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ABSTRACT 

The occurrence of natural disasters in the coastal regions and numerous potential events within 
urban regions has drawn considerable attention among transportation stakeholders. Federal, state 
and local officials need to be effectively prepared to address the challenges raised by an 
evacuation. The focus of this research effort is to develop a tool to study the repercussions of 
evacuation of an entire regional transportation network recognizing the human behavior element. 
Neglecting these seemingly chaotic traffic flow patterns would lead to inaccurate system 
assessment and predictions. We study the influences of evacuees’ locations in the urban region at 
the moment of emergency alert.  In addition, we identify the locations of all the members of the 
household and explicitly consider household member interactions. Further, we study the accurate 
times the individuals enter the network to evacuate the study region, which can vary based on 
where the other household members are located at that time and the travel time on the network to 
reach these locations. To accomplish the goals, we employ the integration framework of activity-
based modeling and dynamic traffic assignment to study the evacuation traffic flow patterns at 
the time of evacuation. Specifically, the paper formulates the evacuation problem and discusses 
the utility of deploying the integrated module of activity-based modeling and dynamic traffic 
assignment for evacuation planning and outlines the challenges in integrating these two tools. 
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1. INTRODUCTION 

The occurrence of natural disasters and other extreme events in coastal and urban regions (such 
as Hurricane Katrina and Hurricane Rita) has drawn attention to developing emergency 
evacuation plans aimed at reducing loss of life and property and coping with the immediate 
societal consequences [see (1) and (2)]. An important part of these evacuation plans is the 
mobilization of federal, state and local agencies in a timely fashion, but also important is the 
provision of resources and knowledge to these agencies to implement effective evacuation 
strategies. In the latter context, it is important to understand and model human response behavior 
and transportation flow operations, and especially the interplay between the two, once an 
emergency evacuation alert is issued.  

The objective of the current research effort is to develop a tool to study and model evacuation 
impacts on the transportation network, while recognizing aspects of human response behavior 
that are likely to be manifested during such evacuation calls. To effectively achieve this 
objective, it is critical to accurately model traffic flows on the network, which will be influenced 
by the locations of individuals in the urban region at the moment of the emergency alert. 
However, it is not enough simply to spatially and temporally locate all the individuals in the 
urban area; rather, it is important to map and associate the spatial positions of individuals based 
on such relationships as whether individuals belong to the same household or not. This is 
because household members would attempt to gather together and evacuate the region as a single 
unit [see (3-7)]. In doing so, it is possible that some household members would travel in 
directions opposite to the direction of evacuation. Neglecting these seemingly haphazard traffic 
flows would lead to inaccurate traffic flow predictions. Further, it is also important to accurately 
identify the times when, and places where, individuals enter different parts of the transportation 
network in response to an evacuation alert. These spatial-temporal paths will depend not only on 
the evacuation strategies of individual households (in terms of who picks up whom, and/or or the 
location to assemble), but also on the travel times in the network. But the travel times themselves 
depend on how the response of individual households collectively influences network 
performance, while the precise individual household evacuation strategies may evolve depending 
on perceived network performance. This is, of course, a classic case of demand-supply 
interaction, or the traffic assignment problem. However, a particular need in an emergency 
evacuation context is that the dynamics of demand and traffic flows be considered along a fine 
resolution of time (that is, in seconds and minutes, rather than on an hourly or peak/off-peak 
period basis). 

To summarize, the preceding discussion highlights two important aspects of modeling traffic 
flows in the aftermath of an emergency alert to evacuate from an urban region. First, there is a 
need to accurately predict the locations of individuals at the instant the emergency alert is 
provided (with information on the location of other household members also available). Second, 
there is a need to predict the travel times on network links at a fine resolution along the time 
dimension (affected by the evacuation exit points, the locations of household members, and the 
evacuation strategies of individual households).  

In the current paper, we address the two points above through the integration of an activity-based 
model and a dynamic traffic assignment model. Lin et al. (2008) propose such an integrated 
framework for general regional planning (8), and we customize their framework in this paper to 
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modeling traffic flows in an emergency evacuation context. The paper formulates the evacuation 
problem, discusses the value of deploying an integrated ABM-DTA system for evacuation 
planning, and implements the system using a network sampled from the Dallas-Fort Worth 
region.  

The rest of the paper is organized as follows. Section 2 discusses the ABM and DTA approaches 
and their applicability to evacuation planning. Section 3 outlines the conceptual framework, with 
an emphasis on the assumptions made in the process of integrating the ABM and DTA modules. 
Section 4 presents the results of the application of the integrated tool for a test network. Section 5 
concludes the paper highlighting the lessons learned and limitations of the research. 

2. ABM and DTA FRAMEWORK - APPLICABILITY TO EVACUATION 
PLANNING 

For nearly thirty years, the traditional trip-based approach to transportation modeling has 
dominated the planning process. However, the trip-based approach is saddled with many 
limitations (for example, see (9-14). This has led to an active stream of research that examines 
alternative paradigms for predicting travel demand and supply by incorporating more 
behaviorally realistic methodologies. These research attempts have resulted in the development 
of ABM and DTA frameworks.  

2.1 ABM 
On the demand side of transportation modeling, researchers have attempted to overcome the 
conceptual and behavioral inadequacy of the trip-based approach through the use of an activity-
based modeling (ABM) paradigm. Activity-based approaches to modeling travel demand are 
conceptually more appealing compared to the trip-based method for the following reasons: (1) 
Treatment of time as a continuum and a generally superior incorporation of the temporal 
dimension, (2) Focus on sequences and patterns of activities and travel (i.e., tours) rather than 
individual trips, (3) Recognition of linkages among various activity-travel decisions, (4) 
Incorporation of intra-household interactions, inter-personal and intra-personal consistency 
measures, (5) Consideration of space-time constraints on activities and travel, and (6) Emphasis 
on individual level travel patterns. The potential benefits of the activity-based analysis and the 
resulting interest in operationalizing the activity-based approach have sparked an interest in 
micro-simulation based modeling systems.  A number of micro-simulation platforms that employ 
the activity-based paradigm of transportation demand forecasting have been developed recently, 
such as CEMDAP [see (13) and (15)], FAMOS [see (38)], and the model systems designed for 
Portland METRO [see (16)], New York NYMTC [see (17)], Columbus MORPC [see (18)], 
Sacramento SACOG [see (19)] and the San Francisco SFCTA [see (20)]. Activity-based models, 
with their inherent advantages over the trip-based models, lend themselves naturally to 
addressing the evacuation problem. 

2.2 DTA 
On the supply side of transportation modeling, conventional techniques of trip assignment based 
on static traffic assignment (STA) have been employed for decades.  The limitations of the static 
assignment procedures and the increase in computing capacity have allowed the field to move 
toward more behaviorally realistic dynamic traffic assignment (DTA) models.  DTA techniques 
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offer a number of advantages relative to the STA methods including: (1) Capturing time-
dependent interactions of the travel demand and supply of the network, (2) Capability to capture 
traffic congestion build-up and dissipation, (3) Accommodating the affect of ramp-meters and 
traffic lights on the network are more straightforward, (4) Suited to model the effects of ITS 
technologies and (5) The network representation can be undertaken at a disaggregate level.  A 
number of simulation-based DTA modules have been developed in the recent past such as 
VISTA [see (21)], CONTRAM [see (22)], DynaMIT [see (23-25)] and DYNASMART-P [see 
(26)]. 

2.3 Applicability to evacuation planning 
In this section, we focus on the CEMDAP ABM model system and the VISTA DTA model 
system, and discuss the integration of these model systems for application to traffic modeling 
after evacuation alerts.  

2.3.1 CEMDAP 

The Comprehensive Econometric Micro-simulator for Daily Activity-travel Patterns (CEMDAP) 
is a micro-simulation implementation of a continuous-time activity-travel modeling system, 
proposed by Bhat et al. (13).  CEMDAP takes as input information on the aggregate 
socioeconomics and the activity-travel environment characteristics in the urban study region for 
the base year, as well as policy actions being considered for future years (the activity-travel 
environment includes the land-use, urban form, and transportation level-of-service (LOS 
characteristics).  The aggregate-level base year socioeconomic data are first fed into the  
synthetic population generator (SPG) to produce a disaggregate-level synthetic dataset describing 
a subset of the socioeconomic characteristics of the households and individuals residing in the 
study area (see (27) for information on the SPG module).  Additional base-year socioeconomic 
attributes related to mobility, schooling, and employment at the individual level, and 
residential/vehicle ownership choices at the household level, that are difficult to synthesize (or 
cannot be synthesized) directly from the aggregate socioeconomic data for the base year are 
simulated by the Comprehensive Econometric Microsimulator for SocioEconomics, Land-use, 
and Transportation System (CEMSELTS), (see (28) for more details). The base year 
socioeconomic data, along with the activity-travel environment attributes, are then run through 
CEMDAP to obtain individual-level activity-travel patterns (see (13) and (15) for details).  The 
activity-travel patterns are subsequently passed through a dynamic traffic micro-assignment 
scheme to determine path flows, link flows, and transportation system LOS by time of day.  In 
the framework, the initial iteration of CEMDAP needs the LOS values as inputs.  However, the 
values used in the iteration need not be the “true” LOS values.  So it is necessary to rerun the 
CEMDAP module with the new LOS variables obtained. 

2.3.2 VISTA 

The Visual Interactive System for Transport Algorithms (VISTA) is a comprehensive DTA 
system that integrates data warehousing and traffic analysis for transport applications via a 
client-server implementation.  VISTA was originally outlined in Waller and Ziliaskopoulos (21).  
As with many contemporary simulation-based DTA approaches, VISTA is comprised of three 
primary modules: traffic simulation, time-dependent routing algorithms, and path assignment. 
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The traffic simulator in VISTA is RouteSim [see (29)], a route-based traffic simulator based on 
the Cell Transmission Model [see (30-31)].  RouteSim takes a network (nodes, links and 
controls) as well as the spatial path assignment as input and outputs the spatio-temporal 
trajectories of travelers.  The time-dependent shortest path (TDSP) module is implemented 
according to Ziliaskopoulos and Mahmassani [see (32, 33)] and has substantial potential for 
distributed and parallel implementations (Ziliaskopoulos and Kotzinos, (34)) which is critical for 
large-scale deployments. 

Path assignment in VISTA is handled through multiple means.  The traditional MSA approach is 
employed for early iterations, but gap function based methods are employed to obtain 
meaningful convergence in later iterations.  For the latter a variety of gap functions are employed 
which are based on the variational inequality formulation as detailed in Chang (35). 

VISTA typically employs time-scales of approximately 6 seconds for traffic dynamics (for 
simulation, time-dependent routing, and trip departure times).  A scale of approximately 5 
minutes is common for path choice behavior (i.e., travelers departing within 5 minutes of each 
other between the same origin-destination pair will observe similar conditions).  It should be 
noted that this minor 5-minute aggregation occurs after TDSPs have been found based on the 6 
second scale. 

The path assignment and TDSP modules were reengineered into an efficient module that can 
handle large data sets in Ziliaskopoulos and Waller (36).  Ziliaskopoulos et al. (37) developed an 
Internet-based geographic information system (GIS) and incorporated it into the system 
framework.  This equipped VISTA with the unique feature of being accessed over the Internet 
via web browser, CORBA interface or Java GIS.  The feature eliminates the need for software 
installation/upgrade and allows users to conveniently access the consistent analysis without 
spatial limitation. 

2.3.3 Applicability 

An integrated tool employing ABM (CEMDAP) and DTA (VISTA) modules offers the required 
spatial, temporal and human behavior information essential for evacuation planning. To 
elaborate, the CEMDAP module provides the spatial and temporal locations of individuals (and 
other household members) at any give time of the day. In addition to the spatial temporal details, 
information on individual modal accessibility is also available. These individual level details are 
used to develop a string of origin-destination trips (with detailed mode and time of day 
information) each individual would make in order to exit the study region. The VISTA module, 
based on this information, loads the origin-destination trips on the transportation network and 
allows us to compute accurate measures of travel time and traffic congestion resulting from 
travel for evacuation.  

An important point regarding the applicability of the CEMDAP-VISTA system is the temporal 
fidelity built into the integrated system. In particular, the timing of issue of an emergency 
evacuation alert is critical in evacuation planning. The activity travel patterns of individuals (and 
implicitly their locations) are dependent on the time of day. For example, at 3 AM in the night, a 
large part of the population would be in their residences. However, at 12 Noon in the day, the 
individuals of each household are more likely to be dispersed at distinct locations in the urban 
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area. So, any model of evacuation needs to consider the time of day at a high level of temporal 
resolution. Also, the dynamics of traffic flow following the alert needs to be considered at a fine 
level of temporal resolution. Thus, the integrated system of ABM and DTA framework, with a 
strong emphasis on a fine resolution of time of day, provides a suitable tool to analyze the 
evacuation planning process.   

3. FRAMEWORK FOR EVACUATION PLANNING 

In this section we discuss the details of the framework employed in the analysis. Section 3.1 
details the rules proposed to model individuals’ behavior in the event of an emergency alert. 
These rules allow us to generate the time dependent OD matrix for loading on the transportation 
network. Section 3.2 presents the implementation details of loading the OD matrices on the 
transportation network. 

3.1 Proposed rule set 
The ABM module provides the exact temporal and spatial coordinates of individuals in the urban 
region. These coordinates can be translated into time-dependent OD matrices that serve as input 
into the DTA module. However, as highlighted earlier, it is not adequate to simply locate 
individuals. The temporal and spatial information of all the members of the household needs to 
be mapped and associated to accurately generate the evacuation pattern for individuals and 
households (as a single unit). The evacuation pattern is itself a function of the underlying 
evacuation strategy adopted by households in response to an emergency alert to leave the urban 
region. While the evacuation strategy of households is an area for research study, we use a set of 
intuitive rules in the current paper to represent this strategy. The set of rules attempts to simulate 
individual response behavior based on the spatial, temporal, and mobility constraints of 
individuals and households. Explicit consideration is given to whether or not households have 
children in the formulation of the rules, since children lack mobility and depend on other 
household members to be evacuated. The rules are discussed in the next two sections. 

3.1.1 Households without children 

In households without children, the predominant constraint on travel for evacuation is driven by 
auto access. The following guidelines are proposed for determining travel plans for different 
members of the household: (1) If all adults have auto access, they leave the urban region 
independently, (2) If there are multiple, but not all, adults with auto access, the nearest adult with 
auto access will pick up the adult without auto access, (3) If the household has only one auto 
available, the adult with auto access will pick all the others and (4) If the household does not 
have auto access, we assume a special auto (taxi or dial-a-ride) will pick up individuals. 

3.1.2 Households with children 

In households with children, the individuals’ behavior is centered on children and auto 
availability. The following guidelines are proposed for determining travel plans for different 
members of the household: (1) If all adults in the household have auto access, the task of picking 
up children is distributed among the adults, (2) If the number of autos in the household is less 
than the number of adults, the task of picking up is distributed among those with auto access, 
with emphasis on picking up the nearest person first, (3) If there is only one adult in the 
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household, he/she will pick up all the children and evacuate and (4) If the household does not 
have auto access, we assume a special auto (taxi or dial-a-ride) will pick up individuals. 

3.1.3 Summary 

The rules proposed above are developed to facilitate the modeling of individual response 
decisions and travel patterns. The rules, by no means, comprehensively tackle all the potential 
situations that individuals might encounter. Instead, the rule-based system simply provides a 
flexible and practical framework that can track the movement of each individual in the network 
during evacuation. The rules, of course, can be modified when the analyst has more information 
on actual behavioral responses of individuals to emergency evacuation alerts. 

3.2 Assignment implementation 
In this section, we discuss the assignment implementation details of the evacuation problem. 
Specifically, using the list of each individual’s stops (generated based on the rule framework 
proposed), we determine the order and departure time at each stop by loading the O-D trips on 
the network.  The actual travel time to the destination is affected by the network characteristics 
and actual travel time, thus impacting the travel start time for the next stop. These impacts trickle 
down across the network and affect the network travel times significantly. So, it is necessary to 
consider these details in the implementation. To elaborate, consider the case of a single person 
who needs to make two stops to pick-up household members prior to evacuating the region. The 
order of these stops is determined based on an individual’s perceived travel time. Let’s suppose 
the person begins his or her travel from O and wants to reach D. The trip chain will look like O-
1-2-D where 1, 2 represent his or her planned stops. In order to start the network loading we 
assume a perceived travel time for each segment of the trip chain and accordingly load them on 
the network. So, based on perceived times, let the dynamic trip chain and departure times be O 
(9:00 AM) -1 (9:10 AM) -2 (9:30 AM) - Destination (10:00 AM), which is translated as three 
dynamic OD trips with departure times of 9:00AM, 9:10AM and 9:30 AM respectively. Once the 
network is loaded with these trips (and trips corresponding to all travelers), the actual segment 
travel times are obtained based on the network flows.  In the next iteration, suppose we find that 
the travel time for segment 1-2 is 30 minutes, instead of the assumed 20 minutes due to the 
evacuation traffic. Then the dynamic trip for this person has to be modified to O (9:00 AM) -1 
(9:10 AM) -2 (9:40 AM) - D (10:10 AM) in the second iteration. Similarly, the dynamic OD 
tables of all travelers should be modified accordingly and loaded into a DTA module to re-
evaluate.  In other words, there is a need for an iterative procedure to arrive at a correct dynamic 
OD table that should result in the correct travel time.   

Let )(τξ be the dynamic OD table with the vector of link travel time τ  and let Ψ be the dynamic 
traffic assignment module.  The fixed-point formulation of the dynamic OD table and link travel 
time can be formulated as: 

))(( τξτ Ψ=                  (1) 
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To address this fixed-point problem in Equation (1), the following iterative procedure is 
proposed1:  

Step 1: Retrieve destinations based on activity pattern predictions 

Step 2: Find the optimal trip for each person based on the perceived link travel times. 

Step 3: Generate dynamic OD table based on the current trips. 

Step 4: Load the OD table obtained in Step 3 on the transportation network and run DTA. 

Step 5: Retrieve link travel time from DTA results. 

Step 6: Update travel time lτ of link l with Method of Successive Average (MSA) 

111 −×
−

+×= iteration
l

iteration
l

new
l iteration

iteration
iteration

τττ  

Step 7: If the travel time converge, stop.  Otherwise, go back to step 3. 

In step 2, we generate the optimal trip for each individual. So, in the example discussed earlier, , 
we enumerate the trip combinations (O-1-2-D and O-2-1-D in this case) and find the trip with 
minimal cost.  However, the enumeration may not necessarily alter the results substantially 
because it is difficult for users to make perfectly rational decision during an evacuation process.  
In the study, we enumerate the possibilities for demonstration purpose.  In large-scale evacuation 
planning process, these steps can be replaced by random assignment to reduce the computational 
effort. 

It is important to note that the process detailed above essentially estimates the dynamic OD table 
during evacuation. We can plot these OD tables as vehicle loading and departure curves that 
allow us to exactly identify locations and times of vehicles in the network.  The dynamic OD 
table is of critical importance for government agencies when predicting traffic flows within the 
network, or for conducting traffic analysis or evaluating evacuation management measures. 

4. NUMERICAL EXPERIMENTS 

The integrated tool developed in the research effort was tested with two primary objectives. The 
first is to understand the impact of time of day on evacuation traffic patterns. The focus is on 
studying whether the timing of the evacuation alert influences the system evacuation time 
significantly. The second is to analyze the impact of the population size of the evacuation zone 
on the evacuation system performance. 

                                                 
1 The reader should note here that for the current study, we assume the free flow travel times as the perceived travel 
times between each OD pair. 
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The measures employed for evaluating the system performance include (1) Total System Travel 
Time (TSTT) and (2) Network Clearance Time (NCT) . TSTT is the sum of travel times of all 
the vehicles that are loaded on the network in the proces of evacuation.  The NCT time is defined 
as the difference between the time when the last vehicle leaves the evacuation network to the 
time when the evacuation alert has been issued.  The TSTT is typically employed as a 
performance index when considering network improvements. If the goal of the planning process 
is to evacuate people from the study region in the smallest possible time, NCT is a preferred 
performance measure. However, both measures in conjunction can yield insights on the network 
performance. So, for the purpose of the experiments, we employ both measures. In addition, we 
employ the loading curve and departure curve for ease of understanding. The loading curve 
reprsents the cumulative number of vehicles that enters the network at each point in time after 
the emergency evacuation alert is issued, while the departure curve represents the cumulative 
number of vehicles that leave the network as a funcion of time from the issue of the alert.  In the 
study, we assume that, when an evacuation alert is issued, all evacuees in the network respond 
instantaneously. It is straightforward to incorporate a varying response time profile in the 
proposed framework if needed. 

The framework is tested on a sampled network.  The demographic information (including 
household size, number of adults, number of children, household vehicles, employment and 
school location) required for CEMDAP is obtained by sampling the Dallas Fort Worth 
demographic data generated using SPG and CEMSELTS (see (28) for more details) .   The 
network data essential for VISTA are obtained by sampling data sets provided by North Central 
Texas Council of Government.  In addition to the physical network, we include an additional 
super sink node to represent exit from the study region. The super sink node is connected to five 
chosen candidate exit nodes (57,717, 57,784, 58,805, 58,033 and 57,864). With the single 
destination network, we can also determine the evacuation exits and analyze the flow patterns. 
The running environment of VISTA is Linux with an Intel 3.00GHz CPU and 32 GB memory; 
while the environment of CEMDAP is Windows XP with Intel 3.4 GHz CPU and 2 GB memory.  
The experimental network is depicted in FIGURE 1. 
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FIGURE 1: Grid Network 

In the first experiment, we consider the scenario of 1,000 households and an evacuation alert 
issued at 9AM.  Totally, the number of trips generated after considering household interactions is 
1,529.  By applying the framework proposed in this study, the TSTT and NCT are 2,011,765 and 
5,568 seconds, respectively.  FIGURE 2 provides the loading and departure curves for this 
scenario.  Note that the area between the two curves represents the TSTT with the current 
demand and supply level.   

 
FIGURE 2: 1,000 Households Network Loading and Departure Curve 

The information in Figure 2 provides important information that can aid in evacuation planning. 
For instance, by drawing a vertical line at 1,200 seconds since the issuance of the evacuation 
alert, we know that 691 vehicles are present in the network (1,276 vehicles loaded, while only 
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585 vehicles have left the network).  In addition, by drawing a horizontal line at the value of 
1,200 for cumulative number of vehicles, we note that it takes roughly 2,100 seconds to evacuate 
1,200 vehicles. 

Next, we consider 5,000 households at the same time of day. The number of trips is 7,414.  The 
TSTT and NCT measures are 10,216,626 and 5,886 seconds respectively.  FIGURE 3 provides 
the loading and departure curves for this scenario.  The same analysis applies in this scenario as 
in the 1,000-household scenario. 

 
FIGURE 3: 5,000 Households Network Loading and Departure Curve 

In FIGURE 3, we also include the loading and departure curves for the 1,000 households 
scenario for comparison purposes. As can be observed from the figure, the main difference 
between the two scenarios is the departure curve. Compared to the 5,000 households scenario, 
the 1,000 households scenario has a relatively flat departure curves since the 1,000 households 
do not generate heavy evacuation traffic.  On the other hand, an apparent surge can be observed 
in the 5,000 scenario between 900 seconds and 2,100 seconds. If traffic management measures 
are to be adopted in the 5,000 households scenario during evacuation planning period, this time 
period could be potentially a good choice. 

4.1 Impact of Household Number 
To further understand the impact of household numbers on the evacuation system, we conduct 
one more test with 25,000 households at the same time of day.  The comparison is presented in 
TABLE 1. 

TABLE 1: Impact of Household Number at 9 AM 
Number of 
Households 

Number of Evacuation 
Trips 

Total System Travel 
Time (sec) 

Network Clearance 
Time (sec) 

1,000 1,529 2,011,765 5,568 
5,000 7,414 10,216,626 5,886 
25,000 36,062 93,968,010 7,464 
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Note that when the number of households increases from 1,000 to 5,000, the NCT and TSTT 
increase by 5.71% and 407.84%, respectively.  However, the network clearance time and 
network clearance time increase by 26.81% and 819.76% respectively when the number of 
households increased from 5,000 to 25,000.  The non-linear congestion effect can be observed 
from the results. 

4.2 Impact of Time of Day 
In this example, we demonstrate the impact of the time of day when the emergency alert is 
issued, using the 1,000-household scenario.  The results are summarized in TABLE 2: 

TABLE 2: Impact of Time of Day for 1,000 Households Scenario 

Time Number of Evacuation 
Trips 

Total System Travel 
Time (sec) 

Network Clearance 
Time (sec) 

9 AM 1,529 2,011,765 5,568 
12 PM 1,795 2,413,856 6,672 
4 PM 1,911 2,691,764 6,330 

As can be observed from the table, the time required to evacuate the network at 12 PM is 19.83% 
more than the time at 9 AM.  The TSTT values differ by 111.69 hours (402,091 seconds) 
between the two times of day.  At 4 PM, more activities take place in the network.  Hence, the 
TSTT reaches its highest level among the three cases tested.  However, the reduction in NCT at 4 
PM compared to 12 Noon is because individuals of the same household are more likely to be 
dispersed in space at noon than at 4 pm, requiring more intra-urban trips for assembling together 
as one unit before heading out of the urban region. The loading curves and departure curves for 
various times of day are depicted in FIGURE 4 and FIGURE 5 respectively. 

 
FIGURE 4: The Loading Curves for 1,000 Households at Various Times 



Lin, Eluru, Waller and Bhat 

13 

 
FIGURE 5: The Departure Curves for 1,000 Households at Various Times 

The loading curves shown in FIGURE 4 are primarily determined by the degree of dispersion of 
members in the same household.  The degree of location dispersion can be visualized in the 
figure. The departure curves depicted in FIGURE 5 are determined by the degree of dispersion 
and the resulting congestion level.  For instance, though the numbers of vehicles loaded onto the 
network at time 2,100 seconds differ by 120 between 12 Noon and 4 PM, the number of vehicle 
departures is roughly the same. This indicates that the congestion level at 4 PM is higher due to 
the heavier evacuation traffic caused by dispersed household individuals.  In addition, the 
sampled households in this scenario generate trips massively in a few locations that cause near 
gridlock in the surrounding area. The high number of trips contributes to the greater congestion 
level as well. 
Next, we conduct the time-of-day experiments on the 5,000-household scenario.  Similar results 
can be observed in TABLE 3.  The loading curves and departure curves for various times of day 
are depicted in FIGURE 6 and FIGURE 7 respectively. 

TABLE 3: Impact of Time of Day for 5,000 Households Scenario 

Time Number of Evacuation 
Trips 

Total System Travel 
Time (sec) 

Network Clearance 
Time (sec) 

9 AM 7,414 10,216,626 5,886 
12 PM 8,851 12,396,487 6,264 
4 PM 9,726 14,498,627 5,928 
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FIGURE 6: The Loading Curves for 5,000 Households at Various Times 

 

FIGURE 7: The Departure Curves for 5,000 Households at Various Times 

Again, the degree of dispersion of individuals in the same household can be observed in the 
loading curves depicted in FIGURE 6. However, unlike the 1,000-household scenario, the 
number of vehicle departures remains similar only before time 1,200 seconds. The departure 
curve relating to the 4 PM evacuation never falls below the departure curve of 12 PM and 9AM 
afterward. The gridlock effect observed in the 1,000 household scenario is not apparent in this 
scenario. 

From the experiments, we can see that evacuation system performance can be evaluated up to the 
second-level resolution with the proposed framework.  This will be a useful tool to evaluate the 
time of issuing evacuation alert.  For instance, one can compare the TSTT and NCT at 9:00 AM 
and at 9:15 AM.  The decisions on traffic management or evacuation plan then can be made 
accordingly. 
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5. CONCLUSIONS AND FUTURE RESEARCH 

This paper develops an integrated demand-supply system to study the network repercussions of 
evacuation from an urban region.  In the framework, an ABM model accurately positions 
evacuees, while a DTA model provides the time-varying traffic flow patterns. The integrated 
system provides a framework to analyze evacuation traffic and predict the dynamic OD trip 
table.  In addition, the research provides a tool for evaluating network performance during 
evacuation.   

Past research efforts have seldom considered the behavioral elements associated with the 
location dispersion of household members at the time of an evacuation alert, which is especially 
critical to the ensuing travel patterns. Without explicitly considering the additional intra-urban 
trips that need to be made before households evacuate out of the urban region as a single unit, a 
much more optimistic (and unrealistic) situation of time to evacuation would be obtained, 
potentially leading to misinformed policies regarding resource needs for timely evacuation.  

This work addresses but one step of the evacuation analysis.  A potential extension of the paper 
is the network design problem, including network expansion and contraflow design.  One can 
employ the proposed framework as the evaluation function of the capacity expansion policy.
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