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Abstract. We describe a method for computing a continuous time es-
timate of dynamic changes in tracer density using list mode PET data.
The tracer density in each voxel is modeled as an inhomogeneous Pois-
son process whose rate function can be represented using a cubic B-spline
basis. An estimate of these rate functions is obtained by maximizing the
likelihood of the arrival times of each detected photon pair over the con-
trol vertices of the spline. By resorting the list mode data into a standard
sinogram plus a “timogram” that retains the arrival times of each of the
events, we are able to perform efficient computation that exploits the
symmetry inherent in the ordered sinogram. The maximum likelihood
estimator uses quadratic temporal and spatial smoothness penalties and
an additional penalty term to enforce non-negativity. Corrections for
scatter and randoms are described and the results of studies using sim-
ulated and human data are included.

1 Introduction

Dynamic PET imaging usually involves the collection of a series of frames of
sinogram data over contiguous time intervals that can range in duration from
10 seconds to over 20 minutes. Data from each of the frames is independently
reconstructed to form a set of images. These images can then be used to esti-
mate physiological parameters [8]. This approach involves selection of the set of
acquisition times, where one must choose between collecting longer scans with
good counting statistics but poor temporal resolution, or shorter scans that are
noisy but preserve temporal resolution. List mode data acquisition avoids this
problem by allowing frame durations to be determined after acquisition. Alter-
natively, the problem of temporal binning can be avoided entirely by directly
using the arrival times in the list mode data to estimate a dynamic image.

Snyder [23] developed a list mode maximum likelihood (ML) method for es-
timation of dynamic PET images using inhomogeneous Poisson processes. Each
voxel has an associated time-varying tracer density that is modeled using basis
functions that are based on assumptions about the physiological processes gener-
ating the data, e.g. blood activity curves convolved with a basis of exponentials.
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The observed list mode PET data are then inhomogeneous Poisson processes
whose rate functions are linear combinations of the dynamic voxel tracer den-
sities. Here we follow a similar approach but instead work with rate functions
formed as a linear combination of known basis functions. Not only does the lin-
earity of the model lend itself to efficient computation of the estimates, but also
we can better represent the dynamic activity seen in experimental data that is
not well modeled by the more restrictive physiological models.

A second advantage of using list mode data arises in cases where the number
of detected photon pairs in a particular study is far less than the total number
of detector pairs. This is often the case in modern 3D PET systems which can
have in excess of 108 sinogram elements in a single frame. To reduce this num-
ber to manageable proportions, the data are often rebinned by adding nearby
elements together. Alternatively, the raw list mode data case be stored and the
need for rebinning is avoided. Barrett et al. [1,18] describe a list mode maxi-
mum likelihood method for estimation of a temporally stationary image. While
this method will often reduce storage costs and avoid the need for rebinning,
the random spatial ordering of the detected events in the list mode data does
not lend itself to fast forward and backprojection and exploitation of the many
symmetries in 3D projection matrices [10,19]. To avoid this problem we use a
hybrid combination of the standard sinogram and list mode formats that allows
the reconstruction algorithm to exploit the same matrix symmetries used in our
static imaging work [19]. All events in a dynamic study are collected into a single
standard sinogram; this is then augmented by a “timogram” which contains the
arrival times of each event stored so that they are indexed using the values in
the associated sinogram.

In this paper we present a method for reconstructing a continuous time es-
timate of a dynamic PET image using list mode data and the theory of inho-
mogeneous Poisson processes. A general B-spline model is used to represent the
dynamic activity in each voxel so that the dynamic image is parameterized by
a sequence of control vertex “images” where the control vertices are the coef-
ficients for the spline basis. Tomographic projections of these control vertices
produce the control vertices for the rate functions of the inhomogeneous Pois-
son processes representing coincidence detections between each detector pair.
A maximum likelihood estimate of the control vertices for each voxel can then
be computed using the standard likelihood function for inhomogeneous Poisson
processes [21,22]. The final result is a temporally continuous representation of
the PET image that utilizes the temporal resolution of list mode data.

Our parameterization of the inhomogeneous Poisson rate function is appli-
cable to any linear combination of basis functions. This form encompasses the
parametric imaging work of Matthews [14], Snyder [21] and mixture models of
O’Sullivan [17]. We also note that Ollinger [16] used list mode data to recon-
struct rate functions as histograms with adaptive bin-widths; our work could be
viewed as a continuous-time extension of this. For this paper we consider only
cubic B-splines. The key advantage of B-splines are that they have systematic
compact support. In particular, for any point on a cubic spline only 4 basis func-



100 T.E. Nichols, J. Qi, and R.M. Leahy

tions are nonzero. Also, simple closed forms exist for all derivatives and integrals
of a polynomial spline.

Since inhomogeneous Poisson rate functions are unnormalized densities, we
note that the density estimation literature using splines is closely related to
our work (e.g. [24,6]). The standard methods involve exponentiated splines or
squared splines. While these implicitly constrain the rate function to be positive,
they cannot be represented with a linear basis. As there are substantial compu-
tational savings to having a common basis for all voxels and projections, we did
not pursue these approaches.

The paper is organized as follows. We describe the model and maximum like-
lihood method in Sections 2 and 3, respectively. Methods for selecting the spline
knot points and methods for randoms and scatter correction are included in Sec-
tion 4. Computational considerations including resorting data into a timogram
format and the details of the algorithm used for computing the ML estimate are
given in Section 5. In Section 6 we demonstrate the performance of the method
with some preliminary simulation and experimental results.

2 Dynamic Modeling Using Inhomogeneous Poisson
Processes

We model the positron emissions from each voxel in the volume as an inhomo-
geneous Poisson process. The rate function for the voxel represents, to within a
scalar calibration factor, the time varying PET tracer density. We parameterize
the rate functions using a cubic B-spline basis:

ηj(t) =
∑

`

wj`B`(t), ηj(t) ≥ 0 ∀ t,

where ηj(·) is the rate function for voxel j, wj` is the `th basis weight (control
vertex) for voxel j, and B`(t) is the `th spline basis function. The problem of
reconstructing the dynamic PET image is then reduced to estimating the control
vertices for each voxel.

We denote by pij the probability of detecting at detector pair i a photon
pair produced by emission of a positron from voxel j. The probabilities pij

are identical to those used in static PET imaging. Here we use the factored
matrix forms developed in [19]. Assuming that the detection probabilities are
independent and time invariant, it follows that coincidence detection at detector
pair i is also an inhomogeneous Poisson process with rate function

λi(t) =
∑

j

pij

∑
`

wj`B`(t) =
∑

`


∑

j

pijwj`


B`(t) (1)

where the right-most term demonstrates that the rate functions for the data are
also B-splines.
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The Poisson process observed at the detectors is corrupted by random and
scatter components that can also be modeled as inhomogeneous Poisson pro-
cesses. Combining the three components, we have the model:

λ∗
i (t) = λi(t) + ri(t) + si(t)

where ri(·) and si(·) are the randoms and scatter rate functions for detector pair
i and λ∗

i (t) is the rate function for the process actually observed at detector pair
i. In estimating the rate function parameters wj` we will assume that the rate
functions for the random and scatter components have been determined through
a calibration procedure and can be treated as known processes.

For a Poisson process with rate function λ(t), with N events observed from
time T0 to T1 and event arrival times a1, . . . , ak, . . . , aN , the likelihood function
is [22]

P(a1, . . . , ak, . . . , aN |λ(t)) =

(
N∏

k=1

λ(ak)

)
exp

{
−
∫ T1

T0

λ(u)du

}
. (2)

For N = 0, the product is defined as unity.
For the set of independent events recorded in the list mode data the log

likelihood is therefore given by

L(D|W) =
∑

i

∑
k

log λ∗
i (aik) −

∑
i

∫
λ∗

i (u)du, s.t. λ∗
i (t) ≥ 0 ∀ t. (3)

where D denotes the list mode data and W the set of parameters for the rate
functions. We represent the data as D = (x,a1, . . .,ai, . . .,aI), where x =
(x1, . . ., xi, . . ., xI) are the sinogram count data, and ai = (ai1, . . ., aik, . . ., aixi

),
the set of xi event arrival times at detector pair i. For the B-spline basis,
W = (wj`|` = 1, . . ., L, j = 1, . . ., J) are the set of basis coefficients. While x
is a function of a and hence redundant, we use the sinogram counts to index the
arrival times, as described in section 5.1.

3 Penalized Maximum Likelihood Estimation

We estimate the image control vertex values that define our dynamic image using
penalized maximum likelihood. The objective function of the statistical model
is modified with three regularizing terms

L∗(D|W) = L(W|D) − αρ(W) − βφ(W) − γν(W). (4)

The terms ρ(W) and φ(W) regularize temporal and spatial roughness, respec-
tively; ν(W) penalizes negativity of the image rate functions; α, β and γ are the
tuning parameters. We now describe each of these terms.

We employ a temporal smoothing term to control the roughness of the spline
rate functions [3]. The form of the roughness penalty is the integrated squared
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curvature. For voxel j this is ∫ {
∂2

∂u2 ηj(u)
}2

du.

Fortunately, for cubic splines this quantity has a simple expression, a quadratic
form of the control vertices ([3], pg. 238). We denote the symmetric, banded
matrix of this quadratic form Q. Thus the temporal roughness penalty is given
by

ρ(W) =
∑

j

∑
`1

∑
`2

wj`1Q`1`2wj`2 .

We regularize the estimates of the control vertices using a spatial smooth-
ing function equivalent to the pair-wise quadratic penalty used previously in
penalized ML [4] and Bayesian estimation [19] of static PET images:

φ(W) =
∑

`

∑
j

∑
j′∈Nj ,j′>j

κjj′(wj` − wj′`)2.

where Nj denotes a set of neighbors of voxel j and κjj′ is the reciprocal of the
Euclidean distance between voxel j and j′. Other possible choices of the penalty
function include the discrete approximation of the thin plate spline bending
energy [12] or a non-quadratic edge preserving function such as that described
in [5].

We now justify applying the same regularization to the control vertices as has
previously been applied to images. First, the spline basis is the same for all voxels,
so the control vertices have the same meaning for all voxels. Second, each member
of the spline basis has limited support so that the effect of spatial smoothing
is localized in time. Lastly, the B-spline basis we use is well conditioned [3],
meaning that small changes in the control vertices produce small changes in the
spline function. Hence if we expect two rate functions to be similar, then it is
sufficient to constrain their control vertices to be similar.

The optimization method must account for the non-negativity of the image
rate functions ηj(t). We use unconstrained optimization with a penalty function
[13]. The problem is complicated somewhat in that the control vertices them-
selves are not necessarily non-negative; instead we need to ensure that the cor-
responding spline does not become negative. The local extrema of a cubic spline
have a closed form, so we initially tried to penalizing negative local minima.
This approach complicated the gradient and Hessian and made their evaluation
prohibitively slow.

Instead we simply penalize negative values computed at a finite number of
time points. The vector z contains the locations at which we enforce positivity.
It is constructed by uniformly spacing dz points in each inter-knot interval. Any
elements of z for which the spline is negative are penalized with the square of
the spline value, resulting in the penalty:

ν(W) =
∑

j

∑
m

min

(
0,
∑

`

wj`B`(zm)

)2

.
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This approach does not necessarily ensure that the spline is non-negative
everywhere. However, we have found that when used in combination with the
temporal roughness penalty, the resulting estimates do not become negative,
except possibly in the intervals just preceding a large increase in activity.

It is straightforward to show that each of the four terms in the penalized
likelihood (4) have negative semi-definite Hessian matrices. Their null spaces
only intersect at the zero vector. Therefore, the objective function is strictly
concave and has a unique global maximum which can be found by a gradient-
based search algorithm.

4 Calibration Procedures

4.1 Selection of Knot Spacing

Before proceeding to the estimation we must decide on the spacing between
knots in the B-spline basis. A cubic B-spline basis is defined by knot locations,
u = (u1, . . . , uL+4), where L ≥ 4 is the number of basis elements and the
first and last 4 knots are identical, to allow discontinuity at the end points.
Uniformly spaced knots will not be efficient for most tracer studies since early
changes in concentration have much greater magnitude than those later in the
study. While we do not attempt to adaptively place the knots, in a modest
attempt to optimize knot placement, we use the head curve to define knots that
produce approximately equal arc lengths, as suggested in [3]. The head curve is
a temporal histogram using all of the list mode data and it serves as an estimate
of the average rate function. Once the knot locations are determined, the actual
basis functions are computed using the recurrence relations as described in [2,3].

4.2 Randoms and Scatter Rate Functions

To apply the penalized likelihood estimation procedure described above, we
should first apply calibration procedures to account for the presence of scat-
tered and random events in the list mode data. We note that the simple ran-
doms subtraction method that is used in static imaging is not applicable to list
mode data. While neither randoms or scatter are included in the preliminary
results presented here, they are described for completeness and will be essential
in extracting accurate quantitative dynamic information from our results.

The randoms rate varies approximately as the square of the true coincidence
rate. We can model the randoms rate for each detector pair using an inhomoge-
neous Poisson process:

ri(t) =
∑

`

γi`B`(t),

where γi`, ` = 1, . . . , L are the control vertices for the randoms component in
the ith line of response (LOR). The list mode data produced on the ECAT HR+
(CTI Systems, Knoxville Tennessee) contains both prompt (on-time) and delayed
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events. We can use the delayed events to compute an ML estimate of these control
vertices. The number of counts per LOR in the delayed events is typically quite
small so that these estimates would probably exhibit high variance. However,
after scaling for variations in individual detector sensitivities, there is a high
degree of spatial smoothness in the mean randoms sinogram [15]. Consequently
we can use a penalized ML estimate in which substantial spatial smoothing is
used to regularize the estimator. By choosing the knot spacing for the randoms
rate functions to be at the same locations as for the image rate functions, the
separate treatment of randoms in the estimation algorithm below produces little
increase in the computational cost.

The spatio-temporal scatter distribution is a function of both the dynamic
tracer distribution and the object. We assume no interaction between the tem-
poral and spatial distribution and scale a fixed spatial scatter estimate over
time. While this is a rather crude approximation, we anticipate that it will be
reasonably accurate due to the very smooth nature of the scatter contribution
to the sinogram. However, for certain ligand studies of the brain, where the
tracer eventually binds solely to subcortical structures, this approximation may
perform poorly.

Integrating the coincidence detections over time yields a sinogram from which
we estimate the spatial scatter distribution using the simulation method in [25].
Let Si denote the estimated scatter contribution at the ith LOR. Next we cal-
culate a least-squares spline estimate of the head curve using the same B-spline
basis of the dynamic study; we normalize this spline to integrate to unity. Denote
this estimate as h(t) =

∑
` h`B`(t) where h` are the control vertices of the head

curve spline fit. The estimated scatter rate function is then

si(t) = Sih(t) = Si

∑
`

h`B`(t).

Note that when computing Si and h(t) we subtract the delayed events from the
prompts to correct for randoms.

5 Computational Considerations and Image Estimation

5.1 The “Timogram”

The raw list mode data is in a form that is inconvenient for computing the
gradient of the penalized likelihood function. The list mode events arrive in
random spatial order and hence require random rather than sequential access to
the control vertices that define the rate functions in the sinogram domain. We
have therefore developed a means to store list mode data in sinogram form while
preserving the temporal information. This is achieved using a single standard
sinogram that contains all detected events augmented by a second file listing
the arrival times of all events sorted in projection order. We call this second
file the “timogram”. The timogram simply consists of the arrival times of each
event. The sinogram is required to indicate how many arrival times to read for
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each bin. The resulting pair of files can be substantially smaller than either the
original list mode data file or the set of sinograms that would be stored in a
conventional dynamic study. We note that Ollinger [16] also resorted list mode
data prior to reconstruction, though his format did not completely eliminate the
random spatial order.

ECAT HR+ list mode data consists of a sequence of 4-byte event words,
each either a coincident event or a timing event. The coincident events record
the sinogram bin, optional gating information, and are identified as “prompt”
or “delay”. The timing events are inserted in the list mode stream every 1 mil-
lisecond, and they also record time with a 27 bit integer. By re-encoding the
arrival time of each coincidence event using 16 bits, we can retain a temporal
resolution of 256ms and a maximum acquisition time of 4.6 hours. Using this
format we need only 2 bytes per event in the timogram. Thus we can discard all
of the timing events in the list mode data and save a factor of two in the space
required to store the remaining coincidence arrival times. The space savings from
discarding the timing events are significant. For example, in a 90 minute scan,
the timing events take more space than a 3D sinogram set and hence the raw
list mode data will always take more space than the sinogram-timogram, even
if no coincidences are detected!

The sinogram-timogram format will also be more space efficient than a multi-
frame sinogram when the space required to store the event arrival times in the
timogram is less than the 2nd through nth sinograms. For example, an 11 frame
acquisition is 10 frames larger (∼ 200MB larger) than a sinogram-timogram with
no events; only after 200MB-worth of events, or 100 million counts are stored
will the sinogram-timogram be less space efficient.

The sinogram-timogram format could be made even more compact by stor-
ing inter-arrival times and then performing entropy-based compression [9]. The
motivation for this is that LOR’s with high activity will tend to have short inter-
arrival times, hence will have many high bits consistently zero, a property that
compression can exploit.

5.2 Preconditioned Conjugate Gradient Based Reconstruction

A preconditioned conjugate-gradient method was used to maximize the objec-
tive function. The particular method closely follows our previous work on static
reconstructions [15,19], so we only describe the method briefly here. We use the
following preconditioned Polak-Ribiere form of the conjugate gradient method.

W(n+1) = W(n) + α(n)s(n)

s(n) = d(n) + β(n−1)s(n−1)

d(n) = C(n)g(n)

β(n−1) = (g(n)−g(n−1))′d(n)

g(n−1)′d(n−1)

where g(n) is the gradient vector of the penalized likelihood (4) at W = W(n),
C(n) is a preconditioner, and the step size α(n) is found using a Newton-Raphson
line search.
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In this study C(n) was chosen analogously to the static PET reconstruction
[20] as

C(n) = diag

{
| w

(n)
j` | +δ∑

i pij

}
,

where δ is a small positive number to ensure that C(n) is positive definite. Here
we set δ equal to 0.01 maxjl{w

(n)
j` }.

The algorithm was initialized with a constant image for which the forward
projected rate function matches the average rate of the data after subtracting
scatters and randoms. The search vector is initialized by setting s(0) = d(0).
At each iteration we test whether the search vector is an ascent direction, i.e
g(n)′

s(n) > 0. If not, then we reinitialize the PCG algorithm with s(n) = d(n).
The logarithm in the likelihood function requires that the line search in (5)

is performed with the hard constraint that the forward projected rate function
at any arrival time is non-negative, i.e.

λi(aik) ≥ 0, ∀i, k.

The negativity penalty in (4) is soft allowing small negative values. The hard
constraint can be satisfied by limiting the step size in the update step of the
conjugate gradient algorithm. To minimize the effect of this constraint on the
convergence rate, we use a bent, rather than truncated, line search [11].

6 Simulation Studies and Performance Evaluation

6.1 Simulation Study

We evaluated our method with simulated and real data. We simulated a blood
flow data set using a single slice of the Hoffman brain phantom. We evaluated the
simulated data on the basis of instantaneous rate accuracy as described below.
The real data consisted of one 2D subset of a 10 minute 3D 15O-water list mode
brain study. Our subjective evaluations focused on tissues that are known to
have distinctly different dynamics with this tracer.

The simulated data was a simplified model of the dynamics of a bolus in-
jection of 15O-water using tissue time activity curves generated by the Kety
autoradiographic model ([7], Figure 3B). We chose two extreme curves, one cor-
responding to very high blood flow, one to very low blood flow. White matter
voxels were assigned to have low blood flow, gray matter voxels to have high
blood flow. We used an 11 element B-spline basis with support from 0 to 140
seconds; the spacing of the knot locations were determined by equally spacing
7 points along a medium blood flow curve. We used 7 negativity penalty points
(dz) in each knot interval. Approximately 5 million counts were generated for
this data set.

As a preliminary evaluation we computed the mean squared error (MSE)
between the true source and the instantaneous rate estimate at three times, t =



Continuous Time Dynamic PET Imaging Using List Mode Data 107

10, 23 and 60 seconds. We compared this MSE to that obtained by estimating
the instantaneous rate with a static sinogram based on events arriving in the
interval [t − d/2, t + d/2], for d = 1, 2, 4, 10, and 20 seconds. In both cases
the MSE’s are based on one realization, the mean taken over voxels. While
this comparison of instantaneous rate accuracy could be regarded as an unfair
since the static data has no information on the nonstationarity of the tracer
distribution, it is comparable to existing methods. We did not attempt to match
the spatial smoothness (bias) of the two methods; for each d, the static data sets
were reconstructed with an ML estimate (β = 0) with 25 iterations.

Figure 1 shows the results of the blood flow simulation for 120 iterations.
The rate functions for six voxels are shown in top left; there is generally good
agreement between true and estimated functions. The plot of instantaneous mean
squared error is shown top right. The spline estimates (horizontal lines) have
appreciably lower MSE than all static estimates with frame durations less than
10 seconds. Note that of the 20 second static estimates, the one with largest
MSE occurs at t = 23 seconds, corresponding to the mode of the high-flow
curve. This is expected since averaging across greater durations from the mode
will bias the static estimate downward; at the other time points the rate function
is approximately linear and there will be less bias in the static estimate.

6.2 Human Study

For the real data we used a 15 element B-spline basis with support over the
whole acquisition duration, 0 to 600 seconds; knot spacing was determined by
approximate equal spacing of 11 points along the head curve; again dz = 7.
The subject was injected with a 5 mCi (∼ 200 MBq) bolus of 15O-water ap-
proximately 30 seconds after the start of 3D data acquisition. To create the 2D
data set we rebinned data from eight ring pairs into a single dataset with about
400,000 counts, using only the prompt events.

Figure 2 shows the results of the human study after 40 iterations. A three
panel image shows the tracer distribution at 20, 60 and 120 seconds post injec-
tion. At 20 seconds the carotid arteries are visible, especially the right one; at 60
seconds the water has perfused the brain and surrounding tissue and the carotids
are sill visible; at 120 seconds the carotids are indistinguishable from background
tissue though the brain still has increased activity. This differing temporal char-
acter is clear from the plot of selected voxels. The carotid artery shows a sharply
peaked distribution, while brain tissue rises later and more smoothly; the sinus
region has much lower flow though it’s rate function shows a similar character
to that of the brain tissue.
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Fig. 1. This figure shows the results of the blood flow simulation. The top left plot
shows the estimated (dashed) and true (solid) rate functions; the vertical lines (dotted)
indicate knot locations. The top right plot shows the mean squared error over the image
for estimating the instantaneous rate at 3 time points; the horizontal lines are for the
spline estimate, the decreasing curves show mean squared error for the static estimates
of different frame lengths. The bottom two rows show instantaneous rate images; the
top row is for t=23 seconds, the bottom row for t=60 seconds. The left column is the
spline estimate, the center column is the truth and the right column is the estimate
from the longest static acquisition; the truth images have circles noting the location of
the voxels plotted top left
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Fig. 2. This figure shows the result of our method using real data. The top row shows
a sequence of instantaneous rate images for 20, 60 and 120 seconds post-injection.
(Injection occurred at t ≈ 30 seconds). The early arrival and fast clearance of the
tracer in the carotid artery is apparent, as the carotid is visible in the left and center
images, but not in the right. The bottom right shows the estimated rate functions for 4
individual voxels; the vertical dotted lines are the knot-locations. The image on left is
the total counts image; circles indicate the location of the 4 voxels plotted; the bilateral
circles mark the right and left cerebellum, the circle outside of brain tissue is the sinus
and the other circle is the right carotid artery
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7 Discussion and Conclusions

We have presented preliminary results on estimating continuous time dynamic
PET images from list mode PET data. We modeled the dynamic tracer den-
sity as an inhomogeneous Poisson process and parameterized the rate functions
with a B-spline basis. We introduced the timogram as a means to compactly
represent the temporal information of list mode data. The B-spline basis and
the timogram’s spatial ordering both contribute to an efficient implementation
that makes the creation of continuous time reconstructions feasible.

We have presented basic performance analysis with arbitrarily chosen tun-
ing parameters for spatial and temporal regularization. While these results are
encouraging in general, Monte Carlo simulations are needed to assess bias and
variance in ROI’s and in the image at different parameter values.

Estimating images of physiological parameters is a possible extension of this
work. This could be accomplished either through embedding the physiological
model in the rate function (as in [16]) or estimating parameters with the spline
functions. The standard to compare these results to would be estimates from the
temporally binned data. In fact, temporally binned data could also be applied
in this inhomogeneous Poisson framework, as there is a counterpart to equation
(2) for binned data [22].
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