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Abstract
This paper introduces the notion of option pricing in the context of financial markets. The

discrete time, one-period binomial model is explored and generalized to the multi-period bi-
nomial model. The multi-period model is then redeveloped using the sophisticated tools of
martingale theory. The paper concludes with a brief extension of the results to continuous time,
giving a heuristic derivation of the Black-Scholes equation.

1 Introduction

The financial markets heavily utilize securities, which are abstract representations of financial value.
Securities can be thought of as contracts that have a particular value, and can be traded. Common
types of securities include stocks and bonds. A derivative security is a contract whose value is
derived from the future behavior of another security (called the underlying asset), such as a stock.
In this paper, we will be focusing on a particular type of derivative security known as an option.
An option is a contract in which the holder has the right but not the obligation to carry out the
terms of the contract. Examples of options include European options, where the holder can exercise
his right to buy (a call) or sell (a put) at a specified date, and American options, where the holder
has the right to buy or sell at any date up to the one specified in the contract. Note that options
can be traded at any time before their exercise date.

To enable the purchasing or selling of an option, we would like to be able to determine its value
at any point in time. In particular, we would like to know the value at the time the option is
created, before the future behavior of the underlying asset is known. Determining an option’s
value is commonly called option pricing. This paper aims to answer the question of option pricing
under the simplified framework of the binomial model. We will use a discrete-time setup in order
to simplify the mathematics involved; however, the discrete models do capture the fundamental
aspects of option pricing in more general continuous time.

We now introduce basic financial terms that will be used throughout this paper:

• A stock is a security representing partial ownership of a company. A unit of stock is called a
share. Stocks are traded in the stock market.

• The money market consists of risk-free securities, such as bonds, which accrue interest over
time.

• In this paper, the interest rate r > 0 is defined such that $1 invested in the money market at
time zero will be worth $(1 + r) at time one.
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• An arbitrage is a trading stragey that, beginning with zero wealth, has zero probability of
losing money, and has positive probability of making money.

• An investor can short sell a stock by borrowing it from the owner and selling it to obtain the
proceeds. The investor must repurchase the stock at some point, and return the stock to the
owner. If the share price falls after the investor short sells, the investor will make a profit
after repurchasing the stock. Mathematically, this is equivalent to purchasing negative shares
of stock.

• A portfolio is a collection of securities.

In short, a stock is a risky asset whereas assets from the money market are riskless. The stock and
money markets form the the financial world used in the models discussed below.

2 The Binomial Model

The binomial model is based upon a simplification of the financial instruments involved in option
pricing, but its implications capture the essential features of more complicated continuous models.
We first introduce the one-period binomial model and then discuss the more general multi-period
model.

2.1 The One-Period Binomial Model

First, the principal assumptions of the one-period model, in which the start of the period is called
time zero and the end is called time one, are:

• A single share of stock can be subdivided for purchasing and selling;

• In each transaction, the price the buyer pays to purchase the stock and the amount the seller
receives for selling the stock are the same (i.e. there are no transaction costs or fees);

• The interest rates for borrowing and investing are the same;

• The stock can take only two possible values at time one.

The final condition provides this model with a binomial structure. In practice, these assumptions
are far too simplistic, but they provide a good starting point with which to begin.

We consider a single stock with a price per share of S0 > 0 at time zero. We can imagine the price
at time one to be the result of a coin toss, either heads or tails, with probabilities p and q = 1− p,
respectively. (Note that p and q are not necessarily 1

2 .) At time one, the price per share will be
either S1(H) or S1(T ), with probabilities p and q.

Let
u =

S1(H)
S0

, d =
S1(T )

S0

Assume that both d and u are positive, and without loss of generality, d < u. The situation can
then be represented with the following diagram (see p. 1 of [4]):
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S0

S1(H) = uS0

S1(T ) = dS0

!!!!!!!

"""""""

Figure 1: The one-period binomial model for t = 0 and t = 1.

So, the financial tools available to use in this model consists of the stock described above as well
as the money market with interest rate r.

A key assumption of our model is that it does not allow any arbitrage situations, as the possibility
of a riskless profit could lead to contradictory results from the model. Furthermore, any arbitrages
in the real world quickly disappear as people take advantage of them. A simple condition on d and
u will ensure the no-arbitrage requirement.

Proposition 1
The no-arbitrage assumption implies that 0 < d < 1 + r < u.

Proof
We have already assumed that d > 0. Now, assume that d ≥ 1 + r. Then, starting with no wealth
at time zero, borrow X from the money market and use that money to purchase stock. At time
one, the debt will be (1 + r)X. However, if the stock price goes down, the value of the stock will
be at least (1 + r)X since d ≥ 1 + r. Hence, selling the stock will result in enough money to pay
off the money market debt. The stock will go up with probability p > 0, which will lead to a profit
since u > d. Therefore, there is a positive probability of generating a riskless profit which gives an
arbitrage, leading to a contradiction. So d must be less than 1 + r.

Similarly, assume that u ≤ 1 + r. This time, short sell X of stock at time zero and invest in the
money market. At time one, the proceeds from the money market will be (1+ r)X. The debt from
the short selling will have a maximum value of uX ≤ (1 + r)X, so it can be paid off. If the stock
value decreases to dX, a profit will be made. Again there is an arbitrage and so a contradiction.
Hence u > 1 + r. !

The converse is true as well. However, the proof requires some notation that has not yet been
developed, so it will be presented later on in the paper.

We would like to determine the value of an option at time zero. Assume that at time one, a given
option pays an amount V1(H) if the stock price increases and V1(T ) if the stock price goes down.
The key idea to no-arbitrage option pricing is to create a replicating portfolio through the stock
and money markets (the stock in the replicating portfolio is the underlying asset of the option). By
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constructing a portfolio whose wealth at time one is equal to the value of the option, regardless of
heads or tails, we can infer that the value of the option at time zero is simply that of the replicating
portfolio. This is a direct result of the no-arbitrage assumption:

Proposition 2
If two portfolios give the same payoffs at all times, then they must have the same value.

Note that this result applies to all types of portfolios, but for our purposes we apply it to one
portfolio consisting of an option and another consisting of single assets in the stock and money
markets.

Proof
For illustrative purposes, consider only a one-period time frame. Assume that there exist two
porfolios, one containing Stock 1 and the other containing Stock 2, and both stocks are worth V1

at time one. At time zero, Stock 1 is worth V0 and Stock 2 is worth V ′
0 , with V0 < V ′

0 . Beginning
with no wealth, at time zero, short sell Stock 2, and purchase Stock 1. This leaves us with a total
wealth of V ′

0 − V0. At time one, sell Stock 1, which gives exactly the amount of money needed
(V1) to purchase Stock 2. We will then have a net wealth of V ′

0 − V0 > 0. Therefore, beginning
with zero wealth, we are guaranteed to make a profit, giving an arbitrage opportunity (and hence
a contradiction). Extending this argument to general portfolios and multiple time-steps gives the
result above. !

The previous discussion has given us the tools to determine the time zero value of an option, and we
now follow Chaper 1 of [4] to continue. Assume we have wealth X0 at time zero, and we purchase
∆0 shares of stock. We then have wealth X0 −∆0S0 that is invested in the money market at time
zero. At time one, this portfolio will be worth

X1 = ∆0S1 + (1 + r)(X0 −∆0S0) (1)
= (1 + r)X0 + ∆0(S1 − (1 + r)S0). (2)

Replication requires that X1(H) = V1(H) and X1(T ) = V1(T ), and enforcing these constraints
gives a portfolio that replicates the option’s value at time one. Rewriting Equation (2) as

X0 + ∆0

(
1

1 + r
S1(H)− S0

)
=

1
1 + r

V1(H) (3)

X0 + ∆0

(
1

1 + r
S1(T )− S0

)
=

1
1 + r

V1(T ) (4)

to incorporate the unknown result of the coin toss, we have a system of two linear equations with
two unknowns, X0 and ∆0. One might be tempted to solve this simple system using linear algebraic
techniques, but it is more informative to proceed as follows:

Multiply the first equation by a number denoted p̃ and the second by q̃ = 1− p̃. Adding them gives

X0 + ∆0

(
1

1 + r
[p̃S1(H) + q̃S1(T )]− S0

)
=

1
1 + r

[p̃V1(H) + q̃V1(T )] . (5)

To eliminate the term involving ∆0, pick p̃ so that
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S0 =
1

1 + r
[p̃S1(H) + q̃S1(T )] . (6)

This leads to the equation

X0 =
1

1 + r
[p̃V1(H) + q̃V1(T )] . (7)

Substituting in S1(H) = uS0 and S1(T ) = dS0, we also see that

S0 =
1

1 + r
[p̃uS0 + (1− p̃)dS0] =

S0

1 + r
[(u− d)p̃ + d] . (8)

Some rearrangement implies

p̃ =
1 + r − d

u− d
, q̃ =

u− 1− r

u− d
. (9)

Solving for ∆0 gives us the delta-hedging formula:

∆0 =
V1(H)− V1(T )
S1(H)− S1(T )

. (10)

Therefore, starting with wealth X0 and buying ∆0 shares of stock at time zero implies that if at
time one the coin is heads, the portfolio will be worth V1(H), and if the coin comes up tails, the
portfolio will be worth V1(T ). Hence, according to the above discussion, the option should be priced
as

V0 =
1

1 + r
[p̃V1(H) + q̃V1(T )] (11)

at time zero.

Similar arguments to those used in the proof of Proposition 1 indicate that the value V0 given by
Equation (11) is the only non-arbitrage value. This uniqueness result can be also be obtained by
recasting the pricing problem in terms of matrices. Equations (3) and (4) then become





1
1

1 + r
S1(H)− S0

1
1

1 + r
S1(T )− S0








X0

∆0



 =





1
1 + r

V1(H)

1
1 + r

V1(T )





︸ ︷︷ ︸
Ax = b

(12)

This matrix equation will have a unique solution if det(A) $= 0.

det(A) =
(

1
1 + r

S1(T )− S0

)
−

(
1

1 + r
S1(H)− S0

)
(13)

=
1

1 + r
[S1(T )− S1(H)] (14)
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Our assumpion that d < 1 + r < u implies that S1(T ) − S1(H) is strictly negative, so we indeed
have a unique solution to the option pricing problem.

We finish with the proof of the converse of Proposition 1:

Proposition 1 (converse)
If 0 < d < 1 + r < u, then there is no arbitrage.

Proof
Assume that 0 < d < 1+r < u, and that both heads and tails have positive probability of ocurring.
Then, if X0 = 0, Equation (2) implies that

X1(H) = ∆0S0(u− (1 + r)) > 0
X1(T ) = ∆0S0(d− (1 + r)) < 0

where uS0 and dS0 are substituted in for S1(H) and S1(T ) respectively. Then X1 is strictly positive
with positive probability (if the coin toss is a head), but it is also strictly negative with positive
probability (if the coin is a tail). This result is true for all values of ∆0, and hence there cannot be
any arbitrage opportunities. !

Example
We illustrate the ideas above with an example. Consider a European call option over one time
period, where the holder has the right but not the obligation to purchase one share of stock at time
one. The price paid for the stock, called the strike price K, is specified in the contract. In this
example, assume that S0 = 4, S1(T ) = 2, S1(H) = 8, and that K = 5. Thus d = 1

2 and u = 2. The
situation is summarized below in Figure 2. Also let r = 1

4 .

S0 = 4

S1(H) = 2 · 4 = 8

S1(T ) = 1
2 · 4 = 2

!!!!!!!

"""""""

Figure 2: The one-period binomial model for the Example.

If the share price decreases to S1(T ), the holder will choose not to exercise the option, and so its
value will be worth 0 at time one. On the other hand, if the share price increases to S1(H), the
holder will exercise the option at time one, realizing a profit of S1(H)−K = 3. Hence at time one,
the option is worth max(S1 −K, 0), which depends on the result of the coin toss. Rewriting this
in terms of the notation above, we have V1(H) = 3 and V1(T ) = 0. We calculate p̃ and q̃ using
Equation (9):
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p̃ =
1 + 1

4 −
1
2

1− 1
1

=
1
2
, q̃ =

2− 1− 1
4

2− 1
2

=
1
2
.

Equation (7) gives the necessary initial wealth required to replicate the option as

X0 =
1

1 + 1
4

[
1
2
· 3 +

1
2
· 0

]
=

6
5

and Equation (10) says that the number of shares of stock to be purchased in the replicating
portfolio is

∆0 =
3− 0
8− 2

=
1
2
.

Since V0, the value of the option at time zero, is equal to X0, the value of the replicating portfolio
at time zero, we conclude that the value of the option at time zero is 1.2. A quick calculation
verifies Equations (3) and (4). !

We now explain why Equations (3) and (4) were solved by introducing the variables p̃ and q̃. Note
that, due to the no-arbitrage assumption, both p̃ and q̃ are positive, and p̃ + q̃ = 1. Hence, p̃ and q̃
can be interpreted as the probabilities of the coin being heads or tails, but they do not necessarily
equal the actual probabilities of the coin toss, p and q. We say that p̃ and q̃ are the risk-neutral
probabilities of the option pricing problem.

Recall that Equation (6) says that S0 =
1

1 + r
[p̃S1(H) + q̃S1(T )]. When we multiply both sides

by 1 + r, this equation indicates that, if the actual probabilities governing the stock were the risk-
neutral probabilities, the average rate of growth of the stock would be equal to the rate of growth
of an investment in the money market. This cannot be true in the real world, since investors would
not take on the risk of investing in the stock market if they could obtain the same average (but
riskless) growth in the money market; instead,

S0 <
1

1 + r
[pS1(H) + qS1(T )] . (15)

As a result, the risk-neutral probabilities make the average rate of growth of any portfolio consisting
of assets in the stock and money markets appear to equal the rate of growth of assets in the money
market alone. Hence Equation 7 gives the correct value of X0, ensuring that the replicating portfolio
has the value of V1 at time one.

A key observation is that the time zero value of an option, given by Equation (11), is independent
of the actual probabilities p and q, which is somewhat surprising!. However, this result is to be
expected because we have constructed a pricing method that works for all possible stock paths.
Only the potential prices the stock can take, controlled by d and u, influence the value of the
option. We say that Equation (11) is the risk-neutral pricing formula for the one-period binomial
model. In the continuous-time models, it can be shown that the value of an option depends on the
volatility of stock prices, but not on their average rates of growth. Hence, we can conclude that
this simple binomial model does capture some of the essential features of the continuous models.
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2.2 The Multi-Period Binomial Model

We now move from the one-period model to a multi-period model. In the previous section, we
assumed that, given an initial price of S0, the price of a stock could increase by a factor of u or
decrease by a factor of d at time one. Now assume that at time two, the stock price can again
increase or decrease by the multiplicative factors u and d, respectively. Then at time two, the
possible stock prices are:

S2(HH) = uS1(H) = u2S0, S2(HT ) = dS1(H) = duS0

S2(TH) = uS1(T ) = udS0, S2(TT ) = dS1(T ) = d2S0

Continuing this pattern for multiple time steps gives a binomial tree of stock prices. We still assume
the first three conditions given at the beginning of Section 2. First, by generalizing Equation (2)
to multiple time steps, we can deduce the following equation, called the wealth equation:

Xn+1 = ∆nSn+1 + (1 + r)(Xn −∆nSn) (16)

The following theorem states the multi-period results analogous to Equations (10) and (11):

Theorem 1: Replication in the multi-period binomial
Consider an N -period binomial option pricing model, with 0 < d < 1 + r < u, and with

p̃ =
1 + r − d

u− d
, q̃ =

u− 1− r

u− d
.

Let VN be an option, depending on the first N coin tosses ω1ω2 · · ·ωN , which is to be exercised at
time N . Define recursively backward in time the sequence of random variables VN−1, VN−2, · · · , V0,
by

Vn(ω1ω2 · · ·ωN ) =
1

1 + r
[p̃Vn+1(ω1ω2 · · ·ωnH) + q̃Vn+1(ω1ω2 · · ·ωnT )] . (17)

Then each Vn depends on the first n tosses ω1ω2 · · ·ωn, where n ranges between N −1 and 0. Now,
define

∆n(ω1ω2 · · ·ωn) =
Vn+1(ω1ω2 · · ·ωnH)− Vn+1(ω1ω2 · · ·ωnT )
Sn+1(ω1ω2 · · ·ωnH)− Sn+1(ω1ω2 · · ·ωnT )

(18)

where again n ranges between 0 and N − 1. If we set X0 = V0 and define recursively forward in
time the portfolio values X1, X2, · · · , XN by the wealth equation (16), then we will have

XN (ω1ω2 · · ·ωn) = VN (ω1ω2 · · ·ωn) (19)

for all coin toss sequences ω1 · · ·ωN .

For n = 1, 2, · · · , N , the random variable Vn(ω1ω2 · · ·ωn) is defined to be the value of the option at
time n if the outcomes of the first n tosses are ω1ω2 · · ·ωn. The value of the option at time zero is
defined to be V0.

8



The number of shares of stock that should be held in the portfolio at time n is given by ∆n(ω1ω2 · · ·ωN ).
We say that the portfolio process ∆0,∆1, · · · ,∆N−1 is adapted since ∆n depends on the first n coin
tosses.

Proof
See pp. 13-14 of [4]. !

The recursive relationship found Equation (17) can be motivated as follows: first think of the N -
period model as a one-period model from time N − 1 to time N . Then apply the formula for the
time zero option value found in the one-period model, Equation (11), to this reduced N -period
model, giving

VN−1(ω1ω2 · · ·ωN−1) =
1

1 + r
[p̃VN (ω1ω2 · · ·ωN−1H) + q̃VN (ω1ω2 · · ·ωN−1T )] (20)

Now that we know the value of the option at time N , reduce the problem to an (N − 1)-period
model. Consider just time N − 1, and again apply Equation (11). Continue the recursion until the
time zero option value is known. This algorithm indicates that the multi-period binomial model is
simply a recursive version of the one-period model.

We say that the multi-period binomial model is self-financing since the portfolio at time n + 1 can
be financed entirely from the wealth in the portfolio at time n; no money needs to be added to the
portfolio from outside resources to carry out the replication of the option.

As one would expect given the results of the one-period model, the no-arbitrage value of an option
under the multi-period binomial model does not depend on the actual probabilities p and q. Also,
as in the one-period framework, every option can be replicated by a portfolio consisting of the
underlying stock and a money market asset. We say that the multi-period binomial model is a
complete market. The next section illustrates an incomplete market.

3 The Trinomial Model

Consider a one-period model where the stock price can also take an intermediate price between dS0

and uS0 at time one; call this value mS0. Hence, d < m < u, and it is not necessary that m = 1.
We introduce a new random variable M to describe the situation that the stock takes price mS0

at time one (call this possibility “edge”). The situation is portrayed in Figure 3.

The same analysis as in Section 2.1 leads to the matrix equation




1
1

1 + r
S1(H)− S0

1
1

1 + r
S1(M)− S0

1
1

1 + r
S1(T )− S0








X0

∆0



 =





1
1 + r

V1(H)

1
1 + r

V1(M)

1
1 + r

V1(T )





(21)

This is a system of three linear equations and two unknowns, so in general it will not have a solution.
Hence the technique of determining the value of an option via a replicating portfolio does not work
in the trinomial model. We can however find upper and lower bounds on the option value. For
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S0

S1(H) = uS0

S1(T ) = dS0

S1(M) = mS0

!!!!!!!

"""""""

Figure 3: The one-period trinomial model for t = 0 and t = 1.

example, consider a European call option with strike price K such at mS0 < K < uS0. At time
one, the option will be worth uS0 −K if heads occurs, and 0 if the coin is edge or tails. It can be
shown (see pp. 17-18 of [1]) that an upper bound for the time zero value of the option is

V +
0 =

(1 + r − d)
u− d

· (uS0 −K)
1 + r

If m ≥ 1 + r, the lower bound on the value is V −
0 = 0, and if m < 1 + r, it is

V −
0 =

(1 + r −m)
u−m

· (uS0 −K)
1 + r

There is no unique time zero no-arbitrage value, but these bounds provide some information about
the value of the option.

4 Probability Theory Applied to Option Pricing

4.1 Basic Terms and Definitions

The above sections have shown how to price an option under the assumptions of the binomial
model. However, these techniques are somewhat limited in scope, and they are not particularly
elegant! We now provide a brief introduction to some basic probability theory, which will be used
to reformulate some of the previously mentioned results into a more cohesive theory. First, some
definitions:

Definition 1
A finite probability space consists of a sample space Ω and a probability measure P. The sample
space Ω is a nonempty finite set and the probability measure P is a function that assigns to each
element ω of Ω a number in [0, 1] so that

∑

ωεΩ

P(ω) = 1.
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An event is a subset of Ω, and the probability of an event A is defined to be

P(A) =
∑

ωεA

P(ω). !

Definition 2
(Ω, P) is a finite probability space. A random variable is a real-valued function defined on Ω. !

Definition 3
Let X be a random variable defined on a finite probability space (Ω, P). The expectation of X is
defined to be

EX =
∑

ωεΩ

X(ω)P(ω). !

Definition 4
Let n satisfy 1 ≤ n ≤ N , and let ω1 · · ·ωn be given and, for the moment, fixed. There are 2N−n

possible continuations ωn+1 · · ·ωN of the sequence of fixed ω1 · · ·ωn. Denote by #H(ωn+1 · · ·ωN )
the number of heads in the continuation ωn+1 · · ·ωN and by #T (ωn+1 · · ·ωN ) the number of tails.
We define

En[X](ω1 · · ·ωn) =
∑

ωn+1···ωN

p#H(ωn+1···ωN )q#T (ωn+1···ωN )X(ω1 · · ·ωnωn+1 · · ·ωN ) (22)

to be the conditional expectation of X based on the information at time n.

Furthermore, the conditional expectation of X given no information is defined by

E0[X] = EX (23)

and the conditional expectation of X given the information of all N coin tosses is defined by

EN [X] = X. (24)

!

From now on, the symbol P denotes the probability measure associated with the actual probabilities
p and q. The probability measure associated with the risk-neutral probabilities p̃ and q̃ will be
represented by P̃. Then the expectation using the risk-neutral probability measure P̃ is

ẼX =
∑

ωεΩ

X(ω)P̃(ω)

and Ẽn[X] is the conditional expection of X based on the information at time n under the risk-
neutral probabilities.

The properties of conditional expectations will be very useful in proving some later results, so we
state them below.

Theorem 2
Let N be a positive integer, and let X and Y be random variables depending on the first N coin
tosses. Let 0 ≤ n ≤ N be given. Then the following properties hold:
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• Linearity of conditional expectations: For all constants c1 and c2, we have

En[c1X + c2Y ] = c1En[X] + c2En[Y ].

• Taking out what is known: If X only depends on the first n coin tosses, then

En[XY ] = X · En[Y ].

• Iterated conditioning: If 0 ≤ n ≤ m ≤ N , then

En [Em[X]] = En[X].

In particular, E [Em[X]] = EX.

• Independence: If X depends only on tosses n + 1 through N , then

En[X] = EX.

Proof
See p. 177 of [4]. !

4.2 Martingale Theory Applied to Option Pricing

First, for notation’s sake, we assume that for a sequence of random variables A0, A1, · · · , the
expression An(ω1 · · ·ωn) can be denoted by An. Also, we can shorten An+1(ω1 · · ·ωnH) to An+1(H),
and similarly for T . Now, recall from Equation (9) that

p̃ =
1 + r − d

u− d
, q̃ =

u− 1− r

u− d
.

Then it follows immediately that

p̃u + q̃d

1 + r
= 1. (25)

Multiplying both sides by Sn and using the fact that Sn+1(H) = uSn and Sn+1(T ) = dSn, then

Sn(ω1 · · ·ωn) =
1

1 + r
[p̃Sn+1(ω1 · · ·ωnH) + q̃Sn+1(ω1 · · ·ωnT )] . (26)

We can rewrite Equation (26) using the notation of Definition 4, giving

Sn =
1

1 + r
Ẽn[Sn+1]. (27)

Dividing Equation (27) by (1 + r)n and applying Theorem 2 gives

Sn

(1 + r)n
= Ẽn

[
Sn+1

(1 + r)n+1

]
. (28)
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We call the quantity
Sn

(1 + r)n
the discounted stock price, as it is multiplied by

1
(1 + r)n

< 1. Since

$1 at time zero will be worth $(1+ r)n at time n, we can interpret the discounted price as the time
zero worth of the price of the stock at time n. (This is an illustration of the depreciation of money
over time). Equation (28) indicates that the risk-neutral probabilities are chosen so that the best
estimate of the discounted stock price at time n + 1, under the risk-neutral probabilities and based
on the information at time n, is the discounted stock price at time n. We say that this process is
a martingale. The formal definition of a martingale is as follows:

Definition 5
Consider the binomial option pricing model. Let M0, M1, · · · , MN be a sequence of random vari-
ables, with each Mn depending only on the first n coin tosses (and M0 constant). Such a sequence
of random variables is called an adapted stochastic process.

• If Mn = En[Mn+1], n = 0, 1, · · · , N − 1, this process is a martingale.

• If Mn ≤ En[Mn+1], n = 0, 1, · · · , N − 1, this process is a submartingale.

• If Mn ≥ En[Mn+1], n = 0, 1, · · · , N−1, this process is a supermartingale. !

The following is a useful property of martingales:

Proposition 3
The expectation of a martingale is constant over time: Assume that M0, M1, · · · , MN is a martin-
gale. Then

M0 = EMn, n = 0, 1, · · · , N.

Proof
If Mn = En[Mn+1], n = 0, 1, · · · , N − 1, then

EMn = E [En[Mn+1]]
= EMn+1. (by properties of conditional expectation)

Hence, EM0 = EM1 = · · · = EMN−1 = EMN . Since M0 is constant, EM0 = M0, and so we get the
result. !

This next theorem formalizes the discovery made in Equation (28).

Theorem 3
Consider the general binomial model with 0 < d < 1 + r < u. Let the risk-neutral probabilities be
given by

p̃ =
1 + r − d

u− d
, q̃ =

u− 1− r

u− d
.

Then, under the risk-neutral measure, the discounted stock price is a martingale.
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Proof

Ẽn

[
Sn+1

(1 + r)n+1

]
= Ẽn

[
Sn

(1 + r)n+1
· Sn+1

Sn

]

=
Sn

(1 + r)n
Ẽn

[
1

1 + r
· Sn+1

Sn

]
(taking out what is known)

=
Sn

(1 + r)n
· 1
1 + r

Ẽ
[
Sn+1

Sn

]
(independence)

=
Sn

(1 + r)n

p̃u + q̃d

1 + r

=
Sn

(1 + r)n
. !

Previously, we discussed how recasting the option pricing problem in terms of the risk-neutral
probabilities implied that the average rate of growth of any portfolio consisting of assets in the
stock and money markets equals the rate of growth of a money market account. Hence, the average
rate of growth of an investor’s wealth will be equal to the interest rate, and so the wealth process
is also a martingale. This result is formalized in the theorem below.

Theorem 4
Consider the binomial model with N periods. Let ∆0,∆1, · · · ,∆N−1 be an adapted portfolio
process from Theorem 1, let X0 be a real number, and let the wealth process X1, · · · , XN be
generated recursively by

Xn+1 = ∆nSn+1 + (1 + r)(Xn −∆nSn), n = 0, 1, · · · , N − 1.

Then the discounted wealth process
Xn

(1 + r)n
, n = 0, 1, · · · , N , is a martingale under the risk-neutral

measure.

Proof
The proof is very similar to the proof of Theorem 3. !

Corollary
Under the conditions of Theorem 4,

Ẽ
[

Xn

(1 + r)n

]
= X0, n = 0, 1, · · · , N. (29)

Proof
This is an application of Proposition 3. !

Theorem 4 and its corollary can be used to provide a more general proof of the converse of Propo-
sition 1.

Proposition 4
There can be no arbitrage in the binomial model.

14



Proof
Proceed by contradiction, and assume that there is an arbitrage. Then, beginning with X0 = 0,
there is a portfolio process ∆1, · · · ,∆N such that its corresponding wealth process X1, · · · , XN

satisfies XN ≥ 0 for all coin toss sequences ω1, · · · , ωN , and furthermore XN > 0 for at least one
coin toss sequence. But then ẼX0 = 0 and Ẽ XN

(1+r)N > 0, contradicting the corollary. !

Theorem 4 also leads to a sophisticated, more general analogue of Equation (17), which gave the
value of an option at time n, 0 < n < N − 1.

Theorem: Risk-neutral pricing formula
Consider an N -period binomial asset-pricing model with 0 < d < 1 + r < u and with risk-
neutral probability measure P̃. Let VN be a random variable (an option being exercised at time N)
depending on the coin tosses. Then, for n between 0 and N , the value of the option at time n is
given by the risk-neutral pricing formula

Vn = Ẽn

[
VN

(1 + r)N−n

]
. (30)

Furthermore, the discounted value of the option is a martingale under P̃, i.e.

Vn

(1 + r)n
= Ẽn

[
Vn+1

(1 + r)n+1

]
, n = 0, 1, · · · , N − 1. (31)

Proof
This proof proceeds in several parts.

• First, we show that if M0, M1, · · · , MN and M ′
0, M

′
1, · · · , M ′

N are martingales under the risk-
neutral probability measure P̃, and MN = M ′

N for every possible sequence of coin tosses, then
Mn = M ′

n for 0 ≤ n ≤ N .

Assume that MN = M ′
N . By the martingale property, MN−1 = ẼN−1[MN ]. As MN =

M ′
N , then ẼN−1[MN ] = ẼN−1[M ′

N ] = M ′
N−1 since M ′

0, · · · , M ′
N is a martingale, and hence

MN−1 = M ′
N−1. Proceeding by induction gives that Mn = M ′

n for all 0 ≤ n ≤ N .

• Next, let VN be the payoff at time N of an option, and define VN−1, VN−2, · · · , V0 by Equation
(17). Then,

Ẽn

[
Vn+1

(1 + r)n+1

]
=

1
(1 + r)n+1

Ẽn[Vn+1]

=
1

(1 + r)n+1
[p̃Vn+1(ω1 · · ·ωnH) + q̃Vn+1(ω1 · · ·ωnT )]

=
1

(1 + r)n+1
· (1 + r)Vn (by Equation (17))

=
Vn

(1 + r)n
.

Hence V0,
V1

1 + r
, · · · ,

VN

(1 + r)N
is a martingale under P̃.
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• Now, define

V ′
n = Ẽn

[
VN

(1 + r)N−n

]
, n = 0, · · · , N − 1.

Then

Ẽn

[
V ′

n+1

(1 + r)n+1

]
=

1
(1 + r)n+1

Ẽn[V ′
n+1]

=
1

(1 + r)n+1
Ẽn

[
Ẽn+1

[
VN

(1 + r)N−(n+1)

]]

=
1

(1 + r)n+1
Ẽn

[
VN

(1 + r)N−(n+1)

]

=
1

(1 + r)n+1
Ẽn

[
VN

(1 + r)N−n

]

=
V ′

n

(1 + r)n
.

So, V ′
0 ,

V ′
1

1 + r
, · · · ,

V ′
N

(1 + r)N
is also a martingale under P̃.

• Now note that that V ′
N = ẼN [VN ] = VN by Equation (24). Hence from the first part of the

proof, we conclude that Vn = V ′
n for all n.

Therefore, the recursive algorithm for calculating Vn given by Equation (17) gives the same option
value at time n as the risk-neutral pricing formula in Equation (30), and the discounted option
value is a martingale under P̃. !

We have now answered the question of how to price an option under the assumptions of the binomial
model. To conclude this section, we mention a few results tying together the ideas of arbitrage,
replicating portfolios that give unique option values, and martingales.

4.3 Further Results

Definition 6
Two probability measures P and Q for a process are called equivalent if they agree on which sets
of paths have zero probability and which sets of paths have positive probability. !

Definition 7
Given a process and a probability measure P, a probability measure Q is an equivalent martingale
measure if Q is equivalent to P and the process is a martingale under the measure Q. !

Hence we can say that the risk-neutral probability measure P̃ is an equivalent probability measure
to the measure of the actual probabilities, P, since the risk-neutral probabilities simply rescale the
probability on the paths but do not alter which paths have zero or positive probability.

This definition leads to an important result about arbitrage, which we present without proof:
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The First Fundamental Theorem of Option Pricing
If we can find a risk-neutral equivalent probability measure in a model, then there is no arbitrage
in the model. !

Finally, here is a theorem which gives credence to the idea of determining the value of an option
via a replicating portfolio. The proof comes from p. 4.18 in [6].

Martingale Representation Theorem
If A0, A2, · · · , AN is a martingale with respect to a probability measure P, then for any other mar-
tingale B0, B1, · · · , BN with respect to P, there is an adapted portfolio process ∆0,∆1, · · · ,∆N−1

such that

Bn = B0 +
n∑

k=1

∆k−1(Ak −Ak−1) (32)

for n = 0, · · · , N .

Proof
Since {An} is a martingale, then

An = En[An+1] = pAn+1(H) + qAn+1(T )

and hence
p(An+1(H)−An) = −q(An+1(T )−An). (33)

Also, as {Bn} is a martingale,

p(Bn+1(H)−Bn) = −q(Bn+1(T )−Bn). (34)

Dividing Equation (34) by Equation (33) gives

Bn+1(H)−Bn

An+1(H)−An
=

Bn+1(T )−Bn

An+1(T )−An
:= ∆n. (35)

Hence we have defined ∆n to be either of the two fractions above, depending on the result of the
coin toss, and so ∆n is independent of the coin toss. Therefore, we conclude that

∆n =
Bn+1 −Bn

An+1 −An
. (36)

Multiplying both sides by An+1 − An implies that Bn+1 − Bn = ∆n(An+1 − An), and hence by
recursion,

Bn = B0 +
n∑

k=1

∆k−1(Ak −Ak−1)

as required. !

This result indicates that any martingale under a particular probability measure can be replicated
at each time step by another martingale under the same probability measure, using the adapted
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portfolio process ∆0, · · · ,∆N−1. This is a general result not related to option pricing theory, so let
us see what happens when we apply it to our problem of option pricing.

We have previously shown that the discounted stock price S0,
S1

(1 + r)
, · · · ,

SN

(1 + r)N
and the dis-

counted option value V0,
V1

(1 + r)
, · · · ,

VN

(1 + r)N
are martingales under P̃. Hence, applying the mar-

tingale representation theorem,

Vn

(1 + r)n
= V0 +

n∑

k=1

∆k−1

[
Sk

(1 + r)k
− Sk−1

(1 + r)k−1

]

and so

Vn+1

(1 + r)n+1
− Vn

(1 + r)n
= ∆n

[
Sn+1

(1 + r)n+1
− Sn

(1 + r)n

]
.

Multiplying by (1 + r)n+1 implies that

Vn+1 − (1 + r)Vn = ∆n[Sn+1 − (1 + r)Sn]

and hence

∆n =
Vn+1 − (1 + r)Vn

Sn+1 − (1 + r)Sn
. (37)

Now, note that (1 + r)Vn = p̃Vn+1(H) + q̃Vn+1(T ) by the martingale property of the discounted
option value, and similarly (1 + r)Sn = p̃Sn+1(H) + q̃Sn+1(T ). Then, Equation (37) becomes

∆n =
Vn+1 − p̃Vn+1(H)− q̃Vn+1(T )
Sn+1 − p̃Sn+1(H)− q̃Sn+1(T )

=
Vn+1(H)− Vn+1(T )
Sn+1(H)− Sn+1(T )

(38)

regardless of whether a head or tail occurs at the n + 1 coin toss. But this equation is the same
equation for the portfolio process ∆0, · · · ,∆N−1, Equation (18), derived in Section 2.2. This is
another confirmation that the martingale view for option pricing gives the same results derived in
the first half of the paper, and in a simpler and more sophisticated fashion.

As a point of interest, recasting the trinomial model in terms of martingales gives two equivalent
martingale measures. Taking any convex combination of these measures will give another equivalent
martingale measure, and so there are an infinite number of equivalent martingale measures and
hence no unique option value. This analysis also leads to the same bounds for the option value, as
expected.

5 Overture to Continuous Models

The results and conclusions about option pricing have been, up till now, based on discrete-time
models with a period of length one. It is illuminating to investigate the behavior of the binomial
model as the time step decreases from one to zero, and the non-rigorous discussion that follows (see
pp. 41-43 in [2]) will culminate in a derivation of the famous Black-Scholes equation for the value
of a European call option.
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Consider a multi-period binomial model with the length of time between periods denoted by δt,
which is a more general period spacing. The interest rate is adapted to be more appropriate for
continuous time, and hence $1 at time nδt will be worth $erδt at time (n + 1)δt. Also, the stock
price at time nδt is now assumed to satisfy

S(n+1)δt =
{

S(n+1)δt(H) = Snδt exp(µδt + σ
√

δt)
S(n+1)δt(T ) = Snδt exp(µδt− σ

√
δt)

where σ is the noisiness and µ is the stock growth rate. The actual probabilities p and q are set
equal to 1

2 . Now fix a time t, which gives n = t/δt as the number of periods to reach time t. It can
be shown that the stock price at time t is

St = S0 exp
(

µt + σ
√

t

(
2Xn − n√

n

))
.

where Xn is the total number of coin tosses that were heads. Xn has a binomial distribution with
mean np = n/2 and variance np(1 − p) = n/4. Hence the random variable (2Xn − n)

√
n has a

mean of zero and a variance of one. An application of the central limit theorem indicates that
as n → ∞, the distribution of the random variable (2Xn − n)

√
n tends to a normal distribution

with zero mean and variance one. Hence, as δt decreases in size and n increases, the distribution
of St tends to a log-normal distribution. This result has been derived in the context of the actual
probability measure P.

Now consider the risk-neutral probability measure P̃. It can be shown that

p̃ ≈ 1
2

(
1−

√
δt

(
µ + 1

2σ2 − r

σ

))
.

Xn remains binomially distributed, but its mean is nq and its variance is nq(1− q). Hence (2Xn−
n)
√

n has mean −
√

t(µ + 1
2σ2 − r)/σ and a variance that approaches one asymptotically. Again,

the central limit theorem says that this distribution tends towards a normal distribution with the
same mean and variance one. Therefore, the marginal distribution of St under P̃ is log-normal, i.e.

St = S0 exp(σ
√

tZ + (r − 1
2
σ2)t)

where Z is a standard normal random variable under P̃.

We apply these results to a European call option to be exercised at time T with strike price K.
The value of the option at time T is max(ST −K, 0), and its value at time zero is

V0 = Ẽ
[
max(S0 exp(σ

√
(T )Z − 1

2
σ2T )−K exp(−rT ), 0)

]
.

This can be evaluated to give

V0 = S0Φ

(
log S0

K + (r + 1
2σ2T

σ
√

T

)
−Ke−rT Φ

(
log S0

K + (r + 1
2σ2T

σ
√

T

)
(39)
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where Φ is the normal distribution function, i.e. Φ(x) is the probability that a standard normal
random variable is less than or equal to x. Equation (39) is the Black-Scholes equation for the
value of a European call option at time zero. Note that the option value does not depend on µ, the
stock growth rate, which is analogous to the fact that the option value in the one-period model did
not depend on the actual probabilities governing the stock price movement.

6 Conclusions

We have seen that the problem of how to price derivative securities, and in particular, options, can
be approached by using both algebraic and probabalistic techniques and working in discrete time.
The assumption of no-arbitrage plays a central role in determining the option value at all times,
as well as the idea of a replicating portfolio. Surprisingly, the value of an option at any time does
not depend on the probability that the stock price increases or decreases, but only on the values
the stock price can take. Our brief foray into continuous models reveals the analogous result: the
time zero option value does not depend on the stock growth rate.
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