
A Realizability Model for Impredicative Hoare
Type Theory

Rasmus Lerchedahl Petersen1, Lars Birkedal1, Aleksandar Nanevski2, and
Greg Morrisett2

1 IT University of Copenhagen{rusmus | birkedal}@itu.dk
2 Harvard University{aleks | greg}@eecs.harvard.edu

Abstract. We present a denotational model of impredicative Hoare
Type Theory, a very expressive dependent type theory in which one can
specify and reason about mutable abstract data types.
The model ensures soundness of the extension of Hoare Type Theory with
impredicative polymorphism; makes the connections to separation logic
clear, and provides a basis for investigation of further sound extensions
of the theory, in particular equations between computations and types.

1 Introduction

Dependent types provide a powerful form of specification for higher-order, func-
tional languages. For example, using dependency, one can specify the signature of
an array subscript operation as sub : ∀ α . Π x :α array.Π y :{i :nat | i < x.size} . α,
where the type of the third argument, y, refines the underlying type nat using
a predicate that ensures that y is a valid index for the array x.

Dependent types have long been used in formal mathematics, but their use in
practical programming languages has proven challenging. One of the main rea-
sons is that the presence of any computational effects, including non-termination,
exceptions, access to store, or I/O – all of which are indispensable in practical
programming – can quickly render a dependent type system unsound.

This can be addressed by restricting dependencies to only effect-free terms
(e.g. as in DML [27]). But the goal of our work is to realize the full power of
dependent types for specification of effectful programs. We have been developing
the foundations of a language that we call Hoare Type Theory or HTT [18, 17],
which we intend to be an expressive, explicitly annotated internal language, pro-
viding a semantic framework for elaborating more practical external languages.

HTT starts with a pure, dependently typed core language and augments it
with an indexed monadic type of the form {P}x:A{Q}. This type encapsulates
effectful computations that may diverge or access a mutable store. The type
can be read as a Hoare-like partial correctness specification, asserting that if the
computation is run in a heap satisfying the pre-condition P , then if it terminates,
it will return a value x of type A and leave a heap described by Q. Through
Hoare types, the system can enforce soundness in the presence of effects. The
Hoare type admits small footprints as in separation logic [23, 19], where the pre-

and postconditions only describe the part of the store that the program actually
uses; the unspecified part is automatically assumed invariant.

The most distinguishing feature of HTT in comparison with other recent
proposals for Hoare- and separation logics for higher-order languages [4, 14, 28,
15] is that specifications in HTT are integrated with types. In Hoare logic, it is
not possible to abstract over specifications in the source programs, aggregate the
logical invariants of the data structures with the data itself, compute with such
invariants or nest the specifications into larger specifications or types. These fea-
tures are essential ingredients for data abstraction and information hiding, and
a number of works have been proposed towards integrating Hoare-like reason-
ing with type checking. Examples include tools and languages like Spec# [2],
SPLint [12], ESC/Java [11], and JML [10].

Our prior work on HTT [18, 17] addresses several of the main challenges
for languages for integrated programming and verification [10]: (1) we allow
effectful code in specifications by granting such code first-class status, via the
monad for Hoare triples; (2) we control pointer aliasing, by employing the small
footprint approach of separation logic; and (3) we use higher-order logic to allow
for a uniform approach to programming and verification of imperative modules
(aka mutable abstract data types), as suggested for separation logic in [5, 6]. In
our earlier work on HTT we proved soundness of the type theory via mostly
operational methods, by proving progress and type preservation results. The
operational proof was combined with a very crude denotational model, which
just served to show that the assertion logic of HTT was sound. To deal with
dependent types the operational proofs relied heavily on sophisticated techniques
involving so-called hereditary substitutions [26].

In this paper we define a realizability model for an extension of Hoare Type
Theory with impredicative polymorphism. Apart from the inherent interest in
obtaining a denotational model, which provides an alternative more abstract
conceptual understanding of the theory, the model serves the following purposes:

– Using the model we can prove soundness / consistency of an extension of
Hoare Type Theory with impredicative polymorphism. Impredicative poly-
morphism is important for data abstraction (we show an example below)
and for representing certain compiler transformations, such as closure con-
version [16], in HTT. It is well-known that the operational methods involving
hereditary substitutions mentioned above do not easily scale to impredicative
polymorphism. We emphasize that it is highly non-trivial to devise a model
of dependent type theory combining an impredicative universe of types with
a classical logic and with computation types supporting fixed point induc-
tion. We summarize the key challenges involved later on in this introduction.

– The model allows us to use syntax and typing rules that have a more natural
reading; in earlier presentations of HTT the operational techniques forced
clunkier terms (in order to get the theorems to go through). In particular,
the syntax for computations is fairly close to the one employed in separation
logic. Our impredicative HTT is the first model of separation logic for such
an expressive language (higher types and impredicative polymorphism).

– We can finally introduce some non-trivial equations on computations. The
operational approach we took before largely precluded this.

It is non-trivial to construct sound models of sophisticated dependent type the-
ories such as HTT. Models for various fragments of dependent type theories
have been studied intensively in categorical type theory; see, e.g., [13] and the
references therein. Thus we shall make use of results from categorical type the-
ory to prove that we construct a sound model of impredicative HTT, but we
shall always write out the definitions in explicit terms so as to make the paper
reasonably self contained. We now give an intuitive overview of the development.

Overview of HTT HTT is a dependent type theory with types and kinds,
where types are included in the kinds, and where types and kinds can both
depend on kinds (and thus types). Thus contexts Γ assign kinds to variables
and there are judgments Γ ` τ : Type and Γ ` A : Kind to conclude that τ is
a well-formed type in context Γ and that A is a well-formed kind in context
Γ . Type and kind formers include dependent product (Π) and dependent sum
(Σ). In the extension with impredicative polymorphism that we consider in this
paper, we have that Type is a kind. Thus this part of pure impredicative HTT
is (weak) Full Higher-order Dependent Type Theory (FhoDTT) [13].

In addition to types and kinds, HTT also includes a logic for reasoning about
terms in context. Thus there is a judgment Γ ` P : Prop for concluding that P
is a well-formed proposition and a judgment Γ | P1, . . . , Pn ` P for logical
entailment. The logic is higher-order, so Prop is a kind. In Jacobs’s terminology
we thus have a Higher-order Dependent Predicate Logic over (weak) Full Higher-
order Dependent Type Theory [13]. The extra feature of HTT is that it includes a
type for computations Γ ` {P} x :τ {Q} :Type. Here P and Q are propositions
in context Γ and Γ, x : τ , respectively. The intuition is that elements of this
type consist of computations, which, given a heap satisfying P either diverges or
produces a value of type τ and a heap in Q. Note that computations can diverge;
term formers for computations include a fixed point term.

The great benefit of impredicative polymorphism is that for any type τ ,
Π α : Type . τ is also a type, even if τ depends on α. Thus terms of this
polymorphic type can be returned by computations and stored in memory. Prop
is also a kind. So again ΠP : Prop . τ is a type where τ may depend on P .
This enables us to abstract over predicates in computation types. Using that
ΣP :Prop . τ is a type, we can pack computations with abstract invariants and
hide implementation details. As an illustration of both of these features consider
the following type of abstract stacks:

stacktype = Πα :Type . Σβ :Type.Σ inv :β × α list→ Prop .
/ ∗ new ∗ / (−).{emp}s :β{inv(s, [])} ×
/ ∗ push ∗ / Πs :β . Πx :α . (l :α list).{inv(s, l)}u :1{inv(s, x :: l)} ×
/ ∗ pop ∗ / Πs :β . (x :α, l :α list) . {inv(s, x :: l)}y :α{inv(s, l) ∧ y =α x} ×
/ ∗ del ∗ / Πs :β . (l :α list).{inv(s, l)}u :1{emp}

The contexts before the precondition in the computation types, e.g., (l : α list)
for push, universally binds auxiliary / logical variables used in the specifications.

A term of type stacktype accepts a type α and produces a stack of elements of
this type. Such a stack consists of

– β, an abstract type to be thought of as α stack.
– inv, an abstract invariant that expresses that objects of type β represent

functional stacks (as described by α list).
– Operations new, push, pop, and del. Notice, that push, pop, and del require

an element of type β, and that the only way to obtain one such is via new.

Since stacktype is by impredicativity itself a type, we can have stacks of stacks.
More generally, we can compose first-class abstract data types (i.e., objects)
without needing to artificially stratify them which is necessary in modern pro-
gramming. Note that in separation logic parlance the types are tight. For in-
stance, the precondition for new is simply emp, so new does not rely on the input
heap; the frame rule ensures that new can also be used with the following type
(−).{emp ∗R}s :β{inv(s, []) ∗R}, for any R. Further observe that implementors
of the above abstract stack type are free to choose both the representation type
β and the representation predicate inv. For example, an implementation using
linked lists could take β to be Nat (since we use Nat as the type of locations) and
inv(s, l) to be the predicate that holds if s points to a linked list representation
of l. A simple example client that creates a new Nat stack, pushes 4, pops it
again to return it and deletes the stack would then look like this:

C = λS :stacktype . do SNat ← ret S(Nat) in

unpack SNat as (β, inv, new, push, pop, del) in

do s← new in push(s)(4); do n4 ← pop(s) in del(s); ret n4

Then C has type ΠS :stacktype . (−).{emp}n :Nat{emp∧n =Nat 4}. We often
(as in C) abbreviate do y ←M in N to M ;N when y does not occur in N .

Computations are not only needed for accessing the store but also for non-
termination as the pure fragment does not include fixed points. As an example
of a simple fixed point computation (not using the store), consider the factorial
function fac : T , where T = Πn :Nat . (−).{emp}m :Nat{emp ∧m =Nat n!}:

fac = fix f(n) in case n of

zero⇒ ret 1 or

succ y ⇒ do m← f(y) in ret m× succ y

We can implement another version of factorial using the store but with the
same type, in the following manner. First we define a term facS : TS , where
TS = Πl :Nat . (n :Nat).{l 7→Nat n}u :1{l 7→Nat n!}:

facS = fix f(l) in do t← !Nat l in case t of
zero⇒ l :=Nat 1 or

succ y ⇒ do ly ← allocNat y in

f(ly); do ty ← !Nat ly in l :=Nat ty × succ y; dealloc ly

Given this we can implement the factorial function as

fac′ = λn :Nat . do l← allocNat n in facS(l); do r ← !Nat l in dealloc l; ret r

Now fac′ has the same type T as fac. Using the model, we can prove that
fac =T fac′, so we can use them interchangeably when reasoning in the logic.
This could not be done in earlier versions of HTT.

Overview of Model Our model is a realizability model, built over a univer-
sal domain V , which is sufficiently rich to model divergent computations. The
domain V also includes a subdomain of computations, called T(V).

The model for the weak FhoDTT part of HTT is mostly standard (see,
e.g.,[13, Examples 11.6.5 and 11.6.7]): types are interpreted as chain-complete
partial equivalence relations (complete pers) over V and kinds are interpreted
as so-called assemblies (aka ω-sets) over V . The category of assemblies is an
extension of the category of sets and functions which contains the category of
complete pers as a full subcategory. The latter ensures that we soundly model
that types are included among kinds. Moreover, the collection of all complete
pers form a set and hence an assembly, and thus we model that Type is a Kind.
Terms with type Πx :τ.σ are modeled as set-theoretic functions between the set
of equivalence classes for the pers interpreting τ and σ which are realized by an
element in V . That is, there is a continuous function from V to V that maps
related elements in the first per to related elements in the second per. In reality,
the model is a bit more complicated since we have to deal with families of types
and kinds to model that types and kinds depend on kinds. Hence everything is
indexed/fibred over the category of assemblies.

The propositions in HTT correspond to what is often called assertions in
Hoare and separation logic. We model our classical propositions using the power
set of heaps. Formally, we prove that the standard BI-hyperdoctrine [5] over Set
can be extended to one over assemblies, and this guarantees that we get a sound
model of the higher-order assertion logic (now for dependent types and kinds).

Finally, computation types are modeled roughly as follows. A computation
type Γ ` (∆).{P}x : τ{Q} :Type is modeled as an admissible per of continuous
functions from Heap to V × Heap (or, rather, as a family of such, indexed over
the interpretation of Γ). A per is admissible if it relates the bottom element to
itself and is complete. Admissibility is needed for interpreting fixed points. An
interesting issue is what per one should use on heaps. We have decided to use a
per which equates two heaps if they have the same domain. This ensures that al-
location of new heap cells, modeled here as taking the least unallocated address,
will preserve the partial equivalence relation. This description is a bit rough for
the following reasons. First, the interpretation ensures that computations can
only access memory that is either described by the precondition P or allocated
during the computation. Second, the interpretation uses the chain-complete clo-
sure of the post-condition Q. This ensures that the computation type really is
interpreted as an admissible per. Taking the admissible closure is an alternative
to restricting propositions to a fragment that always generates admissible pers or
using test-functions/biorthogonality [9] to force admissibility. Third, the inter-
pretation builds in the frame rule from separation logic, essentially by interpret-
ing Γ ` (∆).{P}x :τ{Q} :Type as Γ ` ∀R :Prop.(∆).{P ∗R}x :τ{Q ∗R} :Type,
at the modeling level. This idea comes from [8, 9]; type theoretically the idea
was also used in the earlier formulations of HTT [18, 17].

In HTT every pure term can also be viewed as a computation. In the model
this holds because pure terms are modeled via continuously realized functions,

and such can be extended to continuous computations. Note that in a cruder set-
theoretic model of the pure fragment of HTT, with types as sets with bounded
cardinality and kinds as all sets, we would not be able to extend every pure term
(any function, not necessarily continuous) to a continuous computation.

Let us summarize our informal overview of the model by mentioning what
the key technical challenges are in constructing a model: First, note that our
impredicative HTT combines a classical logic with an impredicative universe
of types. Consistency, the very existence of a non-trivial model, is therefore
highly non-trivial. It hinges on the fact that impredicative HTT does not include
full subset types or the axiom of unique choice (that every functional relation
determines a term). Second, note that we need to model types as some kind of
domains in order to accomodate fixed points for the computation types, and, at
the same time, types should form an impredicative universe. That is why we use
chain-complete pers and not the more standard model of FhoDTT using all pers,
and thus we need to prove that we actually do get a model of HTT using such
pers. Third, we need to find chain-complete pers for modelling the computation
types. Finally, since the logic is over dependent types we need to prove that we
can get a model of separation logic over dependent types.

Related Work In the previous section we have given some pointers to related
work on models of separation logic and categorical models of dependent type
theory. Other very related work includes the recent step-indexed model by Ap-
pel et. al. [1], where they describe a model that can be used for the types of
imperative languages. However, their model is for a much simpler type system
than the one we consider since we deal with dependent types involving pre- and
postconditions. Appel et. al. do, however, include a treatment of recursive types;
we have left that for future work. It is more challenging in our setting, since our
types are much more expressive. (Recursive types should exist, though, since
admissible pers do accomodate a wide range of recursive types [7].) In contrast
with Appel et. al. we further include a logic to reason about terms; so far it is
not well-understood how to model logics in step-indexed models.

Let us also emphasize the relation to the work of Honda, Yoshida, and Berger
on Hoare logics for higher-order languages (see [28] and the references therein).
One of the differences between the two approaches is that Honda et. al. do
not allow for equational reasoning among functions (as we do in dependent
type theory). Instead they make use of an evaluation predicate. Intuitively, the
evaluation predicate of Honda et. al. can be used to represent in the logic the
distinction between pure terms and computations that we instead capture using
the monadic language. Honda et. al. have so far focused on total correctness
and have thus avoided the need for admissibility, which we have to deal with
as we consider partial correctness and have a rule for fixed point induction.
Honda et. al. are able to deal with recursion through the store, but do not cover
impredicative polymorphism.

The remainder of the paper is organized as follows: In Section 2 we present
the language of impredicative HTT, and in Section 3 the model. In Section 4 we

conclude and describe future work. For reasons of space the formal treatment is
brief, please see the accompanying technical report [20] for more details.

2 Language

The grammar for types, kinds, propositions, terms and computations is as fol-
lows:

Types τ, σ, ρ ::= Nat | 1 | ΠT x :A . τ | ΣT x :A . τ | (Γ).{P}x :τ{P}
Kinds A, B ::= τ | Type | Prop | ΠK x :A . A | ΣK x :A . A

Prop′s P, Q, R ::= > | ⊥ | M =A M | P ∧ P | P ∨ P | P ⊃ P | ¬P |
∀ x :A . P | ∃ x :A . P | emp | M 7→τ M | P ∗ P | P −∗ P

Terms M, N ::= x | zero | succ M | recNat(M, M) | () | λK x :A.M |
λT x :A.M | M M | (M, M)K | (M, M)T | fst M |
snd M | unpack M as (x, y) in M | ret M |
case M of zero⇒M or succ x⇒M | fix f(x) in M |
!τ M | M :=τ M | do x←M in M | allocτ M | dealloc M

and there are the following judgments:

Γ ` A :Kind Γ ` A = A : Kind Γ ` τ :Type Γ ` P :Prop

Γ `M :A Γ `M = M : A Γ | Θ ` P

The external equality rules include β- and η-equalities and monadic laws for
computations.

To express the pre- and post conditions of computations in terms of proposi-
tions, we often write M 7→τ − as a shorthand for ∃x :τ.M 7→τ x. The model that
we present in the Section 3 also accommodates coproducts of types and kinds,
but we have omitted these from this paper.

Given the explanation in the Introduction, most of the rules are standard
except for those for the computation fragment, which we include below. There
are two kinds of sums: ΣT x :A . σ (a type) is used for weak sums over families
of types, and ΣK x :A . B (a kind) is used for strong sums over families of kinds.
Because of the distinction between weak and strong sums, there are two sets of
elimination rules for sums (one with unpack M as (x, y) in M and one with
fst and snd), as is standard. In the following section describing the model we
explain why we get these different kinds of elimination rules when we show the
concrete interpretation of sums.

Here are the non-structural rules for computations. Most of them are un-
surprising for a tight interpretation of separation logic. The fix rule is used to
define recursive functions and captures reasoning via fixed-point induction.

Γ `M : (∆).{P}y :σ{S} Γ, ∆, x :τ ` Q :Prop Γ, y :σ ` N : (∆).{S}x :τ{Q}
seq

Γ ` do y ←M in N : (∆).{P}x :τ{Q}

Γ, ∆ ` τ :Type Γ `M :τ
dia

Γ ` ret M : (∆).{emp}x :τ{emp ∧ x =τ M}

Γ ` τ :Type Γ `M :Nat
lookup

Γ ` !τ M : (y :τ).{M 7→τ y}x :τ{M 7→τ y ∧ x =τ y}

Γ ` τ :Type Γ `M :Nat Γ ` N :τ
update

Γ `M :=τ N : (−).{M 7→σ −}x :1{M 7→τ N}

Γ ` τ :Type Γ `M :τ
alloc

Γ ` allocτ M : (−).{emp}x :Nat{x 7→τ M}

Γ ` τ :Type Γ `M :Nat
dealloc

Γ ` dealloc M : (−).{M 7→τ −}x : 1{emp}

Γ `M1 : (∆).{P ∧M =Nat zero}x :τ{Q} Γ `M :Nat

Γ, y :Nat `M2 : (∆).{P ∧M =Nat succ y}x :τ{Q}
case

Γ ` case M of zero⇒M1 or succ y ⇒M2 : (∆).{P}x :τ{Q}

Γ, f :ΠT y :A . (∆).{P}x :τ{Q}, y :A `M : (∆).{P}x :τ{Q}
fix

Γ ` fix f(x) in M :ΠT y :A . (∆).{P}x :τ{Q}
The structural rules for computations include the frame rule and the rule of
consequence, see [20] for details.

3 Model

Universe of Realizers Let Cppo⊥ denote the category of chain-complete
pointed partial orders and strict continuous functions. Recall that one can solve
recursive domain equations in Cppo⊥ for locally continuous bifunctors on Cppo⊥.
We take our universe of realizers to be a domain V satisfying the following re-
cursive domain equation in Cppo⊥:

V ∼= 1⊥ ⊕ N⊥ ⊕ (V × V)⊥ ⊕ (V → V)⊥ ⊕ T(V)⊥,

where 1⊥ is the lift of the one-element set, N⊥ is lift of the flat natural numbers,
⊕ is smash sum, × is cartesian product, V → V is the set of continous functions
from V to V , and T(V) is the domain of computations:

T(V) = H(V)⊥ (
`
(V ⊗H(V)⊥)⊕ E

´
,

in which (denotes strict function space, ⊗ is smash product, E = {err}⊥ and
H(V) is the domain of heaps: {h ∈ Cppo⊥(N⊥, V) | supp(h) is finite}, where
supp(h) is the set {x ∈ dom(h) | h(x) 6= ⊥}, ordered in the following way:
h ≤ h′ ⇔ supp(h) = supp(h′) ∧ ∀n ∈ supp(h).h(n) ≤ h′(n). Note that H is a
locally continous functor whose functorial action is given by composition.

To denote elements in V we use the following injections, mapping elements
into the appropriate summand and then, via the above isomorphism, into V .

in1 : 1→ V inN : N→ V in× : (V × V)→ V

in→ : (V → V)→ V inT : T(V)→ V

Semantic Operations on Heaps Elements of H(V) are total functions with
finite support. We wish to think of them as partial functions in order to model
separation logic. This is accomplished by interpreting h(n) = ⊥ as “n is not
allocated in h”. This works because two heaps are only related in the partial
order if they have the same support (and, moreover, are also pointwise ordered).
Here we describe some definitions reflecting this interpretation.

Firstly, for h, h′ ∈ H(V) we define h
↓
= h′ as h and h′ having the same support.

We can then define the ∗-operator on “disjoint” heaps. For heaps h1, h2 ∈ H(V)
such that supp(h1) ∩ supp(h2) = ∅, we define h1 ∗ h2 as the heap with support
supp(h1) ∪ supp(h2) satisfying (h1 ∗ h2)|supp(h1) = h1 ∧ (h1 ∗ h2)|supp(h2) = h2.
In other words, h1 ∗ h2 is the (disjoint) amalgamation of h1 and h2.

For h ∈ H(V), it makes sense to ask for “the least unallocated cell of h”.
leastfree(h) is defined as min{n ∈ N | h(n) = ⊥}.

Updating the heap cell n is by redefining the value at n. For h ∈ H(V), n ∈ N
and d ∈ V , we define the heap h[n 7→ d] by λm ∈ N . if m = n then d else h(m).
Allocation is then by updating a cell that was previously unallocated with an
element different from ⊥ and deallocation of cell n in h results in h[n 7→ ⊥].

Types and Kinds We now describe the FhoDTT structure needed for inter-
preting types and kinds, beginning with the category Asm(V) of assemblies over
V , which will be used for modeling contexts:

Definition (Asm(V)):

Objects: (X, E), where X is a set, and E : X → P(V), such that for all
x ∈ X, E(x) 6= ∅.
Morphisms: f : (X, E) → (X ′, E′), where f : X → X ′ is a set-theoretic
function, such that there exists a realizer α for it, i.e

∃ α :V → V . ∀x ∈ X . ∀d ∈ E(x) . α(d) ∈ E(f(x))

Note that Asm(V) is an extension of the category of sets and functions: there
is a full and faithful functor ∇ : Set → Asm(V), which maps a set X to (X, E)
with E(x) = V . Functor ∇ is right adjoint to Γ : Asm(V) → Set, defined by
Γ (X, E) = X, that is, there is a one-to-one correspondence between morphisms
(X, E)→ ∇(Y) in Asm(V) and functions X → Y in Set.

Kinds in context are interpreted as families of assemblies indexed over assem-
blies. Formally, the structure is a fibration UFam(Asm(V))→ Asm(V), defined
as in [13]. The fibration of uniform families of assemblies is equivalent to the
standard codomain fibration over assemblies, denoted Asm(V)→ → Asm(V).

Types in context are modelled as families of chain-complete per’s indexed
over assemblies. We denote the category of chain-complete per’s by CPer(V).
The indexing is captured via a fibration UFam(CPer(V)) → Asm(V), defined
similarly to the one for all pers (not only chain-complete pers).

Any complete per R can be seen as an assembly (V/R, E), where V/R is the
set of equivalence classes of R and E is the identity function. This will be used
to model that types are included among the kinds. This inclusion of complete
pers into assemblies extends to families and the extension has a left adjoint:

Lemma 1. The fibred inclusion of UFam(CPer(V)) into UFam(Asm(V)) has a
fibred left adjoint given by chain completion.

We now present the formal statement which ensures that we can model soundly
the pure type and kind fragment of HTT. After that, we explain how types and
kinds are modeled concretely.

Theorem 1. The categories and functors in the diagram

UFam(CPer(V))

((RRRRRRRRRRRRR
� v 55 UFam(Asm(V))
uu

��

' // Asm(V)→

wwnnnnnnnnnnnn

Asm(V)

constitute a split weak FhoDTT with a fibred natural numbers object in UFam(CPer(V)),
which is also a fibred natural numbers object in UFam(Asm(V)).

Corollary 1. The pure type and kind fragment (excluding computation types)
of HTT is sound wrt. the interpretation in the above FhoDTT.

The empty context is interpreted as the terminal object in Asm(V): [[∅]]Ctxs =
1 = ({∗}, ∗ 7→ V), and if [[Γ]]Ctxs = (X, E) and [[Γ ` A : Kind]]Kinds =
((Ax, EAx))x∈X (a family of assemblies indexed over the assembly (X, E)), then
[[Γ, x :A]]Ctxs is

(Σx∈XAx, (x, a) 7→ {(d, d′) ∈ V × V | d ∈ E(x) ∧ d′ ∈ EAx(a)})

Thus context formation is modeled by dependent sum. We now describe parts
of the interpretation of kinds:

– the inclusion of types into kinds is modeled via the inclusion from complete
pers into assemblies

– Type is modeled as an object in the fibre UFam(Asm(V))1 over the terminal
object 1 in Asm(V), i.e., as an object in Asm(V), namely ∇(Obj(CPer(V)),
where Obj(CPer(V)) is the set of all chain-complete pers over V .

– Prop is modeled by ∇P(H(V)) (see the next subsection).
– ΠK is modeled by dependent product: If [[Γ ` A :Kind]]Kinds = ((Ax, EAx))x∈X

and [[Γ, x : A ` B : Kind]]Kinds = ((B(x,a), EB(x,a)))(x,a)∈Σ x:X . Ax
then

[[Γ ` ΠK x :A . B :Kind]]Kinds is given by

({f ∈ Πa∈AxB(x,a) | EΠx(f) 6= ∅}, EΠx)x∈X ,

where EΠx is given by

f 7→ {in→(g) | ∀a ∈ Ax.e ∈ EAx(a)⇒ g e ∈ EB(x,a)(f(a))}.

– ΣK is modeled by dependent sum.
– External equality of kinds is interpreted by equality in the model.

We now describe the interpretation of the pure types:

– Nat is modeled by the flat naturals, i.e ({(inN(n), inN(n)) | n ∈ N})
– 1 is modeled by the terminal object in CPer(V), i.e., as ({(in1(∗), in1(∗))}).
– ΠT is modeled by dependent product.
– ΣT is modeled by dependent sum: If [[Γ ` A :Kind]]Kinds = ((Ax, EAx

))x∈X

and [[Γ, x : A ` τ : Type]]Types = (R(x,a))(x,a)∈Σ x:X . Ax
then [[Γ ` ΣT x :

A . τ :Type]]Types is given by (Bx)x∈X , where Bx is

CC({(in×(d, e), in×(d′, e′)) | ∃a ∈ Ax.d, d′ ∈ EAx(a) ∧ e R(x,a)e
′}).

Here CC(R) denotes the chain completion of R (the reflection into UFam(CPer(V)),
cf. Lemma 1). We need to use the chain-completion to get a chain-complete
per and the elements in the chain-completion are not necessarily pairs of
realizers for the constituent types. This is why these sums are only weak.
Indeed, if we try to apply the first-projection realizer to a realizer for an
element of the above sum, then we will not be sure to end up with a realizer
for A (we only know that we’ll get something in the chain-completion of A).

An external equality judgment of kinds Γ ` A = B : Kind holds if A and
B are interpreted as the same objects in the fibre over the interpretation of
Γ . Likewise for external equality of types Γ ` τ = σ : Type. The soundness
corollary 1 means that any external equality judgment that can be derived holds.

The following lemma shows that any well-typed term corresponds to a proper
value in the model, even the diverging computation. The computation types
relate the least element of T(V) to itself.

Lemma 2. For any type Γ ` σ :Type, no per in the family [[Γ ` σ :Type]]Types

relates ⊥ to itself.

We omit the description of the interpretation of pure terms. Suffice it to say
that lambda abstractions in the calculus really are interpreted via continuous
functions (realizers from V → V).

We say that an external equality judgment of terms Γ ` M = N : A holds
if M and N are interpreted as the same morphism. The soundness corollary 1
means that any derivable external equality judgment of terms holds.

Logic As in separation logic, we really have a logic of heaps and hence propo-
sitions will be modeled as subsets of H(V). We obtain the structure needed
for interpreting the logic as follows. The power set of heaps P(H(V)) ordered
by inclusion is a BI-algebra [21] in Set. We embed it into Asm(V) via the
functor ∇ to get ∇(P(H(V))). One can show that the object is an internally
complete BI-algebra in Asm(V). Hence, as explained in [5], there is a canoni-
cal BI-hyperdoctrine P = Asm(,∇(P(H(V)))), which soundly models classical
higher-order separation logic. Note that the fibre over an object (X, E) in P is
the set of morphisms in Asm(V) from (X, E) to ∇(P(H(V))), which, as men-
tioned earlier, is in one-to-one correspondence with functions from X to P(H(V))
in Set. Hence, a proposition in context Γ ` P : Prop is interpreted as follows:
Suppose Γ is interpreted as the assembly (X, E). Then P is interpreted as a
function from X to P(H(V)). The propositional connectives are all interpreted
in the standard way from separation logic. For instance, [[Γ ` P ∗Q :Prop]]Props

x

is {h | ∃h1 ∈ [[Γ ` P :Prop]]Props
x , h2 ∈ [[Γ ` Q :Prop]]Props

x . h = h1 ∗ h2}. The
quantifiers are also interpreted in the standard way. For instance,

[[Γ ` ∀y :A.P :Prop]]Props
x = {h | ∀y ∈ [[Γ ` A :Kind]]Kinds

x . h ∈ [[Γ, y :A ` P]]Props
(x,y) }

In the display above, note that [[Γ ` A : Kind]]Kinds is a uniform family of
assemblies over (X, E), so [[Γ ` A :Kind]]Kinds

x is an assembly (Y, EY). When we
write y ∈ [[Γ ` A :Kind]]Kinds

x , we mean that y ∈ Y . Note that y may depend on
x (we have a separation logic for a dependent type theory).

Now it should also be clear why the kind Prop is interpreted as ∇(P(H(V)) .

Computations As mentioned in Section 1, a computation type (∆).{P}x :τ{Q}
is modeled as an admissible per of realizers in T(V), which given heaps satisfying
the precondition P do not produce error and upon termination leaves a heap
satisfying the postcondition Q. The context ∆ is implicitly quantified, so that
this behaviour should be adhered to for all instantiations of ∆. Formally it
looks like this. Assume [[Γ]]Ctxs = (X, E) and [[Γ,∆]]Ctxs = (Σx∈XYx, F). Then
[[Γ ` (∆).{P}x :τ{Q} :Type]]Types is the family of pers (Sx)x∈X with fields given
by d ∈ |Sx| iff d = inT(f) and

∀y ∈ Yx.∀E ∈ PropΓ,∆.∀h ∈ [[Γ, ∆ ` (P ∗ E)]]Props
(x,y) .(f(h) 6= err) ∧“

f(h) = (vf , hf)⇒ vf ∈ |[[Γ, ∆ ` τ :Type]]Types
(x,y) | ∧

hf ∈ CC([[Γ, ∆, x :τ ` (Q ∗ E)]]Props
(x,y,vf))

”
So suitable realizers are elements of T(V) that for any extension P ∗ E of P
takes heaps satisfying P ∗ E to heaps satisfying the chain-completion of Q ∗ E
and do not produce error. Thus the frame rule is baked into the interpretation
of computations. This does not support the law of conjunctivity. The actual per
is then given by inT(f) Sx inT(g) iff inT(f), inT(g) ∈ |Sx| and

∀y ∈ Yx.∀E ∈ PropΓ,∆.∀h, h′ ∈ [[Γ, ∆ ` (P ∗ E)]]Props
(x,y) .h

↓
= h′ ⇒

f(h) ↓⇔ g(h′) ↓ ∧
“
f(h) = (vf , hf) ∧ g(h′) = (vg, hg)⇒

vf [[Γ, ∆ ` τ :Type]]Types
(x,y) vg ∧ hf

↓
= hg

”
So two realizers denote the same computation if they both fulfill the specification
and on heaps with equal support gives results related in the interpretation of
the return type and heaps with equal support.

Lemma 3. Let [[Γ]]Ctxs = (X, E) and [[Γ ` (∆).{P}x : τ{Q} : Type]]Types =
(Sx)x∈X . Then for all x ∈ X, Sx is a chain-complete per with its field inside
T(V), relating inT(λh . ⊥) to itself. As such it is an admissible per over T(V).

As mentioned in the introduction, we require that computations should produce
heaps with equal support (given suitable heaps with equal support) so that allo-
cation can be modeled by taking the least unallocated address (see the semantics
of alloc below). An unfortunate consequence of this choice is that two computa-
tions that intuitively behave in the same way but allocate cells in different order
may not be equated by the model. We believe that the model can be refined by

using realizers in FM-domains [25, 24, 3], such that support would then be up to
a permutation of the locations in the heap. (Indeed, FM-domains have already
been applied in a recent parametric model for separation logic [9].) We leave this
refinement for future work, however.

We now describe how terms of computation types are interpreted in the
model. Recall that for a computation type (∆).{P}x : τ{Q}, we can give the
interpretation of Γ `M : (∆).{P}x :τ{Q} by giving the realizer α.

We first consider the structural rules for computations. We begin with the
frame rule. Assume [[Γ]]Ctxs = (X, E) and that [[Γ ` M : (∆).{P}x : τ{Q}]]Terms

is realized by α. Then [[Γ ` M : (∆).{P ∗ R}x : τ{Q ∗ R}]]Terms is also realized
by α since, for all x ∈ X, the field of [[Γ ` (∆).{P}x : τ{Q} : Type]]Types

x is
included in the field of [[Γ ` (∆).{P ∗ R}x : τ{Q ∗ R} : Type]]Types

x (here we use
that the frame rule is baked into the interpretation of computation types). The
remaining structural rules are also interpreted by using the same realizer. For
the consequence rule we use that the chain-completion operation is monotone.

Now for the non-structural rules: Assume [[Γ]]Ctxs = (X, E) and that [[M]] is
given by α and [[N]] is given by β when they are of computation types and m
and n otherwise. Then

[[Γ ` do y ←M in N : (∆).{P}x :τ{Q}]]Terms

= λe . λh . if α(e)(h) = (vM , hM) then β(e, vM)(hM) else α(e)(h)

[[Γ ` ret M : (∆).{emp}x :τ{emp ∧ x =τ M}]]Terms = λe . λh.(m(e), h)

[[Γ ` !τ M : (y :τ).{M 7→τ y}x :τ{M 7→τ y ∧ x =τ y}]]Terms

= λe . λh . if h(m(e)) = ⊥ then err else (h(m(e)), h)

[[Γ `M :=τ N : (−).{M 7→ −}x :1{M 7→τ N}]]Terms = λe . λh.(∗, h[m 7→ n])

[[Γ ` allocτ M : (−).{emp}x :Nat{x 7→τ M}]]Terms

= λe . λh . let l = leastfree(h) in (l, h[l 7→ m])

[[Γ ` dealloc M : (−).{M 7→τ −}x : 1{emp}]]Terms

= λe . λh.if h(m) = ⊥ then err else (∗, h[m 7→ ⊥])

[[Γ ` case M of zero⇒M1 or succ y ⇒M2 : (∆).{P}x :τ{Q}]]Terms

= λe . λh . if m(e) = inN(0) then α1(e)(h) else α2(e, m− 1)(h)

[[Γ ` fix f(x) in M :ΠT y :σ . (∆).{P}x :τ{Q}]]Terms

= λe . fixedpointof λf . λy . α(e, f, y))

Note that the realizers for computations are as one would hope. Consider, for ex-
ample, lookup !M , whose realizer is λe . λh . if h(m(e)) = ⊥ then err else (h(m(e)), h).
Given a realizer e in EX(x) (intuitively, a realizer for Γ), it produces a compu-
tation that when given a heap h yields error if the location m(e) is not allocated
in h and otherwise the value stored in h at m(e), along with h. The realizer e is
needed, as always, because the type theory is dependent.

For fixed points, the realizer is obtained by the usual least fixed point con-
struction, which applies since λf . λy . α(e, f, y) is indeed an endofunction of the
pointed domain V → T (V), when α is the realizer for [[Γ, f :ΠT y :σ . (∆).{P}x :
τ{Q}, y :σ `M : (∆).{P}x :τ{Q}]]Terms.

Theorem 2. The interpretation of computations is well-defined, i.e., any well-
typed computation term Γ ` M : (∆).{P}x : τ{Q} is interpreted as a morphism

1 → [[Γ ` (∆).{P}x : τ{Q} :Type]]Types in the fibre over [[Γ]]Ctxs. Moreover, the
external equality rules for computations hold.

Notice that the above theorem expresses that well-typed programs do not produce
error : If [[Γ]]Ctxs = (X, EX) and [[Γ ` M : (∆).{P}x : τ{Q}]]Terms = m then, for
all x ∈ X, all e ∈ EX(x), m(e) is in [[Γ ` (∆).{P}x : τ{Q} : Type]]Types

x . Thus
m(e) is a realizer in T(V), which given a heap satisfying P does not produce
err. If m(e) then terminates (does not give ⊥), it returns a value and a heap in
the chain-completion of Q. For a discussion of the use of the chain-completion,
please see the accompanying technical report.

4 Conclusion and Future Work

We have developed a realizability model for impredicative Hoare Type Theory, a
very expressive dependent type theory in which one can specify and reason about
mutable abstract data types. The model is used to establish the soundness of
the type theory. Moreover, the model can be used to discover new equations
between terms and types.

Our model also accommodates certain kinds of subset kinds and types. For
a kind A we can model the subset kind {x : A | P}, for all propositions P .
For a type τ we can model the subset kind {x : τ | P}, for all chain-complete
propositions P ; it also seems possible to model subset types {x : τ | P}, for all
propositions P by using the chain-completion. The subset kinds / types will not
be full subset kinds / types, however, for the same reason that we do not have
full subset types for the standard separation logic BI-hyperdoctrine over Set [5].
Future work includes investigating how to model recursive types, as needed for
the specification of programs that recurse through the store [22]. It would also
be interesting to refine the model using, e.g., FM-domains to get a more abstract
model of allocation leading to more equalities among terms. Another avenue for
future work is to explore the soundness of higher-order frame rules [8]. This seems
to involve a further level of indexing over a Kripke structure similar to the one
in [8]. Finally, it would also be interesting to investigate relational parametricity
for the impredicative polymorphism.

References

1. A. Appel, P.-A. Mellièes, C. Richards, and J. Vouillon. A very modal model of a
modern, major, general type system. In POPL’07, 2007.

2. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system:
An overview. In CASSIS 2004, LNCS. Springer, 2004.

3. N. Benton and B. Leperchey. Relational reasoning in a nominal semantics for
storage. In TLCA’05, pages 88–101, Nara, Japan, 2005.

4. M. Berger, K. Honda, and N. Yoshida. A logical analysis of aliasing in imperative
higher-order functions. In O. Danvy and B. C. Pierce, editors, ICFP’05, pages
280–293, Tallinn, Estonia, September 2005.

5. B. Biering, L. Birkedal, and N. Torp-Smith. Bi hyperdoctrines and higher-order
separation logic. In In ESOP”05, volume 3444 of LNCS, pages 233–247, 2005.

6. B. Biering, L. Birkedal, and N. Torp-Smith. BI hyperdoctrines, Higher-Order
Separation Logic, and Abstraction. TOPLAS, 2007. To Appear.

7. L. Birkedal, R. Møgelberg, and R. Petersen. Domain-theoretic models of paramet-
ric polymorphism. To Appear in TCS, 2007.

8. L. Birkedal, N. Torp-Smith, and H. Yang. Semantics of separation-logic typing
and higher-order frame rules for algol-like languages. LMCS, 2(5:1):1–33, 2006.

9. L. Birkedal and H. Yang. Relational parametricity and separation logic. In Proc.
of FOSSACS 2007, number 4423 in LNCS. Spring, 2007.

10. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino,
and E. Poll. An overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer, 7(3):212–232, June 2005.

11. D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended static checking.
Compaq Systems Research Center, Research Report 159, December 1998.

12. D. Evans and D. Larochelle. Improving security using extensible lightweight static
analysis. IEEE Software, 19(1):42–51, 2002.

13. B. Jacobs. Categorical Logic and Type Theory, volume 141 of Studies in Logic and
the Foundations of Mathematics. Elsevier, 1999.

14. N. Krishnaswami. Separation logic for a higher-order typed language. In
SPACE’06, pages 73–82.

15. N. Krishnaswami, J. Aldrich, and L. Birkedal. Modular verification of the subject-
observer pattern via higher-order separation logic. In FTfJP 2007.

16. G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed assembly
language. ACM TPLS, 21(3):527–568, 1999.

17. A. Nanevski, A. Ahmed, G. Morrisett, and L. Birkedal. Abstract Predicates and
Mutable ADTs in Hoare Type Theory. In ESOP’07, volume 4421 of LNCS, pages
189–204.

18. A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and separation in Hoare
Type Theory. In ICFP’06, pages 62–73, Portland, Oregon.

19. P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding.
In POPL’04, pages 268–280.

20. R. Petersen, L. Birkedal, A. Nanevski, and G. Morrisett. A re-
alizability model of impredicative hoare type theory. Techni-
cal report, IT University of Copenhagen, 2007. Available at
http://www.itu.dk/people/birkedal/papers/httmodel-tr.pdf.

21. D. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications,
volume 26 of Applied Logics Series. Kluwer, 2002.

22. B. Reus and J. Schwinghammer. Separation logic for higher-order store. In CSL’06.
23. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In

LICS’02, pages 55–74.
24. M. Shinwell. The Fresh Approach: Functional Programming with Names and

Binders. PhD thesis, Computer Laboratory, Cambridge University, Dec. 2004.
25. M. R. Shinwell and A. M. Pitts. On a monadic semantics for freshness. TCS,

342:28–55, 2005.
26. K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent logical frame-

work: The propositional fragment. In S. Berardi, M. Coppo, and F. Damiani,
editors, TYPES’04, volume 3085 of LNCS, pages 355–377. Springer.

27. H. Xi and F. Pfenning. Dependent types in practical programming. In POPL”99,
pages 214–227, San Antonio.

28. N. Yoshida, K. Honda, and M. Berger. Local state in hoare logic for imperative
higher-order functions. In Proc. of FOSSACS 2007, number 4423 in LNCS. Spring.

