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ABSTRACT / Aerial photography has been routinely used for

several decades by natural resource scientists and managers
to map and monitor the condition of forested landscapes.
Recently, along with the emergence of concepts in managing
forests as ecosystems, has come a significant shift in

emphasis from smaller to larger spatial scales and the
widespread use of geographic information systems. These
developments have precipitated an increasing need for

vegetation information derived from other remote senslng
imagery. especially digital data acquired from high-elevation
aircraft and satellite platforms. This paper Introduces
fundamental concepts in digItal remote sensing and

describes numerous applications of the technology. The
intent is to provide a balanced, nontechnical view, discussing

the shortcomings, successes, and future potential for digital
remote sensing of forested ecosystems.

During the past decade, digital remote sensing has
become an increasingly important tool for mapping and
monitoring forest resources around the globe. This is
due, in part. to an increasing visibility and understand-
ing of remote sensing data, in general, and to the greatly
expanded use of geographic information systems (GIS).
Resource scientists and managers now require spatially
explicit vegetation data over extensive geographic areas,
which means that traditional field survey techniques,
even when coupled with aerial photography, are of lim-
ited use. Another important factor is an increased un-
derstanding that large-scale monitoring of forest condi-
tions is practical only if digital remote sensing is
included in sampling and mapping schema.

In the past several years, the authors have had numer-
ous conversations with forest managers and scientists
concerning some fundamental issues associated with the
use and understanding of digital remote sensing data.
Although there are several texts on the subject (e.g.,
Jensen 1986, *Mather 1987, Richards 1993, Lillesand and
Kiefer 1994), and a rich body of technical literature,
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there is need for a current summary of fundamental
concepts in digital remote sensing from a nontechnical
perspective. In addition to providing such a perspective.
this paper reviews some important research and applica-
tions of digital remote sensing in both forest manage-
ment and science. For this we focus on the Pacific North-
west region of the United States. a region of the globe
where remote sensing has been widely used. Finally, we
discuss several important current and emerging issues
in remote sensing.

Aerial photographs lairphotos) have been com-
monly used for decades to assist in the mapping of forest
resources (Barrett and Curtis 1992, p. 12). Thus, the
focus here is on other remote sensing data, such as
digital aircraft and satellite images. and nonimaging
radiometer measurements. To ease the transition, we
begin by comparing digital imagery to airphotos, with
the intent of establishing a baseline for common under-
standing. Throughout. we strive to present a balanced
perspective, one useful in understanding both the capa-
bilities and limitations of t-emote sensing.

General Considerations

Like airphotos. digital images record energy proper-
ties at a point in time for a portion of the Earth’s surface,
Using different combinations of film sensitivity and fil-
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Table 1. Regions of electromagnetic spectrum most
commonly used in remote sensing and approximate
wavelength boundaries and sensors used in detection
of energy in each region

Region Wavelength Sensor

Visible 0.4-0.7 km Reflected solar energy detected
by the human eye, black and
white panchromatic film,
color film, and electrooptical
sensors.

Reflected o.;-3.0  pm Reflected solar energy detected
infrared by infrared-sensitive film (up

to 0.9  pm)  and electro-
optlcal  sensors.

Thermal 3- i  and Emitted surface energy
infrared B-14  km detected by electrooptical

thermal sensors.
S,licrowave 0.1 mm-l m Emitted surface energy and

reflected ener<gy  from
“active” microwave trans-
mitters detected by
microwave sensors.

ters. airphotos can selectively record certain wavelength
ranges of the electromagnetic spectrum. Digital sensors
also use filters, but in lieu of halide crystals in a a film
emulsion. they use energy detectors that are similar in
concept to voltmeters. Energy incident upon a detector
is converted to a digital number, commonly 8-bit, but
often 9-. lO-, 12-, or 16-bit. Normally, one detector is
dedicated to a single wavelength range, and multiple
ranges are sensed using multiple detectors. Whereas
photographic film is limited in sensitivity to a narrow
range of the electromagnetic spectrum, digital sensors
can operate in a much wider range of the spectrum
(Table 1).

Airphotos have an inherent spatial scale that is a
function of camera focal length and aircraft flying
height. Although photo scale can be thought of as re-
lated to the unit area of the Earth’s surface that can be
resolved, resolution of airphotos is also a function of
the film‘s halide crystal grain size (or film speed). Digital
sensors also have inherent spatial properties, but rather
than referring to scale, the term spatial resolution or
“pixel size” is most commonly used. Digital image spatial
resolution refers to the size of the individual physical
sample unit on the ground that is sensed by a given
detector at any instant in time. For example, a resolution
of 10 m means a single digital cell contains integrated
spectral information from a nominal 10-m X 10-m unit
of the Earth’s surface. Likewise, a l-km resolution
means that an integrated signal from a l-km X l-km

area of the Earth’s surface was detected and recorded
in a single digital cell.

Atmospheric effects are an important problem in
remote sensing. Clouds, haze, and the like contaminate
energy signals from the Earth’s surface. Sensing geome-
try is another important confounding factor. Sun angle,
topographic variation, and the position of the sensor
relative to these all have the potential to strongly influ-
ence the energy sensed. Although atmospheric effects
and sensing geometry are important problems in air-
photo interpretation. they are more important prob-
lems in digital imagery. The primary reason for this is
that in the former case, as photointerpreters we can
bring multiple corroborative sources of information to
bear on our interpretations, such as size. shape, shadow,
location, and convergence of evidence (Paine 1981). In
the latter case. we are only now beginning to sufficiently
understand the phenomena so that we can develop
models and write computer codes that minimize their
effects.

Image Processing Fundamentals

Basic processing considerations for digital images in-
clude geometric correction, radiometric correction, im-
age enhancement. thematic classification and related
procedures. and change detection. Not all of these pro-
cedures are applied for every project, hut an under-
standing of these fundamental principles is essential for
intelligent use and interpretation of digital images and
maps derived from them.

Geometric Correction

Geometric corrections include compensations for
distortions that prevent images from being used directly
as maps. Sources of these distortions include variations
in sensor altitude, attitude, and velocity, Earth curva-
ture, and relief displacement (Lillesand and Kiefer
1994). Some distortions are systematic and well under-
stood. As such, corrections for these are relatively
straightforward to apply (EOSAT 1994). Nonsystematic
and uncompensated systematic distortions are cor-
rected by a process that uses a set of ground control
points (GCPs) that are located in the imagery (Heard
and others 1992). Using the GCPs, a geometric transfor-
mation is derived that projects the image into a selected
map projection. During this process, the image is “re-
sampled” by one of several techniques, whereby data
values from pixel locations in the original image are
used to assign values to pixels in the output, “rectified”
image (Chiesa and Tyler 1994). Distortions caused by
topographic relief remain generally unaffected unless
a digital elevation model (DEM) data set is used during



rectification. Resampling requires that an output image
pixel size be declared. Commonly, the pixel size chosen
is near that of the original spatial resolution, but for
some applications a much different pixel size might
be declared.

Geometric rectification is inexact. Error tolerance
for geometric rectification is commonly given in terms
of a root mean square error, which describes how well
the transformation fits the GCPs (Jensen (1986). Even
under the most exacting of circumstances, one can ex-
pect to find that a given ground resolution cell (pixel)
is displaced at least one cell from its “true” ground
location, and it often can be displaced several cells. The
importance of this error is amplified when attempting
to register two or more images together or an image to
other map data sets. For example. the greatest problem
we have encountered has been the use of digitized poly-
gons derived from airphotos and residing in a federal
agency data base in conjunction with georeferenced
satellite images in our data base. With few exceptions.
the polygons are shifted and/or stretched so that two
or more completely different cover types are included in
a single polygon. Depending on the spectral differences
among the cover types, the use of these polygons in
training or testing of classification algorithms can he
seriously compromised.

RadiometrIc Correction

Digital images are a set of twodimensional rasters of
digital numbers (DN). The two dimensions. x and y,
represent geographic space, and each member of the
set consists of recorded electromagnetic energy in a
given wavelength range or band (Figure 1). The corol-
lary in airphotos is the three separate, superimposed
layers of color or color-infrared film. Some digital data
sets contain only one hand (e.g., panchromatic visible),
whereas others may contain over 200 narrow wavelength
bands over the full spectrum of reflected energy from
visible to short-wave infrared. Energy recorded in a digi-
tal image is more than just a function of the cover
types sensed. Factors such as topography, illumination
conditions, atmospheric haze, and sensor characteristics
influence the quality of the imagery. Radiometric cor-
rections involve algorithms that attempt to remove these
sources of “noise” from the image, such that the data
best represent the Earth’s surface features of interest.

Radiometric corrections to digital image data include
calibration to known energy sources, calibration among
sensors, and conversions from radiance to reflectance
and temperature. For satellite images, some radiometric
corrections are routinely applied before they are deliv-
ered to the user. For some applications, such as linking
remote sensing to energy balance models, calculations
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Figure 1. Structure of a digital image. The x and y axes repre-
sent geographic space and the different data lavers (bands)
represent multispectral space. Each X-y cell consists of digital
numbers (DN), one for each hand. When d-hit data are viewed
on a computer monitor, a DN of zero appears black and a
DN of 255 appears white. All other DN are linearly scaled
between black and white. Three hands can be simultaneously
viewed on the monitor, one through each of the three “guns,”
red, green, and blue. This enables “true-color” and “false-
color” viewing.

of albedo, or change detection, additional radiometric
correction efforts are crucial. The most common radio-
metric corrections applied by users of digital remote
sensing data involve algorithms for minimizing atmo-
spheric and illumination angle effects (Teillet and oth-
ers 1982 Ahern and others 1987. Hall and others
199la). The amount of literature on these two subjects
is phenomenal, which is indicative of both our lack of
a thorough understanding of the phenomena and of
the intractability of the problems. The important thing
to realize is that these corrections are only approximate.
and the corrected image may still contain noise, some
of which is new noise introduced by the correction al-
gorithm.

I m a g e  E n h a n c e m e n t

Enhancement techniques are performed on the im-
agery to aid visual interpretation and to transform im-
ages into more meaningful data sets for specific digital
analyses. The central purpose of image enhancement
is to improve contrast among features of interest. These
techniques include contrast stretches, spatial filtering,
and derivation of spectral vegetation index (SVI)
images.

Contrast stretching uses a transfer function to map
original image intensities into a transformed image hav-
ing improved contrast (Cracknell and Hayes 1991).
With such stretches the pixel intensities are manipulated
in a nonspatial context, i.e., irrespective of intensities
of neighboring pixels. Examples include linear contrast
stretching and histogram equalization, each of which
alters the frequency distribution of pixel intensity values
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Figure 2. Different contrast stretches applied to 8-bit digital imagery left. no stretch: middle, linear stretch: and right. histogram
equalization stretch. The associated frequency histograms for each stretch are shown under the images are shown under the images.

and thereby changes the appearance of the image (Fig-
ure 2).

Spatial filtering is used to enhance spatial features
in images and thus relies on analyses in specified pixel
neighborhoods (Richards 1993). Low-pass spatial filters
suppress high spatial frequency detail, whereas high-
pass filters enhance high-frequency detail. A technique
that is used to sharpen an image is known as edge
enhancement, which can have the effect of delineating
objects in the scene (Jensen (1986). Texture algorithms
provide a twodimensional statistical measure of an im-
age, which relies on a moving window of some specified
size (Hord 1986) and can he used to assist in segmenting
a scene into different objects (Woodcock and H a r -
ward 1992).

Spectral vegetation indices (SVIs) are multispectral
transformations of image data that generate new sets
of image components, or bands, and thus represent
alternative descriptions of the original data (Richards
1993). All SVIs ar nonspatial in nature, operating on
the multispectral digital values of individual pixels. The
simplest SVIs are ratios, in which one image band is
divided by another or one band is subtracted from an-
other and the result is divided by the sum of the values

in the two bands (Figure 3). Excellent descriptions of
many of the common SVIs are given by Tucker (1979)
and Perry and Lautenschlager ( 1984). Principal compo-
nents analysis (PCA) and the tasseled cap transforma-
tion are two widely used sets of SVIs that neither of
the two references above discuss. PCA is a standard
multivariate statistical procedure, described in any mul-
tivariate statistical text. The tasseled cap was specifically
designed for Landsat data, having a multispectral scan-
ner (MSS) variate (Kauth and Thomas 1976) and a
thematic mapper (TM) variate (Crist and Cicone 1984).
All of the SVIs are primarily designed to enhance vegeta-
tion components, generally by contrasting the vegeta-
tion against soil and background components in the
scene.

Thematic Classification and Related Procedures

Thematic classification of multispectral images in-
volves the assignment to pixels of labels containing real-
world descriptions of ground features (Figure 3). Stan-
dard classification algorithms involve supervised and
unsupervised methods (Mather 1987, Lillesand and
Kiefer 1994). Unsupervised classification commonly re-
lies on statistical clustering to separate pixels into groups
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Figure 3. Raw digital imagery (upper left is the red hand, upper right is the near-infrared band), a spectral vegetation index
created by dividing the near-infrared hand by the red hand of the imagery (lower left), and a thematic classification of the imagery.
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Table 2. Typical error matrix used in remote sensing classification accuracy assessment (adapted from
Congalton 1991)

Reference data

Classified data Conifer forest Hardwood forest Water Agriculture Row total

Conifer forest 25 6 2 1 34
Hardwood forest 8 15 0 4 27
Water 1 1 0 7
Agriculture 2 3 0 13 18
Column total 36 25 7 18 X6

based solely on the likeness of their multispectral values.
Subsequent to definition of statistical clusters. labels
can be applied to the clusters based on knowledge of
the scene from ground data, field visits, or airphotos.
Supervised classification requires the use of “training
sets,” which are groups of’ pixels of a known type or
label. The training sets are used to statistically define the
known classes in spectral terms. Using some statistical
decision rule, such as maximum likelihood, or nearest
neighbor. the multispectral values of each pixel in the
image to be classified are compared to the training data
to determine which class the pixel is most like, and the
pixel is labeled accordingly.

Many other options for classification exist. There are
numerous examples where supervised and unsupervised
classification methods were combined (e.g., Nelson
1981. Chuvieco and Congalton 1988). Texture images
can he used for classification, with or without spectral
bands (Peddle and Franklin 1991 I. Regression analysis
is commonly used to derive relationships between
ground data and spectral data for specific numerical
attributes within a given class (Butera 1986, Peterson
and others 1986). and predictions from regression equa-
tions may then be collapsed to classes (Cohen and others
1995). Ancillary data, such as digital elevation models
(DEM), are often used to provide additional informa-
tion during image classification (Strahler 1981, Franklin
and Wilson 1992). Spectral mixture analysis has been
used to map proportions of basic scene components
(e.g., green vegetation, nonphotosynthetic vegetation,
and shade), that were then collapsed into classes (Smith
and others 1990a.b).

Thematic classification normally is followed by an
assessment of classification accuracy. Reference data
from field plots, aerial photography, and the like are
used to array predicted versus observed observations in
a table known as an error matrix (Table 2). Two types
of’ error are possible for any given thematic class X:

commission, in which pixels from classes other than
class X are classified as class X. and omission. in which
pixels of class X are classified as another class. There
are numerous problems associated with accuracy asses-
ment (Congalton 1991), especially those concerning
violation of underlying statistical assumptions, and the
process is commonly subjective.

Change Detection
Change detection involves the comparison of images

from a given location at two or more points in time.
One can simply compare summaries of classifications
for a given area at different points in rime or conduct
a spatially explicit analysis involving direct comparisons
on a pixel-by-pixel basis (Figure 1). In the latter, and
more usual case. accurate spatial registration of‘ two or
more images is required. Commonly used algorithms
for conducting change detection include image differ-
encing and image ratioing (Singh 1986. Muchoney and
Haack 1994). In the former, digital numbers of’ a single
image band from one date are subtracted from digital
numbers of a single band from a different date, and in
the latter, a single image band from a given date is
divided by a single image band from another date (Jen-
sen 1986). Other methods involve calculation of princi-
pal components (PCA) of single hands of multi&ate
imagery (Richards 1984, Fung and LeDrew 1987), use
of fuzzy set theory (Gong 1993), color additive display
of a single band from three different points in time
(Sader and Winne 1992), Gramm-Schmidt orthogonal-
ization (Collins and Woodcock 1994), and calculation
of postclassification transition matrices (Hall and others
1991 b). Change vector analysis (Malila 1980) describes
the vector and magnitude of change in multispectral,
multidate imagery. This particular approach is currently
becoming popular (Michalek and others 1993, Lambin
and Strahler 1994) and is likely to see increased at-
tention.
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Figure 4. A three-band, false-color composite rendition of a 1972 image (upper left), the same for a 1991 image of the same
area (upper right), and a change detection map created by subtracting  one date of imagery from the other (lower left).

With ail change-detection algorithms, either raw or
transformed images can be used. Determining the accu-
racy of change detection is a difficult problem unless
good reference data exist for multiple dates. The greater
the number of change features desired (e.g., clear-cut,
insect damage, succession) and the higher the spatial
frequency of these features in the imagery, the greater
the chance for error. One of the greatest problems
is associated with spatial misregistration of multidate
images, which can cause high rates of error around
edges of scene features (Townshend and others 1992).

Remote Sensing Research and Applications

This section illustrates the multifaceted utility of re-
mote sensing data. The intent here is not to conduct a
comprehensive review but to provide context to the
previous sections by summarizing some varied applica-
tion and research studies using remote sensing data.
We concentrate on a region of the United States in
which remote sensing has been widely used, the Pacific
Northwest (PNW). Although limited in geographic
scope, recent use of remote sensing among the land-
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management agencies, forest scientists, and other inter-
ested groups of this region has blossomed, and with it
has come an array of very large-scale projects. Whereas
production of vegetation cover and change maps is the
most common goal in applications of digital remote
sensing pertaining to forest ecosystems of the region,
scientific aspects of remote sensing are more directed
at understanding relationships between physical or eco-
logical properties and spectral properties of these sys-
terns and at developing algorithms to process digital
imagery into accurate vegetation maps. Much of the
remote sensing work in the PNW region has been a
combination of research and application, driven by a
few simple goals like mapping old-growth and general
forest cover, understanding relationships between im-
age data and stand structural, compositional, and func-
tional attributes. and mapping changes in landscape
patterns.

Mapping Forest Cover

Mapping with digital remote sensing data in the PNW
region has involved general land cover mapping, the
separation of structural and successional classes, and
mapping of wildlife habitat. In one of the earliest stud-
ies. Walsh (1980) used Landsat MSS data to map 12
land cover types in Crater Lake National Park, Oregon.
USA. with an 88.8% accuracy. In addition to cover type,
topographic slope and aspect had strong effects on im-
age spectral properties, with tree size and density having
lesser effects. That study was later repeated (Walsh
1987), with a more in-depth analysis, but similar results.
Isaacson and others (1982) mapped elk habitat in the
Blue Mountains of northeastern Oregon using MSS data
and large-scale aerial photography. Mapped attributes
included vegetation type, crown cover, vertical struc-
ture, and disturbance. No accuracy statistics were re-
ported. Cibula and Nyquist (1987) used MSS data to
map vegetation cover in Olympic National Park. Wash-
ington, USA. Combining topographic data and climato-
logical models with the MSS imagery, they achieved a
91.7% map accuracy for 21 land cover classes.

The largest set of mapping efforts in the PNW region
involved locating remaining old-growth forests on the
west side of the Cascade Range. This effort was under-
taken independently by the USDA Forest Service, the
Wilderness Society, and the Washington Department
of Wildlife. The earliest work was by Eby (1987)) who
modeled the relationship between near-infrared re-
flectance, stand age, and solar incidence angle at the
time of acquisition of Landsat MSS imagery. This work
was based on the fact that older forests exhibit lower
near-infrared reflectance than younger forests and that
illumination angle and near-infrared reflectance are

highly correlated in older forests due to shadows associ-
ated with complex canopy structure. Using regression
analysis, predicted ranges of values for different forest
age classes at different incidence angles were calculated,
and then these were used to develop a deterministic
classification model. The experience from this research
was extended by Eby and Snyder (1990) to map old-
growth forests on 11.3 million acres of western Washing-
ton. They reported 80% accuracy for the Cascades of
Washington and 85% accuracy for the Olympic pen-
insula.

Morrison and others ( 1991) used a variety of data sets
and methods, from airphoto interpretation to relatively
sophisticated digital techniques using multiple image
sources [Landsat MSS, Landsat TM, and panchromatic
SPOT high resolution visible (HRV)] and DEM data,
to map old-growth forest on the national forests of the
west side of the Oregon and Washington Cascade
Range. Detailed documentation of actual methodology
is not published, nor are map accuracies. Congalton
and others ( 1993) mapped old-growth on much of the
same terrain as Morrison and others (1991). The map-
ping was done with Landsat TM, airphotos, DEM, and
field measurements. Although detailed methods are not
published, the analysis appears to have involved exten-
sive testing of relationships between ground and photo
data and derived image variables, such as band ratios,
band textures, and principal components. Accuracies
between 80% and 91% were reported for nine national
forests. An interesting and important observation can
be made by comparing the results of Morrison and
others (1991) and Congalton and others (1993). Al-
though these independent estimates of forest condi-
tions may have narrowed the uncertainty of the amount
and location of old-growth forest on nine national for-
ests in the PNW region, their acreage estimates for any
given national forest differed as much as 100%.

Fiorella and Ripple (1993a) used unsupervised classi-
fication of TM imagery with an ERDAS (1993) topo-
graphic relief image calculated from a DEM to classify
successional stages from clearcut to old growth in Doug-
las-fir forests with an overall accuracy of 78.3%. Use
of the topographic relief image improved classification
accuracy for younger stands, but not for later succes-
sional stages. They also found that the ratio TM 4/5
and the tasseled cap wetness were strongly correlated
with each other and with stand age, except on poorly
regenerated sites (Fiorella and Ripple 1993b). Ripple
(1994) mapped percent conifer cover on 10.9 million
ha of forest in Oregon using Advanced Very High Reso-
lution Radiometer (AVHRR) imagery. The analysis was
based on a regression relationship between Landsat MSS
and coregistered AVHRR band values. The map de-
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picted percent closed canopy conifer cover in l-km cells
and was presented as an analysis of forest fragmentation
in Oregon. Correlation (r) between the AVHRR conifer
cover map and observations from U-2 airphotos was
0.90.

Cohen and others (1995) used TM data to map forest
cover over a 1.24 million ha multiownership landscape
in western Oregon. Unsupervised classification was used
to separate four forest cover classes: open (<30%),
semiopen (30-85%), closed canopy mixed conifer-
hardwood (>85%), and closed canopy conifer (>85%).
Of primary interest was distinguishing among succes-
sional stages within the closed canopy conifer class.
Thus. for this class, regression analysis was used to ex-
plore relationships between the tasseled cap SVIs
(brightness. greenness, and wetness), topography, and
stand age. Topography strongly influenced the re-
sponses of brightness and greenness. but not ofwetness.
A regression model for predicting forest age from wet-
ness was developed and applied. Forest age predictions
were collapsed to three classes: young (<8O years), ma-
ture (80-200 years), and old growth (>200 years) Accu-
racy of predictions for the three age classes was 75%.
Overall. for the full land cover map, an accuracy of 82%
was achieved.

Structure, Composition. and Function of Vegetation

Nonmappinq remote sensing studies focusing on bio-
physical and ecological properties of PNW forests are
relatively numerous and have primarily been research-
oriented. Relevant studies that have concentrated on
vegetation structure. composition, and function are de-
scribed below.

The Oregon Transect Ecological Research (OTTER)
project was a major NASA-funded effort to evaluate the
utility of a variety of sensors to provide input to ecosys-
tem models for predicting forest growth and nutrient
allocation (Peterson and Waring 1994). One major fo-
cus was on estimating leaf area index (LAI). In early
studies across the transect, Spanner and others (1984)
developed regression relationships between LAI of
closed-canopy conifer stands and the simple ratio (SR).
The SR is a spectral vegetation index (SVI) derived by
dividing near-infrared reflectance by red reflectance.
The SR was highly responsive up to an LAI of about 3,
at which time it began to level off with increased LAI.
Beyond an LAI of about 5, there appeared to be little
sensitivity of the SR. Using the same data, Running and
others (1986) found chat correcting the imagery for
atmospheric effects enhanced the regression relation-
ship and showed that the SR was not asymptotic until
an LAI of about 10. With additional data, Peterson and
others (1987) confirmed the value of the SR for estimat-

ing LAI across the OTTER transect and determined
that it was better related to LAI than a number of other
SVIs. Spanner and others (1990) showed that the SR
was greatly influenced by canopy closure, understory
vegetation, and background reflectance. In that study,
the SR was asymptotic at an LAI of about 4 or 5. Using
spectral reflectance data from a variety of scene compo-
nents (e.g., crown foliage. understory vegetation, tree
bark), Goward and others (1994) confirmed that SVIs
are a function of not just LAI. but of canopy closure
and background reflectance. as well as canopy optical
properties. Using reflectance data of two understory
vegetation species collected with a field spectrometer,
Law and Waring ( 1994) demonstrated that SVIS leveled
off at an LAI value of about 6.

Li and Strahler (198.5) developed a geometric-optical
canopy reflectance model that can be inverted to pro-
vide estimates of tree size and density. The model has
been used across the OTTER transect, with an observed
versus predicted correlation coefficient of at least 0.90
for both crown radius and tree density (Strahler and
others 1988). On a site-specific basis, however, or within
a given forest cover type, the model provides less accu-
rate predictions (Wu and Strahler 1994). Using a more
advanced configuration of the model, Abuelgasim and
Strahler (1994) demonstrated the potential for rstimat-
ing tree size. shape, and density using angular radiance
measurements from newer experimental sensors. Mogh-
addam and others ( 1994) demonstrated that across the
OTTER transect radar backscatter saturates at low levels
of biomass and that at low levels of biomass the backscat-
ter signal was only weakly related to biomass amount.
Johnson and others (1994) and Matson and others
( 1994) used imaging spectrometer data (a sensor having
over 200 narrow spectral wavebands) to estimate canopv
biochemistry across the OTTER transect and found that
the spectral region from red to near-infrared (the red-
edge) was strongly related to canopy total nitrogen and
canopy chlorophyll content.

Cohen and others (1990) used semivariograms to
characterize the spatial domain of l-m-resolution aerial
videography in relation to stand structural complexity of
Douglas-fir ‘forests. Image spatial patterns were strongly
related to canopy size and vertical layering. In a subse-
quent study, Cohen and Spies (1992) found that texture
of SPOT HRV 10 m was strongly correlated (>0.83)
with several stand structural attributes (e.g., tree size,
density, basal area). Cohen and others (1995) explored
relationships between stand structure and TM tasseled
cap SVIs. Models to predict structural attributes from
brightness and greenness were significantly improved
when the image data were stratified by topographic/
solar incidence angle classes; however, these models
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were not as strong as nonstratified models based on
wetness. As a part of this study, the effect of the defined
number of classes on percent accuracy in mapping was
evaluated. For two or three classes of any given structural
attribute, acceptable accuracies (75% or greater) were
observed, but for five or more classes accuracies de-
clined to below 50%.

Ripple and others (1991) found that relatively strong
relationships exist (correlation coefficients of -0.89
and -0.83, respectively) between near-infrared re-
flectance of SPOT HRV 20 m and TM 30 m data  and
forest volume in stands 25 years old and greater on the
MacDonald-Dunn Forest along the Willamette Valley
fringe of the Oregon Coast Range. Fiorella and Ripple
(1993b) developed regression models to predict age of
forest stands from 0 to 35 years old using a variety of
SVIs and found that TM band ratio 4/5 gave the best
results (r = 0.96). They also found that conifer regener-
ation success could be determined at approximately 12
years after planting.

Thermal imagery was used by Holbo and Luvall
(1989) to detect cover types on the H.J. Andrews Experi-
mental Forest (HJA) in the western Cascades of Oregon.
They compared frequency distributions from two sets
of diurnal multispectral thermal data to develop models
for specific cover types. With additional analysis, Luvall
and Holbo (1989, 1991) again used thermal data to
model the radiation balance for specific cover types
and develop models of short-term thermal responses to
discriminate these different surfaces. They found that
barren surfaces had the lowest response while forested
surfaces had the highest, indicating that forest cover
moderated incident radiation and was more efficient at
dissipating heat. Sader (1986) found that slope and
aspect had a greater effect on thermal emission of young
regeneration than on older stands in the HJA. However,
mean surface temperature decreased as age increased
regardless of topographic position (Sader 1986).

Change Detection

Although several change detection projects using
digital imagery are underway by various groups in the
PNW region, few results are currently available. Thus
far only coarse changes associated with harvesting and
other major disturbances have been evaluated.

Spies and others (1994) evaluated the effects of forest
havesting and regrowth between 1972 and 1988 on for-
est fragmentation over 258.000 ha of the west-central
Oregon Cascades. They used raw MSS data from 1972,
1976, 1981, 1984, and 1988. After the images were coreg-
istered, each was independently classified into three
broad cover types: closed canopy conifer forest, water,
and other forest and nonforest types. Using a GIS, the

classified images were registered to an elevation class
map derived from a DEM and a digitized land ownership
data layer. Maps for multiple dates of forest edge and
interior were then derived. From these, edge length
and amount of interior habitat were quantified, and
various landscape-level statistics calculated by owner-
ship class.

Current and Emerging Issues

There is great potential for use of remote sensing
to derive detailed information about forest conditions.
.Much has already been done with long-standing data
sets like MSS, TM. SPOT HRV. and AVHRR, and newer
sensors having finer spatial, spectral. and radiometric
resolution are becoming more readilv available. In this
section, we summarize some of the most important cur-
rent and emerging issues that must be addressed to
better integrate developing remote sensing technolo-
gies with resource management needs and objectives.

Users of remote sensing data need a  common frame
of reference for efficient and effective communication.
An excellent place to start is with the taxonomic struc-
ture for remote sensing models developed by Strahler
and others (1986). This taxonomy distinguishes ‘be-
tween a ground scene and an image of that scene. the
continuous versus discrete nature of a scene, image
spatial resolution and scene object resolution, and de-
terministic and empirical models of a scene. Concepts
associated with scale and spatial resolution in relation
to image-processing models are further developed by
Woodcock and Strahler (1987) This paper is required
reading for anyone faced with a choice of image data
and processing schemes for a specific set of mapping
objectives. What Woodcock and Strahler (1987) demon-
strate is that the spatial structure of a scene in combina-
tion with the type of information desired from associ-
ated imagery tend to limit the choice of appropriate
image processing models for classification (e.g., spectral
classifiers. spatial classifiers, mixture models, and tex-
ture models). Together, these two seminal papers pro-
vide a foundation from which to build a solid under-
standing of remote sensing.

Forest scientists and resource managers routinely de-
fine forest stands visually by drawing polygons on airpho-
tos. No two people will define stands in exactly the same
way, and this problem is one that will be prevalent for
the foreseeable future. When the focus shifts to stand/
polygon definition in digital imagery using digital tech-
niques, the problem is greatly exacerbated. Not only
do we still have the interpreter-specific stand-definition
problem, but we now have the additional difficulty of
developing a computer algorithm with an appropriate
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set of rules. There are numerous examples of polygon
definition algorithms (e.g., Kauth and others 1977,
Hong and Rosenfeld 1984, Woodcock and Harward
1992). but additional research is needed to develop a
rule-based system (Nazif and Levine 1984, Corr and
others 1989) that is flexible for different purposes. For
example, a wildlife biologist should be able to work with
the same digital data set as a forest manager but should
be able to have the computer program define a set of
polygons that is different from those of the forest
manager.

An area in need of substantial development is accu-
racy assessment. Widely applied techniques for accuracy
assessment technology are relatively old (Congalton
1991). New mathematical and statistical techniques have
been developed. and there have been some efforts to
incorporate these into new ways of conducting assess-
ments of accuracy (Craplewski and Catts 1992, Ma and
Redmond 1995). Fuzzy set theory (or logic) is one partic-
ular approach that has the potential to revolutionize
the field of accuracy assessment (Gopal and Woodcock
1994). The basic premise of fuzzy logic is that we may
never be certain of a given label’s correctness, but we
are often quite confident. Fuzzy logic enables us to have
relative degrees of certainty about the correctness of a
label and what other possible labels may be correct.

The spectral resolution of most current operational
remote sensing systems is quite limited. Landsat MSS
has four spectral bands in the reflective portion of the
electromagnetic spectrum. and TM has six there and
one in the thermal-infrared region. SPOT HRV multi-
spectral imagery consists of only three spectral bands.
On the horizon is imaging spectrometer data (e.g.,
>200 narrow spectral bands), already available on an
experimental basis (Vane and Goetz 1993). These data
provide detailed spectral signatures that enable fine
spectral absorption features to be evaluated.  Much re-
search has already been done using such data (e.g.,
Kruse and others 1993, Mustard 1993, Roberts and oth-
ers 1993), but not for the extraction of detailed for-
est information.

One of the most difficult challenges in remote sens-
ing of forests has been tree species identification. There
are a multitude of factors influencing the spectral re-
sponse of digital imagery, and species is only a minor
influence relative to forest structure and topography
(Colwell 1974). Life forms and functional groups, like
hardwood, conifer. brush, etc., can be differentiated
without too much difficulty based on spectral properties
alone. By incorporating other factors such as climate,
elevation, topographic aspect, soil properties, and the
like, a more refined species differentiation is possible,
as demonstrated by Woodcock and others (1994). How-

ever, few such models exist for the numerous forest
regions around the globe. Imaging spectrometer data
may also provide improved species identification, if nar-
row-band species-specific absorption features can be
identified. Additionally, we need to explore temporal
data sets to capture phenological events associated dif-
ferent tree species.

Detection of changes in forested environment-s is
an increasing emphasis in the use of remote sensing.
Progress has been made in detecting forest clear-cut
activity (Skole and Tucker 1993) insect damage (Collins
and Woodcock 1994), forest succession (Hail and others
(199lb), pollution damage (Vogelmann and Rock
1986), and other important forest changes. However.
the techniques used are not well developed or widely
applied. Problems associated with spatial misregistration
and radiometric differences among images in a tempo-
ral series are potentially large obstacles to detection
of subtle forest changes. Algorithm development for
change detection in forest environments are not well
tested in a variety of forest types.

Remote sensing can play an important role in initial-
izing, parameterizing, and testing landscape models of
vegetative dynamics that are used to project successional
changes under natural and anthropogenic distur-
bances. The types of modeling approaches used vary as
a function of the intended objectives. Methods range
from applying individual-based or stand-level simulators
to polygonal units. each of which delineate similar vege-
tative conditions. to simplified cell-based state-transition
models where predetermined states are advanced
through time based on deterministic or multiple path-
ways of transition. Regardless of the modeling approach
used, it is essential to define initial vegetative conditions
of the landscape at a grain size and at a level of detail
commensurate with the vegetative model. For detailed
modeling applications, remote sensing is essential for
characterizing the structural and compositional distri-
bution of the overstory. State-transition models require
representation of general seral stage, which is easily
detectable with remote sensing, and sometimes an ex-
plicit estimate of age. Broader consideration of the dy-
namics of understory species and dead wood is an inte-
gral part of the ecosystem management emphasis.
Simulation methods for handling these features are be-
ginning to come on-line. Delineating understory and
coarse woody debris levels are problematic, however,
with remote sensing. Nevertheless. given general
overstory characteristics, observed data for nonoverstory
features from similar areas can be extrapolated to those
delineated only by remote sensing. Parameterization of
models relies on a host of procedures and data sources.
Analysis of historical changes in structural and composi-
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tional changes or general development of seral stages
with remote sensing offers an efficient means to aid in
calibrating the dynamic attributes of vegetative models.
Dividing the time series into model calibration and cor-
roboration data sets additionally provides the abilitv to
independently test model behavior, at least over the
temporal span represented by available data.

Sustainable forest management requires consistent
vegetation data for large geographic areas. While there
is a definite role for remote sensing in providing these
data, current remote sensing technology cannot provide
the level of detail required for all purposes. Further-
more, a great amount of research is required to keep
ahead of applications needs. As new data sets become
available, time is required to explore those data and
to develop algorithms for processing them into useful
vegetation maps. There is ample reason to expect that
:-emote sensing, when properly understood and applied.
will be of increasing utility for the foreseeable future.
This future will need to include adoption of remote
sensing technology by agencies willing to make an oper-
ational commitment to applications. It will be important
to use remote sensing in concert with GIS. as part of
an ongoing decision support system to set policy based
on both historical trends and future simulations of land-
scapes with spatial data. Specific future applications in-
clude topics in landscape ecology, forest fire analysis,
biodiversity, habitat models for rare and endangered
species, ecosystem management based on natural distur-
bance regimes, analysis of riparian zones, forest health.
forest inventory, and harvest scheduling. With remote
sensing and GIS, we will have more functional and inte-
grated systems for spatial analysis. The repetitive and
synoptic coverage provided by these technologies will
help give us a better understanding of forest systems.
how they function, and how to manage them with a
holistic view.
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