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ABSTRACT

In this paper we introduce the Minimum Phone Error (MPE) and
Minimum Word Error (MWE) criteria for the discriminative train-
ing of HMM systems. The MPE/MWE criteria are smoothed ap-
proximations to the phone or word error rate respectively. We also
discuss I-smoothing which is a novel technique for smoothing dis-
criminative training criteria using statistics for maximum likeli-
hood estimation (MLE). Experiments have been performed on the
Switchboard/Call Home corpora of telephone conversations with
up to 265 hours of training data. It is shown that for the maximum
mutual information estimation (MMIE) criterion, 1-smoothing re-
duces the word error rate (WER) by 0.4% absolute over the MMIE
baseline. The combination of MPE and I-smoothing gives an im-
provement of 1% over MMIE and a total reduction in WER of
4.8% absolute over the original MLE system.

1. INTRODUCTION

Model parameters in HMM-based speech recognition systems are

normally estimated using Maximum Likelihood Estimation (MLE).

However, since the conditions for MLE optimality, including model
correctness, do not hold, other optimisation criteria are of inter-
est. Over the years, several discriminative training criteria, in-
cluding Maximum Mutual Information Estimation (MMIE) [1, 5]
and Minimum Classification Error (MCE) [4, 6], have been suc-
cessfully applied to small vocabulary speech recognition tasks.

Until recently it was believed that discriminative training tech-
niques are not effective in reducing the word error rate (WER) for
the most difficult large vocabulary tasks using HMM systems with
a very large number of parameters. The key issues are a viable
computational framework which allows incorrect word hypothe-
ses to be efficiently processed and good generalisation to test data.
It was shown in [10] that the computation can be made viable by
using a lattice-based framework along with the Extended Baum-
Welch (EBW) algorithm [3, 5] for MMIE parameter estimation.
Generalisation can be improved by using acoustic scaling to in-
crease the effective amount of confusable data [7, 11] and a weak
unigram language model (LM) during training [9]. It was demon-
strated [7, 11] that these techniques together yield reduced WER
over the best MLE systems for large vocabulary tasks.

While we have previously focused on MMIE, this paper pro-
poses techniques that, like MCE, minimise an estimate of the train-
ing set errors. For some small tasks, it has been reported [8, 9] that
MCE outperforms MMIE. However, we know of no experiments
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using MCE for large vocabulary speech recognition. Indeed since
MCE targets the sentence error rate, the implicit weight assigned
to each frame of data has an undesirable dependence on the train-
ing data segmentation into utterances.

As an alternative to MCE we have developed the Minimum
Word Error (MWE) objective function. MWE maximises the ex-
pected word accuracy and can be easily computed in a lattice frame-
work. We have also developed the Minimum Phone Error (MPE)
criterion which uses the same approach at the phone level.

The paper also discusses I-smoothing which applies smooth-
ing between the discriminative and MLE estimates for a parameter
in a way such that the degree of smoothing depends on the amount
of data available. While this is beneficial to MMIE, it is essential
to make MWE/MPE outperform standard MLE training.

The paper first introduces the MWE/MPE objective functions
and discusses their optimisation in a lattice context. The use of
I-smoothing is then described. Experiments on the transcription of
telephone conversations are then presented which show the effec-
tiveness of the current methods.

2. MWE/MPE OBJECTIVE FUNCTIONS

This section describes the various objective functions used in this
paper. For R training observation sequences {04, ... ,O,,...Or}
with corresponding transcriptions {s, }, the MMIE objective func-
tion for HMM parameter set A, including the effect of scaling the
acoustic and LM probabilities can be written
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where M, is the composite model corresponding to the word se-
quence s and P(s) is the probability of this sequence as deter-
mined by the language model. The summation in the denominator
of (1) is taken over all possible word sequences allowed in the
task. Hence MMIE maximises the posterior probability of the cor-
rect sentences. The denominator in (1) can be approximated by a
word lattice of alternative sentence hypotheses.
The MWE criterion is defined as
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where RawAccuracy(s) is a measure of the number of words
accurately transcribed in hypothesis s. Hence, for each training

Lt is assumed that the LM probabilities P(s) have already been
“scaled” (raised to the power) by the normal LM scale factor 1/x and
hence further scaling by « takes them back to their original values.



utterance, the MWE criterion gives a weighted average over all
s of the RawAccuracy(s). ldeally this is the the metric used to
calculate WER, i.e the number of correct words in s minus the
number of insertions. Then when k — oo, maximising the MWE
criterion becomes equivalent to minimising the word error rate.
A key issue is how to define RawAccuracy(s) so that it avoids
dynamic programming for each hypothesis and can be efficiently
implemented in a lattice-based framework.

As well as the MWE criterion, we have also investigated the
Minimum Phone Error (MPE) criterion, which uses the same ap-
proach as MWE but estimates errors at the phone level. Either
context-independent (CI) or context dependent (CD) phone labels
can be used, leading to either MPE-CI or MPE-CD.

3. OPTIMISATION OF DISCRIMINATIVE CRITERIA

This section describes the optimisation strategy for both MMIE
and MWE. The approach allows the MMIE EBW re-estimation
formulae to be used for MWE given suitable “occupancies”.

3.1. Optimisation of the MM E objective function

To gather the statistics needed for the EBW algorithm, for each
training utterance the lattice corresponding to either the numerator
(num) or the denominator (den) of (1) are used to compute the
posterior probabilities of occupation of mixture component m of
state j at time ¢, e.9. ~vjm (). These are then used to gather
Gaussian occupancies and weighted sums of the data and squared
data 63 (O) and 6749 (O?) respectively.

The statistics gathering process uses the exact-match forward-
backward procedure [11]. This uses the phone boundary times
from the lattice and applies the scale factor « to lattice phone arc
log likelihoods. The forward-backward procedure is performed
first between the start and end times of phone arcs ¢, leading to
within-arc posterior probabilities given the arc, which in the nu-
merator case are denoted ;7. (t). The within-arc process also
generates a likelihood p(q) for that arc. These arc likelihoods
together with probabilities arising from the language model are
scaled by the factor x and used in a forward-backward pass at the
lattice-node level to estimate the arc posterior probability, "™
(i.e. the probability of traversing that arc). The overall occupan-
cies needed for the EBW formulae are then gathered according to
formulae such as y}m = Yt Vimea()Ya:

Once the statistics have qbeen accumulated over all training
files, they are used to update the Gaussian parameters as follows
[11]:
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The constant D is set on a per-Gaussian level to the greater of: i)
twice the smallest value needed to ensure positive variances, or ii)
fyjdi,‘; times a further constant E, which is generally set to 1 or 2.

Updated mixture weights é;,, are calculated by maximising
the following auxiliary function:

Z "/j,um log éj,m

subject to the sum-to-one constraint; a similar method is used for
each row of the transition matrices.

3.2. Optimisation of the MWE objective function

In MMIE training, the difference y2*™ — ~3¢® between the two

arc posterior probabilities is equal to to i gﬁl\é‘ij‘(lf) where p(q) is
the likelihood of the speech data from the beginning to the end of
the phone arc. The approach taken for optimisation of the MWE

objective function is to calculate for each phone arc the value of

MWE __ l anWE
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which will be denoted the “MWE arc occupancy”. If positive, then
we set 7 = ) TWE ydem = 0 and add to the numerator EBW
statistics only; if negative, then set y2%™ = 0, yde» = —MWE
and add to the denominator statistics. The statistics thus obtained
are then used in the EBW parameter update equations just as they
would be for MMIE training. MWE requires a forward-backward
pass over just the denominator lattice? rather than both the numer-
ator and denominator although time-alignment information from
the numerator is included in the MWE occupancy computation
(see Sec. 4). Each arc in the denominator lattice will contribute
either to the numerator or denominator statistics, depending on the
sign of y3™WE. In the next section, it will be explained how to

calculate the “MWE occupancies” ya™"V = in a lattice framework.

4. CALCULATING MWE ARC OCCUPANCIES

MWE arc occupancies are easily computed if the RawAccuracy(s)
can be expressed as a sum of terms each corresponding to a word w
regardless of the context, i.e. we require that RawAccuracy(s) =
> wes WordAcc(w), where ideally we would have:

1if correct word
0 if substitution
—1if insertion

WordAcc(w) =

Since the computation of the above expression requires dynamic
programming, the value used here is as follows. A word z is found
in the reference transcript which overlaps in time with hypothesis
word w, then if the proportion of the length of z which is over-
lapped is denoted e, set

—1 + 2eif same word

WordAce(w) = { —1 + e if different word } ’ @
The word z is chosen so as to make WordAcc(w) as large as pos-
sible. The expressions in (2) represent tradeoffs between an in-
sertion and a correct word or substitution respectively, and are a
solution to the problem that a single reference word might be used
more than once by a hypothesis sentence. In our implementation
the reference word z is chosen from a lattice encoding alternate
alignments of the correct sentence.

Differentiation of the MWE objective function leads to an ex-

pression for y)™WE as follows:
MWE
Yo = Yalc(q) — cavg)s

2Note that, as for MMIE training, the correct sentence hypothesis is
added to the denominator lattice if not already present.



where ~, is the arc occupancy as derived from a forward backward
pass over the arcs, c(q) is the average value of RawAccuracy(s)
for sentences s containing arc ¢ (weighted by the k-scaled log
likelihood of those sentences), and cavg is the weighted average
RawAccuracy(s) for all sentences in the lattice, which is the
same as the MWE criterion for the utterance.

The value of ¢(w) may be efficiently calculated by another
lattice forward-backward pass. Since the WordAcc(w) in (2) is
defined for words and the forward-backward algorithm will work
at the phone level, let us define PhoneAcc(q) to be, in the case
of MWE, WordAcc(w) if ¢ is first phone of w, and zero other-
wise. In the case of MPE, PhoneAcc(w) would be calculated
directly from an equation of the form in (2). Then, if aq and 4
are the forward and backward likelihoods used to calculate normal
arc posterior probabilities, let

K
1 Zr preceding g a a’“t
K
zr preceding ¢ a"'t‘rq

21 following q tarP(7)"Br (B; + PhoneAcc(r))
Er following g qrp('r) ﬁT

o + PhoneAcc(q)

Bq

clq) = ag+pB;

where t4, are lattice transition probabilities derived from the lan-
guage model and « is the likelihood scale.

5. I-SMOOTHING

The H-criterion [2] uses a fixed interpolation between the MLE
(H=0) and MMIE (H=1) objective functions. For the large train-
ing sets we have investigated, we haven’t found it reduces WER,
although it is useful as a technique to make MMIE training con-
verge without over-training [11].

I-smoothing is a way of applying an interpolation between
MLE and a discriminative objective function in a way which de-
pends on the amount of data available for each Gaussian. In the
context of MMIE, I-smoothing simply means increasing the num-
ber of data points 75" assigned to Gaussian j, m by 7 while keep-
ing the average data values and average squared data values the
same; in the context of MPE training, it involves adding 7 points of
the MLE occupancies (as obtained from the alignment of the cor-
rect transcriptions) to the numerator occupancies vy, , 654, (O)
and 65*(0?) used in MPE training. In the MPE case, this would
be done as follows:

Vim = Ym
oim(0) = 0;’,‘:,':“(0)+ e O (0)
Jj,m
01‘1;’1:::1(02) — 0;1’1::1(02)4_ mleomle(o2)
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where the superscript mle indicates occupancies as would be ob-
tained by alignment of the correct transcriptions. In the MMIE
case, I-smoothing is applied by i mcreasmg all of 732, 67557 (0)
and 85 (0?) by a factor 1 + ,,.,m. In both cases the EBW pa-

rameter update equations are then applled using the altered counts.

A technique very similar in effect to I-smoothing but not in-
volving arbitrary constants has been developed based on a Max-
imum A Posteriori principle. The technique gives a justification
of the I-smoothing process, and the particular range of = found in
practice to be effective.

6. EXPERIMENTAL SETUP

To evaluate the discriminative training techniques experiments have
been performed on the transcription of “Hub5” from the Switch-
board and Call Home English (CHE) corpora. The basic setup is
the same as used for MMIE experiments reported in [7, 11].

The input speech data consists of PLP coefficients derived
from a mel-scale filter bank (MF-PLP), with 13 coefficients includ-
ing ¢ and their first and second-order differentials. The HMMs
used were gender independent cross-word triphones built using
decision-tree state clustering. Conventional MLE was used to ini-
tialise the HMMs prior to discriminative training. Word lattices
for discriminative training were created using a bigram LM, while
unigram probabilities were actually applied to these lattices during
training. In all experiments, the scale value  is set to the inverse
of the standard recognition LM scale factor. The discriminative
training schemes were generally tested after 8 iterations of updat-
ing unless otherwise shown.

We used two training sets comprising of a total of 265 hours of
data taken from the Switchboardl and CHE corpora. Further de-
tails of this training corpus, denoted h5train00, are given in [11].
Most experiments were performed with a 68 hour subset, denoted
h5train00sub. The data had cepstral mean and variance normali-
sation applied on a conversation side basis, along with vocal tract
length normalisation. The HMMs used had 6165 clustered speech
states with 12 Gaussians per state for h5train00sub training and 16
Gaussians per state when using h5train00.

Recognition experiments used rescoring of word lattices de-
rived using MLE HMMs. The pronunciation dictionaries used in
training and test were originally based on the 1993 LIMSI WSJ
lexicon, but have been considerably extended and modified. The
1998 Hub5 evaluation data set, eval98, was used for testing. This
contains 40 sides of Switchboard2 and 40 CHE sides (in total about
3 hours of data). Recognition used a 27k word vocabulary with
a trigram language model formed by an interpolation of Switch-
board and Broadcast News LMs.

We also report recognition results on a subset of the training
data. This uses about 2 hours of training data that was randomly
selected from the training corpora. The training results use either
a full (fast) single pass decode using a bigram LM, rescoring the
training word lattices using a bigram LM or rescoring the actual
unigram LM lattices used in discriminative training.

7. RESULTS

Table 1 shows both the training and test WERs for training on
either a) the 68 hour or b) the full 265 hour training set for standard
MMIE, MMIE with I-smoothing and MPE. For larger amounts of
data, MPE gives the greatest reduction in training set WER on the
unigram lattices on which the system is trained. However, it does
not give as large a reduction in training set WER as MMIE when
tested with a bigram language model. It should be noted that the
full-decode and lattice bigram decoding results are similar.
I-smoothing improves MMIE test-set performance (by about
0.5% absolute) at the cost of training set accuracy i.e. it gives
improved generalisation. The use of the MPE objective function
further improves test-set accuracy: with the full training set it gives
a 1% reduction in WER over standard MMIE. It should be noted
that the value of 7 at which the best results are obtained for MPE
(e.g, = = 50) represents at least as much smoothing as the, say,



Training Type WER Training Subset | WER Test
(training iteration) Fullbg Latbg Latug | eval98
MLE baseline 26.3 26.0 418 46.6
MMIE E=2,7=0 (4) 186 194  30.1 44.3
MMIE E=1,7=200 (6) | 19.7 20.3 32.2 43.8
MPE E=2,7=50 (8) 20.6 20.7 27.9 43.1

@)

Training Type WER Training Subset | WER Test
(training iteration) Fullbg Latbg Latug | eval98
MLE baseline 30.1 29.8 47.2 45.6
MMIE E=2,7=0 (8) 23.2 23.7 37.7 41.8
MMIE E=1,7=200 (8) | 22.2 23.0 35.8 41.4
MPE E=2,7=100 (8) 23.9 23.9 34.4 40.8
(b)
Table 1. Training & test WERs for MMIE (7=0), I-smoothed
MMIE and MPE for (a) 68 hour and (b) 265 hour training set.

7 = 200 in the MMIE case; the figures are not comparable because
occupancies in MWE tend to be considerably less than one.

Training Type Train Subset WER | MPE Train | Test WER
Fullbg Latug | Criterion | eval98
MLE baseline 26.3 41.8 0.66 46.6
MPE E=2,7=0 255 28.5 0.80 50.7
MPE E=2,7=25 | 20.0 26.2 0.81 43.1
MPE E=2,7=50 | 20.6 27.9 0.79 43.1
MPE E=2,7=100| 21.6 29.9 0.77 43.3

Table 2. MPE with varying amounts of I-smoothing for 68 hour
training set.

Table 2 shows the effect of varying the amount of I-smoothing
on MPE. Without I-smoothing, MPE causes a degradation in test
set performance by the 8th iteration. Training results from rescor-
ing the training lattices and criterion improvement show that I-
smoothing works by improving generalisation rather than criterion
optimisation, and that good optimisation of the MPE criterion is
not sufficient to obtain good test set results. Unsmoothed MPE
seems to be less robust than MMIE since it does not generalise
well to the use of a bigram LM on the training set, unlike MMIE.

Training Type Training Subset WER | Test WER
Full bg Lat ug eval98
MLE baseline 26.3 41.8 46.6
MWE E=2,7=25 20.2 25.9 43.3
MPE E = 2,7=50 20.6 27.9 43.1
MPE E = 2,7=100 21.6 29.9 43.3
MPE-CD,E=2,7=100| 20.7 28.5 43.4

Table 3. MPE compared with MWE and context-dependent MPE
using 68 hour training set.

Table 3 compares MPE with MWE and context-dependent MPE
(MPE-CD). Although MPE-CD improves training set WERS, there
is little difference in test-set performance. As expected, MWE pro-
duces a greater improvement in training set word error rate since
word error rate is being more directly optimised. However, this is
not matched by better performance on the test set.

8. CONCLUSIONS

Two new discriminative training criteria, Minimum Phone Error
and Minimum Word Error, have been presented and a lattice-based
implementation has been described. Both of these methods di-
rectly optimise a smoothed approximation of the training set er-
rors. The focus on training errors, rather than posterior probability
of the correct utterance as in MMIE, tends to place more weight
on training data that is close to decision boundaries and might
be corrected by small changes in the HMM parameter values. A
technique called I-smoothing has been described which improves
the generalisation of discriminatively trained HMMs and seems
to be essential for MPE/MWE. I-smoothed MPE is currently our
most effective discriminative training technique with a reduction in
WER 4.8% absolute over MLE when trained on 265h of Switch-
board/CHE data and a 1% absolute lower WER than our previous
best MMIE result without I-smoothing.
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