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Abstract

In the following we undertake to derive quantum theory as a stochastic
low-energy and coarse-grained theory from a more primordial discrete and
basically geometric theory living on the Planck scale and which (as we
argue) possibly underlies also string theory. We isolate the so-called ideal

elements which represent at the same time the cornerstones of the frame-
work of ordinary quantum theory and show how and why they encode the
non-local aspects, being ubiquituous in the quantum realm, in a, on the
surface, local way. We show that the quantum non-locality emerges in our
approach as a natural consequence of the underlying two-storey nature of
space-time or the physical vacuum, that is, quantum theory turns out to
be a residual effect of the geometric depth structure of space-time on the
Planck scale. We indicate how the measurement problem and the emer-
gence of the macroscopic sub-regime can be understood in this framework.

http://arXiv.org/abs/gr-qc/0006063v1


1 Introduction

In preceding work we have started to develop a radically discrete mathematical
and physical framework aimed at reconstructing, beginning at the Planck scale
and working “bottom-up” (so to speak), our present day continuum physics and
corresponding mathematics (cf. [1] to [5]). Our main intention is it however to
derive both quantum theory and general relativity, i.e. gravitation (and in the
last consequence (semi)classical space-time), as emergent and low energy effective
theories by a coarse graining process from a more primordial discrete substratum.

While papers [1] to [4] deal mostly with the development of the necessary
mathematical and physical concepts and tools (typically discrete protoforms of
their continuum counterparts), some concrete steps towards a realisation of the
more ambitious latter goal were taken in paper [5] as far as the emergence and
reconstruction of a protoform of continuum space-time as, what we call, an order
parameter manifold is concerned. By this we mean an extended coarse-grained
superstructure displaying a certain collective order on a larger and smoother
scale. As in the case of ordinary order parameters in, say, condensed matter
physics, this emergence of order is usually the result of a phase transition and
is accompanied by a shrinking of microscopic phase space being occupied by the
system. Whereas this programme is far from being completed, its core result (or
rather: hypothesis, as not every step in the corresponding analysis is, up to now,
rigorously proved) can be summarized as follows.

The physical vacuum or (semiclassical) space-time has to be considered on
a certain level of resolution as a two-story structure. It consists of a relatively
smooth “surface layer” formed by an intricate web of overlaping lumps (the phys-
ical points) and representing the quasi-continuous medium we experience as or-
dinary space-time. Beneath this surface there exists a more irregular and wildly
fluctuating “underworld” of a distinctly discrete and stochastic nature (stochastic
compared to our ordinary level of resolution; at the very bottom the underlying
dynamics may well be deterministic!). Its perhaps most characteristic feature is a
peculiar non-local dynamical behavior observed in [5] and further analyzed below
as it plays a decisive role in the understanding of quantum theory. Each of these
two stories has its own physical or dynamical distance function or metric and,
typically, there will exist a certain amount of direct interactions or exchange of
information in this mentioned underground between regions (or lumps) lying a
certain distance apart with respect to the distance concept holding sway in the
coarse grained surface structure (i.e. our classical space-time).

Our whole approach is technically based on what we call a cellular network,
dubbed QX for short (“quantum space”), as the most primordial substratum in
our framework. This network is assumed to have been evolved in the distant past
(“big bang”) from a certain chaotic initial phase denoted by QX0 (and which is
characterized, among other things, by the complete absence of stable patterns)
through a regime of geometric change (called a geometric phase transition zone)
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into a new phase QX/ST . This latter phase represents the above described two
story superstructure, i.e. the underlying primordial network superposed by a
coarser network consisting of a web of lumps, that is, certain subgraphs with a
particularly dense internal connectivity among the respective nodes (and playing
the role of the “physical points”). These physical points are considered to be
the constituents of the relatively smooth surface structure, ST . This new phase,
QX/ST , is the epoch our universe is roaming in since the moment when space-
time emerged from this mentioned underground as an approximately separate
entity.

It is a peculiar feature of this kind of geometric phase transition (described in
much more detail in [5]) that it equips the mentioned surface- or superstructure
of lumps with a so-called Nahwirkungsprinzip, while on a finer level of resolution
there remain a lot of additional non-local interactions among distant lumps of,
however, a more subtle nature. We will argue in the following that this almost
hidden non-local web of exchange of information, which arises quite naturally
in our approach, plays a decisive role in the formation of quantum theory as an
effective continuum theory incorporating certain non-local gross features of the
depth structure of space-time (about such a possibility was already speculated in
[6] – and possibly also elsewhere – as a way out of the so-called EPR-paradoxon).

It goes without saying that, given the complexity of the task and the long
and entangled history of the subject, such things cannot simply be proved in a
rigorous sense of the word as there does not even exist a universally accepted
framework from which to start, not even in ordinary (non)orthodox quantum
theory. By necessity our approach has to be, at least in this preparatory stage,
speculative to some extent and has to be based on a more or less loose (or strong,
depending on the point of view) web of arguments mixed with a certain amount
of “educated guesswork”.

Furthermore, as the interpretation or epistemology of quantum theory has
such a long and involved history of its own we have to refrain from recapitulating
too much of this nightmarish and mind boggling subject. That is, lack of space
prevents us from giving full credit to many researchers in this field. This would
afford a full monograph and would give the paper a perhaps too “philosophical”
touch. We therefore concentrate in the rest of this introductory section on men-
tioning and quoting in loose order those approaches and points of view which
appear to be similar (at least to some extent) in spirit to our own working phi-
losophy and make some comments and anotations. In the next section we discuss
two approaches in slightly more detail as they are related a little bit closer to our
own one in several technical respects.

We begin this brief historical part with two general remarks by von Weizsäcker
([7], similar ideas were also entertained by Wheeler, see e.g. [8]) which strike the
key of our paper.

. . . space-time is not the background but a surface aspect of reality . . .
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It is extremely improbable that this reality (i.e. quantum reality) will be
describable as consisting of events which are localized in space and time.

The translocal phase relations are “surplus information” not lack of infor-

mation. Quantum theory knows more, not less, than local classical physics.

A well known critic of the orthodox Copenhagen interpretation was Einstein.
Here are some illuminating utterances which are in our view very much to the
point. More about his original scientific attitude can be found in the beautiful
essay of Stachel in [9] or [10]

It is . . . to be expected that behind quantum mechanics there lies a law-
fulness and a description that refer to the individual system. That it is not
attainable within the bounds or concepts taken from classical mechanics is
clear.

I do not at all doubt that the contemporary quantum theory (more exactly

“quantum mechanics”) is the most complete theory compatible with ex-

perience, as long as one bases the description on the concepts of material

point and potential energy as fundamental concepts.

(The latter remark is taken from [10]). We want to stress the fundamental impor-
tance of the underlying insight being conveyed in these remarks. It is a crucial
observation that quantum mechanics (as we know it) happens to be just the
description of the “quantum world” if one starts from the core concepts of clas-
sical mechanics like e.g. position, momentum etc. Following this line one may
get a very specific and biased class of observables while excluding other possi-
ble elementary concepts. This contextual and historical dependence of theories,
frameworks and whole working philosophies is frequently overlooked or, at least,
not sufficiently appreciated. The problems we still have with quantum theory
may just result from a too selective choice we have made in the past.

In other words, while quantum theory has made the first steps away from the
mechanistic particle picture, it has still retained many of its conceptual ingredi-
ents and has molded it into the hybrid of the so-called wave-particle duality. A
similar point of view was hold by e.g. Schrödinger (see his beautiful and extensive
biography, [12]).

A further point worth of mentioning is Einsteins open attitude towards the
discrete and the continuum. Many quotations can again be found in ([9] p.27ff).
Another source (mentioned already in [5]) is his commentary in [11] on the con-
tribution of Menger (geometry of lumps and statistical metrical space).

Haeretic views were also hold by Dirac, a fact which is perhaps not so widely
known (cf. e.g. his biography, [13] p.201ff). He in fact tried for many years
to revive a modern aether concept as a common receptacle for all the physical
processes (see also [14]). Similar ideas were uttered by Bell ([15]) or T.D.Lee
([16]), to mention a few.
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The arguments for the absence of such an underlying substrate are in our view
far from being convincing and are rather typical for what is called a paradigm,
i.e. an adopted working philosophy which, when accepted, tends to become very
rigid and constellates and frames our whole attitude towards the occurring phe-
nomena and their codification in the form of theoretical concepts. We think that
this paradigm is responsible to some extent for the interpretational difficulties
and seemingly paradoxical language of orthodox quantum mechanics. We are
convinced that quantum mechanics would become considerably less paradoxical
if we were prepared to realize the ubiquituous interference phenomena (which are
in fact the pivotal point of quantum theory) and the complex structure as part
of the quantum information conveyed by extended excitation patterns roaming
this largely hidden “underground”.

One of the consequences of taking the possibility of such a hidden and subtly
organized substructure not taking into account and regarding, instead of that,
space-time as the primordial receptacle is the attitude to consider e.g. wave func-
tions and their seeming breakdown as mere subjective artifacts. This becomes
particularly apparent in the usual discussion of the double slit experiment. In our
view it is difficult to deny that there is “something” passing “through” both slits
in the undisturbed situation in each individual experiment. But this “something”
cannot be so easily detected as long as the intricate substructure of space-time
is not realized.

It is no question that the old (mechanical) aether concept is almost empty,
but its emptyness resulted from another even older paradigmatic preoccupation
of that time, i.e. the fiction of an empty, a priori and independently existing
geometric background space which is then permeated by some medium called
aether. One should rather regard (background) space-time as only a part of an
underlying more complex substrate in the way we have indicated above.

This whole bundle of problems and ideas belongs in fact to a much wider topic,
which originated already with Leibniz and Mach (see e.g. the lively debate in
[17]) and has been lucidly clarified by Einstein. It is the almost universal topic of
the role of so-called ideal elements in scientific theories. As their role in quantum
theory will be a central theme of our paper we give it a closer inspection in the
next section and close the introduction with some (as we think) deep remarks
and reservations uttered by Scrooge in [18] to which we fully subscribe.

Wave functions are real for the same reason that quarks and symmetries
are . . . Any system is in a definite state whether any humans are observing

it or not ; the state is not described by a position or a momentum but by
a wave function.

It seems to me that none of this forces us to stop thinking of the wave
functions as real, it just behaves in ways that we are not used to, including
instantaneous changes.

(Weinbergs own utterance on p.143): The positivist concentration on ob-
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servables like particle positions and momenta has stood in the way of a

realist interpretation of quantum mechanics in which the wave function is

the representation of physical reality.

The following sections, 2 to 4, are of a preparatory nature, that is, they provide
the necessary background, motivations and concepts, thus paving the ground for
the central sections, 5 and 6, of the paper in which quantum theory is derived as
a low-energy effective theory of a more primordial theory, living on the Planck
scale. In a short aside we speculate about the possibility that this fundamental
theory may also underly string theory (near the end of section 5). In section 7
we briefly indicate in what directions our appoach has to be further developed
in order to address the so-called measurement problem and/or the emergence of
macroscopic behavior.

2 The Description of our own Working Philos-

ophy

In this section we want to discuss the pieces of our own working philosophy in
more detail and relate it to two other approaches presented in the more recent
past, which seem to be developed in a similar spirit. The one of the mentioned
approaches is expounded in two longer papers by Smolin ([19],[20]) and stems
from the period before he embarked on the loop quantum gravity program. The
other is the work of ’t Hooft about a presumed cellular automaton substrate
underlying quantum theory (see [21] to [23]). While these two frameworks differ
in several respects from each other, each of them shares, on the other side, a
bundle of ideas with a certain particular strand in our own approach.

2.1 A short Review of Smolin’s Ideas, the Role of Ideal

Elements and our own Point of View

In this subsection we concentrate mainly on the epistemological and foundational
aspects of Smolin’s work as they are of particular importance for the understand-
ing of the (sub)structure of quantum theory. The more technical aspects and the
concrete implementation are postponed to the following sections. The greater
part of the epistemological ideas can be found in [19].

Central in this respect is the notion and role of ideal elements in physical
model theories. Smolin argues that practically all our theories contain - by ne-
cessity - so-called ideal elements as they typically deal only with a portion of our
universe. He describes them as absolute or background structures which are not
themselves determined by solving any dynamical equations or, put differently, el-
ements of the mathematical structure whose interpretation requires the existence
of things outside of the dynamical system described by the theory. He argues
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that both Mach’s Princicple and the quantum mechanical measurement problem
are cases in point, both of which are crucial parts of the even greater problem of
constructing a sensible quantum cosmology. To give another but related defini-
tion, we can say with Einstein that something that acts but is not acted upon
serves as an ideal element like e.g. inertial systems in special relativity (cf. [24]).

The reason why this theme is so carefully discussed by Smolin is the necessity
to formulate a theory of quantum gravity that does not depend on an absolute
background space. This is the place where the Machian Philosophy comes into
the play in form of a sceptical attitude towards the existence of space-time as
a metaphysical and a priori substratum. The reader who is interested in the
actual content of this (a little bit poetic) principle should consult [17] or e.g.
[25]. Another illuminating characterisation, stemming from Westpfahl ([27]), is
quoted in [26].

. . . all tendencies which try to reduce all the phenomena which cannot be

described by laws of nature (viz. field equations) to cosmological causes

As our primary concern in this paper is the creation of an underlying more primor-
dial theory which contains ordinary quantum theory as an effective and derived
stochastic theory, we will henceforth concentrate more on the role of ideal ele-
ments in quantum theory. Perhaps a little bit surprisingly, we will show later
that in a certain way such a Machian strategy, i.e. explaining seemingly local
features of a theory by a nonlocal influence of the (distant) environment, will also
work in quantum theory.

Now, what are the ideal elements in quantum theory? Deviating slightly
from the analysis of Smolin we concentrate at the moment not so much on the
infameous measurement problem but on another (in our view) central structural
element of quantum theory, i.e. the superposition principle together with the
genuine complex structure of the theory.

Conjecture 2.1 (Ideal Elements in Quantum Theory)

1. In a similar sense as Smolin did, we conjecture that the complex Hilbert
space structure of ordinary quantum theory (and in particular the superpo-
sition principle) are playing the role of ideal elements in quantum theory.
They encode in a local way a nonlocal stochastic interaction between the
lumps of the surface structure ST .

2. Furthermore we claim that a good deal of the observed local quantum fluc-
tuations and randomness has its origin in the fact that ordinary quantum
theory is, by necessity, that is, by its very definition, a theory of only a small
portion of the universe, with this portion being open to permanent nonlocal
interaction with the (distant) regions of the quantum environment.
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3. Put differently, as in the Machian concept of inertia, we assume that the
mentioned ideal structural elements of quantum theory encode in a, on the
surface, local way nonlocal effects which originate on a more primordiallevel
and which make the local version of the theory, formulated in macroscopic
space-time, a stochastic one. The deeper reason for this is that this local
formulation describes (while being unaware of it) a, in some sense, open
system.

The last remark leads to another central theme of a realistic approach towards
quantum theory, viz. the nature and origin of statistics in the quantum realm.
Smolin remarks in [20] by referring to various recent observations in quantum
cosmology (e.g. [28]) that there seems to be no local coordinate invariant dis-
tinction between real statistical fluctuations (in the “ordinary” sense) and virtual
quantum fluctuations. The lesson we learned from Einstein is then the following.

Observation 2.2 If the distinction of two phenomena depends on the system of
reference then these, superficially different, phenomena are actually of the same
kin.

Consequently our program can be described as follows.

Programme 2.3 Find an underlying more primordial model theory in which
virtual quantum fluctuations are ordinary statistical fluctuations.

This is now the point where the various strategies bifurcate from each other.
In [20] Smolin chose to further develop the Nelson progamme of stochastic (quan-
tum) mechanics, which is based on the picture of a particle moving in a quasi-
brownian environment with, however, a quite peculiar diffusion behavior not ob-
served in the classical regime (as to this programme see e.g. [29] or [30]). Smolin
then embeds the system in a background gravitational field and argues that this
strategy shows that and how the Hilbert space framework has to be transcended.
At the end of the paper he discusses certain models dealing with nonlocal hidden
variables.

We should say that this was, at least to some extent, a strategy we also per-
sued in earlier times. In [31] we argued for example that the Nelson approach has
to be developed further in the direction of nonmarkovian mechanics and made
some tentative steps along these lines. Our main argument was that the fluctu-
ating but passive background in the Nelson-approach (viz. an ideal element par
excellence) has to become dynamical due to the (back)reaction of the randomly
moving quantum particle, which, in our view, can no longer be neglected in the
quantum regime. If one now averages over this dynamical background one would
get an evolution equation for the particle itself which contains now a memory
kernel (as the averaging process will collect retardation effects), i.e. which be-
comes nonmarkovian. The technical implementation of this programme, however,
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turned out to be extraordinarily ambitious and we hesitated at that time to push
the work beyond the preprint status.

What all these and related approaches are having in common is that they
stick to a particle concept as fundamental building block, i.e. it is assumed that
there exists a discrete entity which moves in a fluctuating background. This is,
however, exactly the concept we choose to abandon in our more recent approach
in which quantum objects are, on the contrary, assumed to be extended excitation
patterns roaming our two story network environment but carrying certain discrete
particle properties which are observed in suitable measurement set-ups. On the
other hand, it may well be that the older ansatz turns out to be a certain useful
approximation to this more complex picture.

2.2 ’t Hooft’s Framework plus some Comments

The starting point for ’t Hooft is a little bit different from the preceding approach.
His emphasis lies on the discreteness of physics at the Planck scale and is thus
related to the other strand of ideas on which our own framework is based. It is
his aim to derive quantum behavior on a large scale (i.e. also by a kind of coarse
graining) from suitable deterministic cellular automaton laws holding sway on a
more primordial scale (see [21] to [23]). There exist earlier related ideas scattered
in the literature which were inspired by the concept of cellular automata (e.g. [32]
or [33]). In his most recent contribution ([23]) he argues that certain versions
of hidden variable theories must be revived in the face of problems in quantum
gravity and that space, time and matter all have to be discrete at bottom.

Another point he rightly emphasizes is that (obviously) the primordial degrees
of freedom are not describing electrons or any other particles, but microscopic
variables at scales comparable to the Planck scale. This is exactly in line with
what we said above and with our own framework. We will readdress this partic-
ular aspect in the next subsection under the catchword of the problem of scales.

Of particular relevance for our enterprise is the following somewhat related
argument against the many critics of such deterministic approaches in the quan-
tum realm. ‘t Hofft reasons that quantum theory provides a completely adequate
framework on its natural scale of resolution and that there is no chance to replace
it on this scale by some classical or deterministic model theory. But it may well
be that a model theory being deterministic on the Planck scale generates the sta-
tistical quantum laws via coarse graining on their natural scale, thus invalidating
the consequences of, say, the Bell inequalities.

While we are very sympathetic with this programme we would like to comment
on some differences as compared to our own framework. The main difference, we
think, is that we do not base our analysis on a rigid a priori fixed lattice structure
but, instead of that, regard the geometric wiring diagram underlying the cellular
network as a full fledged dynamical system of its own which interacts with the
node states (which, on the other side, are the only variables in a cellular au-
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tomaton). Thus geometry, dimension,metrical properties, near- and far-order all
become dynamical collective quantities which are assumed to coevolve. The un-
derlying philosphy is of course that ultimately both quantum theory and gravity
emerge as two seemingly different but in fact related large scale aspects of one
and the same underlying theory.

Another important aspect of our programme is that we will show in the follow-
ing that quantum theory encodes in a at first glance local way on its own natural
scale hidden nonlocal long-range interactions among the really microscopic de-
grees of freedom, living on a more primordial level.

2.3 The Problem of Scales

It is frequently argued that the attempt to relate e.g. quantum physics on its
presently accessible middle energy scales to some underlying and largely hidden
primordial theory, living on, say, the Planck scale, is virtually impossible due
to the huge difference in orders of magnitude between the two regimes. This is
called the problem of scales. There is certainly more than a grain of truth in this
criticism but we think one can turn this seeming difficulty into an advantage by
pursuing the following strategy.

As in the physics of the critical point (in, say, statistical mechanics or lattice
quantum field theory), any continuum theory which is nontrivial, that is, which
has correlations and patterns extending over non-zero scales, must necessarily be
in a critical or at least near-critical state on the microscopic scale, as all finite
length scales will shrink to zero in the continuum limit. That is, it must have
very long range correlations on that scale, which is typically only the case near
or at the critical point.

By the same token, to a given continuum theory will belong a whole uni-
versality class of microscopic theories which lead to the same macroscopic con-
sequences. Applied to e.g. general relativity such a point of view is expressed
in [34]. A perhaps even more radical opinion is expressed in [35] (there are in
fact quite a few other interesting ideas to be found in this book), running under
the catchword random dynamics. The central hypothesis is that the structure
of the theories on the low- or middle-energy side of the energy spectrum is to a
large extent independent of the form of the hypothesized fundamental theories
on the ultra-high energy side and that the structure of the former ones is rather
a consequence of the way how the coarse graining is performed.

This point of view is partly corroborated by the observations we make below
when we attempt to derive quantum theory from our network model. On the other
side this does not mean (at least in our view) that a particular fundamental theory
does not exist or that we shall be unable to discriminate between different model
theories in the future (note that a similar standpoint could have been adopted
with respect to quantum theory as the underlying theory of classical mechanics).
The correct conclusion to draw is that it is not reasonable (in the beginning) to
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concentrate too much on certain (possibly wrong or unimportant) microscopic
details but better have the gross features right. That is, the real task may rather
consist of extracting the possibly few crucial characteristics which the primordial
theory must contain and which, in the end, survive the coarse graining limit.

3 A brief Résumé of the Properties of the Two-

Story Network Substratum

3.1 Some General Remarks

As the technical details and underlying working philosophy can to a large part
be found in refs. [1] to [5] with special emphasis on [5], we will be very brief.
We emulate the underlying substratum of our world, or, more specifically, of our
space-time (quantum) vacuum (containing however in addition all the existing
quantum and macro objects as extended excitation patterns!) by what we call a
cellular network.

This discrete structure consists of elementary nodes, ni, which interact (or
exchange information) with each other via bonds, bik, playing the role of (in this
context) not further reducible (abstract) elements. The possible internal structure
of the nodes (modules) or bonds (interaction chanels) is emulated by discrete
internal state spaces carried by the nodes/bonds. The node set is assumed to be
large but finite or countable. The bond bik is assumed to connect the nodes ni, nk.
The internal states of the nodes/bonds are denoted by si, Jik respectively. As our
philosophy is, to generate complex behavior out of simple models we, typically,
make simple choices for them, one being e.g.

si ∈ q · Z , Jik ∈ {−1, 0,+1} (1)

with q an elementary quantum of information.
As in our approach the bond states are dynamical degrees of freedom which,

a fortiori, can be switched off or on, the wiring, that is the pure geometry of the
network is also an emergent, dynamical property and is not given in advance.
Consequently the nodes, bonds are typically not ordered in a more or less regular
array, a lattice say, with a fixed nea-/far-order. This implies that geometry will
become to some extent a relational (Machian) concept and is no longer an ideal
element (cf. the discussion in sect. 2).

On the other side, as in cellular automata, the node and bond states are
updated (for convenience) in discrete clock time steps, t = z · τ , z ∈ Z and τ
being an elementary clock time interval. This updating is given by some local
dynamical law (examples given below). In this context local means that the
node/bond states are changed at each clock time step according to a prescription
with input the overall state of a certain neighborhood (in some topology) of the
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node/bond under discussion. We want however to emphasize that t is not to
be confounded with some physical time, which, for its part, is also considered to
be an emergent coarse grained quantity. The well known problem of time is, for
the time being, not treated in detail in the following, as it is a big problem of
its own, needing a careful and separate analysis of its own (see however [36] or
[37]). That is, at the moment the above clock time is neither considered to be
dynamical nor observer dependent. There is however a brief discussion of the
presumed emergence of a new primordial time scale which sets the scale for the
regime where quantum fluctuations hold sway (see below).

In [5] we gave examples of local dynamical laws which, we presume, are capa-
ble of encoding the kind of geometric unfolding we are expecting. An important
ingredient is what we call a hysteresis dynamics, that is, the bonds, or more
properly the interactions Jik, are switched off under appropriate conditions of
the local network environment. An example of such a local law is the following:

Definition 3.1 (Example of a Local Law) At each clock time step a certain
quantum q is exchanged between, say, the nodes ni, nk, connected by the bond bik
such that

si(t+ τ) − si(t) = q ·
∑

k

Jki(t) (2)

(i.e. if Jki = +1 a quantum q flows from nk to ni etc.)
The second part of the law describes the back reaction on the bonds (and is,
typically, more subtle). This is the place where the so-called hysteresis interval
enters the stage. We assume the existence of two critical parameters 0 ≤ λ1 ≤ λ2

with:

Jik(t+ τ) = 0 if |si(t) − sk(t)| =: |sik(t)| > λ2 (3)

Jik(t+ τ) = ±1 if 0 < ±sik(t) < λ1 (4)

with the special proviso that

Jik(t+ τ) = Jik(t) if sik(t) = 0 (5)

On the other side

Jik(t+ τ) =

{

±1 Jik(t) 6= 0
0 Jik(t) = 0

if λ1 ≤ ±sik(t) ≤ λ2 (6)

In other words, bonds are switched off if local spatial charge fluctuations are too
large, switched on again if they are too small, their orientation following the sign
of local charge differences, or remain inactive.
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Remark: Another interesting law arises if one exchanges the role of λ1 and λ2

in the above law, that is, bonds are switched off if the local node fluctuations
are too small and are switched on again if they exceed λ2. We emulated all
these laws on a computer and studied a lot of network properties. The latter law
has the peculiar feature that it turned out to have very short transients in the
simulations, i.e. it reaches an attractor in a very short clock time. Furthermore
this attractor turned out to be very regular, that is, it had a very short period
of typically six, the whole network returned in a previous state after only six
clock time steps, which is quite remarkable, given the seeming complexity of the
evolution and the huge phase space ([38]).

Some characteristic features of these class of laws are the following.

Observation 3.2 (Gauge Invariance)

1. The dynamics depends only on the local charge differences, si − sk and
nowhere on the absolute values si itself, i.e. it is to some extent relational.

2. The total charge, Q :=
∑

ni
si, is conserved under the evolution. One could

e.g. choose a boundary condition like Q = 0, which may be considered as a
kind of gauge fixing.

The following point we consider to be of central importance, irrepective of the
concrete network law under discussion.

Observation 3.3 We expect that really interesting fundamental laws display the
following generic patterns. They typically consist of more or less two parts, encod-
ing the interaction of two primordial substructures, described a little bit sloppily
by the catchwords geometry and matter.

1. geometry acting on matter

2. matter acting on geometry

Usually the first part of the dynamical law seems to be relatively simple and trans-
parent, while the second part is typically much more involved.

Remark: Note that these criteria are fulfilled by our above example, where the
first part is more or less a conservation law. The geometric structure is the wiring
of the network, i.e. the global bond state. A classical case in point is general
relativity, where the first part consists of the geodesic motion of matter, the latter
part of the Einstein equations. We will later show that even quantum theory is
already of this type if understood or looked upon in a certain (new?) way.

In [5] we chose to concentrate on the geometric structure of the network,
thus neglecting most of the details of the microscopic network state and the
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dynamics. In the corresponding reduced graphical representation a bond, bik
was drawn between the nodes ni, nk in the time-dependent graph, G(V,E(t)),
iff the bond-state, Jik(t), was different from zero (V,E the set of nodes, edges
(bonds) respectively). In a next step these graphs were considered as members
of a certain probability space, G(n, p), of random graphs over n nodes and with
the edge probability 0 ≤ p ≤ 1.

Remark 3.4 One can as well choose a slightly higher resolution by keeping trace
of the sign of the bond-interaction, that is Jik = +/ − 1, and identify Jik = +1
with a directed bond, dik, pointing from ni to nk or vice versa for Jik = −1. This
would lead to a so-called directed graph.

In [5] we were particularly interested in certain subgraphs of a typical random
graph taken from G(n, p), their size, number, degree of overlap and entanglement.
These particular subgraphs are called cliques in graph theory and are (in a tech-
nical sense) maximal complete subgraphs or subsimplices, that is, all the pairs
of nodes belonging to a clique are connected by a bond and the cliques are the
maximal elements in the respective chains of subsimplices (ordered by inclusion).
In more physical terms we also called them lumps or physical points.

For later purposes we note that a graph carries a natural metric:

Definition 3.5 The (natural) distance, d(ni, nk), between two nodes, ni, nk, is
the length of a minimal path (a geodesic) connecting them, its length given by the
number of bonds of the path. This distance defines a metric on G (d := ∞ if the
nodes are lying in different components).

Remark: There are other interesting notions of distance one can envisage on a
graph. One is studied in [3] and is related to similar concepts in non-commutative
geometry. Another is discussed at the end of [19].

3.2 The Web of Lumps

We argued in [5] that what we experience as (quasi)classical space-time and
(on a higher resolution) as quantum vacuum, consists roughly of two or rather
three regimes. At the very bottom we have the level of the primordial net-
work with its corresponding primordial length- and (clock) time scales, correla-
tion lengths/times etc. On the next level we have the web of lumps or physical
points, i.e. the web of overlapping cliques. this level defines a new group of cor-
responding (length) scales, as it is usually the case if a new phase emerges. We
conjecture that these emerging scales are the infameous Planck-units, e.g. lP , tP
etc. On the macroscopic surface level, which is the regime directly accessible to
us, the internal structure of the physical points is no longer visible, we observe a
(quasi) continuum as background space which, on a slightly finer scale, is roamed
by quantum fluctuations, representing the residual low-energy effects of what is
happening on the deeper levels.
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In [5] we made a relatively detailed analysis of this web of lumps within the
framework of random graphs. We calculated the typical size of these lumps, their
number, mutual overlap, expected size of the infinitesimal neighborhood of a
typical lump etc. On the other side, some problems remained open for which we
have, at the moment, only partial answers (which is however no wonder, given
the enormous complexity of the behavior of the undrlying network). Note that in
the random graph approach we concentrated solely on the wiring diagram of the
network and studied its properties in a purely statistical way. It became apparent
that in order to follow its dynamical evolution in more detail, something like a
non-equilibrium statitical mechanics for such systems is called for. Furthermore,
the pure random graph picture is possibly (or rather: probably) not sufficient to
explain every aspect of the unfolding process of the network towards the expected
new phase, QX/ST . This, however, has to be expected since we have learned that
the unfolding towards a level both of higher order and diversity may need some
fine-tuning and is not the expected to be the ordinary situation (a catchword
being “complexity at the edge of chaos”; see[39] to [41]).

As far as the derivation of quantum theory as an effective theory is concerned
we therefore will assume that our network has made a transition into this new
phase, QX/ST , consisting, on a limit scale of magnification, of a web of lumps,
fluctuating around some stabel positions and/or average shape with their degree
of overlap and their mutual (macroscopic) distance also fluctuating around some
average value. Some aspects of this picture are then very reminiscent of model
systems studied in the past (investigations initiated by Menger et al; see e.g. [42]
and further references given there). We sum up what we have said so far in the
following brief résumée. (Note that in the following, in contrast to [5], we denote
lumps or physical points by Pi for notational convenience).

Observation 3.6 (The Two-Story Concept of QX/ST)

1. Given a network or graph, G, of the above kind, we can construct its associ-
ated clique graph CG (vertices being the lumps or cliques, the bonds given by
overlap of cliques, see [5]), and thus establish the two story concept, men-
tioned already in the introduction. We hence have two kinds of distances
and metric (causal) relations in the network, the one defined by the original
node distance in G, the other by the distance between lumps (defined by
overlap) in CG.

2. It is important that two lumps, P1, P2, which are some distance apart in CG,
may nevertheless be connected by a certain (possibly substantial) number of
interbonds or short paths, extending from nodes in P1 to nodes in P2 (see
the construction of the cliques described in the preceding sections).

3. That is, there may exist two types of information transport or correlation
being exchanged in the network. A relatively coherent (and presumably
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quasi-classical) one, exchanged among the lumps, obeying a so-called Nah-
wirkungsprinzip and a more stochastic and less organized one (of quantum
nature) between individual groups of nodes lying in lumps, which may be
a certain distance apart, and which, nevertheless, can be almost instanta-
neous.

As we are in the following mainly concerned with the information flow between
the various lumps, Pi, making up the orderparameter manifold, ST , we develop
below a couple of useful concepts and tools which are adapted this new emergent
level of description. Particularly impotant for the near-/far-order in ST (which
is related to its causal structure) are the various degrees of connectedness among
the physical points, Pi. The following abbreviation is useful. For ni, nk (not
being) connected by a bond we write

ni ∼ nk (ni 6∼ nk) (7)

We then have

Observation 3.7 From the definition of the cliques it follows

1. ni 6∼ nk implies that they are lying in different Pν’s.

2. Pν , Pµ are disjoint, i.e. Pν ∩ Pµ = ∅ iff

∀nν ∈ Pν ∃ nµ ∈ Pµ with nν 6∼ nµ or vice versa (8)

This shows that it may well be that Pν ∩Pµ = ∅ while the two lumps have still a
lot of interbonds, i.e. bonds connecting the one with the other. The guiding idea
is however that the respective vertesx sets VPν

and VPµ
, as a whole, will typically

be weaker entangled with each other than the nodes within Pν or Pµ when the
unfolding process is fully developed.

Observation/Definition 3.8 With respect to the above clique graph or web of
lumps we can speak of an

1. interior bond of a given Pν, i.e:

bik withni, nk ∈ Pν (9)

2. exterior bond with respect to a given Pν, i.e:

bik withni, nk /∈ Pν (10)

3. an interbond, i.e:

bik withni ∈ Pν , nk ∈ Pµ, ν 6= µ (11)
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4. a common bond of Pν,Pµ if bik is an interior bond both of Pν and Pµ.

5. a true interbond bik if for ν 6= µ:

ni ∈ Pν , nk ∈ Pµ, nk /∈ Pν (12)

6. We then have the relation for given Pν , Pµ:

{interbonds} − {common bonds} = {true interbonds} (13)

We noted above that we now have two (metric) structures on the network or
graph, the original one with its neighborhood structure and distance function,
d(ni, nj), and the superstructure given by the clique graph and its coarse grained
neighborhood structure of physical points and coarse grained distance function,
dcl(Si, Sj), which we regard as a protoform of our ordinary macroscopic distance.
Note that there may still exist a substantial number of interbonds on the lower
level between supernodes Pi, Pj with dcl(Si, Sj) ≫ 1.

In the physics of many degrees of freedom what really matters, or gives “dis-
tance” a physical content, is not so much some abstract notion of distance but
the strength of interaction or correlation between the various constituents. Given
two node sets A, B or the respective subgraphs we can count the number of bonds
connecting them and regard this as a measure of their direct mutual dynamical
coupling.

Definition 3.9 (Connectivity of Subgraphs) With A, B being two node sets
in a given graph, we denote by |A ∼ B| the actual number of bonds connecting the
nodes of A with the nodes of B and by |A ∼ B|m the maximal possible number.
Then we call

0 ≤ cAB := |A ∼ B|/|A ∼ B|m ≤ 1 (14)

the connectivity of the pair A, B. It represents the probability that a randomly
chosen pair of nodes nA ∈ A, nB ∈ B is connected by a bond. |A ∼ B|m depends
however on their relative position in G.

Observation 3.10 We have the following relations

A ∩ B = ∅ → |A ∼ B|m = |A| · |B| (15)

(|A|, |B| the respective number of nodes), hence

cAB = |A ∼ B|/|A| · |B| (16)

A = B → |A ∼ B|m =

(|A|
2

)

(17)
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For their intersection we have in general

A ∩ B 6= ∅ → |A ∼ B|m = |(A− B) ∼ (B −A)|m
+ |(A∆B) ∼ (A ∩ B)|m + |(A ∩ B) ∼ (A ∩B)|m (18)

i.e:

|A ∼ B|m = |A− B| · |B −A| + |A ∩ B · (|A−B| + |B − A|) +

(|A ∩ B|
2

)

(19)

with A∆B being the symmetric difference of A and B.

In our papers, cited above, we argued that it is reasonable to treat certain
(bulk) aspects of the network properties and its evolution in a statistical way.
This is particularly necessary if we want to extract some coarse-grained informa-
tion from it which depends on the collective behavior of many nodes and bonds.
That is, we have to take averages over certain portions of the network and/or
(possibly appreciable) clock-time intervals (which may, nevertheless, correspond
to infinitesimal intervals on a more macroscopic scale). In the folowing we intro-
duce and describe only those collective variables which may become relevant in
the further analysis.

We will deal with our network mainly on the level of the web of lumps or the
clique graph, abbreviated by ST . At each clock-time step or whole clock-time
interval, QX/ST consists of a certain overlapping web of lumps or cliques, Pi,
having some average size (in graph theory usually called order), that is, number
of nodes

〈r(P )〉 := 〈order of clique〉 (20)

where the statistical average is taken over the network and/or an appropriate
clock-time interval. We assume of course that the phase, QX/ST , the network
or clique graph is occupying, is sufficiently stable or slowly varying, so that the
actual clique size, 〈r(Pi)(t)〉 is assumed to fluctuate not too much around this
average value, 〈r(P )〉. In other words, the lumps are assumed to be fuzzy.

In the same sense the average vertex degree can be defined

〈v(P )〉 := 〈vertex degree〉 (21)

the average number of active bonds per clique

〈N(P )〉 := 〈number of active bonds per clique〉 (22)

and the respective averages over the bonds pointing inward or outward, that is,
connecting two nodes, the one lying inside, the other outside the lump under
discussion.

〈Nin,out(P )〉 := 〈number of in− , out− bonds〉 (23)
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Note that the bond is counted as in if the orientation is Jik = +1 with ni lying
outside the lump.

We consider these latter variables (averaged or non-averaged) as being par-
ticularly relevant as they tell us something about the charge fluctuations inside
the lumps and through the (fuzzy) boundary. At each clock-time step we have
an internal charge, Q(t;P ), of the respective lump, P , and due to our dynamical
network law it holds

Q(t+ τ ;P ) −Q(t;P ) =: ∆Q(t;P ) =
∑

ni∈P

si(t+ τ) −
∑

ni∈P

si(t)

= q(Nin(t;P ) −Nout(t;P )) = q(
∑

in

Jik(t;P ) −
∑

out

Jik(t;P )) (24)

and the corresponding equations when taken with the respective averages.

4 An Alternative Look upon Quantum Theory

4.1 Isolating the Pure “Quantum Phenomenon”

After this series of preparatory steps we now enter the central part of the paper.
We have our model system QX/ST and want to derive quantum theory from it as
an effective theory living near the continuous “surface” of this structure. In doing
this we have first to clarify two points. What do we actually mean by quantum
theory (understood as a general conceptual framework) and, second, what are the
large-scale phenomena we expect to emerge or survive in this low-energy limit
(comparedd to the primordial Planck scale).

As to the first question, typical models of, say, quantum field theory are usu-
ally inspired by their classical counterparts which are then “quantized” (following
a certain, one may venture to say heuristic, scheme). Furthermore, covariance,
spectrum condition etc. are usually imposed. In a first step we think it is easier to
concentrate on, what we regard as the essential and model-independent quantum
phenomena, leaving, for the moment, aside all the additional complications. Take
e.g. special relativity. To derive it as a macroscopic phenomenon from our under-
lying QX/ST )-network we need a more detailed understanding of the emergence
of macroscopic time, which is a veritable problem of its own and will not be dealt
with here (this does not mean that it cannot be done; it means rather it has do
be done in a separate investigation due to natural limits of space), for reviews
see e.g. [36] and [37].

Conjecture 4.1 We conjecture that the model-independent content of “the” quan-
tum phenomenon is mainly encoded in the generically complex structure together
with the superposition principle, both making up the complex Hilbert-space struc-
ture of ordinary quantum theory and leading to the seemingly paradoxical entan-
glement phenomena.
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Remark: The soundness of this conjecture will be further illuminated below and
is perhaps underpinned by the following citations taken from [12] p.216, 218 (see
also [43]):

(Schrödinger) . . . the complex structure as carrier of the unobservable

phase information . . .

(Dirac) . . . the phase quantity was very well hidden in nature . . .

These model-independent ingredients can, in a first step, best be studied in
the non-relativistic regime by investigating the (hidden) structure of e.g. the
Schrödinger equation.

In this context it is sometimes argued that some of the peculiar quantum phe-
nomena displayed by the Schrödinger equation, e.g. its instantaneous spreading,
is an artefact of its lack of relativistic covariance. We think, this is beside the
point to some extent. We carefully analyzed this issue in [44] and [45] and showed
that exactly the same processes are at work in both the relativistic and the non-
relativistic regime, pointing to a kind of underlying entanglement or non-locality
of quantum phenomena, being ubiquituous in the whole field. Put sloppily one
may say:

Conjecture 4.2 Only observables behave locally or causally while states do, typ-
ically, not. This is also the case in the relativistic regime. On the other side, the
Schrödinger equation describes the evolution of a state!, not of a quantum field.

The underlying reason for this is the following. The energy-momentum content
or transfer of an observable is typically two-sided, that is, the Fourier-support or
spectrum (in fact an operator-valued distribution as long as the operator is not
smeared with a testfunction)

Â(p) := (2π)−2

∫

eipxA(x)d4x (25)

p = (p0,p), x = (x0,x) four-vectors, px the Minkowski-scalar-product

A(x) = eiPx · A · e−iPx P = (H,P) (26)

has the following property:

Lemma 4.3 With p belonging to the energy-momentum support of A = A∗, put
sloppily Â(p) 6= 0 at p in a distributional sense, −p belongs also to the support
of A or Â.

Proof:

(Â)(p)∗ = (

∫

eipxA(x)d4x)∗ =

∫

e−ipxA(x)d4x = Â(−p) (27)
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that is, Â(p) 6= 0 at p as operator-valued distribution implies the same for its
adjoint at −p 2

Remark: In the theory of operator algebras the above spectrum is usually called
the Arveson-spectrum (see e.g. [46] or [47]).

States, on the other side, are prepared by applying such local observables (or field
operators) to the ground state or vacuum, Ω. As this is the state with lowest
energy (usually set to zero), the negative energy support of A, when applied to
Ω, is by definition cut off, that is,

supp(A · Ω) ⊂ V + (28)

(V + the closed forward cone). This inevitable asymmetry in the support of
states compared to observables leads to their different (causal) behavior as has
been analysed in our above mentioned papers and has nothing to do with Lorentz-
covariance. It is rather a pure quantum phenomenon.

4.2 A Different Look at Schrödingers Equation

In standard quantum theory the Schrödinger equation is considered to be only one
of a couple of possible representations of quantum dynamics, i.e. the configuration-
space version. We want to argue in this subsection that one should perhaps change
ones point of view in at least two respects. For one, as we learned from general
relativity, space and time seem to have a very peculiar significance of their own
and do not seem to be a mere mode of representation of physics among many
other ones being posible (in contrast to the point of view, suggested by e.g. ordi-
nary quantum theory). For another, Schrödingers equation is at first glance linear
(which was severely criticized by Einstein), but it is only linear with respect to
its complex structure which makes a big difference as we will show.

In our (perhaps heretic) view, shared however by quite a few others, it rather
represents an intricate dynamical entanglement of two underlying and in the
ordinary approach largely hidden quantities, which have survived the coarse-
graining process if one goes “bottom-up”, starting from the Planck-scale. If one
disentangles this single complex-linear equation it becomes the non-linear coupled
evolution of two real equations. This fact has long been known, we think however
that our interpretation of this phenomenon is a different one.

The two perhaps most widely known fields where this has also been done are
the stochastic mechanics developed by Nelson and several precursors, and the
so-called Bohmian mechanics of Bohm et al. To keep the length of our paper
reasonable we will mention only very few sources, where the interested reader can
look up more references, and make up his own mind concerning the pros and cons
of the various contributions. We mentioned already [20] and [29] to [31] which
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deal primarily with stochastic mechanics. From the many papers about Bohmian
mechanics we cite the following, as we think, quite readable accounts [48] to
[50] with reference [49] being perhaps particularly interesting as in it Nelson’s
approach has been compared with Bohm’s own approach.

In more recent times so-called stochastic collapse models have also become
fashionable (a small selcetion being [51] to [53]). As far as the randomly fluctu-
ating environment, employed in some of these models, can be viewed as a coarse-
grained epiphenomenon deriving from a more fundamental layer of microphysics,
they may considered to be phenomenological or effective theories, describing a
more complex underlying dynamics. Note however that in our approach the fluc-
tuating environment is a dynamical agens of its own which acts but is also acted
upon by “matter”.Furthermore we do not employ a particle picture in the form
of, say, small objects immersed in a random medium. It may however has its
value as a certain approximation.

In disentangling the Schrödinger equation we follow a traditional line of non-
orthodox quantum theory but with a to some extent diffferent working philosophy
in mind, formulated in observation 3.3. That is, we conjecture that a really
fundamental law consists always of two parts, i) “geometry” acting on “matter”
and ii) “matter” acting on “geometry”, with the first equation being typically
significantly simpler than the latter one. With

ψ = ρ1/2 · eiS/~ (29)

Schrödinger’s equation

i~∂tψ = −~
2/2m · ∆ψ + V ψ (30)

decomposes into the conservation equation

∂tρ = −∇ · (ρ · v) with v = 1/m · ∇S (31)

and the dynamical equation

−∂tS = 1/2m · (∇S)2 + V − ~
2/2m · ∆√

ρ/
√
ρ (32)

which may be considered as a quantum deformation of the Hamilton-Jacobi equa-
tion, the deformation being the so-called quantum potential (Bohm)

Vq := −~
2/2m · ∆√

ρ/
√
ρ (33)

Observation 4.4 The quantum potential, Vq, is the only place where the “quan-
tum” openly enters. Thus, any attempt to explain quantum mechanics as arising
from a more primordial level has to give an explanation for the emergence of this
term.
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We will show that, in fact, this term encodes in our framework the non-local
entanglement between the various lumps making up ST in our network QX/ST .

Remark 4.5 Note that in the conservation equation the quantity ρ enters, while
in the second equation it is

√
ρ, the peculiar statistical nature of which will play

a considerable role in the following sections.

There exist corresponding equations for several particles. For two particles we
have e.g.

∂tρ = −(∇1 · (ρ∇1S/m1) + ∇2 · (ρ∇2S/m2)) (34)

− ∂tS = (2m1)
−1(∇1S)2 + (2m2)

−1(∇2S)2 + V (x1, x2)

− (~2/2m1)∆1(
√
ρ)/

√
ρ− (~2/2m2)∆2(

√
ρ)/

√
ρ (35)

In the following conjecture we indicate how this disentangled Schrödinger
equation fits in our general picture.

Conjecture 4.6 The conservation equation encodes the action of “geometry”
on “matter”, the deformed Hamilton-Jacobi equation the action of “matter” on
“geometry”, where ρ is supposed to relate to “matter”, the phase-function S to
“geometry”. These structural elements survive the huge gap between the Planck-
scale and the middle-energy regime of, say, quantum theory in the form of large
scale excitation patterns.

The role of the above quantities in ordinary quantum theory is the following.
We have

∫

ψi∂tψd
3x = −

∫

ρ∂tSd
3x+ i

∫

ρ1/2∂tρ
1/2d3x (36)

The latter term on the rhs equals (i/2)∂t

∫

ρd3x = 0. Hence −ρ · ∂tS may be
interpreted as an energy density. Correspondingly we have for the momentum:

∫

ψi−1∂jψd
3x =

∫

ρ∂jSd
3x+ (2i)−1

∫

∂jρd
3x (37)

The last term on the rhs is a surface term and hence vanishes; thus ρ · ∂xS can
be regarded as a momentum density.

Before we go on we want to address again the longstanding question of the
reality of, say, the wave function ψ or of its constituents ρ and S. This issue was
already discussed in subsection 2.2 and we now want to add a few more facets.
One of the most prominent scientists in favor of an undulatory ontological nature
of ψ was Schrödinger (see e.g. his contribution in the de Broglie volume, which
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contains quite a few remarkable observations supporting his point of view). One
argument against this interpretation is the so-called problem of polydimensions,
i.e. the structure of ψ in the case of several particles, which is in that context
defined over the cartesian product of, say, R

3 and hence can, at first glance, no
longer be interpreted as an extended excitation living in R

3. This point was
already raised by Heisenberg at the 1927-Solvay conference (seee [12] p.240f).

. . . I see nothing in the calculations of Mr. Schrödinger that justifies his

hope that it will be possible to explain or understand in three dimensions

the results from polydimensions

While Schrödinger did not seem to have a coherent underlying theory supporting
his own point of view, he evidently envisioned excitations in R

3 interpenetrating
each other (perhaps in a soliton-like manner). We will sketch our own ideas con-
cerning this important question in a preliminary form in the following conjecture.

Conjecture 4.7 [N-Particle Wave Functions]

1. We think the system-theoretic task, solved by “Nature” with the “inven-
tion” of quantum theory, consists of storing effectively and stably a certain
amount of information in a noisy background, represented by QX/ST .

2. As the individual grains, Pi, i.e. the physical points, comprise in our picture
still a lot of internal degrees or freedom (the nodes and bonds belonging to
Pi), there should be ample internal space to store the local pieces of different
excitation patterns, living and interpenetrating each other in one and the
same emvironment (by the way, a task also solved by the human brain).

3. One possible method consists of letting only a small fraction of internal
degrees of freedom contribute to each extended wave pattern. This appears
to be reasonable anyhow, as quantum theory as we understand it is actually
a weak, low-energy excitation of QX/ST as compared to, say, the Planck
energy.

4. An interesting situation is expected to emerge when the number of particles,
N , becomes appreciable or macroscopic. There should exist a critical local
occupation rate above which this weak-field-approximation breaks down. By
the same token, the picture of interpenetrating (and to a certain extent
individual) particle excitations will become problematical. This impossibility
to store a too large amount of information in a finite space and the respective
threshold are in our view the interface region where quantum mechanical
many-body systems start to behave macroscopically. This picture has to be
worked out in much more detail and will be treated elsewhere as it draws on
a huge corpus of material of its own which has accumulated in the past (for
a cursory discussion see however section 7).
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5 The Collective Dynamics of the Web of Lumps

In the preceding sections we described how a certain extended structure of lumps
may emerge within the network as the consequence of a geometric phase transition
or geometric reorganisation of the underlying network. In this section we want to
argue that this new phase, dubbed QX/ST , is accompanied by the emergence of
a new class of characteristic collective variables and their respective cooperative
behavior which does not yet exist on the more primordial level and which is the
reason why this new geometric phase may be rightly called an orderparameter
manifold.

Remark: It is not accidental that such a point of view and/or language is a little
bit in the spirit of the physics of self-organisation or synergetics (see e.g. [54]
or [55]) as it is in our view pretty much to the point. After all, our underlying
medium is a complex dynamical system consisting of a huge number of elementary
constituents. It is hence reasonable to employ the corresponding arsenal of tools
and concepts. We will, due to limits of space, however only introduce a limited
amount of the technical machinery below.

The above described superstructure, ST , overlying the primordial network,
QX, is the deepest of, presumably, a whole hierarchy of increasingly coarse-
grained and smooth levels, each of which typically supporting and generating
its own emergent set of natural variables and laws. In a sense ST functions as
a shell which decouples and shields the upper stories of the hierarchy from the
most primordial one. The crucial question to answer is the following.

Programme 5.1 Find the modes in which the system operates on a given scale
of resolution!

This is the characteristic question, emerging also in the physics of self-organisation,
the Landau-picture of elementary excitations in, say, quantum fluids, or the the-
ory of renormalisation in high-energy physics, to mention a few fields.

Conjecture 5.2 As to the cooperative behavior of our web of lumps we assume
the following: The orderparameter manifold, ST , overlying the primordial net-
work, QX, enslaves (a notion taken also from synergetics, see [54]) the more pri-
mordial degrees of freedom, that means in our context the node- and bond-variables
and forces them into a specific cooperative undulatory behavior, put differently,
the geometric phase transition manifest itself, among other things, by means of a
new collective excitation mode. In brief, order parameters are collective variables
which enslave subsystems.

This new collective mode is a spatio-temporal undulation pattern of the Q(P )-
and the Nin,out(P )-field (see the end of section 3.2) being entangled with it via
the underlying dynamical law. The emergent characteristic parameters of this
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excitation mode are an oscillation- or correlation time, tpl, and a characteris-
tic (correlation- or oscillation-) length, lpl, supposed to characterize the Planck-
regime.

While we cannot prove this conjecture at the moment, as we are presently unable
to solve the very complicated dynamical behavior of our network in greater detail
and follow it through its presumed phase transition regime into the new phase,
QX/ST , we will at least try to transform it into an educated guess by providing
a row of more or less coherent arguments supporting this hypothesis.

1. We mentioned in section 3 in the remark after the definition of a, as we
think, typical model of a dynamical network law (definition 3.1) that a
slight variation of the law yields a new model having very short transients
and reaches periodic state cycles or (attractors) having only period six, i.e.
the whole network state returns into exactly the same state after only four
time steps. For sufficiently small networks (only a few nodes) one can do the
calculations by hand and follow the evolution and oscillation in detail. For
networks up to several thousand nodes the evolution has been implemented
on a computer (see [38]). Note that such a behavior is quite remarkable,
given the huge acccessible phase space and the relatively complicated evo-
lution law.

Remark: Such puzzling and still quite mysterious phenomena were also
mentioned by S.Kauffman in his study of so-called switching nets (cf. e.g.
[39] p.112 ff or [40]). Such oscillating media are also observed in synergetics
(cf. e.g. section 4 in [56]).

This shows that such things may already happen on the level of the primor-
dial network. In other respects however,such a peculiar law is too regular as
it does not allow for a diversified pattern creation on the higher levels. The
interesting evolution laws are sitting, according to the working philosophy
expounded e.g. in the above cited literature (see also [41]) and which we
are largely sharing, at the edge between chaos and order.

2. On the other side, the evolution law given in definition (3.1) itself, i.e. with
the other rule of switching-on and -off of interaction, Jik, does not show
these short transients and periodic state cycles already on the level of its
primordial nodes and bonds and therefore seems to behave more erratically
at least on the most fundamental level (as we learned from a numerical
investigation of its characteristics which were also studied in quite some
detail in [38]). It evidently behaves more stochastically and may be nearer
to this mentioned edge between order and chaos (sitting supposedly on the
other side). Unfortunately our computer capacities were not large enough
to study it on the higher level of the web of lumps., which would have
implied, among other things, a permanent calculation of these cliques and
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their dynamics (as to such analytical techniques cf. [5]). It may, however, be
possible that it supports such oszillating modes in its fluctuation spectrum
on this more advanced level of lumps.

3. On can however try to get some qualitative glimpses how such networks
may behave by concentrating on a fixed given lump, P , say. Let us as-
sume that at a certain clock-time, t0, its charge, Q(t0;P ), happens to be
somewhat below the average of the charges of the surrounding lumps di-
rectly interacting with it (i.e. more or less the so-called local group, see
[5]). While we cannot make an exact prediction about the corresponding
states of the bonds in the immediate environment of P , the laws which we
introduced above suggest however that a deficiency of charge in P will in-
duce after some clock-time cycles a reorientation of bonds in favor of more
bonds pointing inward (with, and this is important, a certain tendency of
overcompensating !). In other words, after a certain lapse of time the charge
in P will be above average with the excess charge now being presumably
greater than the deficiency of charge in the cycle before. Again this sur-
plus charge induces an even more pronounced reorientation of neighboring
bonds, leading to an even greater deficiency of charge within P , and so on.
This process will not stop until it has reached a characteristic excitation
level being typical for both the network (law) under discussion and the
specific phase, QX/ST it is occupying.

The above qualitative analysis shows that there may well be such a spatio-
temporal undulation pattern within the excitation spectrum of the network, ex-
tending over the whole web of lumps and being perhaps similar to an array of
coupled self-oscillating subunits. The characteristic oscillation period of these
subunits (which are assumed to comprise more or less the individual lumps and
there immediate neighborhoods) is the Planck-time, tP , the characteristic wave-
or coherence length is the Planck-length, lP , being, on the other side, a measure
of the typical diameter of a lump or its local neighborhood. These emergent
and autonomously generated quantities figure then as the elementary building
blocks of the corresponding continuum concepts, length, time, energy etc. on the
smoother, that is, more coarse-grained scales and show how a complex system
is capable of generating its own intrinsic scales by a process of self-organisation.
That is, these elementary units need not be put in by hand! That is, our subclass
of networks seem to belong to the class of oscillating media described in e.g. [56].

It seems now worthwhile to introduce a limited amount of machinery, being
employed in the theory of self-organization or dynamical systems (see e.g. [54]
to [58]), in order to make the following analysis more concise. Our networks are,
among other things, complex dynamical systems. On the most fundamental level
their dynamics is assumed to be deterministic (whereas this is not neccessarily
a crucial point due to the shielding phenomenon which decouples the various
levels from each other to some extent). In contrast to most of the dynamical
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systems, discussed in the literature, the number of their constituents is, on the
one side, very large. On the other side, both the evolution and the phase space is
discrete. This prevents the immediate application of the usual tools of continuum
mathematics in the analysis of the geometry of, say, attracting sets and the like.
On the other side, after a certain coarse-graining, when dealing e.g. with the
web of lumps, the dynamics and the medium may be considered, in a good
approximation, to be quasi-continuous. On the other side, on the higher levels
the dynamics is no longer deterministic due to the “integrating out” of degrees
of freedom and corrsponding loss of information. Instead of that we may get
certain phenomenological dynamical field equations superposed by a stochastic
component implementing the additional noise in the network. This then is the
typical scenario of synergetics. It is our aim to show that low-energy quantum
theory is exactly of this sort, that is, certain emergent dynamical field laws plus
a non-local stochastic component.

To exhibit the interplay of statistical averaging and the underlying microscopic
evolution, we introduce the folowing concepts. We take a particular initial state,
x0, say, which lies in the basin of attraction of an attracting set of states, X, say,
or already in X itself. We assume a discrete evolution law, i.e. an iterated map,
M . In general, M is not invertible but only an endomorphism. For technical
reasons it is usually assumed that it is onto. Then we can follow the path the
system takes with starting point x0, i.e:

xn := Mnx0 , Mn := M · · ·M (n-times) (38)

For n → ∞ the states, xn, wander through the attractor, X. With f an ob-
servable, defined on the microstate x, we can define its time average (provided it
exists):

f := lim
T→∞

1/T

T
∑

n=0

f(Mnx0) (39)

Under certain conditions there exists an invariant measure, µ, on X so that
time averages become ensemble averages with respect to µ, the averages being
independent of the starting point, x0. Systems with this property are called
ergodic (cf. [59]). How this may come about can be seen as follows. Instead of
x0 we take a full initial probability distribution, ρ0. Under the map M it goes
over in a new distribution, ρ1:

M : ρ0(x) → ρ1(x) (40)

and in general

ρn+1 =

∫

ρn(y) · δ(x−My)dy (41)
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(called for whatever reason the Frobenius-Perron-equation).
We arrive at an invariant density if we have a fixed point, that is:

ρn+1(x) = ρn(x) = ρ(x) (42)

In general it is reasonable to switch to a slightly more general point of view and
consider invariant measures instead of densities (or to allow for distributional
densities), that is ρ(x) → µ(A) with A some measurable set. The notion of
invariance is now expressed as

µ(A) = µ(M−1A) for all measurable sets (43)

We then have

〈f〉 = f := lim 1/T
T

∑

n=0

f(Mnx0) =

∫

X

f(x)dµ independent of x0 (44)

While M is not necessarily invertible, invariance of µ implies that it induces
an isometric map on the function space (Hilbert space) L2(µ), thai is, it holds

∫

|UMf |2dµ =

∫

|f |2dµ with (UMf)(x) := f(Mx) (45)

For this to make sense the above mentioned technical property that M is onto is
needed.

Observation 5.3 Note that µ(A) measures in effect the average time the system
occupies states belonging to A.

Another useful tool in the analysis of such complex dynamical systems is
the method of the correlation functions and their spectral representation. Sup-
pose again that f(x) is an observable defined on our state space. Its time-
autocorrelation function is defined by

〈f(t1) · f(t2)〉C := 〈f(t1) · f(t2)〉 − 〈f〉2 = lim 1/T
T

∑

t=0

(f(t+ t1) − f) · (f(t+ t2) − f)

(46)

(provided that such limits do exist). Fourier transformation leads to

〈f(t1) · f(t2)〉C = (2π)−1/2 ·
∫

e−i(t1−t2) · c(ω)dω (47)

with c(ω)dω a positive measure, the so-called power spectrum of the respective
observable. If we have an invariant measure these correlations can alternatively
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be calculated in the ensemble approach (note that, as the evolution is usually
dissipative, that is, one-sided or not-invertible, t1, t2 have to be chosen positive).

The power spectrum can be used to characterize the type of evolution or/and
attractor. If there are e.g. sharp peaks in the spectrum they signal the existence
of extended oscillating modes, buried in the (possibly continuous) background
noise. This is exactly the situation we are speculating about in the case of
our networks and the particular phase, QX/ST , which is, in the language of
dynamical systems, an attractor. What we will say in the following about the
qualitative dynamics of our network or the web of lumps overlying it, should be
considered within this wider context which we only briefly sketched above. One
should however note that our networks are far more complex than the dynamical
systems usually considered in the corresponding literature. For the time being we
simply have to assume that our phase QX/ST corresponds to an attracting set,
that long-time averages are practically independent of the initial configuration
and that an invariant measure exists on the attractor, corresponding to QX/ST ,
so that time averages can be expressed by averages with respect to this measure.
This lays the basis for a statistical treatment of the problems to be discussed in
the following.

Our qualitative discussion of the propensity for an oscillating behavior of our
medium (the web of lumps) suggests that we will find a sharp peak (actually
two as the spectrum is symmetric) in the Fourier spectrum of the (clock-)time
autocorrelation function of the charge, Q(P, t), of a given fixed lump, P . That
is, we conjecture

〈Q(P, t) ·Q(P, t+ t1)〉C = mode(ωpl) +

∫

remainder (48)

The spatio-temporal excitation pattern, resulting from the cooperation of these
individual resonating lumps, will presumably be much more complex. It could
be tested via the correlation among different lumps, i.e:

〈Q(P ′, t′) ·Q(P, t)〉 (49)

As we want to concentrate in this investigation on the derivation of low-energy
quantum theory, we will postpone a more detailed discussion of the leading col-
lective modes being prevalent in the vacuum on the Planck-scale. We will only
briefly indicate what kind of excitation patterns we are having in mind, as it
shows that our web of lumps may already contain the so-called string-bits, i.e the
prerequisites to allow for string-like excitations as cooperative patterns made of
local clusters of lumps ([60]).

One possible excitation pattern may have the structure of densely entangled
chain mail, built from elementary loops (the chain-links) consisting on their side
of lumps which resonate in a cooperative manner so that a certain amount of
charge is pulsating around the respective loop. It is therefore perhaps not too
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far-fetched to tentatively associate the lumps with the notorious D0−branes and
their entangled interaction being modelled by a matrix-model (see e.g. [61],[62]).

Remark: We denote in the following these presumed local clusters of cooperating
lumps by Ci.

What is important for our further discussion is that the wave-number, kpl,
the pendant of ωpl, should not be associated with some plane-wave excitations.
The relevant normal modes are rather such entangled collective excitations as,
say, the above mentioned chain mail. The characteristic parameter, kpl, is then
just the dual of lpl, which, on its side, characterizes the diameter of the local
resonating lumps or the elementary patterns being built from them, that is the,
the local clusters Ci.

The characteristic parameters of our web of lumps are related to each other as
follows. We assume that the characteristic frequency is the Planck-frequency, the
characteristic wave-number, kpl, the Planck-wave-number etc. These variables
are related with each other via:

Epl = ~ · ωpl ppl = ~ · kpl (50)

Epl · tpl = ~ ppl · lpl = ~ (51)

tpl = lpl/c lpl = (G~/c3)1/2 (52)

with Epl, ppl, tpl, lpl Planck-energy, -momentum, -time, -length respectively. The
remaining contributions in the spectrum we assume to be a cetain amount of
patternless noise plus longer wave-length modulations of this ground oscillation
with typical wave-length lpl and oscillation-time tpl (see the next section).

To simplify the following discussion and to exhibit the red thread, we neglect,
in a first step, all the stochastic fluctuations and possible modulations of this
ground wave and concentrate on the leading mode contribution. That is, we
write for a fixed but arbitrary lump (suppressing for the moment an additional
phase factor)

Q(P, t) ≈ Qav +Q0 · cos(ωpl · t) (53)

Qav is the average charge of the lump under discussion, which we assume to be
the same over the web of lumps, Q0 is the amplitude of the oscillation. In the
following section we have to deal with our network and/or the overlying web
of lumps on several clearly separated scales. The same holds for the respective
natural observables emerging on the various scales. The scale of our web of
lumps we assume to be associated with the Planck-scale, abbreviated by [Lpl].
We further introduce the scale of ordinary quantum theory, denoted by [Lqm],
with the property

[Lqm] ≫ [Lpl] (54)
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On the scale [Lpl] we can incorporate the additional spatio-temporal fine struc-
ture, induced by the resonating local clusters, Ci, of the above described ground
mode by introducing a space-time dependent phase-factor, ϕ(x, t), which varies
over the local clusters of lumps forming the elementary building blocks of, say,
the above mentioned chain mail. As it varies spatially on these very short scales,
that is, lpl, it is almost invariant on average on larger scales as e.g. [Lqm] and can
practically be ignored on this larger scale. Furthermore, it should not change the
imposed frequency, ωpl in an appreciable way. We hence expect:

∂tϕ≪ ωpl , |∂xϕ| = O(kpl) (55)

Assumption 5.4 (Fine Structure of the Physical Vacuum)

Q(x, t) = Qav +Q0 · cos(ωplt+ ϕ(x, t)) + noise (56)

6 Quantum Theory as a Low-Energy Limit of

the Dynamics of the Web of Lumps

6.1 The Building Blocks

We now embark on the derivation of the building blocks of low-energy quantum
theory as coarse-grained quantities from our web of lumps. Most important are
the two quantities ρ and S. From the quantum-Hamilton-Jacobi equation of
section 4 we surmise that S will play a particularly significant role as a unifying
concept, mediating between the Planck-, the quantum- and the classical regime.

We begin with some heuristic considerations concerning the supposed role of S
as mediator between these very different scales. Adopting so-called natural units
with c and ~ chosen dimensionless, the phase function S becomes a dimensionless
quantity which should be considered as a sort of generalized action. On the one
side our working philosophy is that physics is discrete on the fundamental level.
On the other side we want to interprete quantities like S, occurring in ordinary
quantum theory, as something which really exists. This leads to the following
conjecture.

Conjecture 6.1 The phase function S describes the coarse-grained effect of an
undulation phenomenon on the level of the web of lumps. More precisely, it counts
the (dimensionless) number of oscillations or switches of or within the underlying
fundamental medium with respect to a fixed but arbitrary reference point. −∂tS
and ∇S have the dimensions of energy and momentum in natural units, that is,
inverse time and inverse length or frequency and wave number characterizing the
undulations in this presumed substratum.
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Observation 6.2 Note that ρ is intrinsically positive in ordinary quantum theory
while the phase function S can be positive or negative. This makes no problems in
the ordinary interpretation where ρ is a probability density and S has a relatively
fictitious meaning. If we want to attribute some ontological meaning to them the
situation is different (see below). It turns out that this “problem of signs” may be
used as a guiding principle in isolating the relevant quantities which survive the
coarse-graining process (cf. the related “problem of scales”, discussed in section
2.3)

The collective excitation pattern, we have described so far, will now serve as
the carrier wave of smooth long-wave-length undulations, which modulate the
ground excitation pattern and which vary on their natural scale, [Lqm] . In
other words, we will relate the objects of, say, low-energy quantum theory to
certain low-frequency/long-wave-length modulations of this underlying very-high-
frequency oscillation mode.

Assumption 6.3 (Quantum Theory) Staying within our approximative pic-
ture, we expect the following modulation of the dominant mode in the carrier
wave if there are low-energy quantum objects around. These quantum objects
are assumed to be implemented by modulations of small amplitude and frequency
(compared to the Planck-characteristics, Q0 and ωpl). That is

Q(P, t) ≈ Qav + (Q0 + a(P, t)) · cos(ωpl · t+ ϕ(P, t) + ε(P, t)) (57)

with

a(x, t) , ε(x, t) varying on scale [Lqm] ≫ [Lpl] (58)

and

|a(P, t)| ≪ Q0 , ∂tε(P, t) ≪ ωpl (59)

In other words, a quantum object is assumed to consist of some extended infor-
mation pattern, being impressed on the high-frequency carrier wave, representing
on its side the physical vaccum. This impressed information consists of both a
component implemented as amplitude modulation (i.e., a(P, t)) and a component
being realized as phase-modulation (that is, ε(P, t)).

We interprete this modulation pattern in the following way on the level of
lumps. A space-time dependent tiny fraction, a(P, t), of the nodes within the
given lump, P , joins the number of nodes (is slaved!), Q0, oscillating collectively
(in the case a > 0) or leaves this set, i.e. falls out of phase (for a < 0). At the
same time the momentary frequency is also changed by a tiny amount, ∂tε.

Observation/Definition 6.4 We now relate |a(x, t)| with ρ(x, t) and ε(x, t)
with −S(x, t). (ωpl · t) counts, as kind of a generalized action, the (dimension-
less) number of oscillations or switches with respect to some arbitrary reference
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time (or -point). ε(x, t) or −S(x, t) is the local deviation from this global quantity
(measured on scale [Lqm]), induced by the presence of quantum objects. It is satis-
fying that a(x, t) can be both positive or negative in contrast to ρ(x, t). We assume
however that it is either (in this low-energy approximation) positive or! negative,
as we should expect both particle- and hole-excitations in our medium. These
may correspond (in the old but perhaps not outdated Dirac-picture) to particles
and anti-particles. The detection of the presence of an excitation (or particle) in
low-energy quantum theory should, on the other side, not depend on the sign of
a(x, t).

With the help of the above formula (57) we can now give −∂tS and ∇S a
precise microscopic meaning.

Observation 6.5 −∂tS describes the local deviation of the momentary frequency
of the undulation pattern from the vacuum value, ωpl, on scale [Lqm]. −∇S · dx
measures on the one side the differential change of the number of periods of
oscillation with respect to the reference point, ωpl · t. On the other side, in order
to be a physical observable, it must also have a meaning which can be locally
measured in the medium. ϕ(x, t) varies spatially on scale lpl, i.e. it yields a wave
number of order kpl. −∇S · (dx/|dx|) is the local deviation of the wave number
from kpl in direction dx, measured on scale [Lqm]. ∇S itself points in the direction
of the maximal decrease.

Proof of the latter statement: Take a change of phase of 2π on scale Lqm in
direction dx. We have

2π = ∇S · dx = ∇S · (dx/|dx|)|dx| (60)

Hence

λ = |dx| = 2π(∇S · dx/|dx|)−1 ⇒ k = 2π/λ = ∇S · dx/|dx| (61)

6.2 The Quantum Mechanical Continuity Equation

We now come to the derivation of the two defining equations making up quantum
theory in e.g. the Schroedinger picture. For one particle we have

∂tρ = −∇(ρ · ∇S/m) (62)

For a particle excitation we assume ρ(x, t) = a(x, t) ≥ 0. Gauss-law yields

∂t

∫

V

a(x, t)d3x = −
∫

∂V

(a(x, t) · ∇S/m)do (63)

The amount of surplus charge,
∫

a(x, t)d3x, activated by the presence of the
quantum excitation in the vacuum and participating in the collective motion, is
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conserved in time. ρ ·∇S is a momentum density, ρ ·∇S/m a “velocity density”.
We want to understand the above first law microscopically.

The above equation, interpreted on the level of the web of lumps, tells us that
the surplus charge in V has the tendency to move in the direction of decreasing
wave number, ∇S, or longer wavelength, with a prefactor, m−1, which may be
considered as a measure of the stiffness of the excitation against change. This
seems to be a reasonable behavior.

Remark 6.6 m was already detected in classical mechanics as a measure of re-
sistance of particle motion in the background medium called vacuum. The above
microscopic interpretation seems to be consistent with this observation.

Increase of wave number means shorter wave length, i.e. smaller extension of the
local clusters, Ci, in the direction of ∇S. This may imply a more intense coupling
among the lumps cooperating in the respective Ci’s, which may have the effect
that more elementary charges, q, are participating in the cooperative movement,
hence, an increase of

∫

V
a(x, t)d3x in the volume V . That is, the first equation of

low-energy quantum theory may be a reasonable formula also on the microscopic
scale.

We want to add at this place a comment about the normalisation condition of
ordinary quantum mechanics as a probabilistic theory. In our realistic approach,
in which ρ is not considered as some probability density but as kind of an (ab-
stract) amount of charge or information per lump, participating in a collective
undulating motion, a conservation law like

∫

ρd3x = const may be reasonable.
On the other hand, a normalisation to, say, const = 1 does not make physical
sense in this more general non-probabilistic framework. What may, however, be
reasonable is a (projective) ray-interpretation as it is sometimes employed anyhow
in quantum theory (as to this more geometric aspect cf. the interesting paper by
Ashtekar and Schilling; [63]).

In the same sense as mentioned before (cf. section 3.1), physics on this pri-
mordial scale may be independent of the absolute values of node-charges in this
weak-field regime. What may rather matter is the relational information content
being stored in the shape of the excitation pattern. This idea does however not
contradict the strong probabilistic flavor of ordinary quantum theory. In this
latter framework probabilities are closely linked with observations and measure-
ments. There outcomes, on the other side, are of course related to the informa-
tion content of the excitation patterns under discussion but this relation may be
a subtle one (see section 7).

6.3 The Quantum-Hamilton-Jacobi Equation, the Local

Contribution

More demanding is the interpretation of the second equation of low-energy quan-
tum theory. This applies in particular to a microscopic understanding of the
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so-called quantum potential, which contains the core of quantum behavior. We
begin with the first (drift-)term on the rhs of equation (32). Our working philos-
ophy is that the quantum potential contains the non-local stochastic effects while
the other terms encode the local and more coherent contributions.

Our analysis in the preceding sections shows that a local change (on scale
[Lqm]) of the action, S(x, t) relative to

S0(x, t) := ωplt or (ωplt+ ϕ(x, t)) (64)

is accompanied by a change of local wave-number, k(x, t). As we have a coherent
web of elementary oscillating circuits, a variation of k(x, t), that is, ∇S(x, t), will,
by the same token, induce a local change of frequency, −∂tS(x, t). Hence there
must exist a dispersion law

∂tS = F (∇S) (65)

(we neglect, for the moment, the other contributions in (32)).
In the non-relativistic regime we can relate dω/dk to a velocity. The role of

velocity in our context is played by ∇S/m. Hence, relating −partialtS with ω
and assuming a power-law behavior, we can infer

Observation 6.7

−∂tS = (2m)−1(∇S)2 (66)

On the other side, the potential term, V (x), encodes some external, effective force
and is model dependent. The really crucial contribution is however the quantum
potential, Vq.

6.4 The Quantum Potential

We now come to the most mysterious term in the (re)interpretation of the equa-
tions of low-energy quantum mechanics, that is, the quantum potential

Vq = −(~2/2m) · ∆(ρ1/2) · ρ−1/2 (67)

We will argue that Vq, as non-relativistic quantum theory is still relatively near
to the classical regime, being perhaps only a small deformation (compared to the
Planck scale), is the only component comprising truely stochastic elements in the
above representation. By the same token, it is the term being responsible for the
seemingly non-local phenomena, being almost ubiquituous in quantum theory.
We will phrase it that way:

Conjecture 6.8 The quantum potential, Vq, encodes the non-local aspects of
quantum theory in a, superficially, local way.
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Remark 6.9 This non-locality is more hidden in the one-particle situation or
the self-interaction among the terms within the excitation pattern belonging to a
specific quantum object. It becomes more apparent when several quantum objects
are involved. On the other hand, the interpretation of the meaning of the physi-
cal quantities becomes much more subtle in the latter case (polydimensions); cf.
secction 7.

If we ignore this term, we have sort of a classical field theory (as is of course
well-known). In the free case (V = 0) a solution of

∂tρ = −∇ · (ρ∇S/m) , −∂tS = (2m)−1(∇S)2 (68)

is

ρ(x, t) = f(x− vt) , S(x, t) = mvx−mv2t/2 (69)

with ∇S = v, that is, ρ spreads “causally”; with ρ(x, 0) of compact support
it remains so for all t, being merely shifted with velocity v. This is in sharp
contrast to the quantum case, i.e. after addition of Vq. We remarked in section 4.1
that we typically observe an instantaneous spreading of (quantum) information
irrespectively of the details of the model (for the non-relativistic regime see in
particular [45]). We emphasize again that this ha, in our view, nothing to do
with the relativistic non-covariance of ordinary quantum theory but represents
rather a (the) pure “quantum phenomenon”.

When scrutinizing the structure of Vq and having a stochastic interpretation
in the back of ones mind, two intriguing features strike the eye.

Observation 6.10 First, the prefactor, ~
2/2m, has the dimension of a diffusion

coefficient, i.e. [l]2/[t], when energy is identified with frequency.
Second, if ρ is some statistical sum (or average) over a relatively large num-

ber of more primordial degrees of freedom, ρ1/2 may just describe the standard
deviation or typical fluctuation of the additive quantity, ρ, about its average.

Then, the occurrence of the quantum potential in the quantum-Hamilton-Jacobi
equation tells us that the local momentary frequency of the undulation pattern is
influenced by a diffusive and/or fluctuation contribution. We undertake to clarify
the nature of this term in two steps. First, we try to explain its very existence. In
a second step we try to provide an argument why it changes the local frequency.

We argued in the preceding sections that, in our view, the apparent non-
locality of quantum theory has its origin in the two-storey structure of the medium
QX/ST , that is, the physical vacuum and expresses itself in the (as yet not very
well understood) complex superposition principle of ordinary quantum theory.
The terms we have discussed so far were of a local nature and can be under-
stood already on the level of the web of overlapping lumps, forming the “surface
structure”, ST , of our network QX/ST .
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We noted however, that the lumps (that is, on a level of lesser resolution,
the physical points), even if they are non-overlapping (in other words, being
some distance apart in macroscopic space), may nevertheless be connected in the
underlying network by some (perhaps even appreciable) number of interbonds
(cf. section 3.2). Via these interbonds information may be exchanged almost
instantaneously. We expect however that this type of information exchange is
less coherent and less organized, that is, more stochastic than the information
exchange taking place among directly overlapping lumps, i.e between infinitesi-
mally neighboring regions of macroscopic space. Our central conjecture is now
that the mysterious quantum potential is just the remnant on scale [Lqm] of this
kind of non-local coupling between non-neighboring lumps or points!

We may consider each given lump or the respective local cluster, C, as an open
statistical subsystem, being embedded in the ambient space, QX, acting as kind
of a reservoir. Each of these lumps or local clusters oscillates in its respective
local coherent mode, described above, having an amplitude, Q0 +ρ(x, t) with the
deviation, ρ(x, t) varying on the larger scale [Lqm]. Being a sum over a relatively
large number of more elementary degrees of fredom we expect this deviation of
the ground oscillation, ρ, to fluctuate due to the above described correlations
between the different lumps like

|δρ| ≈ ρ1/2 (70)

The reason why we expect this kind of fluctuations to be more coherent than
the permanent ground fluctuations, due to almost randomly changing bond-
orientations among the elementary nodes, is the following. In each lump or local
cluster a certain fraction of the nodes/bonds is slaved by the collective mode and
behaves relatively coherently. By the same token, interbonds between nodes, be-
longing to these respective sets in the various lumps, are also expected to change
their orientations more coherently than bonds, not belonging to these particular
sets. The same applies then to the blobs of charge, exchanged via these partic-
ular bundles of interbonds connecting the different lumps or local clusters. On
the other side, there are a great number of other lumps, our particular lump is
connected with via such bundles of interbonds. That is, the incoming or outgoing
blobs of charge have different phase relations as the local states in the distant
lumps or local clusters, our given lump is conneted with, are different. We hence
expect these fluctuations neither to be completely correlated nor uncorrelated.
We therefore arrive at the following conclusion

Conclusion 6.11 The charge fluctuations in a given lump, arising from the
above described mechanism, are on the one side expected to be more coherent
than the almost patternless groundfluctuations. On the other side, they should
be sufficiently random on scale Lqm to justify the above standard fluctuation for-
mula. We answer our first question by claiming that the quantum potential arises

37



just from this particular kind of non-local information exchange between distant
lumps.

Given that there exists such a type of fluctuation, with |δρ| ≈ ρ1/2, the next
question is, how does this fluctuation pattern effect a change of local frequency

δ(−∂tS(x, t)) = −(~2/2m) · ∆(ρ1/2) · ρ−1/2 (71)

One may at first make up ones mind about how a mechanism can change at all
the local frequency with the corresponding amplitude, Q0 +ϕ(x, t) being more or
less kept fixed. The period of the ground cycle is of order tpl. This time interval
consists of a consecutive number of clock-time intervals, τ ,

tpl = N · τ (72)

In each clock-time interval, τ , the charge in a given lump, P , is changed by the
amount

∆Q(t, P ) = q(Nin(t;P ) −Nout(t;P )) = q(
∑

in

Jik(t;P ) −
∑

out

Jik(t;P )) (73)

(cf. section 3.2). If this change per clock-time interval is increased locally by
some dynamical mechanism which results in a local change of the network state
in and around the lump under discussion, more specifically, bigger positive ∆Q
in the ascending part of the cycle, bigger negative jumps in the descending part,
with Qmax kept essentially fixed by some other stabilizing mechanism, the local
frequency will increase and vice versa, since the necessary Q0 is filled up in
a shorter or longer clock-time interval. In this sense one may envisage how
amplitude and frequency can vary more or less independently.

The quantum potential, and by the same token, its effect on the local fre-
quency, would vanish locally if ∆ρ1/2 = 0. On the other side, we still expect the
local amplitude to fluctuate on average by the amount ρ1/2. A locally constant
ρ means, according to our interpretation, that the neigboring grains experience
the same amount of avergage fluctuation. We have now to remember that both
the ground frequency, ωpl or the modulated frequency, ωpl + ∂tS(x, t), and the
corresponding amplitudes are considered to be emergent quantities, being created
by an autonomous process of self-organisation within the network QX/ST . In
other words, these particular values within or around some lump or local cluster,
C, are the result of the local network state as a whole. If this local environment
is changed, we have to expect the same for the local values of these collective
quantities.

If ∆ρ1/2 ≶ 0 around a given lump, the charge fluctuation within the lump is
greater/smaller on avergage compared to the surrounding lumps (which can be
inferred from Gauss-law). According to our primordial network laws discussed in
section 3.1 and its implications on the level of the web of lumps, described in sec-
tion 3.2, higher charge fluctuation in a lump means a higher level of reorientation
of so-called interbonds during a cycle of the collective undulation.
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Observation/Definition 6.12

∆ρ1/2 ≶ 0 (74)

leads to a higher/lower bond-fluctuation rate in the lump or the local cluster under
discussion compared to the neighborhood. We call this bond-fluctuation rate the
bond-volatility. It is another example of an emergent collective quantity.

We conjecture now that such a higher/lower bond-volatility (relative to the sur-
rounding lumps or local clusters) will enhance or diminish the hight of the jumps
we were talking about above and thus increase or reduce the local frequency.
We frankly agree that this is, so far, only a qualitative analysis, but we know of
related effects in other fields of physics. See e.g. [64] for a stochastic triggering or
enhancement of various resonance phenomena. We expect a similar mechanism
to be at work in our complex dynamical system.

A last point to mention is the physical meaning of the “normalisation” of the
term by ρ1/2 in the denominator. Such small deviations from the huge vacuum
values, we are talking about, are so-called “weak-field phenomena”. We there-
fore expect that there exists a linear relation between the fluctuation of local
charge, ρ1/2, and the number of nodes, being involved in this fluctuation. One
would hence get the change of frequency by following the charge variation at a
generic node over one cycle. One has hence to divide by the amount of total
charge fluctuation in the lump to get the change in frequency. This explains the
occurrence of the denominator in the quantum potential. The proportionality of
the respective quantities is, on the other side, encoded in the prefactor, ~

2/2m.

7 A Brief Commentary on Several-Particle Sys-

tems, the Transition towards Macroscopic Sys-

tems and State Vector Reduction

In the preceding sections we have mainly discussed the one-particle quantum the-
ory. We have omitted so far several- and many-body systems, the transition to
the macroscopic regime and the notorious and highly facetted quantum mechan-
ical measurement problem. One reason for this restriction was to keep the paper
within reasonable length, since some of the above mentioned topics have a long
and venerable history of their own and need a separate treatment. We want in
the following to only briefly indicate how we plan to procede in future work,in
order to cope with these problems.

In a first step we have to discuss the necessary changes which occur in con-
nection with several quantum objects, roaming through our network. As to this
set of questions we made already some preliminary remarks in 4.7. Note also the
critical attitude of Heisenberg expressed in the utterance preceding our own con-
jecture about the so-called problem of polydimensions. What we try to accomplish
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below is exactly to supply an interpretation of the results from polydimensions in
three dimensions, the possibility which Schroedinger had in his mind and which
Heisenberg considered to be impossible. It becomes however apparent that the
situation is much more subtle than Schroedinger probably expected and that this
task cannot be accomplished in a naive sense (which Heisenberg rightly criti-
cized). It again turns out, that our concept of the two storeys of space-time or
the vacuum is crucial for solving this puzzle, a concept, which Schroedinger did
not yet have at his disposal!

Before going into the more technical details, we want to scrutinize the above
cited critical dictum of Heisenberg. Is it really impossible to envisage the quan-
tum mechanical several-particle situation in the ordinary 3-dimensional cordinate
space we are living in? Let us take a classical N -particle system with N suffi-
ciently large and describe it within the framework of classical statistical mechan-
ics. It has, on the one hand, several features which are similar to the quantum
mechanical wave-function representation, as both systems have many elementary
degrees of freedom. On the other hand, it has the advantage that it can be
completely understood!

Again, the so-called one-particle distribution function, ρ1(x) is both a local
probability and (as a particle density) a local classical observable, that is, it has an
immediate interpretation in 3-dimensional coordinate space. The meaning of the
pair distribution function or (modulo appropriate normalisation) the two-particle
correlation, ρ2(x1, x2) is a little bit more abstract. In some loose sense it may be
compared with the ρ(x1, x2) of two-particle Schroedinger theory. On the one side,
it figures as a function over abstract R

3 × R
3. On the other hand, it describes a

concrete feature of our compound system as a whole, that is, a global property
of our aggregate of N particles, living in the ordinary 3-dimensional coordinate
space. More specifically, it encodes the mutual influence of the relative positions
of the elementary constituents of our system on each other. To put it succinctly:
While formally being a function over R

3 ×R
3, it nevertheless encodes a concrete

property of our system living in three dimensions.
We now come to quantum theory. In the situation of a single quantum excita-

tion it was not necessary to go into the possible details of the fine-structure of e.g.
the charge modulations within or among the lumps or local clusters, as only the
total charge modulation, δQ0(P, t) = a(P, t), entered in the coarse-grained equa-
tions of low-energy quantum theory. In the several-particle theory (we discuss in
the following for convenience only the two-particel case) (ρ, S) depend now on two
coordinates (see equations (34),(35) ), in other words, they are now of an openly
non-local nature in contrast to the one-particle case, where the non-locality is
more hidden, as has been described above.

We may now envisage that we have in general two (or several) entangled exci-
tation patterns, consisting of two more or less distinguishable modulations of the
high-frequency ground-wave. These modulations are, as was already explained
above, weak-field excitations on the comparatively large scale [Lqm] ≫ [Lpl]. As
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only a small fraction of the elementary charges or nodes is involved in these weak
deformation patterns, there is ample space in the lumps (or local clusters) for
approximately individual pulse patterns to coexist and interact or influence each
other only weakly. They are however entangled in general unless the two-particle
state is a product-state, that is

φ(x1, x2) 6= φ1(x1) · φ2(x2) (75)

We now try to understand the mysterious phenomenon of entanglement.

Conjecture 7.1 (Entanglement) What is called entanglement in ordinary quan-
tum theory, is the non-local interaction (respectively, exchange of elementary
charges) among the different excitation modes (describing the different quan-
tum objects) via the bundles of interbonds connecting the different lumps or lo-
cal clusters. That is, as in the above example of classical statistical mechanics,
ρ(x1, x2), S(x1, x2) describe no longer completely local properties of the system
but express a complex non-local entanglement-pattern, permeating through our
complicated two-storey substrate, QX/ST .

ρ1(x1) :=

∫

ρ(x1, x2)d
3x2 (76)

collects e.g. all the different contributions, resulting both from the entanglement
with the components of the second excitation in the other lumps and coming
from the first excitation itself (as in the one-particle situation). In the particular
case of a free Hamiltonian and a product initial-state both excitations move
independently of each other and remain non-entangled, that is

ρ(x1, x2) = ρ1(x1) · ρ2(x2) (77)

In this case each particle receives non-local information only from its own distant
components in the other lumps as described above.

Remark: We assume, for reasons of simplicity (as this section is only of a cursory
and preparatory nature), that the particles are distinguishable.

Note however that a non-product state, ρ(x1, . . . , xn), cannot be uniquely decom-
posed into a product state and a contribution encoding the entanglement with the
other particle-excitations in the distant lumps. In any case for fixed (x1, . . . , xn),
in the entangled situation, a certain fraction of the elementary charges belongs,
so to say, to all the involved lumps at the same time as they oscillate between
them via the bundles of respective interbonds. These and related phenomena
have to be analyzed more carefully in future work.

Conclusion 7.2 The above cursory analysis shows, that “the results from poly-
dimensions” can be understood in a satisfactory way in three dimensions under
the proviso that we accept the two-storey structure of space-time or the physical
vacuum.

41



In a next step one can envisage what happens if the number of these coexisting
excitations become too large in a given volume of space. In a many-body wave-
function

ψ(x1, . . . , xN) N ≫ 1 (78)

each of the approximately individual excitation modes has to be entangled non-
locally with the other modes and/or with its own components in the distant
lumps. If N exceeds a certain critical range of values, a complete quantum-
entanglement may not longer be possible. The weak-field picture may begin to
break down as all the available information channels (that is, the interbonds
among the different lumps) are occupied or overcrowded. The wave-function will
start to decay and goes over into a (partial mixture), that is, an incompletely
entangled state.

A last point to mention is the infamous measurement problem. The seemingly
instantaneous state-reduction by a measurement interference (in fact the con-
tact with a peculiarly tuned macroscopic apparatus), while being on the surface
of a quasi-local nature, will nevertheless spread its corresponding (decoherence-
)information all over the microsystem almost instantaneously via the network of
existing interbonds. It is thus yet another manifestation of the peculiar non-local
character of the vacuum, described in the preceding sections.

Remark: An, in our view, quite up to date discussion of some of the impending
problems may be found in section 2 of [65].
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