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Abstract

Effective and efficient generation of keypoints from an

image is a well-studied problem in the literature and forms

the basis of numerous Computer Vision applications. Es-

tablished leaders in the field are the SIFT and SURF al-

gorithms which exhibit great performance under a variety

of image transformations, with SURF in particular consid-

ered as the most computationally efficient amongst the high-

performance methods to date.

In this paper we propose BRISK1, a novel method for

keypoint detection, description and matching. A compre-

hensive evaluation on benchmark datasets reveals BRISK’s

adaptive, high quality performance as in state-of-the-art al-

gorithms, albeit at a dramatically lower computational cost

(an order of magnitude faster than SURF in cases). The

key to speed lies in the application of a novel scale-space

FAST-based detector in combination with the assembly of

a bit-string descriptor from intensity comparisons retrieved

by dedicated sampling of each keypoint neighborhood.

1. Introduction

Decomposing an image into local regions of interest or

‘features’ is a widely applied technique in Computer Vision

used to alleviate complexity while exploiting local appear-

ance properties. Image representation, object recognition

and matching, 3D scene reconstruction and motion tracking

all rely on the presence of stable, representative features in

the image, driving research and yielding a plethora of ap-

proaches to this problem.

The ideal keypoint detector finds salient image regions

such that they are repeatably detected despite change of

viewpoint; more generally it is robust to all possible im-

age transformations. Similarly, the ideal keypoint descrip-

tor captures the most important and distinctive information

content enclosed in the detected salient regions, such that

the same structure can be recognized if encountered. More-

1The reference implementation of BRISK can be downloaded from

http://www.asl.ethz.ch/people/lestefan/personal/

BRISK

over, on top of fulfilling these properties to achieve the de-

sired quality of keypoints, the speed of detection and de-

scription needs also to be optimized to fit within the time-

constraints of the task at hand.

In principle, state-of-the-art algorithms target applica-

tions with either strict requirements in precision or speed

of computation. Lowe’s SIFT approach [9] is widely ac-

cepted as one of highest quality options currently avail-

able, promising distinctiveness and invariance to a variety

of common image transformations – however, the at the ex-

pense of computational cost. On the other end of the spec-

trum, a combination of the FAST [14] keypoint detector and

the BRIEF [4] approach to description offers a much more

suitable alternative for real-time applications. However, de-

spite the clear advantage in speed, the latter approach suf-

fers in terms of reliability and robustness as it has minimal

tolerance to image distortions and transformations, in par-

ticular to in-plane rotation and scale change. As a result,

real-time applications like SLAM [6] need to employ prob-

abilistic methods [5] for data association to discover match-

ing consensus.

The inherent difficulty in extracting suitable features

from an image lies in balancing two competing goals: high-

quality description and low computational requirements.

This is where this work aims to set a new milestone with

the BRISK methodology. Perhaps the most relevant work

tackling this problem is SURF [2] which has been demon-

strated to achieve robustness and speed, only, as evident in

our results, BRISK achieves comparable quality of match-

ing at much less computation time. In a nutshell, this paper

proposes a novel method for generating keypoints from an

image, structured as follows:

• Scale-space keypoint detection: Points of interest are

identified across both the image and scale dimensions us-

ing a saliency criterion. In order to boost efficiency of

computation, keypoints are detected in octave layers of

the image pyramid as well as in layers in-between. The

location and the scale of each keypoint are obtained in

the continuous domain via quadratic function fitting.

• Keypoint description: A sampling pattern consisting of
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points lying on appropriately scaled concentric circles is

applied at the neighborhood of each keypoint to retrieve

gray values: processing local intensity gradients, the fea-

ture characteristic direction is determined. Finally, the

oriented BRISK sampling pattern is used to obtain pair-

wise brightness comparison results which are assembled

into the binary BRISK descriptor.

Once generated, the BRISK keypoints can be matched

very efficiently thanks to the binary nature of the descriptor.

With a strong focus on efficiency of computation, BRISK

also exploits the speed savings offered in the SSE instruc-

tion set widely supported on today’s architectures.

2. Related Work

Identifying local interest points to be used for image

matching can be traced a long way back in the literature,

with Harris and Stephens [7] proposing one of the earli-

est and probably most well-known corner detectors. The

seminal work of Mikolajzyk et al.[13] presented a compre-

hensive evaluation of the most competent detection meth-

ods at the time, which revealed no single all-purpose de-

tector but rather the complementary properties of the differ-

ent approaches depending on the context of the application.

The more recent FAST criterion [14] for keypoint detection

has become increasingly popular in state-of-the-art methods

with hard real-time constraints, with AGAST [10] extend-

ing this work for improved performance.

Amongst the best quality features currently in the litera-

ture is the SIFT [9]. The high descriptive power and robust-

ness to illumination and viewpoint changes has rated the

SIFT descriptor at the top of the rankings list in the survey

in [11]. However, the high dimensionality of this descriptor

makes SIFT prohibitively slow. PCA-SIFT [8] reduced the

descriptor from 128 to 36 dimensions, compromising how-

ever its distinctiveness and increasing the time for descrip-

tor formation which almost annihilates the increased speed

of matching. The GLOH descriptor [12] is also worth not-

ing here, as it belongs to the family of SIFT-like methods

and has been shown to be more distinctive but also more

expensive to compute than SIFT.

The growing demand for high-quality, high-speed fea-

tures has led to more research towards algorithms able to

process richer data at higher rates. Notable is the work

of Agrawal et al.[1] who apply a center-symmetric local

binary pattern as an alternative to SIFT’s orientation his-

tograms approach. The most recent BRIEF [4] is designed

for super-fast description and matching and consists of a

binary string containing the results of simple image inten-

sity comparisons at random pre-determined pixel locations.

Despite the simplicity and efficiency of this approach, the

method is very sensitive to image rotation and scale changes

restricting its application to general tasks.

Probably the most appealing features at the moment are

the SURF [2], which have been demonstrated to be signif-

icantly faster than SIFT. SURF detection uses the determi-

nant of the Hessian matrix (blob detector), while the de-

scription is done by summing Haar wavelet responses at the

region of interest. While demonstrating impressive timings

with respect to the state-of-the-art, SURF are, in terms of

speed, still orders of magnitude away from the fastest, yet

limited quality features currently available.

In this paper, we present a novel methodology dubbed

‘BRISK’ for high-quality, fast keypoint detection, descrip-

tion and matching. As suggested by the name, the method

is rotation as well as scale invariant to a significant extent,

achieving performance comparable to the state-of-the-art

while dramatically reducing computational cost. Follow-

ing a description of the approach, we present experimen-

tal results performed on the benchmark datasets and using

the standardized evaluation method of [12, 13]. Namely,

we present evaluation of BRISK with respect to SURF and

SIFT which are widely accepted as a standard of compari-

son under common image transformations.

3. BRISK: The Method

In this section, we describe the key stages in BRISK,

namely feature detection, descriptor composition and key-

point matching to the level of detail that the motivated

reader can understand and reproduce. It is important to

note that the modularity of the method allows the use of

the BRISK detector in combination with any other keypoint

descriptor and vice versa, optimizing for the desired perfor-

mance and the task at hand.

3.1. ScaleSpace Keypoint Detection

With the focus on efficiency of computation, our detec-

tion methodology is inspired by the work of Mair et al.[10]

for detecting regions of interest in the image. Their AGAST

is essentially an extension for accelerated performance of

the now popular FAST, proven to be a very efficient basis

for feature extraction. With the aim of achieving invariance

to scale which is crucial for high-quality keypoints, we go

a step further by searching for maxima not only in the im-

age plane, but also in scale-space using the FAST score s as

a measure for saliency. Despite discretizing the scale axis

at coarser intervals than in alternative high-performance de-

tectors (e.g. the Fast-Hessian [2]), the BRISK detector es-

timates the true scale of each keypoint in the continuous

scale-space.

In the BRISK framework, the scale-space pyramid lay-

ers consist of n octaves ci and n intra-octaves di, for

i = {0, 1, . . . , n − 1} and typically n = 4. The oc-

taves are formed by progressively half-sampling the orig-

inal image (corresponding to c0). Each intra-octave di is lo-

cated in-between layers ci and ci+1 (as illustrated in Figure



1). The first intra-octave d0 is obtained by downsampling

the original image c0 by a factor of 1.5, while the rest of

the intra-octave layers are derived by successive halfsam-

pling. Therefore, if t denotes scale then t(ci) = 2i and

t(di) = 2i · 1.5.

It is important to note here that both FAST and AGAST

provide different alternatives of mask shapes for keypoint

detection. In BRISK, we mostly use the 9-16 mask, which

essentially requires at least 9 consecutive pixels in the 16-

pixel circle to either be sufficiently brighter or darker than

the central pixel for the FAST criterion to be fulfilled.

Initially, the FAST 9-16 detector is applied on each oc-

tave and intra-octave separately using the same threshold T
to identify potential regions of interest. Next, the points be-

longing to these regions are subjected to a non-maxima sup-

pression in scale-space: firstly, the point in question needs

to fulfill the maximum condition with respect to its 8 neigh-

boring FAST scores s in the same layer. The score s is

defined as the maximum threshold still considering an im-

age point a corner. Secondly, the scores in the layer above

and below will need to be lower as well. We check inside

equally sized square patches: the side-length is chosen to be

2 pixels in the layer with the suspected maximum. Since the

neighboring layers (and therefore its FAST scores) are rep-

resented with a different discretization, some interpolation

is applied at the boundaries of the patch. Figure 1 depicts

an example of this sampling and the maxima search.

The detection of maxima across the scale axis at octave

c0 is a special case: in order to obtain the FAST scores for

a virtual intra-octave d−1 below c0, we apply the FAST 5-8

mask on c0. However, the scores in patch of d−1 are in this

case not required to be lower than the score of the examined

point in octave c0.

Considering image saliency as a continuous quantity not

only across the image but also along the scale dimension,

we perform a sub-pixel and continuous scale refinement for

each detected maximum. In order to limit complexity of the

refinement process, we first fit a 2D quadratic function in

the least-squares sense to each of the three scores-patches

(as obtained in the layer of the keypoint, the one above, and

the one below) resulting in three sub-pixel refined saliency

maxima. In order to avoid resampling, we consider a 3 by

3 score patch on each layer. Next, these refined scores are

used to fit a 1D parabola along the scale axis yielding the

final score estimate and scale estimate at its maximum. As a

final step, we re-interpolate the image coordinates between

the patches in the layers next to the determined scale. An

example of the BRISK detection in two images of the Boat

sequence (defined in Section 4) is shown up-close in Figure

2.

octave c
i

FAST score s

log ( ) : scale2 t t

i

i+1

i-1

interpolated position

intra-octave d
i-1

octave c
i+1

octave c
i-1
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i

Figure 1. Scale-space interest point detection: a keypoint (i.e. saliency

maximum) is identified at octave ci by analyzing the 8 neighboring

saliency scores in ci as well as in the corresponding scores-patches in

the immediately-neighboring layers above and below. In all three layers

of interest, the local saliency maximum is sub-pixel refined before a 1D

parabola is fitted along the scale-axis to determine the true scale of the

keypoint. The location of the keypoint is then also re-interpolated between

the patch maxima closest to the determined scale.

(a) Boat image 1 (b) Boat image 2

Figure 2. Close-up of a BRISK detection example on images 1 and 2 of

the Boat sequence exhibiting small zoom and in-plane rotation. The size

of the circles denote the scale of the detected keypoints while the radials

denote their orientation. For clarity, the detection threshold is set here to a

stricter value than in the typical setup, yielding slightly lower repeatability.

3.2. Keypoint Description

Given a set of keypoints (consisting of sub-pixel refined

image locations and associated floating-point scale values),

the BRISK descriptor is composed as a binary string by con-

catenating the results of simple brightness comparison tests.

This idea has been demonstrated in [4] to be very efficient,

however here we employ it in a far more qualitative man-

ner. In BRISK, we identify the characteristic direction of

each keypoint to allow for orientation-normalized descrip-

tors and hence achieve rotation invariance which is key to

general robustness. Also, we carefully select the brightness

comparisons with the focus on maximizing descriptiveness.
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Figure 3. The BRISK sampling pattern with N = 60 points: the small

blue circles denote the sampling locations; the bigger, red dashed circles

are drawn at a radius σ corresponding to the standard deviation of the

Gaussian kernel used to smooth the intensity values at the sampling points.

The pattern shown applies to a scale of t = 1.

3.2.1 Sampling Pattern and Rotation Estimation

The key concept of the BRISK descriptor makes use of

a pattern used for sampling the neighborhood of the key-

point. The pattern, illustrated in Figure 3, defines N loca-

tions equally spaced on circles concentric with the keypoint.

While this pattern resembles the DAISY descriptor [15], it

is important to note that its use in BRISK is entirely dif-

ferent, as DAISY was built specifically for dense matching,

deliberately capturing more information and thus resulting

to demanding speed and storage requirements.

In order to avoid aliasing effects when sampling the im-

age intensity of a point pi in the pattern, we apply Gaus-

sian smoothing with standard deviation σi proportional to

the distance between the points on the respective circle. Po-

sitioning and scaling the pattern accordingly for a partic-

ular keypoint k in the image, let us consider one of the

N ·(N −1)/2 sampling-point pairs (pi,pj). The smoothed

intensity values at these points which are I(pi, σi) and

I(pj , σj) respectively, are used to estimate the local gra-

dient g(pi,pj) by

g(pi,pj) = (pj − pi) ·
I(pj , σj) − I(pi, σi)

‖pj − pi‖
2 . (1)

Considering the set A of all sampling-point pairs:

A =
{

(pi,pj) ∈ R
2 × R

2 | i < N ∧ j < i ∧ i, j ∈ N
}

(2)

we define a subset of short-distance pairings S and another

subset of L long-distance pairings L:

S = {(pi,pj) ∈ A | ‖pj − pi‖ < δmax} ⊆ A

L = {(pi,pj) ∈ A | ‖pj − pi‖ > δmin} ⊆ A.
(3)

The threshold distances are set to δmax = 9.75t and

δmin = 13.67t (t is the scale of k). Iterating through the

point pairs in L, we estimate the overall characteristic pat-

tern direction of the keypoint k to be:

g =

(

gx

gy

)

=
1

L
·

∑

(pi,pj)∈L

g(pi,pj). (4)

The long-distance pairs are used for this computation, based

on the assumption that local gradients annihilate each other

and are thus not necessary in the global gradient determina-

tion – this was also confirmed by experimenting with varia-

tion of the distance threshold δmin.

3.2.2 Building the Descriptor

For the formation of the rotation- and scale-normalized de-

scriptor, BRISK applies the sampling pattern rotated by

α = arctan2 (gy, gx) around the keypoint k. The bit-vector

descriptor dk is assembled by performing all the short-

distance intensity comparisons of point pairs (pα
i ,pα

j ) ∈ S
(i.e. in the rotated pattern), such that each bit b corresponds

to:

b =

{

1, I(pα
j , σj) > I(pα

i , σi)
0, otherwise

∀(pα
i ,pα

j ) ∈ S

(5)

While the BRIEF descriptor is also assembled via bright-

ness comparisons, BRISK has some fundamental differ-

ences apart from the obvious pre-scaling and pre-rotation

of the sampling pattern. Firstly, BRISK uses a determinis-

tic sampling pattern resulting in a uniform sampling-point

density at a given radius around the keypoint. Consequently,

the tailored Gaussian smoothing will not accidentally dis-

tort the information content of a brightness comparison by

blurring two close sampling-points in a comparison. Fur-

thermore, BRISK uses dramatically fewer sampling-points

than pairwise comparisons (i.e. a single point participates

in more comparisons), limiting the complexity of looking-

up intensity values. Finally, the comparisons here are re-

stricted spatially such that the brightness variations are only

required to be locally consistent. With the sampling pat-

tern and the distance thresholds as shown above, we obtain

a bit-string of length 512. The bit-string of BRIEF64 also

contains 512 bits, thus the matching for a descriptor pair

will be performed equally fast by definition.

3.3. Descriptor Matching

Matching two BRISK descriptors is a simple computa-

tion of their Hamming distance as done in BRIEF [4]: the

number of bits different in the two descriptors is a measure

of their dissimilarity. Notice that the respective operations

reduce to a bitwise XOR followed by a bit count, which can

both be computed very efficiently on today’s architectures.



3.4. Notes on Implementation

Here, we give a very brief overview of some implemen-

tation issues which contribute significantly to the overall

computational performance and the reproducibility of the

method. All the BRISK functionality builds on the com-

mon 2D feature interface of OpenCV 2.2 allowing easy inte-

gration and interchangeability with existing features (SIFT,

SURF, BRIEF, etc.).

The detection process uses the AGAST implementation

[10] for computing saliency scores. The non-maxima sup-

pression benefits from early termination capability limiting

the saliency scores calculation to a minimum. Building

the image pyramid makes use of some SSE2 and SSSE3

commands, both concerning the halfsampling as well as the

downsampling by a factor of 1.5.

In order to efficiently retrieve gray values with the sam-

pling pattern, we generate a look-up table of discrete ro-

tated and scaled BRISK pattern versions (consisting of the

sampling-point locations and the properties of the Gaus-

sian smoothing kernel as well as the indexing of long and

short distance pairings) consuming around 40MB of RAM

– which is still acceptable for applications constrained to

low computational power.

We furthermore use the integral image along with a sim-

plified Gaussian kernel version inspired by [2]: the kernel

is scalable when changing σ without any increase in com-

putational complexity. In our final implementation we use

as an approximation a simple square box mean filter with

floating point boundaries and side length ρ = 2.6 · σ.

Thus we do not need time-consuming Gaussian smooth-

ing of the whole image with many different kernels, but we

instead retrieve single values using an arbitrary parameter

σ.

We also integrated an improved SSE Hamming distance

calculator achieving matching at 6 times the speed of the

current OpenCV implementation as used for example with

BRIEF in OpenCV.

4. Experiments

Our proposed method has been extensively tested fol-

lowing the now established evaluation method and datasets

in the field first proposed by Mikolajczyk and Schmid

[12, 13]. For the sake of consistency with results presented

in other works, we also used their MATLAB evaluation

scripts which are available online. Each of the datasets

contains a sequence of six images exhibiting an increas-

ing amount of transformation. All comparisons here are

performed against the first image in each dataset. Figure

4 shows one image for each dataset analyzed.

The transformations cover view-point change (Graffiti

and Wall), zoom and rotation (Boat), blur (Bikes and Trees),

brightness changes (Leuven) as well as JPEG compression

(a) Graffiti (b) Wall (c) Boat (d) Ubc

(e) Leuven (f) Bikes (g) Trees

Figure 4. Datasets used for evaluation: viewpoint change (Graffiti and

Wall), zoom and rotation (Boat), JPEG compression (Ubc), brightness

change (Leuven), and blur (Bikes and Trees).

(Ubc). Since the viewpoint change scenes are planar, the

image pairs in all sequences are provided with a ground

truth homography used to determine the corresponding key-

points. In the rest of the section we present quantitative

results concerning the detector and descriptor performance

of BRISK compared to SIFT (OpenCV2.2 implementation)

as well as SURF (original implementation). Our evalua-

tion uses similarity matching which considers any pair of

keypoints with descriptor distance below a certain thresh-

old a match – in contrast to e.g. nearest neighbor matching,

where a database is searched for the match with the lowest

descriptor distance. Finally, we also demonstrate BRISK’s

big advantage in computational speed by listing compara-

tive timings.

4.1. BRISK Detector Repeatability

The detector repeatability score as defined in [13] is cal-

culated as the ratio between the corresponding keypoints

and the minimum total number of keypoints visible in both

images. The correspondences are identified by looking at

the overlap area of the keypoint region in one image (i.e.

the extracted circle) and the projection of the keypoint re-

gion from the other image (i.e. ellipse-like): if the region

of intersection is larger than 50% of the union of the two

regions, it is considered a correspondence. Note that this

method is largely dependent on the assignment of the key-

point circle radius, i.e. the constant factor between scale and

radius. We choose this such that the average radii obtained

with the BRISK detector approximately match the average

radii obtained with the SURF and SIFT detectors.

The assessment of repeatability scores (a selection of

results is shown in Figure 5) is performed using constant

BRISK detection thresholds across one sequence. For the

sake of a fair comparison with the SURF detector, we adapt

the respective Hessian threshold such that it outputs approx-

imately the same number of correspondences in the similar-

ity based matching setup.

As illustrated in Figure 5, the BRISK detector exhibits
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Figure 5. Repeatability scores for 50% overlap error of the BRISK and the

SURF detector. The resulting similarity correspondences (approximately

matched between the detectors) are given as numbers above the bars.

equivalent repeatability as the SURF detector as long as the

image transformations applied are not too large. Given the

clear advantage in computational cost of the BRISK over

the SURF detector however, the proposed method consti-

tutes a strong competitor, even if the performance at larger

transformations appears to be slightly inferior.

4.2. Evaluation and Comparison of the Overall
BRISK Algorithm

Since our work aims at providing an overall fast as well

as robust detection, description and matching, we evaluate

the joint performance of all these stages in BRISK and com-

pare it to SIFT and SURF. Figure 6 shows the precision-

recall curves using threshold-based similarity matching for

a selection of image pairs of different datasets. Again, for

this assessment we adapt the detection thresholds such that

they output an approximately equal number of correspon-

dences in the spirit of fairness. Note that the evaluation

results here are different from the ones in [3], where all de-

scriptors are extracted on the same regions (obtained with

the Fast-Hessian detector).

As illustrated in Figure 6, BRISK performs competi-

tively with SIFT and SURF in all datasets and even out-

performs the other two in some cases. The reduced perfor-

mance of BRISK in the Trees dataset is attributed to the de-

tector performance: while SURF detects 2606 and 2624 re-

gions in the images, respectively, BRISK only detects 2004

regions in image 4 compared to 5949 found in image 1

to achieve the approximately same number of correspon-

dences. The same holds for the other blur dataset, Bikes:

saliency as assessed with FAST is inherently more sensi-
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Figure 6. Evaluation results showing precision-recall curves (of all detec-

tion, extraction and matching stages jointly) for BRISK, SURF and SIFT.

Results are shown for viewpoint changes (a and b), pure in-plane rotation

(c), zoom and rotation (d), blur (e and f), brightness changes (g) and JPEG

compression (h). The number of similarity correspondences are indicated

in the figures per algorithm. The red dotted line in (f) shows the perfor-

mance of BRISK descriptors extracted from SURF regions, yielding 2274

correspondences. Overall, BRISK exhibits competitive performance in all

cases and even outperforms SIFT and SURF in some cases.

tive to blur than blob-like detectors. We therefore also show

the evaluation of the BRISK descriptors extracted from the

SURF regions for the Trees dataset, demonstrating again

that the descriptor performance is comparable to SURF.

Evidently, SIFT performs significantly worse in the

Trees, Boat, and Ubc datasets, which can be explained with

the limited detector repeatability in these cases. On the
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Figure 7. Comparison of different BRISK versions to 64 byte BRIEF.

BRIEF, as well as both SU-BRISK (single-scale, unrotated) and S-BRISK

(single-scale) are extracted from AGAST keypoints detected in the original

image. Notice that the BRISK pattern was scaled such that it matches the

BRIEF patch size. The standard version of BRISK had to be extracted

from our scale-invariant corner detection with adapted threshold to match

the number of correspondences: they are 850 in the Wall pair and 1530 in

the Boat pair.

other hand, SIFT and BRISK handle the important case of

pure in-plane rotation very well and better than SURF.

In order to complete the experimental section, we want

to make the link to BRIEF. Figure 7 shows a comparison of

the unrotated, single-scale BRISK version (SU-BRISK) to

64 byte BRIEF features on the same (single scale) AGAST

keypoints. Also included are the rotation invariant, single-

scale S-BRISK, as well as the standard BRISK. The exper-

iment is conducted with two image pairs: on the one hand,

we used the first two images in the Wall dataset proving that

SU-BRISK and BRIEF64 are exhibiting a very similar per-

formance in the absence of scale change and in-plane ro-

tation. Notice that this is really the situation BRIEF was

designed for. On the other hand, we applied the differ-

ent versions to the first two images of the Boat sequence:

this experiment demonstrates some advantage of the SU-

BRISK over BRIEF in terms of robustness against small

rotation (10◦) and scale changes (10%). Furthermore, the

well known and intuitive price for both rotation and scale

invariance is easily observable.

4.3. Timings

Timings have been recorded on a laptop with a quad-

core i7 2.67 GHz processor (only using one core, however)

running Ubuntu 10.04 (32-bit), using the implementation

and setup as detailed above. Table 1 presents the results

concerning detection on the first image of the Graffiti se-

quence, while Table 2 shows the matching times. The val-

ues are averaged over 100 runs. Note that all matchers do

a brute-force descriptor distance computation without any

early termination optimizations.

The timings show a clear advantage of BRISK. Its de-

tection and descriptor computation is typically an order of

magnitude faster than the one of SURF, which are consid-

ered to be the fastest rotation and scale invariant features

currently available. It is also important to highlight that

SIFT SURF BRISK

Detection threshold 4.4 45700 67

Number of points 1851 1557 1051

Detection time [ms] 1611 107.9 17.20

Description time [ms] 9784 559.1 22.08

Total time [ms] 11395 667.0 39.28

Time per point (ms) 6.156 0.4284 0.03737

Table 1. Detection and extraction timings for the first image in the Graffiti

sequence (size: 800 × 640 pixels).

SIFT SURF BRISK

Points in first image 1851 1557 1051

Points in second image 2347 1888 1385

Total time [ms] 291.6 194.6 29.92

Time per comparison [ns] 67.12 66.20 20.55

Table 2. Matching timings for the Graffiti image 1 and 3 setup.

BRISK is easily scalable for faster execution by reducing

the number of sampling-points in the pattern at some ex-

pense of matching quality – which might be affordable in

a particular application. Moreover, scale and/or rotation in-

variance can be omitted trivially, increasing the speed as

well as the matching quality in applications where they are

not needed.

4.4. An Example

Complementary to the extensive evaluation presented

above, we also provide a real-world example demonstrat-

ing matching using BRISK. Figure 8 shows an image pair

exhibiting various transformations. A similarity match with

a threshold of 90 was performed (out of 512 comparisons)

resulting in robust matches without significant outliers.

5. Conclusions

We have presented a novel method named BRISK, which

tackles the classic Computer Vision problem of detecting,

describing and matching image keypoints for cases with-

out sufficient a priori knowledge on the scene and cam-

era poses. In contrast to well-established algorithms with

proven high performance, such as SIFT and SURF, the

method at hand offers a dramatically faster alternative at

comparable matching performance – a statement which we

base on an extensive evaluation using an established frame-

work. BRISK relies on an easily configurable circular sam-

pling pattern from which it computes brightness compar-

isons to form a binary descriptor string. The unique prop-

erties of BRISK can be useful for a wide spectrum of ap-

plications, in particular for tasks with hard real-time con-

straints or limited computation power: BRISK finally offers

the quality of high-end features in such time-demanding ap-

plications.



Figure 8. BRISK matching example: a detection threshold of 70 is used and a matching Hamming distance threshold of 90. The resulting matches

are connected by the green lines showing no clear false positives. The authors provide a reference implementation of BRISK downloadable from

http://www.asl.ethz.ch/people/lestefan/personal/BRISK .

Amongst avenues for further research into BRISK, we

aim to explore alternatives to the scale-space maxima search

of saliency scores to yield higher repeatability whilst main-

taining speed. Furthermore, we aim at analyzing both theo-

retically and experimentally the BRISK pattern and the con-

figuration of comparisons, such that the information content

and/or robustness of the descriptor is maximized.
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