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ABSTRACT 

In this paper I describe a novel technique called voxel detail en-

hancement that, inspired by pixel art scaling algorithms for 2D 

images, produces finely detailed (3D) voxel maps from the coars-

er maps that would be edited by a player’s actions during gamep-

lay. I describe two methods which deterministically generate fine 

voxel fragments that depend only on the occupancy of a local 

window of coarse voxels. Enhanced voxel maps can provide at-

tractive visuals for voxel-based games without requiring the play-

er to manipulate the world at a finer scale. Decoupling the geome-

try used in graphics and physics from the construction and de-

struction mechanics of the game opens up new gameplay possibil-

ities in the design space occupied by games like Minecraft and 

Voxelstein 3D.  

Categories and Subject Descriptors 

K.8.0 [Personal Computing]: General – Games. 

General Terms 

Algorithms, Design. 

Keywords 
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1. INTRODUCTION 
Voxels (volumetric picture elements) are the 3D generalization of 

pixels; they represent objects with shape and texture by specifying 

colors and/or density values for each point on a regular grid. 

Where triangle meshes are a very popular vector representation 

for geometry in videogames (with display often accelerated by 

dedicated hardware designed around the triangle representation), 

voxels are the raster-graphics equivalent. Recently, general pur-

pose programmable graphics hardware has enabled acceleration 

for interactive rendering of voxel data [4]. 

In this paper I introduce a novel technique which I call voxel de-

tail enhancement that can be used to generate detailed, high-

resolution voxel maps from coarser voxel maps in a visually cohe-

rent, computationally deterministic and parallelizable manner. 

This technique opens up new possibilities in an already-

underappreciated region in the space of game designs. 

1.1 Voxel-based Gameplay 
Games with player-editable voxel worlds are uncommon, but they 

allow the player much greater flexibility in creating (or destroy-

ing) 3D shapes than a vector representation affords because sur-

face topology is represented implicitly rather than explicitly. 

Voxelstein 3D [2] is a voxel-based first-person shooter inspired by 

Wolfenstein 3D [1] in which the environment is modeled with 

cubes approximately four centimeters on a side. While the detail 

level of the voxel graphics of Voxelstein is similar to that of the 

pixel graphics in Wolfenstein, a one-to-one mapping between 

player actions and voxel edits implies that would-be trivial opera-

tions in another game, such as cutting through thin metal bars, 

take tens of actions in Voxelstein (slowing down an otherwise 

action-oriented game). 

Minecraft [3] is a sandbox survival and construction game that 

uses a much coarser level of detail in its use of voxels. Mine-

craft’s world is modeled in cubes that are approximately one me-

ter on a side in relation to the player’s avatar. While this scale is 

appropriate for the large-scale geography and player-created arc-

hitectural works for which the game is known, this design choice 

bars the player from influencing finer-scale visual details (a 

workbench object, for example, is represented by a single unit 

voxel). 

1.2 Pixel Art Scaling Algorithms 
Towards decoupling display-voxels from editable-voxels (merg-

ing Voxelstein’s visual details with Minecraft’s construction me-

chanics), I was inspired by the pixel art scaling algorithms used in 

arcade and console game emulators. These algorithms upsample 

the carefully-crafted pixel art of classic games for display on 

modern, high-resolution screens in a manner that attempts pre-

serve the character of the original work. In contrast to standard 

image scaling algorithms that introduce blur into the scaled output 

via interpolation, pixel art scaling algorithms preserve flat patches 

and angled edges in the original work when rendering output pix-

els. 

Edge detection and related logic in these algorithms operates by 

examining a small window of pixels in the source image to decide 

which features (lines, edges, corners, gradients, etc.) are present in 

the original and should be reproduced in finer detail in the output. 

In particular, the basic Scale2x1 algorithm used in several emula-

tors produces a 2x2 patch of output pixels for each pixel in the 

input (conditioned on its eight surrounding pixels). Any power-of-

two expansion factor can be achieved using algorithms similar to 

Scale2x by repeated scaling with the same algorithm. 

                                                                 

1 http://scale2x.sourceforge.net/index.html 
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Another family of pixel art scaling algorithms, the hqnx2 family, 

works by determining which determining which of a source pixels 

neighbors are similar to it, and then applying a hand-crafted loo-

kup table to decide the appropriate action to take in the output 

image. One instantiation, hq4x, examines 4x4 patches centered on 

each pixel of the input to produce 4x4 output. This algorithm is 

able to exactly reproduce lines of several distinct slopes and 

present them, anti-aliased, in the output. Further, it is able to 

smooth dithered gradients from the source images where pixel 

colors are similar, yielding an appropriate mixture of sharp and 

soft details in the output. 

The inherently two-dimensional logic of these algorithms does not 

directly generalize to voxel maps (primarily because the shape 

and size of adjacency neighborhoods changes when adding anoth-

er dimension). However, it is possible to translate their basic in-

tent to 3D, yielding a kind of voxel art scaling.  

1.3 Voxel Art Scaling Algorithms 
Currently, there exist no algorithms that do for voxels what pixel 

art scaling algorithms do for pixels. If such algorithms existed, 

they could be used to programmatically rescale the art in games 

employing voxel sprites (such as the in-development arcade shoo-

ter Voxatron3 by Lexaloffle Games), saving artist effort and enabl-

ing novel visual effects. Further, voxel art scaling algorithms 

                                                                 

2 http://www.hiend3d.com/hq3x.html 

3 http://www.lexaloffle.com/voxatron.php 

should allow detail-preserving rotation of voxel sprites akin to the 

use of pixel art scaling in the RotSprite4 utility for 2D sprites. 

Instead of addressing the full complexity of voxel art scaling, this 

paper focuses on simply expanding voxels maps in a way that 

preserves the character of the input while elaborating with plausi-

ble details on the finer scale. Voxel detail enhancement refers to 

this simpler problem. 

1.4 Vocabulary 
In the description of my techniques to follow, I will refer to the 

inputs to each algorithm as the “input map” composed of coarse 

“voxels” over which I imagine a player having direct control (as 

in Minecraft). The “output map” is composed of fine “fragments” 

which the player can see and interact with (via walk-

ing/driving/climbing) but not destructively manipulate. I assume 

the input map encodes the density at each voxel as a single bit 

(either solid or empty) and that every solid voxel is made of a 

diffuse white material for the purposes of shading. 

2. RECURSIVE SUBDIVISION 
My first method of voxel detail enhancement, recursive subdivi-

sion, is most similar to the Scale2x pixel algorithm. Recursive 

subdivision works by producing a 2x2x2 patch of fragments for 

each input voxel. To decide whether an output fragment is turned 

on (solid vs. empty) I examine the occupancy of the source voxel 

and its three immediately neighboring voxels in the direction of 

the fragment in question. Concretely, when generating the front-

top-right fragment of a voxel, I examine the source voxel’s front, 

                                                                 

4 http://info.sonicretro.org/RotSprite 

Figure 1. Enhancing a 16x16x16 input voxel map (left) to produce a detailed, 256x256x256 output fragment map (right) using 

the recursive subdivision operator. Below a certain altitude, a single threshold value was used (1), and above, two other values 

were vertically alternated (3 and 4) to yield a variety of terrain types. The input map was initialized with 3D Perlin noise, and 

both maps were lit with the same lighting algorithm based on wandering particles (see Section 4.4 for lighting details). 



top, and right neighbors. By comparing the count of solid voxels 

in this neighborhood to a constant (described later), I set the out-

put fragment’s occupancy bit. 

In computing the eight output fragments, only the source voxel 

and its six face-adjacent neighboring voxels need be considered. 

The fragments of one voxel do not depend on the fragments of 

another. This implies that voxel detail enhancement is an embar-

rassingly parallelizable process. 

As with Scale2x, higher levels of refinement can be achieved by 

applying the refinement operator several times (using the frag-

ment output of one level as the voxel input to another), assuming 

a power-of-two scaling factor is desired. Figure 1 shows the result 

of applying the recursive subdivision technique four times to 

achieve a 1:16 linear expansion (4,096 potential fragments for 

each voxel). In this case, the input map was created by threshold-

ing a 3D Perlin noise function similar to the one used in Mine-

craft’s world generator. 

This technique has a single tunable constant: the activation thre-

shold. In the lower altitudes of Figure 1, a value of one was used 

(i.e. a fragment is turned on if any voxel in its neighborhood is 

turned on) yielding the emergence of Sierpinski triangle patterns 

on angled facets. In the higher altitudes, the value alternated be-

tween three and four (depending on the least significant bit of the 

fragment’s altitude), yielding delicate strata with rounded corners. 

I have considered, but not implemented, using a different activa-

tion threshold (or spatially-varying threshold pattern) based on the 

in-game material type of the input voxel. This should result in a 

variety of player-visible materials without any major changes to 

the algorithm. 

3. DIRECT RESAMPLING 
The self-similar patterns produced by the recursive subdivision 

enhancement operator are visually interesting, but they would not 

be appropriate for the visual themes of every game that might use 

voxel detail enhancement. To address this, and overcome the 

power-of-two limitation of recursive subdivision, I experimented 

with another technique: a direct resampling operator. 

Direct resampling is more inspired by image interpolation than 

pixel art scaling. Where the four-voxel neighborhood in recursive 

subdivision is specifically designed for 2x scaling, a more flexible 

(and chaotic) neighborhood is used in direct resampling. The core 

of both algorithms, however, is the same: if probing neighboring 

voxels yields more than a certain number of solid voxels, the out-

put fragment will be turned on. 

Before direct resampling begins, a random sampling pattern is 

generated once and stored. This pattern consists of a set of offsets 

to be applied to the current fragment’s location when probing for 

neighbors. The spread of these samples controls the detail en-

hancement operator’s ability to smooth corners and diagonal lines, 

and the count of these samples controls the smoothness of the 

resulting resampled surface. 

Figure 2 shows two concrete examples of the direct resampling 

operator in action. In the two worlds depicted, sampling patterns 

consisting of 4 and 512 probe samples were created using offsets 

in the range -1.0 to 1.0 (in voxel-units, this is a relatively conserv-

ative spread). During fragment generation, these offsets are added 

to the fragment’s center position and the resulting number (con-

verted to an integer) is used to look up the occupancy of a voxel in 

the input map. If more than 25% of these probes reach a solid 

voxel, the fragment is made solid in the output. This process was 

carried out for every fragment on a 16x16x16 grid within each 

voxel yielding a similar expansion ratio to that shown in Figure 1 

(however, any positive integer could have been used instead of 16 

in this place). 

In essence, the direct resampling operator is carrying out a very 

crude form of density estimation followed by a threshold opera-

tion. Using a larger number samples and a 50% activation thre-

shold would reproduce box-filtered anti-aliasing of the input map. 

Per our motivation, such perfect resampling is not actually desira-

ble (and could be achieved in a much easier way). Thus, getting 

attractive results from the direct resampling method requires care-

ful attention to the count, spread, and threshold for probe samples. 

Achieving a desired texture requires balancing the natural grit 

from sampling noise with blur that erodes the coherence between 

the output fragments and the player’s intentions as expressed in 

the input map. In manual experimentation with these tweakable 

parameters, I have been able to achieve effects ranging from a 

cubist reinterpretation of the input, to rolling hills that capture the 

input in the form of broad curves (styles shown in Figure 2). 

Figure 2. First-person views of two 128x128x128 fragment maps generated by enhancing separate, very coarse 8x8x8 input 

maps (not shown) via the direct resampling operator with a spread of 1.0 voxels and threshold of 25%. The image at left used a 

crude 4-sample pattern to yield a jittered, cubist reinterpretation of the input map while the image at right used 512 probe 

samples to achieve a softer feel. Input maps were again initialized with 3D Perlin noise. 



4. RELATED CONCERNS 

4.1 Visibility and Computational Complexity 
Voxel detail enhancement quickly produces large amounts of 

data. However, for terrain-like voxel maps, most regions of the 

input map are either completely solid or completely empty (trans-

parent). Knowing that only fragments on the surface between 

solid an empty (between land and air) need to be displayed to the 

player or used in game physics, it is possible to quickly determine 

if a voxel should be completely skipped during enhancement (by 

checking if any of its immediate neighbors differ in occupancy), 

thus saving both computation and storage. 

In voxel worlds dominated by terrains (as opposed to a volumetric 

froth), the visible fragments roughly form a 2D surface (albeit 

heavily distorted). Storage and computation for the fragments on 

this manifold should scale quadratically with the side-length ex-

pansion factor despite the cubic growth of the number of potential 

fragments in the worst case. 

4.2 Neighbor Dependence and Caching 
When applying voxel detail enhancement in an interactive setting, 

it is important to keep track of which nearby voxels can possibly 

affect the fragment generation for a given voxel. When the player 

interactively toggles a voxel occupancy bit in the coarse input 

map, a small cluster of voxels must be re-enhanced. 

For recursive subdivision, only the six immediately adjacent vox-

els can possibly affect the fragments generated for a central voxel. 

If desired, a lookup table can map the occupancy state of the rele-

vant voxels (one of 128 possible configurations) to a pre-

computed fragment set of arbitrary detail. For the direct resam-

pling method, depending on the sampling radius, a much larger 

number of voxels can potentially contribute to the fragments of a 

central voxel. In this case a lazily-populated cache would store 

details for only those configurations which actually occur during 

gameplay (a quickly decreasing fraction of all possible configura-

tions actually occurring, as a function of sampling radius, due to 

the visibility-culling opportunities in terrain-like input maps). 

4.3 Physics 
Depending on the gameplay experience desired, either the input 

voxels or the output fragments can be used to drive the physics 

simulation in game (i.e. collision detection and resolution for feet, 

wheels, and claws). Where voxels fall short of triangles, with 

respect to game physics, is in their poor representation of surface 

orientation. Triangles naturally possess a normal vector which can 

point in any direction, but voxels, however much enhanced, still 

only have surfaces that point in the six axis-aligned directions. 

Computing surface normals for voxel data would require a local 

estimation procedure with which I have not yet experimented. 

4.4 Lighting 
In the examples I show above, lighting was accomplished using a 

new method unique to the voxel representation. Instead of tracing 

straight-line rays to a light source and nearby surfaces, I release a 

number of particles (that act more like snowflakes falling-in-

reverse than photons of light) which are allowed to randomly 

wander in small steps through the fragment-level volume repre-

sentation. One set of particles representing psuedo-sunlight illu-

mination wanders towards the direction of sunlight while another 

set representing pseudo-skylight illumination wanders uniformly 

in all directions. If a particle successfully wanders for a set num-

ber of steps without encountering any solid fragments, it contri-

butes a small amount of illumination to the source fragment, co-

lored by its type. 

In my experiments with voxel detail enhancement thus far, this 

snowflake tracing mode of lighting has been the dominant source 

of computational effort. In contrast to traditional method of sur-

face shading (such as the default Gouraud shading often directly 

supported by hardware), this method emphasizes the overall shape 

of a voxel map in favor of its surface normals (which point in 

uninformative directions). Thus, in my experiments, voxels are 

drawn as small cubes with flat shading, where there emissive 

color is determined by the pre-computed illumination. 

To achieve long shadows from towers and near absolute darkness 

in caves, I allow the particles used in lighting to wander across a 

radius of several voxels. This means that, when a single voxel’s 

occupancy bit is toggled, a much larger window of voxels must be 

reconsidered for enhancement than was strictly required for basic 

fragment generation (turning on one voxel could potentially cast a 

soft shadow on a fragment several voxels away). So far, I have 

accepted this larger dependence window in exchange for more 

attractive looking results. In a complete game where machine 

cycles dedicated to pre-computing fragment lighting should be 

minimized, a mixture of caching and partially voxel-level (as 

opposed to completely fragment-level) lighting could dramatically 

reduce the computational effort required with only modest losses 

to visual quality. 

5. FUTURE WORK 
In future work, I intend to investigate the inclusion color, a prima-

ry element of pixel art scaling algorithms that I omitted in my 

experiments. In voxel-based games, voxel color is a natural way 

to encode material type (dirt vs. stone vs. wood, and so on). Even 

in Scale2x, pixels are checked to see if they have the same (or 

similar) color, not just whether they are both turned on as in my 

recursive subdivision operator. Bringing a notion of color into 

voxel detail enhancement would allow dirt voxels to smoothly 

blend into other dirt voxels while having a crisp edge where dirt 

abuts stone. 

Additionally, I intend to experiment with integrating normal-

vector generation with the existing geometric detail enhancement 

processes so that better surface orientation information is present 

in support of shading and collision calculations. 

6. CONCLUSION 
I have proposed two methods for voxel detail enhancement, a way 

to add fine geometric details to voxel-based representations. Us-

ing either of the techniques I describe, future game designs may 

include both display of and physical interaction with (via vehicle 

physics, perhaps) fine geometric details which coherently and 

deterministically correspond to a coarser voxel map that is edited 

by players on a natural scale. 
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