1 shows the result

of applying the recursive subdivision technique four times to

achieve a 1:16 linear expansion (4,096 potential fragments for

each voxel). In this case, the input map was created by threshold-

ing a 3D Perlin noise function similar to the one used in Mine-

craft’s world generator.

This technique has a single tunable constant: the activation thre-

shold. In the lower altitudes of Figure 1, a value of one was used

(i.e. a fragment is turned on if any voxel in its neighborhood is

turned on) yielding the emergence of Sierpinski triangle patterns

on angled facets. In the higher altitudes, the value alternated be-

tween three and four (depending on the least significant bit of the

fragment’s altitude), yielding delicate strata with rounded corners.

I have considered, but not implemented, using a different activa-

tion threshold (or spatially-varying threshold pattern) based on the

in-game material type of the input voxel. This should result in a

variety of player-visible materials without any major changes to

the algorithm.

3. DIRECT RESAMPLING
The self-similar patterns produced by the recursive subdivision

enhancement operator are visually interesting, but they would not

be appropriate for the visual themes of every game that might use

voxel detail enhancement. To address this, and overcome the

power-of-two limitation of recursive subdivision, I experimented

with another technique: a direct resampling operator.

Direct resampling is more inspired by image interpolation than

pixel art scaling. Where the four-voxel neighborhood in recursive

subdivision is specifically designed for 2x scaling, a more flexible

(and chaotic) neighborhood is used in direct resampling. The core

of both algorithms, however, is the same: if probing neighboring

voxels yields more than a certain number of solid voxels, the out-

put fragment will be turned on.

Before direct resampling begins, a random sampling pattern is

generated once and stored. This pattern consists of a set of offsets

to be applied to the current fragment’s location when probing for

neighbors. The spread of these samples controls the detail en-

hancement operator’s ability to smooth corners and diagonal lines,

and the count of these samples controls the smoothness of the

resulting resampled surface.

Figure 2 shows two concrete examples of the direct resampling

operator in action. In the two worlds depicted, sampling patterns

consisting of 4 and 512 probe samples were created using offsets

in the range -1.0 to 1.0 (in voxel-units, this is a relatively conserv-

ative spread). During fragment generation, these offsets are added

to the fragment’s center position and the resulting number (con-

verted to an integer) is used to look up the occupancy of a voxel in

the input map. If more than 25% of these probes reach a solid

voxel, the fragment is made solid in the output. This process was

carried out for every fragment on a 16x16x16 grid within each

voxel yielding a similar expansion ratio to that shown in Figure 1

(however, any positive integer could have been used instead of 16

in this place).

In essence, the direct resampling operator is carrying out a very

crude form of density estimation followed by a threshold opera-

tion. Using a larger number samples and a 50% activation thre-

shold would reproduce box-filtered anti-aliasing of the input map.

Per our motivation, such perfect resampling is not actually desira-

ble (and could be achieved in a much easier way). Thus, getting

attractive results from the direct resampling method requires care-

ful attention to the count, spread, and threshold for probe samples.

Achieving a desired texture requires balancing the natural grit

from sampling noise with blur that erodes the coherence between

the output fragments and the player’s intentions as expressed in

the input map. In manual experimentation with these tweakable

parameters, I have been able to achieve effects ranging from a

cubist reinterpretation of the input, to rolling hills that capture the

input in the form of broad curves (styles shown in Figure 2).

Figure 2. First-person views of two 128x128x128 fragment maps generated by enhancing separate, very coarse 8x8x8 input

maps (not shown) via the direct resampling operator with a spread of 1.0 voxels and threshold of 25%. The image at left used a

crude 4-sample pattern to yield a jittered, cubist reinterpretation of the input map while the image at right used 512 probe

samples to achieve a softer feel. Input maps were again initialized with 3D Perlin noise.

4. RELATED CONCERNS

4.1 Visibility and Computational Complexity
Voxel detail enhancement quickly produces large amounts of

data. However, for terrain-like voxel maps, most regions of the

input map are either completely solid or completely empty (trans-

parent). Knowing that only fragments on the surface between

solid an empty (between land and air) need to be displayed to the

player or used in game physics, it is possible to quickly determine

if a voxel should be completely skipped during enhancement (by

checking if any of its immediate neighbors differ in occupancy),

thus saving both computation and storage.

In voxel worlds dominated by terrains (as opposed to a volumetric

froth), the visible fragments roughly form a 2D surface (albeit

heavily distorted). Storage and computation for the fragments on

this manifold should scale quadratically with the side-length ex-

pansion factor despite the cubic growth of the number of potential

fragments in the worst case.

4.2 Neighbor Dependence and Caching
When applying voxel detail enhancement in an interactive setting,

it is important to keep track of which nearby voxels can possibly

affect the fragment generation for a given voxel. When the player

interactively toggles a voxel occupancy bit in the coarse input

map, a small cluster of voxels must be re-enhanced.

For recursive subdivision, only the six immediately adjacent vox-

els can possibly affect the fragments generated for a central voxel.

If desired, a lookup table can map the occupancy state of the rele-

vant voxels (one of 128 possible configurations) to a pre-

computed fragment set of arbitrary detail. For the direct resam-

pling method, depending on the sampling radius, a much larger

number of voxels can potentially contribute to the fragments of a

central voxel. In this case a lazily-populated cache would store

details for only those configurations which actually occur during

gameplay (a quickly decreasing fraction of all possible configura-

tions actually occurring, as a function of sampling radius, due to

the visibility-culling opportunities in terrain-like input maps).

4.3 Physics
Depending on the gameplay experience desired, either the input

voxels or the output fragments can be used to drive the physics

simulation in game (i.e. collision detection and resolution for feet,

wheels, and claws). Where voxels fall short of triangles, with

respect to game physics, is in their poor representation of surface

orientation. Triangles naturally possess a normal vector which can

point in any direction, but voxels, however much enhanced, still

only have surfaces that point in the six axis-aligned directions.

Computing surface normals for voxel data would require a local

estimation procedure with which I have not yet experimented.

4.4 Lighting
In the examples I show above, lighting was accomplished using a

new method unique to the voxel representation. Instead of tracing

straight-line rays to a light source and nearby surfaces, I release a

number of particles (that act more like snowflakes falling-in-

reverse than photons of light) which are allowed to randomly

wander in small steps through the fragment-level volume repre-

sentation. One set of particles representing psuedo-sunlight illu-

mination wanders towards the direction of sunlight while another

set representing pseudo-skylight illumination wanders uniformly

in all directions. If a particle successfully wanders for a set num-

ber of steps without encountering any solid fragments, it contri-

butes a small amount of illumination to the source fragment, co-

lored by its type.

In my experiments with voxel detail enhancement thus far, this

snowflake tracing mode of lighting has been the dominant source

of computational effort. In contrast to traditional method of sur-

face shading (such as the default Gouraud shading often directly

supported by hardware), this method emphasizes the overall shape

of a voxel map in favor of its surface normals (which point in

uninformative directions). Thus, in my experiments, voxels are

drawn as small cubes with flat shading, where there emissive

color is determined by the pre-computed illumination.

To achieve long shadows from towers and near absolute darkness

in caves, I allow the particles used in lighting to wander across a

radius of several voxels. This means that, when a single voxel’s

occupancy bit is toggled, a much larger window of voxels must be

reconsidered for enhancement than was strictly required for basic

fragment generation (turning on one voxel could potentially cast a

soft shadow on a fragment several voxels away). So far, I have

accepted this larger dependence window in exchange for more

attractive looking results. In a complete game where machine

cycles dedicated to pre-computing fragment lighting should be

minimized, a mixture of caching and partially voxel-level (as

opposed to completely fragment-level) lighting could dramatically

reduce the computational effort required with only modest losses

to visual quality.

5. FUTURE WORK
In future work, I intend to investigate the inclusion color, a prima-

ry element of pixel art scaling algorithms that I omitted in my

experiments. In voxel-based games, voxel color is a natural way

to encode material type (dirt vs. stone vs. wood, and so on). Even

in Scale2x, pixels are checked to see if they have the same (or

similar) color, not just whether they are both turned on as in my

recursive subdivision operator. Bringing a notion of color into

voxel detail enhancement would allow dirt voxels to smoothly

blend into other dirt voxels while having a crisp edge where dirt

abuts stone.

Additionally, I intend to experiment with integrating normal-

vector generation with the existing geometric detail enhancement

processes so that better surface orientation information is present

in support of shading and collision calculations.

6. CONCLUSION
I have proposed two methods for voxel detail enhancement, a way

to add fine geometric details to voxel-based representations. Us-

ing either of the techniques I describe, future game designs may

include both display of and physical interaction with (via vehicle

physics, perhaps) fine geometric details which coherently and

deterministically correspond to a coarser voxel map that is edited

by players on a natural scale.

7. ACKNOWLEDGEMENTS
This work was conceived at TIGJam3, prototyped at SuperHap-

pyDevHouse41, and further explored in the ongoing South Bay

Game Jam series, all events hosted at the Hacker Dojo community

center for hackers and thinkers.

8. REFERENCES
[1] Id Software. 1992. Wolfenstein 3D (videogame).

[2] Krieg, Hans. 2008. Voxelstein 3D (videogame).

[3] Persson, Markus. 2009. Minecraft (videogame).

[4] Römisch, Kristof. 2009. Sparse voxel octree ray tracing on

the GPU (Master’s Thesis). Retrieved from:

http://www.daimi.au.dk/~aquak/MasterThesisKristofRoemis

ch.pdf

