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Abstract

Due to the complexity and scale of the current Internet, large-scale simulations are an increasingly important tool to

evaluate network protocol design.  Parallel and distributed simulation is one appropriate approach to the simulation

scalability problem, but it can require expensive hardware and have high overhead.  In this study, we investigate a

complimentary solution to large-scale simulation -- simulation abstraction.  Just as a custom simulator includes only

details necessary for the task at hand, we show how a general simulator can support configurable levels of detail for

different simulations.  We develop two abstraction techniques, centralized computation and abstract packet

distribution, to abstract network and transport layer protocols.  We demonstrate these techniques in multicast

simulations and derives centralized multicast and abstract multicast distribution (session multicast).  We show that

our abstraction techniques each help to gain one order of magnitude in performance improvement (from tens to

hundreds to thousands of nodes).  Although abstraction simulations are not identical to more detailed simulations, we

show that in many cases these differences are small.  We show that these differences result in minimal changes in the

conclusions drawn from simulations in reliable multicast simulations.

Keywords: Abstraction Techniques, Packet Network Simulation, Simulation Scalability, Multicast Simulation,

Protocol Evaluation
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1. Introduction

Modeling and simulation traditionally have been the two approaches to evaluate network protocol designs.

However, modeling is often intractable with today’s large networks and complex traffic patterns, so researchers have

turned increasingly to simulation.  In order to evaluate wide-area protocols with thousands of nodes, we must be able

to perform large-scale simulations.

General purpose network simulators (such as ns-2 [25]) make simulation easier by capturing characteristics

of real network components and providing a modular programming environment, often composed by links, nodes

and existing protocol suites.  For instance, a link may contain transmission and propagation delay modules, and a

node may contain routing tables, forwarding machinery, local agents, queuing objects, TTL objects, interface

objects, and loss modules.  These composable modules provide a flexible environment to simulation network

behavior, but depending on the level of details a particular simulation is investigating, these details may or may not

be required.  Unfortunately, this modular structure can result in significant resource consumption, especially when

the simulation scenarios grow.

One approach to the scalability problem is to apply parallel and distributed simulation, dividing tasks into

parts coordinated over numbers of machines.  Parallelism can improve simulation scale in ratio to the number of

machines added, but this linear growth is not sufficient to add several orders of magnitude scaling needed.  Parallel

simulation can also require hardware which is not widely available or expensive.

A complimentary solution is to slim down simulations by abstracting out details.  The basic idea is to

analyze a particular set of simulations, identify the bottleneck, and eliminate it by abstracting unnecessary details

(i.e., keeping the simulator slim).  The risk of abstraction is that simulation results may be distorted due to the

abstraction; users must be careful that their simulation results are not changed.  We address this problem by

providing identical simulation interfaces for detailed and abstract simulations, allowing users to make side-by-side

comparisons of their simulations at small scales.  When the abstraction is validated, they can then use it for very

large-scale simulations.

Simulation scaling involves a process of selective abstraction which is often application specific, and raises

two interesting questions -- “what to abstract to make simulations scaleable?” and “what is the effect on simulation

results?”.  We examine these questions, using multicast simulations as examples.



3

This work shows that abstracting details can speed up and reduce memory consumption significantly while

the results of simulations are not crucially affected.  Application of our abstractions and the techniques may allow the

research community to perform large-scale simulations that were impossible before, and to perform previously

achievable large-scale simulations at much lower cost to the same user.  As a result, this work can enable the Internet

community to debug designs and to evaluate protocol performance in large-scale scenarios.

After discussing related work, we present the techniques used to abstract details, particularly for multicast

simulations, and a guideline to perform abstract simulations.  We then discuss results comparing performance and

accuracy for the abstract and detailed versions, and, finally, SRM (Scalable Reliable Multicast) simulations are

studied to demonstrate the use of guideline and the abstraction techniques.

2. Related work

There has been a great deal of work on simulation techniques.  Here we briefly summarize priori work in data

structure, parallel and distributed simulation, abstraction, and hybrid simulation.

Various scheduling algorithms and event queue structures (e.g., calendar queue, heap, and hybrid event list)

have been proposed to speed up sequential simulation.  Unfortunately, they do not scale to the number of events

(packets) triggered by a complex and large-scale network like the current Internet.  Ahn and Danzig estimated [11]

that “five minutes of activity on a network the size of today’s Internet would require gigabytes of real memory and

months of computation on today’s 100 MIP uniprocessors.”

An alternative to sequential simulation is parallel and distributed simulation.  It exploits the cost benefits of

microprocessors and high-bandwidth interconnections by partitioning the simulation problem and distributing

executions in parallel.  The distributed simulations require techniques such as conservative and optimistic [4-7]

synchronization mechanisms to maintain the correct event ordering.  Consequently, the simulation efficiency may be

degraded due to the overhead associated with these techniques .  In addition, the typical simulation algorithm does

not easily partition for parallel execution.  Ohi and Preiss [2,3] investigated several block selection policies and

found limited speedup and possibly degraded performance when there were a large number of unique event types.

Although parallel and distributed simulation is useful when large computers are available, alternative techniques

such as abstraction are also needed to make very large scale simulations.
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Ahn and Danzig [11] proposed to abstract packet streams (Flowsim) for packet network simulations and

proved that Flowsim could be adjusted to the desired simulation granularity and help to study flow and congestion

control algorithms more efficiently.  However, Flowsim only abstracts one aspect of network simulation.  We present

two other abstraction techniques and hope to generalized them for a wider range of network protocols.

In hybrid simulation models [12], both discrete-event simulation and analytic techniques are combined to

produce efficient yet accurate system models.  There are examples of using hybrid simulations on hypothetical

computer systems.  Discrete-event simulation is used to model the arrival and activation of jobs, and a central-server

queuing network models the use of system processors.  The accuracy and efficiency of the hybrid techniques are

demonstrated by comparing the result and computational costs of the hybrid model of the example with those of an

equivalent simulation-only model.  Our abstract simulation can be thought of as an application of hybrid simulation

to networking.

3. Abstraction techniques

Large-scale simulations are prevented because of resource constraints, typically in CPU consumption and memory

usage.  Through abstraction we reduce resource consumption, enabling large-scale simulations.  Abstraction is

possible because most protocol architectures are layered such that one protocol makes use of another.  In design or

evaluation of a level-n protocol, we need  information provided by level n-1 and below, but not necessarily

(depending on the research questions) all the details of the lower level protocols.  For instance, a multicast transport

protocol may need multicast routing tables in order to forward multicast packets, but not the detailed exchange of

messages required to generate those routing tables in an actual network.  If we abstract away unnecessary details, the

memory and time consumption can be conserved and used to simulate larger-scale scenarios.  In this section, we

present two abstraction techniques and our general approach to abstraction.  We use multicast simulations as our

example.

Multicast supports transfer of information from one or more sources to multiple receivers (multicast group

members).  Current Internet multicast protocols transfer information along distribution trees rooted at the group

sources and spanning the group members.  Various multicast routing protocols establish these multicast trees in

different ways: broadcast and prune (e.g., DVMRP [13]and PIM-DM [14]), membership advertisement (e.g.,
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MOSPF [22,23]), and rendezvous-based (e.g., CBT [15], PIM-SM [16-21], and BGMP[35]).  Broadcast and prune

multicast routing protocols flood data packets all over the network and then prune back branches that do not have

members.  They are suitable for groups with dense member distribution, and, thus, also called dense mode multicast

routing protocols.  Membership advertisement multicast routing protocols advertise membership and topology

information everywhere in the network and calculate the multicast tree routes according to this information.  Due to

the domain-wide advertisement of membership and topology information, these multicast routing protocols do not

scale to large networks and are most suitable for intra-domain multicast.  Rendezvous-based multicast routing

protocols build multicast trees by sending explicit membership join messages toward a well-known rendezvous point

and sources.  These protocols have good scaling properties and are, therefore, suitable for inter-domain multicast

routing and sparse member distribution.  Much of the current IP multicast infrastructure uses dense mode multicast

protocols such as DVMRP and PIM-DM, so we use a DVMRP-like dense mode as the standard detailed multicast

for the simulations.

Our detailed implementation of dense-mode multicast does not scale well as numbers of nodes and group

members rise due to the overhead of flood-and-prune message processing.  Our first abstraction technique,

centralized multicast, avoids this message exchange by centrally computing multicast routes.  The approach can be

thought of as an example of abstracting network-layer protocol details that otherwise create network state in a

distributed manner.  Instead of setting timers, sending messages and calculating states distributively, centralized

multicast computes the result of this exchange and updates routing in multicast trees instantly as described in the next

section.  Although we applied this centralized computation to multicast routing, the same approach can be used for

similar protocols (for example, unicast routing protocols).  The centralized computation technique conserves a

significant amount of memory and time at the cost of a slight difference in route convergence latency when group

membership or topology changes.  See the next section for details.

Centralized route computation allows us to scale to 100s of nodes, but at thousands of nodes the overhead

of general purpose per-node and link data structures becomes very large.  To reduce the node and link structure, we

developed abstract packet distribution, our second abstraction technique.  Abstract packet distribution can be used to

abstract transport-layer protocols which transmit packets over established routes. Instead of sending packets through

a series of queues and links, abstract packet distribution computes delay and loss characteristics and directly
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schedules receive events at the group members according to these characteristics. Consequently, nodes and links

become lightweight data structures instead of very general purpose (but flexible) objects.  Applying this technique to

multicast sessions, abstract multicast distribution sets up a direct connection between a source and its receivers,

computes loss, delay, and TTL characteristics for each source and receiver pair, and schedules packets delivery

events accordingly.  Details of the abstract multicast distribution is presented in the following section.  We hope to

apply the same abstract packet distribution to other transport protocols (e.g., TCP) to reduce resource consumption.

The abstract packet distribution technique significantly improved the simulation performance with increased

topology size, but with observable difference in packet end-to-end delay when the network is congested as described

in the next section.

Our experience in preparing and designing the two abstraction techniques can be generalized into the

following guidelines to help users conduct their own abstract simulations:

1. Define scaling factors/dimensions(varying input) and measurement metrics(wanted output)

2. Start from small-scale detailed simulations

3. Profile simulations to find bottleneck

4. Adapt techniques to avoid simulation bottleneck

5. Verify simulations in small-scale in detailed mode

6. If the difference between the two versions is not crucial to the research question, simulate larger-scale

simulations using the improved version

We demonstrate these techniques in the next section.

4. Systematic Comparison

In this section, we describe the original dense mode multicast implementation in detail, as well as our two abstraction

approaches (centralized route computation and abstract packet distribution).  Then, we present the simulation results

to compare the scaling behavior of all three, finding that the abstraction techniques substantially improve the scaling

properties of the simulations .  Dense mode with detailed packet distribution scales the worst, centralized multicast

with detailed packet distribution scales better, and the abstract multicast distribution scales the best.  Abstract

simulations have small differences from detailed simulations, so finally, we illustrate some of the simulation relevant
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differences between dense mode and centralized multicast, and between detailed packet distribution and abstract

multicast distribution.

4.1 Mechanism Detail
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Figure 1. Illustration of the Detailed and Abstract Simulation Mechanisms

4.1.1. Dense Mode Multicast & Detailed Packet Distribution

The ns-2 implementation of dense mode multicast closely follows real-world implementations in terms of message

exchanges.  Each dense mode multicast agent maintains a parent-child relationship to all other agents by a triggered

checking to neighbors’ routing tables.  When a cache-miss occurs in a node (e.g., a source starts to send packets),

this node upcalls its local dense mode agent to install a multicast entry according to the source and group addresses

in the packet header.  The dense mode multicast agent will insert only the child links indicated in its parent-child

relationship to be the outgoing interfaces. After the multicast forwarding entry is installed, packets are forwarded to

the outgoing interfaces.  When a multicast packet reaches a leaf node that does not have any local member, a prune

message is sent upstream to start a prune timer in the upstream dense mode agent for the particular outgoing
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interface.  Within this prune timeout period, multicast packets will not be forwarded on this outgoing interface.

When a member joins a group and there exists a multicast forwarding entry for the group but no local or downstream

members, a graft message is sent upstream to cancel a prune timer (if there’s any) so multicast packets can be

received at this member.  Similarly, when a member leaves a group and there are no local or downstream members, a

prune message is sent upstream to prune off this branch.

Packets are forwarded through a series of objects that are linked to mimic detailed packet forwarding

machinery in the real network.   When  packets enter a node, an entry classifier decides which next classifier to go to

depending on the destination address in the packet header.  If the address is a unicast/multicast address (mask and

mask length), packets are forwarded to a unicast/multicast classifier which maintains a hash table of (source,

destination, outgoing target, incoming interface if multicast) tuples.  These tuples are installed by the

unicast/multicast routing protocol.  The classifiers then hash on the source, destination, or incoming interface if

multicast, to decide to which outgoing target to forward the packets.  In unicast classifiers, outgoing targets are

typically the network interfaces that the packets are supposed to be forwarded onto.  However, in multicast

classifiers, outgoing targets are replicators, and the replicators copy the packets and forward on to several outgoing

network interfaces.  Each network interface is connected to a queue object which holds packets inside the queue if

the link is occupied.  When the link is clear, packets are forwarded onto a transmission and propagation delay

module which delays the packets with the propagation delay and transmission delay given in the simulation

configuration. Finally, the packets reach a TTL checker which decrements the TTL field in the packet header and

passes to the receiving network interface.  The receiving network interface labels the incoming interface field in the

packet header and forwards to the entry classifier of the receiving node.

4.1.2. Centralized Multicast - Abstracting Route Computation

The detailed protocols described in Section 4.1.1 were helpful in developing these protocols and validating the

simulator, but they often are unnecessarily specific.  Our centralized multicast abstraction eliminates much of this

message exchange.

The centralized multicast computation agent keeps track of source and member lists for a group.  Therefore,

when a member joins a group, a multicast tree branch is installed toward all sources for the group until it merges with

the original tree.  Similarly, when a member leaves a group, a multicast tree branch is pruned until it reaches the
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original tree.  When a source starts to send packets to a group, the entire multicast tree is installed according to the

member list of the group.  There are no prune timers associated with outgoing interfaces, and whenever there is a

topology change, all the multicast trees are re-installed.

The periodic broadcast and prune, parent-child relationship maintenance, and message exchange used in the

dense mode multicast are eliminated in centralized multicast.

4.1.3. Session Multicast - Abstracting Packet Distribution

Another area with possibly unnecessary detail is ns’ link and node structures.  Our second abstraction, abstract

packet distribution, eliminates this overhead.

The abstract multicast packet distribution avoids set-up and maintenance of multicast forwarding entries

altogether.  Instead, source and members are directly connected with appropriate delay and loss characteristics.  In

the simulated version, the propagation delay and bandwidth are calculated and represented between a source and

each of its members.

Users may introduce loss into a simulation (through the use of loss modules in ns-2) to study protocol

behavior.  Packet loss in the detailed simulation much be reflected in the abstraction.  In particular, losses on a link

will correlate to losses to any recipients downstream of that link.  We reflect this dependency in our abstract

simulation.  For example, the left diagram in Figure 2 presents a multicast tree with source n0 and members n1-n6,

and an error modules is inserted in each of link n0-n1, n1-n3, and n2-n6.  The right diagram in Figure 2 shows the

equivalent error dependency retained for the multicast tree where n6 is dependent on e2, n3 is dependent on e1, and

n1, n4 and e1 are dependent on e0.
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Figure 2. An Example of Error Dependency in Abstract Multicast Distribution (Session Multicast)
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In abstract multicast packet distribution, all the replication, delay, loss and forwarding machinery are combined into

one compact multicast session helper agent.  As a result, the original link structure (a sequence of interface, loss,

queuing, delay, and TTL object) is reduced to delay and bandwidth values, and  the original node structure, a

combination of classifiers, is reduce to node id and port id.  Of course, our simple form of abstract multicast packet

distribution is not suitable for studying queuing behavior.

4.2. Performance Comparison

The purpose of our abstractions is to improve performance in the face of large scale simulations.  The numbers of

nodes, members, and groups are the three factors that affect the scale of multicast simulations.  The following three

sets of tests explore each of the three dimensions of a standard case, 300 nodes (average degree 1.77), 30 groups,

and 30 members.  Memory and running time are measured to compare the performance among the three versions of

simulations.

Nodes: 30 group, 30 members, and 100 - 500 nodes (average degree 1.77, transit-stub1)

Members: 300 nodes, 30 group, and 10 to 50 members

Groups: 300 nodes, 30 members, and 10 to 50 groups

In the set of simulations with increasing numbers of nodes, we use fixed numbers of groups and members.  30 group

sources are randomly selected and for each group 30 members are randomly selected as well.  Several member

agents may co-exist in the same node.  In addition, the number of links increases proportionally to the number of

nodes to maintain a constant degree of connectivity 1.77, and, using GT-ITM (Georgia Tech - Internetwork

Topology Model) [24], we are able to create random transit-stub topologies that are closer to the real world network

structure.  In the second set of simulations, the number of nodes and groups are fixed to 300 and 30, and, for each of

these 30 groups, 10 to 50 members are selected randomly.  Similarly, the number of nodes and members are fixed in

the third set of simulations, and 10 to 50 group sources are randomly selected to send packets to 30 randomly

selected members in a 300 node topology.

                                                          
1 Transit-stub topologies are formed by connecting many stub domains through few transit domains, closely model
the structure of real networks.



11

4.2.1. Memory Usage
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Figure 3. Comparison of Memory Usage

In the first set of simulations (Figure 3), the periodic flood and prune in dense mode multicast has a dramatic effect

on the memory consumption (30 topology-wide flood and prune per period).  Especially, when the number of nodes

increases, the area for flood and prune becomes larger as well, which contributes to the high memory usage for dense

mode multicast.  Centralized multicast replaces flood-and-prune messages, eliminating this source of overhead

(compare memory usage between dense mode and centralized in all three cases).  However, centralized multicast still

experiences a significant growth in memory consumption with the growth of topology size because of ns’ detailed

representation of links and nodes.  By abstracting this representation we get both better absolute memory usage

(compare the difference between session and the other simulations) and incrementally less cost as scale increases

(compare the slopes of session to the others as number of nodes or groups change).

An exception to reduced incremental costs is shown as we increase the number of members.  All three

simulations grow at similar rates here (although the abstractions have far less absolute memory usage).  This is due to

the random selection of the members.  If the member distribution is diverse (fairly random), then increased number

of members does not necessarily imply the multicast tree spans a wider range.  In another words, the area of flood

and prune in dense mode does not necessarily grow or shrink.  On average, the flood and prune area should stay
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constant.  However, we expect centralized multicast to consume slightly more memory than dense mode when all or

most nodes are members, because the flood and prune overhead in dense mode is reduced and centralized multicast

carries extra global states required for route computation.  The slight increases we observe in all three versions of

simulations is due to the multicast states in the extra members.

In summary, we have shown that abstraction can save substantial amounts of memory, allowing larger

simulations to be run.  The benefits of these approaches vary depending on what dimensions of scale is being pushed.

We see large absolute and incremental benefits when numbers of nodes and multicast groups rise, but only absolute

benefits when the number of group members change.

4.2.2. Time Usage
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Figure 4. Comparison of Time Usage

Dense mode scales poorly in CPU usage (Figure 4) due to the flood and prune over the entire topology which causes

an enormous amount of packet/event scheduling (proportional to the number of nodes and groups).  Centralized

multicast scales much better because it avoids the scheduling of packets that flood everywhere.  Abstract multicast

distribution does even better by avoiding hop-by-hop packet processing overheads.

4.3. Behavior Difference

The performance gains described in Section 4.2 are possible because abstractions remove some protocol details.

The simulation user must understand if these details affect the accuracy of the simulation’s end-result.  In this section



13

we characterize the differences our abstractions introduce, and then in Section 5 we examine the effect these

differences have on one application (SRM).

4.3.1. Route Computation - Dense Mode vs. Centralized Multicast

The centralized multicast abstraction replaces routing message exchange with a central computation.  Although the

end results of the algorithms are identical (since both implement the same reverse shortest-path tree algorithm),

transient behavior can be different.  In a detailed dense mode simulation messages propagate topology change

information through the tree at link speeds, while with centralized abstraction topology changes become global

known the instant they occur.

To demonstrate the difference between the protocols, we simulate various group events (join, leave, link

down, link up) on a simple topology just to demonstrate the difference in the two multicast implementations’

behavior.   During the simulation, we periodically count  the numbers of data packets on the entire topology and

show the collected data on the following figure, we referred to as the behavior chart.  This behavior chart allows us

to observe the protocol dynamics, traffic overhead as well as the event convergence latency,  all in one 2-D graph.
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Figure 5. Difference Between Dense Mode and Centralized Multicast

The dark dashed line represents dense mode multicast behavior.  The light solid line represents centralized multicast

behavior.   Dark spikes (for example, at time 0.1, 0.4, and 0.8) nicely demonstrate the periodic flood and prunes. In

both lines, we can see that the steady state of the lines rise by a few packets when members not currently in the
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multicast tree join the group (for example, at time 0.2, 0.4, and 0.6), and the lines drop a few packets lower when

members leave the group (for example, at time 1.2, 1.4, and 1.6).  Furthermore, when a link on the tree fails (for

example, at 0.8), we can see that the lines drop a few packets lower as well, and, when the link comes back on, the

lines jump back to the original level.  Comparing the two lines, other than the extra flood and prune overhead in

dense mode, we also observe that the route convergence latency for join/leave and network events are quite different

depending on the update sensitivity of the two multicast implementations.

From the above, we conclude that the centralized multicast is not appropriate when examining detailed

multicast behavior during transients (e.g., amount of loss during transients and amount of bandwidth consumption by

flood and prune).  However, centralized multicast should give no difference to simulation results when the transient

delay/behavior is not an issue.

4.3.2. Packet Distribution - Detailed packet vs. Abstract Multicast Distribution

Abstract multicast distribution replaces hop-by-hop message passing with direct end-to-end estimated propagation

delays.  Simulations with abstract packet distribution therefore will not include network queuing delays.  We

therefore expect the abstract simulations to be the same as detailed simulations when there is no cross traffic but to

fail to module queuing delays when cross traffic is added.  To demonstrate this effect we compare end-to-end

estimated delay in abstract and detailed simulations of the same network with 1 and 10 multicast groups.  These

results can be seen in Figure 6.
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Figure 6. Difference Between Detailed Packet Distribution and Abstract Multicast Packet Distribution
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In the uncongested scenario on the left, link capacity is high enough to carry the incoming traffic smoothly, so there

is no queuing contributing to the end-to-end delay which is closely modeled by the abstract multicast distribution.

Therefore, the results show no difference in end-to-end delay.  However, in the scenario on the right there is cross-

traffic and so queuing delay.  Queuing delay is omitted by current abstract multicast distribution, causing differences

in end-to-end delay when queue builds up.

This example suggests that abstract multicast distribution must be used carefully when simulations involve

very high source rates or cross traffic(i.e., congested network).  For example, abstract multicast distribution should

not be used with congestion control protocols because there must be congested network components in order to

exercise the congestion control mechanism.

5. Impact on Simulation Studies - Case Study SRM

The last section showed that abstraction can give much better performance for large simulations, but that in some

cases it produces slightly different results.  To determine if the differences caused by abstraction would affect the

end-results of a real protocol study, this section examines SRM timer behavior (previously explored in  [26, 31-34])

with both detailed and abstract simulations.

5.1. SRM Mechanism

SRM (Scalable Reliable Multicast) [26] is a reliable multicast transport protocol.  Each member detects losses

individually and issues multicast requests for retransmission per loss.  Any member who successfully receives the

packets may multicast a retransmission to recover losses for the requesting node.

If members just fire requests upon detecting losses, there will be duplicate requests multicast over the entire

tree.  To reduce the number of duplicate requests, members wait for some time before sending requests.  The timers

have both deterministic and probabilistic parts.  The deterministic part is decided according to the distance between

the source and requester, so that the requester closest to the source tends to fire requests first.  The requests arriving

at other losing members suppress duplicate requests (e.g., string topology).  The Probabilistic part is to suppress

request under the circumstances that several requesters are equally distant from the source (e.g., star topology).

Recoveries are handled analogously.
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The distance information used to decide the deterministic part of timers is obtained by periodic exchange of

session messages, similar to the NTP (Network Time Protocol) algorithm.  Member A records TsendB when sending a

session message to member B.  Member B records TrcvA when receiving the session message from A.  After a while,

member B records TsendA when sending another session message to member A, and, similarly, member A records

TrcvB upon receiving the session message.  The one-way distance is estimated by:

(TrcvB - TsendA + TrcvA - TsendB) /2

5.2. SRM Simulations

We simulate the SRM mechanism on top of detailed packet distribution with centralized multicast (referred to as

SRM/detailed) and abstract multicast distribution (referred to as SRM/abstract).  Session participants are randomly

selected on a 100-node transit-stub topology.  To study scaling, we increase the session size from 20 to 90 and

record the time and memory consumption.  To study possible behavior differences, we measure the common SRM

metrics - recovery delay, duplicate repair, and duplicate request.  To make sure our results are reproducible, we

examine 10 runs at each session size, randomly distributing the session participants in the same 100 node network.

Figure 7 shows that abstraction improves memory and CPU usage for SRM simulations.  Session SRM

simulations experience a slower slope increase in memory consumption and a constantly lower time consumption

when session size grows.

To evaluate if abstraction changed the simulation results, we look at the three common metrics of reliable

multicast mechanisms.  In Figure 8, we plot three common metrics of SRM performance.  For each metric, we plot

the mean  observed value for detailed and abstract simulations and indicate the 95% confidence interval around this

mean.  As can be seen, these means are very close to each other suggesting that abstraction produces about the same

results.

SRM is an error recovery scheme and so most simulations do not concern operationally congested

networks.  This suggests that the abstract multicast distribution works well for SRM simulations, and indeed our

simulations field useful results.  However, there are other network mechanisms (e.g., congestion control) that clearly

need to be studied in the presence of congestion.  Can these mechanisms be studied in abstract packet distribution?

The answer may be yes, depending on the levels of  details the mechanism requires and the availability of the models

for congested links and nodes (e.g., input rate, output rate, => queuing time).  As mentioned earlier, to scale



17

simulations is application specific.  Currently, we are working on hybrid simulation techniques to model queuing

behaviors.
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Figure 7. Performance Comparison for SRM and Session SRM
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Figure 8. Accuracy Comparison for SRM and Session SRM

6. Future Work

Our short term objective is to apply our abstraction techniques on other multicast transport protocols such as MFTP

(Multicast File Transfer Protocol) and RMTP (Reliable Multicast Transport Protocol).  Then, we would like to

extend our delay model to include queuing characteristics so that we could apply abstract multicast distribution on
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congested network scenarios.  For the longer term, we would like to further expand the scalability of ns-2 to perform

simulations on the order of tens of thousands.

7. Conclusion

We found that the general purpose dense mode multicast with detailed packet distribution is not scalable with

increased topology size, group size, and number of groups.  Therefore, we applied the centralized computation

technique on multicast routing.  The resulted centralized multicast avoids periodic flood and prune but exhibits

difference in convergence latency.  Most higher level multicast protocol simulations do not need the transient details,

so using centralized multicast does not affect the end-results.  However, if a particular set of simulations requires the

transient details, we suggest to run these simulations at the detailed mode.  Although centralized multicast scales well

with increased group size and number of groups, it does not seem to scale as well with increased topology size.

Therefore, we apply the abstract packet distribution technique on multicast packet distribution.  The resulted abstract

multicast distribution significantly reduces link and node structures, and the amount of packet scheduling, but

exhibits difference in end-end delay when the simulated network is congested.  Many multicast error recovery

mechanisms do not require simulation on congested networks, so using abstract multicast distribution does not affect

the end-results.  In the case study, we use SRM as an example to demonstrate that our abstraction techniques

conserve resources and retain accuracy.  Currently, the delay model for the abstract multicast distribution has not

been extended to model congested network yet, so mechanisms such as multicast congestion control should avoid the

simple abstract multicast distribution.  However, we believe that the queuing delay can be modelled and included

into abstract multicast distribution for simulating congested network in a foreseeable future.  These abstraction

techniques will improve the way the research community studies protocols.
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