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Abstract--Tbe applicability of evolution strategies (ESs), population based stochastic optimization techniques, 
to optimize clustering objective functions is explored. Clustering objective functions are categorized into 
centroid and non-centroid type of functions. Optimization of the centroid type of objective functions is 
accomplished by formulating them as functions of real-valued parameters using ESs. Both hard and fuzzy 
clustering objective functions are considered in this study. Applicability of ESs to discrete optimization 
problems is extended to optimize the non-centroid type of objective functions. As ESs are amenable to 
parallelization, a parallel model (master/slave model) is described in the context of the clustering problem. 
Results obtained for selected data sets substantiate the utility of ESs in clustering. 
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l. I N T R O D U C T I O N  

Clustering methods play a vital role in data analysis. 
They have been effectively applied in different areas 
including image processing, and exploratory data  
analysis. It) Various types of clustering algorithms have 
been proposed to suit different requirements. Broadly, 
clustering algorithms can be classified into hierarchical 
and partitional algorithms. Hierarchical methods build 
a dendrogram structure of the given data, whereas 
partitional methods divide the data into a specified or 
estimated (ISODATA) ¢1) number of non-overlapping 
clusters. Typically clustering algorithms aim at optim- 
izing a chosen mathematical objective function. In 
this paper, we confine our discussion to partitional 
methods. In general, partitional methods are iterative 
hill climbing techniques that optimize the stated ob- 
jective function and usually converge to a locally optim- 
al partition. Clustering objective functions are highly 
non-linear and multi-modal functions. As a conse- 
quence, it is very difficult to find optimal partition of 
the given data using hill climbing techniques. Readers 
are referred to references (1-3) for a detailed coverage 
on cluster analysis and its applications. 

The number of possible partitions of a given data 
set with T data items and C clusters is given by the 
stifling approximation ~2) 

S = C ! *  ( -  1)C-k* *k r (1) 
k = l  

It can be observed that for T = 100 and C = 2, we 
need to search 2 9 9  - -  1 possible partitions in order to 
arrive at an optimal partition. So exhaustive enumer- 
ation is ruled out due to its exponential time complexity. 
Many attempts have been made to reduce the com- 
putational effort in finding the optimal partition. Some 
techniques such as integer programming, t4) dynamic 
programming tS) and branch and bound {6) methods 
have been applied to reduce the computational burden 

of exhaustive enumeration. Even though these methods 
are better than exhaustive enumeration, these are still 
computationally expensive for moderate and large 
values of T and C (>  2). 

Stochastic optimization approaches such as simu- 
lated annealing and genetic algorithms have been used 
in the context of the optimal clustering problem. 16'v) 
Theoretically, it is possible to obtain optimal solutions 
using these methods, but in practice only near-optimal 
solutions will be obtained except in some special cir- 
cumstances. References (6, 7) solve the afore-mentioned 
problem by formulating it as a discrete optimization 
problem, i.e. assigning each of the data items to one of 
the clusters. These approaches take large amounts of 
time to converge to globally optimal partition. An 
alternative way of solving the optimal partition problem 
is to find optimal initial seed values for which the 
selected algorithm converges to a globally optimal 
solution. Both the above stochastic methods are applied 
to select optimal initial seed values {s'9) and were repor- 
ted to produce superior results. A centroid type of 
objective function, within group sum of squared (WGSS) 
error measure, was considered. However, the same 
approach can be extended to optimize the non-centroid 
type of objective functions also. Here, a centroid type 
of objective function refers to one which depends on 
the centroids of the clusters formed, whereas a non- 
centroid type of objective function does not involve 
cluster centers in its formulation. 

Hard clustering deals with assigning each data item 
to exactly one of the clusters. Whereas fuzzy clustering 
extends" this concept to associate each data item to 
each of the clusters with a measure of belongingness. 
We restrict our discussion to fuzzy C-means (FCM) 
clustering objective functions. Fuzzy C-means objective 
function, an extended form of the hard WGSS criterion, 
was first proposed by Dunn. I1°) Later a generalized 
form of the FCM algorithm with a family of objective 
functions, J,,('), 1 _< m < ~ ,  was proposed by Bezdek: H) 
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Dunn's formulation is a special case (m = 2) of the 
above formulation. Convergence proof of the FCM 
clustering algorithm has been studied in references 
(12, 13) and it is stated that the FCM algorithm con- 
verges to a locally optimal solution or to a saddle 
point. Further, it is mentioned that methods to avoid 
saddle points are required in order to ensure that the 
FCM algorithm converges to a local optimum. In our 
study, we observe that the problem of local minima or 
saddle points is severe when the value of m, discussed 
in Section 3, is closer to 1. 

As far as we know, no attempts have been made to 
find globally optimal values of fuzzy clustering objec- 
tive functions. This entails optimizing an objective 
function with T x C continuous valued parameters 
subjected to some constraints. In this paper, we employ 
ESs to obtain the global optimal solution for fuzzy 
clustering objective functions. 

This paper is organized as follows: Section 2 presents 
a brief review of evolution strategies. The problem 
formulation is presented in Section 3. Experimental 
study and results are presented in Section 4. A possible 
method for solving non-centroid type of objective func- 
tions using discrete optimization formulation is dis- 
cussed in Section 5. A parallel design for the proposed 
method is described in Section 6. 

2. EVOLUTION STRATEGIES 

Evolut ion strategies have been in t roduced by 
Rechenberg~l,) and are further developed by Schwefel. ~ 5) 
They are modeled using biological evolution concepts. 
These methods adopt principles of the evolutionary 
process: selection, recombination and mutation. The 
first proposed ESs have been used to optimize mathe- 
matical functions with continuously changeable par- 
ameters and later have been extended to solve discrete 
optimization problems. As these methods do not assume 
any information about the functions and do not impose 
any restrictions such as continuity and differentiability 
on the functions to be optimized, these methods found 
their applications in solving many optimization prob- 
lems including the traveling salesman problem (com- 
binatorial optimization problem), PID (Proportional, 
Integral and Derivative) regulator with highly non- 
linear system (control problem), and some discrete 
optimization problems3t 6,17) The basic ESs are extend- 
ed to support multi-criteria decision problems. 

Evolution strategies are powerful function optim- 
ization tools, and can be applied to wide varieties of 
problems in various fields. The function for which ESs 
are applied should support strong causality, i.e. small 
changes in the parameters must result in small changes 
in the objective or quality function value. For discrete 
optimization problems, it is evident that slight perturb- 
ation to a solution yields a small change in the objec- 
tive function value. If the problem does not possess 
strong causality, some special modifications are re- 
quired to solve it by ES. 

Evolution strategies belong to a class of population 

based approaches. Here population consists of a set of 
parents, U, and a set of offspring, (9. Each parent or 
offspring represents a solution in the search space and 
is denoted by a string of parameters. Offspring in the 
population are produced by mutation and recombi- 
nation operations over the parents in the same popu- 
lation. Parents in the next population are generated by 
selecting potential solutions in the previous population. 
The process of evolving the next population from the 
current population is called generation.  This process 
of generating new population ends when optimal or 
near-optimal solution(s) are obtained or a limit on the 
number of generations is reached. 

In the early model of evolution strategies, proposed 
by Rechenberg, only one parent (IUI = ~ - -  1) and an 
offspring ( l® l - - 2  = 1) constituted a population. The 
mutation operator is used to generate offspring whereas 
the selection operator is used to select a possible parent 
for the next population. The offspring is generated, 
through the mutation operation, from the parent by 
adding normally distributed random values with zero 
mean and with a specified variance. The best of the two 
solutions in the current population based on their 
fitness or merit (proportional to objective function 
value) is taken as the parent in the next population. In 
the (1 + 1)-ES, i.e. # = 1 and 2 = 1, the selection oper- 
ator considers both parent and offspring (+). The 
(1 + 1)-ES is a sort of probabilistic hill climbing tech- 
nique and the concept of population and recombination 
are not exploited. Later multimembered ESs have been 
proposed where parents (# > 1) participate in the gen- 
eration ofoffspring giving rise to (# + 1)-ES. In (# + 1)- 
ES the recombination operator is introduced, i.e. two 
parents are selected with uniform mating probability 
and their features are combined and mutated to pro- 
duce an offspring. Here the selection operator places 
the generated offspring into the population by replacing 
the least fit individual or solution string following the 
survival of the fittest guidelines. 

The (/~ + 2)-ES and (#, 2)-ES where/~ > 1 and 2 > 1, 
were proposed to make use of parallel computers and 
to enable self adaptation of strategic parameters. "8) 
The (/~ + 2)-ES uses all individuals in the process of 
selecting parents for the next population, whereas ~ ,  2)- 
ES uses only offspring ® in this process. It is assumed 
that # < 2 and each parent contributes in the generation 
of (A/p) offspring in a population. A formal description 
of multimembered ESs is given below: 

H, = ith population, 
U, O = set of parents and offspring respectively, 
I = (x, tr) is an individual, where x is a solution vector 

of size n and tr is a mutation variance vector of 
size n, 

S(') = selection operator, 
S ( U w O )  for (# + 2)-ES type 
S(®) for (/~, 2)-ES type, 

R(') = recombination operator, 
M(')  = mutation operator, 
U = { I 1 , I 2 , I  3 . . . . .  I~}, 
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0 = {lu+l , l~+ 2 . . . . .  I~+~}, 
Hi = UiwOi ,  
Aa = global step size variance, 
f:x"--* R is an objective function. 

Parents in the initial populat ion are selected ran- 
domly with uniform distribution and offspring in that 
populat ion are produced using recombination and 
mutat ion operators. Parents in the next populat ion are 
selected from the previous populat ion depending on 
the strategy used (" + "  or ","). Each operator is de- 
scribed below. 

Recombination operator R(.): R(I',  1 " ) ~  I. Two in- 
dividuals I '  and I" are selected with equal mating 
probability from the parent set U. Each individual 
comprises of a solution vector and a variance vector 

r = (x ' ,  or') 

I" = Ix", a") 

I = (x, tr). 

There are many types of recombination ope/'ators 
and five of them are mentioned in reference 05). We 
consider two out of those five which seem to work well 
for the clustering problem. 

Discrete recombination: R 

xi = xl or  xi' 

ai = o'i or a'i', V i. 

Intermediate recombination: R 2 

xl : ½(x~ + x~') 

1 t pl  • 

We use these two operators in our experimental 
study. 

Mutation operator M(I)--* 1'. The mutation operator 
takes an individual and the following steps are executed 
to produce a mutated individual. It can be observed 
that mutation information is also a part of the individual 

I = ix, a) 

r = (x', o') 

o' i = o i exp (N0(O, Aa)) 

x'i = xi + No(O,a'i), Vi. 

where No(0, tr) generates normally distributed random 
variates with mean zero and variance, a. 

Selection operator S(f~) --* U. The set f~ is U ~ ® for 
(/~ + 2)-ES and is ® for (/~, 2)-.ES. The selection operator 
selects the best # individuals from the set t) to produce 
parents in the next generation. 

It is suggested that by equating 2//~ ratio to 5 or 6 
gives the maximum convergence rate3 ~ 5~ The algorithm 
for the multi-membered ES is given below. 

Algorithm 
Input: 
U = Initial set of parents, 
/~ = Number  of parents, 2 = Number  of offspring, 
max_gen = Maximum number  of generations; 
Output: Solution String S; 
begin 

s = 0; 
no_#eneration = Max_gen, 
calculate fitness values ( f )  of solutions in U, 
while (no_generation > O) 
begin 

® = N I L  
while (IOl < ,~) 
begin 

x = Rand (1, ta); y = Rand (1, p); 
select I x and I r from U; 
l '  = M(R(Ix,  It)); 
O = O u { l ' } ;  
Compute f ( l ' ) ;  

end 
if (f(s) > fitness value of best individual) replace S by that string, 
if f (s )  is near-optimal or optimal) output  S and exit, 
else no_generation = no_oeneration - 1, 
U = S(U ~ (9); /*  if " + "  type selection operation is used. */  

end 
end. 
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There is no concrete proof that ESs converge to a 
global minimum. In the next section, we discuss the 
formulation of the centroid type of clustering objective 
functions for both hard and fuzzy clustering paradigms. 

3. C L U S T E R I N G  W I T H  ESs 

In the above section, we described how evolution 
strategies can be used to optimize a function with 
real-valued parameters. In this paper, we restrict our 
discussion to the centroid type of clustering objective 
functions which can be posed as real-valued parameter 
optimization problems. In Section 5, we present how 
the discrete optimization formulation of the clustering 
objectiv e function can be solved using ESs. 

The centroid type of clustering objective functions, 
i.e. objective functions that depend on the centroids of 
the dusters formed, can be formulated as real-valued 
parameter optimization problems so that a search can 
be performed to locate optimal cluster centers in order 
to produce an optimal partition of the given data. In 
our study, we consider WGSS objective function for 
hard clustering and FCM objective functions for fuzzy 
clustering. The evaluation function f, discussed in the 
above section, has to be defined in each case. 

Hard clustering 

Let 
V= {vl, v2 . . . . .  VT} be a set of T data vectors each of d 

dimensions, 
0 = {cl, c2 . . . . .  Cc} be a set of centroids each of d di- 

mensions. 
Optimization function is defined as: 

C T 

minimizeJ(W,O)= ~ ~ uijD2(vj, ci) (2) 
i = l j = l  

C 

subject to ~ uij = 1;uue{0, 1} 
i=1  

L(1) <_ Ci(1) <_ R(I), 1 <_ 1 <_ d, 1 <_ i < C, 

where W =  {uu} is a T x C association matrix, 

D ( v , c ) = ~ / (  l=~ (v( l ) -c( l ) )  2)  

L(I) = m!n(xj(l)), R(l)= max (xj(l)), 1 < j < T. 
J 

Now the problem is reduced to optimize J(.)  with 
the above-mentioned constraints. Let W* and O* be 
the configurations of W and O at the global optimal 
point, respectively. There are two ways of finding the 
global optimal value of J(.). 

Procedure 1. Find W* such that J(W*,O)  produces 
the globally optimal value. 

Procedure 2. Find O* such that J(W, O*) produces the 
globally optimal value. 

Procedure 1 is a discrete optimization problem and 
is independent of whether the objective function depends 
on cluster centers or not. For  the non-centroid type of 

objective functions 0 will not appear in the formulation 
and these functions require a discrete optimization 
problem to be solved. For the centroid type of objective 
functions that depend on O also, we can obtain the 
optimal function value by solving Procedure 2. The 
objective or evaluation function, defined in Section 2, 
takes a real-valued vector as input and returns a real 
value that acts as fitness value. 

Let x be a solution and be represented by a vector 
of real numbers x i x2.. .xn and n = C x d where d is the 
number of dimensions and C the number of clusters. 
The hard clustering evaluation function fh(X) is com- 
puted as follows: 

fh(x): 

1. ci(l) = x((i -- 1)*d + I), 1 < i _< C, 1 _< l < d, 
2. assign data items vl, v2,..., Vr to the nearest centers, 

and obtain W, 
3. recompute centers cl, c2,.. . ,  Cc from the W and V, 
4. compute error J 0  from equation (2), 
5. return J 0  value. 

The above objective function is used to solve Pro- 
cedure 2. Experimental results pertaining to hard 
clustering are discussed in the next section. 

Fuzzy clustering 

The FCM clustering objective functions are con- 
sidered in this study. The formulation of the FCM 
objective function proposed by Bezdek is presented 
below. The FCM algorithm starts either with initial 
cluster centers O or with initial fuzzy assignment matrix 
W. Equations (4) and (5) are executed in a sequence 
until the desired stable configuration with respect to a 
termination condition is reached. The fuzzy C-means 
clustering objective function is described below: 

optimization function is defined as: 
C T 

minimizeJf(W,O)= ~ ~ (Uu)mD2(vj, ci) (3) 
i=l j= l  

c 

subject to ~ uo=  1;uue[0,1]; 
i = l  

L(1) < C~(1) <_ R(l), 1 <_ l <_ d, 1 < i < C, 

where 

W =  {uij} is a C × T association matrix, 

D(v,c) = ~ / ( t=~  (v(l)-c(1))2),  

L(l) = m!n (xj(l)), R(I) = max (xfl)) ,  1 <j  < T, 
3 J 

T 

T~ (u,j)'v, 
i = 1  

c~ - r (4) 

E (u~) 
i = l  

1 
U,)= ~ (D(vi'cJ)~ 1/(m-I) (5)  
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termination condition: 

II I4I, - W,+ 111 < e, where e is a small value (say 0.001). 

Solving for W* or O* involves real-valued par- 
ameter optimization. W(e R cr) is a real-valued matrix. 
If either of W* or O* is found, the other follows from 
equations (4) and (5). 

In order to find W*, we need to operate on C x T 
parameters, whereas finding O* requires optimizing a 
function with C x d parameters. It is evident that in 
most of the problems, we encounter d < n, so solving 
for O* is computationally more efficient than solving 
for W*. Thus the problem reduces to finding optimal 
cluster centers that produce optimal objective function 
value. Reference (12) gives a mathematical procedure 
to verify whether the objective function converged to a 
local minimum or to a saddle point. 

Evaluation function: the ES is used to optimize J0.  
Here the solution string x = xl .. .x, represents a sol- 
ution in the continuous search space. The function 
fc(x) returns FCM function value for a specified value 
of m. Steps for computing ff(x) for a given solution x 
are given below: 

fttx): 

1. ci( l )  = x ( ( i  - -  1 ) * d  + 1), 1 < i _< C,  1 _< l _< d, 
2. compute association measures u o from equation (5), 
3. recompute centers cDc2,...,cc from the W and 

V using equation (4), 
4. compute error J 0  from equation (3), 
5. return J 0  value. 

The above evaluation function is used to evaluate 
the merit of each individual and J 0  is optimized using 
ESs to obtain the optimal or the near-optimal function 
value. Experimental results for selected data sets are 
presented in the next section. 

4. EXPERIMENTAL STUDY AND RESULTS 

In our experimental study, we tested many data 
sets with different numbers of clusters. In almost all 

cases, the proposed model could find an optimal or a 
near-optimal partition of the data. The convergence 
rate is dependent on the number of parameters, global 
step size variance, and initial step variances (a). Very 
small step variances slow down the convergence rate, 
whereas very large step variances may totally miss the 
optimal solution making the search a random one. 
We observe that the initial convergence rate is very 
high and as the generations progress convergence rate 
decreases rapidly. We stop after some generations and 
the clustering algorithm, corresponding to the selected 
objective function is run by considering the best solu- 
tion available as the initial seed vector. This guarantees 
near-optimal local minimum. Here, results for some 
selected data sets are presented. The British Towns 
Data (BTD) (19) with 50 data items is tested with different 
numbers of clusters for the hard clustering problem. 
Some data sets have been chosen from reference (12) 
for testing the fuzzy clustering objective function along 
with BTD. 

We set # = 10 and ~. = 60 and global variance Aa = 
0.01 throughout our studies. Both R1 and R2 recom- 
bination operators are equally good and there is no 
substantial difference observed. We used R1 for hard 
clustering and R2 for fuzzy clustering. Experiments 
were conducted on a CD4360 mini-frame machine. 
For hard clustering, we tested the BTD for C = 6, 
8 and 10 and the convergence results are shown in 
Figs 1-3, respectively. The dimensionality of the BTD 
is 4, so in the first case ES optimizes 24 parameters, in 
the second case ES optimizes 32 parameters and in the 

Table 1 

c JO 

BTD 6 141.46 
hard 8 113.505 
clustering 10 93.941 

Fuzzy Ex. 1 4 113.039 
clustering Ex. 2 2 215.438 

Ex. 3 3 3.166 
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Fig. 1. British Towns Data, T= 50, C = 6. 
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Fig. 2. British T o w n s  Data ,  T = 50, C = 8. 
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Fig.  3. Br i t i sh  T o w n s  D a t a ,  T =  50, C = 10. 
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Fig. 4. British Towns Data, C = 4, m = 2.0, T =  50. 
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last case it optimizes 40 parameters. As the number of 
parameters increases, the convergence rate decreases. (.5) 
Best solutions in each simulation for C = 6, 8 and 10 
are taken and the K-means algorithm is run over each 
solution corresponding to each type and the results are 
shown in Table 1. Instead of waiting for the ES to 
converge to an exact optimal solution, it is better to stop 
after a number of generations when the convergence 
rate becomes very slow and run the corresponding 
clustering algorithm in order to reach the appropriate 
(near-optimal) local minimum. 

Fig. 5. Touching Clusters Data. 

We tested some data sets presented in reference (12) 
that have a tendency to converge to saddle point(s). 
Evolution strategy can easily avoid saddle points as it 
is a population based probabilistic search algorithm. 
Results in fuzzy clustering with ES are encouraging 
and we present convergence results for chosen data 
sets. 

Example 1. The BTD, with parameters: T =  50, 
m = 2.0 and C = 4, is tested and the convergence results 
are shown in Fig. 4. After going through a sufficient 
number of generations, i.e. when the convergence rate 
becomes small, the FCM algorithm is run by taking 
the best available solution as the initial seed (center) 
vector. 

Example 2. This data is taken from Example A in 
reference (12) and consists of two touching clusters with 
two inliers as shown in Fig. 5. The data is provided in 
the Appendix. This data was used to find inliers using 
the FCM algorithm. We set m = 2.0 and C = 2. The 
convergence result is shown in Fig. 6. 

Example 3. This is a symmetric data, Example E in 
reference (12). It is shown that this data converges to 

260.00 

2 4 0 . 0 0  

~22o.oo 

200.00 

180.00 l l l l I r I I I l l f l l l l l l ~ l J 1 1 1 1 1 r J l l l l ~ F P ~ l l l l l l l r l l l l l  I 
0 5 10 15 20 25 

Number  of genera t ions  

Fig. 6. Touching Clusters Data,  C = 2, m = 2.0, T =  25. 
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,-m 

4.00 

3.00 

2.00 I l l l l l l ~ l l l l l l l l l l t l ~ l l l r J l l l l l l t l l l l l t l l ~ r r l l l r l j  
0 5 10 15 20 25 
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Fig. 7. Symmetry Data, T= 20, C = 3, m = 3.0. 
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a saddle point for m = 3.0 and C = 3. This data consists 
of 20 data items in a 2D plane and is obtained by 
adding an equidistant vector to four points ( -  3.0, 0.0), 
( - 1.0, 0.0), (1.0, 0.0) and (3.0, 0.0). The data is provided 
in the Appendix. The ES was run for 25 generations 
and the convergence result is shown in Fig. 7. 

5. NON-CENTROID TYPE O F  CLUSTERING OBJECTIVE 
FUNCTIONS 

In this paper, we explained primarily how ESs can 
be used effectively to find the optimal partition for the 
centroid type of clustering objective functions. How- 
ever, there are many non-centroid type objective func- 
tions which require to solve discrete optimization 
formulation (Procedure 1). In this section we discuss a 
method for solving discrete optimization formulation 
with ESs. 

Each individual I is of the form I --- (x) and does not 
have any mutation information. The entire mutation 
is controlled by global mutation step size Air as in the 
earlier case. Solution string x is an ordered sequence 
of T discrete parameters, each one represents the cluster 
label of a data item. Each parameter can assume a 
discrete value from the set {1, 2 . . . . .  C}. 

There is no change in the recombination and selection 
operators except intermediate recombination is not 
valid in this context. The mutation operator takes x as 
input and modifies some of the parameters producing 
a mutated solution x'. The number of mutations, i.e. 
number of parameter changes is controlled by a global 
parameter. 

The evaluation function f 0  takes a solution string 
as input and forms clusters based on the data assign- 
ment. Computation of objective function value is 
straightforward and the objective function value is 
used as fitness or figure of merit of the corresponding 
solution string. Evolution strategies can be used to find 
optimal assignment matrix W*. 

6. PARALLEL M O D E L  

Most of the execution time of the ES algorithm is 
spent in the evaluation of objective function value for 
a given solution. This multimembered ES can easily be 
implemented on the available parallel hardware that 
gives linear speedup. For more details readers are re- 
ferred to references (15, 18, 20). In this section, we 

Master ] 

Fig. 8. 

present a parallel model where more than one processor 
is available. This design is a simple one, shown in 
Fig. 8, and more involved designs can be thought of. 
The number of processors is proportional to the num- 
ber of parents #. 

The central processor maintains a set of parent solu- 
tions and its only job is selection operation and pass 
parent solutions to child processors. A random initial 
set of parent solutions is fed to the central processor. 
The central processor selects the mates and passes 
those mates to the child nodes in a sequence. The child 
processors perform mutation and recombination op- 
erations and evaluate the objective function values. 
Newly formed solution(s) along with their fitness values 
are sent back to the central node. Then the central 
node, after receiving all child node responses, performs 
selection operation to select a new set of parents for 
the next generation. This process is continued until a 
near-optimal or optimal solution is found or a limit on 
the number of generations is reached. This design gives 
a speedup of A - y ,  where ? is the communication 
overhead, and A the number of child'processors. 

7. CONCLUSIONS 

In this paper, we have explored the use of ESs for 
solving the optimal clustering problem. Centroid type 
of clustering objective functions are posed as real- 
valued parameter optimization problems and are solved 
using ESs to find optimal value. Both hard and fuzzy 
clustering objective functions have been considered in 
this study. The FCM clustering algorithms have a 
tendency to converge to saddle points and this problem 
is overcome by exploiting the stochastic nature of ESs. 
Evolution strategies for solving discrete optimization 
formulation have been presented. A parallel model to 
obtain linear speedup has been discussed. 
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APPENDIX 

(1) Data set for Example 2: this set consists of 25 data 
vectors in the 2D plane and are provided in Table A1. 

(2) Data set for Example 3: this set consists of 20 data 
vectors in the 2D plane and are provided in Table A2. 

Table A 1 

Touching clusters data 
(x,, x2) (xl, x2) 

(2, 11) (3,7) 
(3, 13) (4, 15) 
(4, 10) (5, 8) 
(5, 12) (6, 14) 
(6, 6) (7,11) 
(8, 8) (8, 13) 
(9, l l) (10, 10) 
(12,7) (12,9) 
(12, 12) (14,6) 
(14,8) (13,11) 
(14,13) (16,7) 
(16, 10) (17, 12) 
(10,9) 

Table A2 

Symmetric data 
(XI' X2) (X1,X2) 

(-3.1,0.1) (-2.9, -0.1) 
(-2.9,0.1) (3.1, -0.1) 
(--3.0,0.0) (-- 1.1,0.1) 
( -1 .1 , -0 .1)  (0.9,0.1) 
(-0.9, -0.1) ( -  1.0,0.0) 
(-0.9,0.1) (0.9, -0.1) 
(1.1,0.1) (1.1, -0.1) 
(1.0,0.0) (2.9,0.1) 
(2.9, -0.1) (3.1,0.1) 
(-3.1, -0.1) (3.0,0.0) 
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