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Abstract—Offline handwritten text recognition requires sev-
eral preprocessing stages. Many different preprocessing tech-
niques have been proposed in the literature based either on
geometrical heuristics or on statistical models. Unfortunately,
these approaches usually fail when dealing with short sentences
or isolated words. One statistical technique for text line pre-
processing is based on the detection and classification of local
extrema points, by means of neural networks, to determine the
reference lines delimiting the different zones. This technique
depends on a sufficient amount of local extrema and, relating
its robustness, a single bad classified extrema point may lead
to undesirable results.

This paper proposes a novel method to normalize handwrit-
ten text lines based on a supervised statistical model which
takes into account all pixels instead of just the local extrema.
A Hidden Markov Model hybridized with an Artificial Neural
Network is applied column-wise in order to segment each
column of the handwritten line into three zones. The reference
lines obtained in this way are used to normalize the image
afterwards. The technique has been empirically tested on the
IAM offline database.

Keywords-handwriting text line normalization; zone estima-
tion; hybrid HMM/ANN

I. INTRODUCTION

Offline handwritten text recognition remains a challenging

pattern recognition task. One of the reasons is the high

variability of writing styles. The preprocessing stage of

automatic handwriting recognition systems usually comprise

several steps in order to reduce variations in the handwritten

texts as much as possible. Some of these steps are illus-

trated in Figure 1. Once the text line image is detected,

this preprocessing typically relies on slope correction, slant

correction and size normalization. With the slope correction,

the handwritten word is horizontally rotated and translated

such that the lower baseline is aligned to the horizontal

axis of the image. Slant is the clockwise angle between

the vertical direction and the direction of the vertical text

strokes. Once the slant is corrected, size normalization tries

to make the system invariant to the characters size.

Most preprocessing modules comprise the detection of the

different zones of the cursive script depicted in Figure 2: the

main body or core zone (zone between the upper baseline

Figure 2. Example of text line image with the different zones (zone
of ascenders, zone of descenders, and main body or core zone) and the
reference lines delimiting them (upper and lower baselines, and the lines
of ascenders and descenders) of the cursive script.

and the lower baseline), the zone of the ascenders, and the

zone of the descenders. Traditional methods [1], [2], [3]

obtain a rough estimate of the main body zone by horizontal

density histograms [1], [2] or by applying the “Run-Length

Smoothing Algorithm” [4].

These techniques are based on geometrical heuristics

which state that there are more pixels in the main body zone

than in the zone of ascenders or descenders. The use of local

extrema for estimating the zones can be also found in the

literature. For example, in [5] the vertical extreme values

are used to estimate the baseline by selecting the subset

of baseline points using regression analysis. Unfortunately,

geometrical heuristics may fail in many cases, specially in

short sentences or in isolated words. Since they are based

on ink statistics, they may be confused in presence of too

much or too few ascenders and/or descenders, and they can

also be affected by the presence of long horizontal strokes.

It is possible to estimate the main body zone avoiding

geometrical heuristics, relying instead on machine learning

techniques. For instance, [6] uses neural networks to obtain

a rough estimate of the main body zone. The use of neural

networks to determine the reference lines by classifying local

extrema points has already been proposed in [7], [8]. This

method may fail when there are few local extrema, as is the

case short sentences and isolated words, or in the presence

of a sole bad classified point. Our goal is to obtain a more

robust method.

This paper presents a new technique based on Hidden

Markov Models (HMMs) to track the reference lines without

requiring the detection and classification of local extrema
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Figure 1. Bird’s eye view of handwriting recognition preprocessing stages from the scanned document to preprocessed handwritten lines.

points. HMMs play an important role in handwriting recog-

nition, but their role is mainly limited to the recognition

of preprocessed lines. Although the use of HMMs in pre-

processing is not new, it seems to have been limited to the

segmentation of lines from printed documents [9] and, more

recently, extended to cursive script [10].

Next section describes our approach, showing illustrative

examples. The experimental framework including the de-

scription of the whole recognition system and the training of

the system using the IAM corpus are presented in Section III.

Some evaluation metrics are shown in Section IV. Finally,

the conclusions and new proposals for future work are drawn

in Section V.

II. TEXT SIZE NORMALIZATION BY ZONE ESTIMATION

Text size normalization is closely related to the detection

of the different zones of the cursive script. As stated in

the previous section, most approaches are based either on

geometrical heuristics or on machine learning techniques.

The novel size normalization method proposed in this work

is based on statistical machine recognition techniques and

relies also on tracking reference lines. It differs from [7],

[8] in the way those lines are obtained: Instead of joining

local extrema associated to the same class, the pixels are

classified into the different zones so that the reference lines

are the frontiers between them.

A. Statistical Framework

The zone detection problem can be formulated as a joint

pixel classification problem into three classes {A,B,D} for

zone of Ascenders, main Body and Descenders, respectively.

This classification shows some restrictions: If we focus our

attention on a given column, the pixels of the same zone are

contiguous and the classes follow a vertical order (from top

to bottom: A, B and D, as shown in Figure 2). The zone

estimation, posed in this way, can be easily formulated as a

statistical pattern recognition problem. More particularly, if

this process is applied column-wise, the problem is a joint

classification on sequences, which can be tackled by means

of HMMs or also with Conditional Random Fields [11].

Indeed, both models provide the capability of combining

syntactic restrictions with the estimation of likelihoods or

posteriors of each pixel from some features. In this work, we

have opted to use HMMs hybridized with Artificial Neural

Networks (ANNs) since connectionist models have widely

proven their suitability for image processing [12].

More formally, given a text line image of width w and

height h, each one of the w image columns can be described

as a sequence of pixels X = (x1 . . . xh) and, under the

statistical approach to pattern recognition [13], the goal is to

find the likeliest zone sequence Z� = (z1 . . . zh) maximizing

the a posteriori probability:

Z� = argmax
Z∈{A,B,D}h

P (Z|X) . (1)

The application of the Bayes rule leads to a decomposition

of P (Z|X) into the model P (X|Z) and the statistical model

describing the a priori probability of zones P (Z). The

problem can then be reformulated as:

Z� = argmax
Z∈{A,B,D}h

P (X|Z)P (Z) . (2)

The emission probabilities of HMMs, usually estimated

by means of Gaussian mixtures, are computed in this case

by means of ANNs. Since these models estimate posteriors,

we need to convert to emissions by applying Bayes rule [14].

B. Modeling

A very simple left-to-right with loops HMM topology,

as depicted in Figure 3, suffices to model the a priori

probability of zones given by the constraints about the

possible sequence of zone labels. Each one of the three

emitting states corresponds to one of the three zones. The

fact that some lines do not have ascenders or descenders is

modeled by allowing their respective states to be skipped.

The state emissions are estimated with a multilayer per-

ceptron (MLP) which receives a centered window around

the pixel to be classified and classifies the pixel in one

of the three zones. To this end, the softmax activation

function is used at the output layer. An alternative consists

of determining whether the pixel belongs to the main body

zone or not, without discriminating between ascender and

descender zones. In this case, the emissions of the states A
and D are tied and a single logistic output neuron suffices.
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Figure 3. Scheme of the used HMM topology: one state for each zone
{A,B,D} and skips for ascenders and descenders.

C. Smoothing of Reference Lines

During training and for preprocessing, the HMM/ANN

described above is independently applied to each column

of the image to segment it into three zones. White-space

columns, skipped during training, are also skipped in the

preprocessing stage. The segmentation points of nearby

columns are usually very similar since their input features

are highly correlated. Nevertheless, some irregularities may

be observed. In order to cope with these variations as well

as to assign segmentation points in white-spaces columns,

the upper and lower contours are interpolated and smoothed.

Note that the HMM/ANN only detects the main body

zone, and the upper and lower contours are extracted from

there. In order to estimate the reference line of ascenders

and descenders, the local extrema of the pixels of the

corresponding zones are used. The highest local maxima

of the vertical upper contour are used for ascenders and the

local minima of the lower contour for descenders. In addition

some restrictions are applied:

• local extrema of the contours must be more than 5

pixels off the main body zone,

• only one local extrema of each class could appear in

each column. In that case, the furthest point from the

main body zone is taken.

The final reference lines are determined joining ascenders

and descenders respectively by means of lineal interpolation

as can be appreciated in Figure 2.

D. Text Size Normalization

Finally, once the reference lines are obtained, normal-

ization is performed for each column of the image by

linearly scaling the three zones to a fixed height. Ascender

zone is reduced to 20% of the final image height and the

descender zone is reduced to 10%. This produces a fixed

height image suitable for the feature extraction described

below. The image height has been fixed to 42 pixels as in

[8]. Note that although the size normalization process does

not preserve the aspect ratio, it is still possible to perform a

width normalization by counting, for instance, the average

number of changes of white-space/ink, in horizontal, in the

main body zone rows and using this value, estimated in the

training corpus and normalized per pixel, to scale the width.

III. EXPERIMENTAL FRAMEWORK

A. Corpus

Since this work is focused on the text normalization step,

the system has been tested with a corpus of segmented lines.

A handwriting recognition experiment with the version 3.0

of the IAM database [15], using the standard training and

test partitions, has been conducted. This version consists of

5 685 sentences comprising about 115 000 word instances

produced by 657 writers, without restrictions on the writing

style or the writing instrument used.

B. Image Preprocessing

The image cleaning, slope and slant removal are identical

to [8], whereas the zone estimation, the tracking of reference

lines and the text normalization applied afterwards are

those described in previous section. An example of the

preprocessing step is illustrated in Figure 4. The recognition

experiments conducted with the resulting preprocessed and

parametrized lines uses the same type of HMM/ANN models

as in [8].

C. Size Normalization

The HMM/ANN are applied in this step to downsized

images in order to reduce the input parameters of the MLP

window and to speedup the process. The images have been

downsized to 50% and the segmentation points are applied

to the original images. We have also observed that applying

the technique every two columns produces nearly the same

results.

Let us now describe how the HMM/ANN parameters

(MLPs, class prior probabilities and the HMM transition

probabilities) have been estimated from the IAM database:

In order to obtain labeled patterns (pixels belonging to one of

the three zones to classify), the training and validation lines

of the IAM database have been automatically segmented

into zones by using the techniques described in [8]. White-

space columns are not taken into account. Let us observe

that, since this artificially generated ground-truth has been

computed automatically, it may contain some mistakes so

that the training may be biased. But note also that, as in [6],

the generalization capability of MLPs may partially tackle

this issue.

MLPs have been trained using backpropagation with

momentum term, weight decay and bunch mode using the

April-ANN toolkit [16]. Each training is stopped when the

error measured on a validation set does not improve during

more than 40 training epochs. Several MLPs have been

trained varying different parameters using the technique of
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Figure 4. Example of a IAM text line image. From top to bottom: (a) original image, (b) image with reference lines computed with the proposed technique,
(c) image after text size normalization, and (d) sequence of feature vectors.

hyper-parameter random optimization [17]. The explored

parameters include:

• the learning rate and the momentum term are taken

from a log-uniform distribution between 0.001 and 0.5,

• the loss function is chosen from cross-entropy and

mean squared error,

• the weight decay is chosen from {10−5, 10−6, 10−7},

• the size of the first hidden layer (chosen from

{64, 126, 256, 512}) and the second hidden layer (cho-

sen from {16, 32, 64, 128}), with the restriction that the

first must be greater than the second,

• the activation function of the hidden neurons is taken

from hyperbolic tangent and logistic,

• the size of the bunch mode has been taken from

{16, 32, 64},

• the window size to model the input pixel window: the

width and the heights are chosen independently to be

2× n+ 1 pixels, for n ∈ {10, 20, 25, 30, 35, 40},

• two or three output classes.

The best configuration for this experimental setting was:

• the input layer receives a window of pixels of width

2×35+1 and height 2×35+1 centered at the pixel to

be classified as well as the vertical distance to the upper

and lower vertical contour of columns of a window of

the same width,

• two hidden layers of sizes 256 and 64, respectively,

• learning rate 0.15, momentum term 0.2 and weight

decay 10−6,

• the output layer comprises three softmax units.

The class priors P (z) have been estimated from the

relative frequencies of each class from the training data. The

HMM transition probabilities has been estimated from the

same data by simulating forced Viterbi alignment. Note that,

in this case, it is not necessary to perform an expectation

maximization procedure: the re-segmentation step is not

required since the artificial ground-truth used is labeled at

the pixel level and we are dealing with a joint classification

at this level.

The segmentation points of each column, obtained from

the downsized image, are scaled to the original line im-

age and the points of each reference line are interpolated

using the interpolate.splrep routine from Python

Scipy [18] (linear interpolation with k = 1) and are

smoothed afterwards by means of a convolution with a

Hanning window (of width 15).

D. Feature Extraction

The preprocessed image is then transformed into a se-

quence of feature vectors following the approach described

in [19]. A sliding window of square cells is applied on

the image, and three values are extracted from each cell:

normalized gray level, horizontal derivative of the gray

level, and vertical derivative of the gray level. A window

comprising 20 cells moving in steps of two pixels has

been used, leading to sequences of 60-dimensional feature

vectors. Figure 4(d) shows a feature extraction example.

E. Recognition

The underlying recognition engine is based on

HMM/ANNs similar to [8]. The HMM models graphemes

have a 7-state left-to-right topology with loops and without

skips. A MLP with two hidden layers of 256 and 128 units

using the softmax activation in the output layer is used

to estimate the posteriors which are converted into scaled

emission probabilities, as described in [14]. The input of

the MLP was composed by the current feature vector plus

a context of 5 vectors on the left and 5 on the right. The

HMM/ANNs are trained by means of EM procedure with

forced Viterbi alignment.

The language model and lexicon used in this work are

the same as in [25]. The language model is a Witten Bell

smoothed 4-gram trained with the SRILM toolkit [26]. Three

different text corpora were used: the LOB corpus [27]

(excluding those sentences that contain some line from the

test set or the validation set of the IAM task), the Brown

corpus [28], and the Wellington corpus [29]. The lexicon

has approximately 103K different words.
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Table I
WER AND CER FOR THE TEST SET OF IAM DATABASE.

System |Ω| WER (%) CER (%)

Bertolami et al. (GHMM) [20] 20K 35.5 -
Bertolami et al. (HMMs) [20] 20K 32.8 -
Drew et al. (GHMM) [21] 50K 29.2 10.3
TU Dortmund (HMM) [22] - 28.9 -
Drew et al. (MLP-GHMM + M-MPE) [23] 50K 28.8 10.1
Graves et al. (BLSTM NN/CTC) [24] 20K 25.9 -
España-Boquera et al. (HMM/ANN) [8] 20K 25.9 10.5
HMM Zone estimation (HMM/ANN) 103K 24.4 10.6
Zamora et al. (BLSTM) [25] 103K 22.2 10.5
Zamora et al. (HMM/ANN) [25] 103K 21.1 8.6

(a) (b)

Figure 5. Example of IAM image normalization: (a) applying HMM’s/ANN zone detection, (b) detecting the reference lines using extrema points.

IV. EXPERIMENTAL RESULTS

The results are compared by means of the Word Error

Rate (WER) and the Character Error Rate (CER). A WER

of 18.6(%) and a CER of 6.9(%) were obtained for the

validation set. For the test set, the obtained WER was

24.4 and the corresponding CER was 10.6. These results

are shown in Table I along with the performance of other

recognition systems reported in the literature. Let us remark

that the results obtained in this work share the same lexicon

and language model of [25]. As can be observed, the

new results do not reach the best figures but they remain

competitive with state-of-the-art systems.

Since the ground-truth used to train the zone estimation

technique is obtained from the local extrema classification

technique used in [8], it is expected that some mistakes had

been inherited from it. This may explain that the proposed

method does not reach the figures of merit from the models

used to obtain the artificial ground-truth. Nevertheless, we

have observed that the proposed zone estimation is able

to recover some errors generated by the local extrema

classification technique, as shown in Figure 5.

V. CONCLUSIONS AND FUTURE WORK

A new technique to normalize handwritten text line

images by zone estimation using HMM/ANNs has been

proposed. The estimation of the different zones (ascender,

main body and descender zones) is computed pixel-wise

by applying a HMM/ANN to each column of the text

line image. This information is used to normalize the lines

after correcting the slope and the slant using the techniques

described in [7], [8]. Nevertheless, the application of the

technique proposed in this work for slope normalization

is straightforward. The proposed technique has been tested

on the IAM offline database and the achieved results are

competitive with state-of-the-art systems.
In the proposed technique, each column is labeled into

zones independently of their neighbors. A smoothing has

been applied afterwards. It would be desirable to investigate

methods taking the column correlation into account in the

optimization process. Other lines of research are the use

convolutional neural networks [30], [31] for the estimation

of the posterior probabilities and the use of Conditional

Random Fields [11], [32] instead of HMMs. Additionally,

more complex HMM topologies could be used to better

model the distribution of vertical lengths of each zone.
As a future work, we plan to combine this new technique

with other approaches such as the classification of local

extrema by neural networks [7] in order to override the

weakness of both approaches and obtaining a more robust

system. Also, we intend to apply the zone estimation based

on HMMs proposed in this paper to perform line extraction

and line normalization simultaneously following the ideas

from [9], [10]. The basic idea consists of including a loop

in the HMM and to apply the model to the columns of the

entire image document.

ACKNOWLEDGMENT

This work has been supported by the Spanish Government

under project TIN2010-18958.

REFERENCES

[1] D. J. Burr, “A normalizing transform for cursive script recog-
nition,” in Proc. 6th Int. Conf. Pattern Recognition, Munich,
Germany, 1982, pp. 1027–1030.

[2] R. M. Bozinovic and S. N. Srihari, “Off-line cursive script
word recognition,” IEEE Trans. on PAMI, vol. 11, no. 1, pp.
68–83, 1989.

637



[3] A. Vinciarelli and J. Luettin, “A new normalization technique
for cursive handwritten words,” Pattern Recognition Letters,
vol. 22, no. 9, pp. 1043–1050, 2001.

[4] K. Y. Wong, R. G. Casey, and F. M. Wahl., “Document Anal-
ysis system,” IBM Journal of Research and Developement,
vol. 26, no. 6, pp. 647–655, 1982.

[5] T. Caesar, J. Gloger, and E. Mandler, “Estimating the baseline
for written material,” in Proc. 3rd Int. Conf. Document
Analysis and Recognition, vol. 1, 1995, pp. 382–385.

[6] R. Seiler, M. Schenkel, and F. Eggimann, “Off-line Cursive
Handwriting Recognition Compared with On-line Recogni-
tion,” in Proc. 13th Int. Conf. on Pattern Recognition, Vienna,
Austria, 1996, pp. 505–509.

[7] J. Gorbe-Moya, S. España-Boquera, F. Zamora-Martı́nez, and
M. J. Castro-Bleda, “Handwritten Text Normalization by us-
ing Local Extrema Classification,” in Proc. 8th Int. Workshop
on Pattern Recognition in Information Systems, Barcelona,
Spain, 2008, pp. 164–172.

[8] S. España-Boquera, M. Castro-Bleda, J. Gorbe-Moya, and
F. Zamora-Martinez, “Improving Offline Handwritten Text
Recognition with Hybrid HMM/ANN Models,” IEEE Trans.
on PAMI, vol. 33, no. 4, pp. 767–779, 2011.

[9] Z. Lu, R. Schwartz, and C. Raphael, “Script-independent,
HMM-based text line finding for OCR,” in Proc. 15th Int.
Conf. Pattern Recognition, 2000, pp. 551–554.

[10] V. Bosch, A. Toselli, and E. Vidal, “Statistical Text Line
Analysis in Handwritten Documents,” in Proc. Int. Conf.
Frontiers in Handwriting Recognition, Bari, Italy, 2012, pp.
201–206.

[11] J. Lafferty, A. McCallum, and F. Pereira, “Conditional ran-
dom fields: Probabilistic models for segmenting and labeling
sequence data,” in Proc. 18th Int. Conf. Machine Learning,
San Francisco, CA, USA, 2001, pp. 282–289.

[12] S. Marinai, M. Gori, and G. Soda, “Artificial Neural Networks
for Document Analysis and Recognition,” IEEE Trans. on
PAMI, vol. 27, no. 1, pp. 23–35, 2005.

[13] L. Rabiner and B. H. Huang, Fundamentals of Speech Recog-
nition. Prentice-Hall, 1993.

[14] H. Bourlard and N. Morgan, Connectionist speech
recognition—A hybrid approach, ser. Series in engineering
and computer science. Kluwer Academic, 1994, vol. 247.

[15] http://www.iam.unibe.ch/fki/databases/iam-handwriting-
database.

[16] F. Zamora-Martı́nez et al., “April-ANN toolkit, A Pattern
Recognizer In Lua, Artificial Neural Networks module,”
2013, https://github.com/pakozm/april-ann.

[17] J. Bergstra and Y. Bengio, “Random search for hyper-
parameter optimization,” The Journal of Machine Learning
Research, vol. 13, pp. 281–305, 2012.

[18] E. Jones, T. Oliphant, and P. Peterson, “Scipy: Open source
scientific tools for python,” http://www. scipy. org/, 2001.

[19] A. H. Toselli et al., “Integrated Handwriting Recognition
and Interpretation using Finite-State Models,” Int. Journal of
Pattern Recognition and Artificial Intelligence, vol. 18, no. 4,
pp. 519–539, 2004.

[20] R. Bertolami and H. Bunke, “Hidden markov model-based
ensemble methods for offline handwritten text line recogni-
tion,” Patt. Recognition, vol. 41, no. 11, pp. 3452 – 3460,
2008.

[21] P. Dreuw, G. Heigold, and H. Ney, “Confidence and Margin-
Based MMI/MPE Discriminative Training for Online Hand-
writing Recognition,” Int. Journal of Document Analysis and
Recognition, vol. 14, no. 3, pp. 273–288, 2011.

[22] T. Pltz and G. Fink, “Markov models for offline handwriting
recognition: a survey,” Int. Journal of Document Analysis and
Recognition, vol. 12, pp. 269–298, 2009.

[23] P. Dreuw, P. Doetsch, C. Plahl, and H. Ney, “Hierarchical
Hybrid MLP/HMM or rather MLP Features for a Discrimi-
natively Trained Gaussian HMM: A Comparison for Offline
Handwriting Recognition,” in Proc. Int. Conf. on Image
Processing, 2011, pp. 3541–3544.

[24] A. Graves et al., “A Novel Connectionist System for Uncon-
strained Handwriting Recognition,” IEEE Trans. on PAMI,
vol. 31, no. 5, pp. 855–868, 2009.

[25] F. Z. Martı́nez et al., “Neural network language models
for off-line handwriting, recognition,” Pattern Recognition,
vol. 47, no. 4, pp. 1642–1652, 2014.

[26] A. Stolcke, “SRILM: an extensible language modeling
toolkit,” in Proc. Int. Conf. on Spoken Language Processing
(ICSLP), 2002, pp. 901–904.

[27] S. Johansson, E. Atwell, R. Garside, and G. Leech, “The
Tagged LOB Corpus: User’s Manual,” Norwegian Computing
Centre for the Humanities, Bergen, Norway, Tech. Rep., 1986.

[28] W. Francis and H. Kucera, “Brown Corpus Manual, Manual
of Information to accompany A Standard Corpus of Present-
Day Edited American English,” Dep. of Linguistics, Brown
University, Providence, Rhode Island, US, Tech. Rep., 1979.

[29] L. Bauer, “Manual of Information to Accompany The
Wellington Corpus of Written New Zealand English,” Dep.
of Linguistics, Victoria University, Wellington, New Zealand,
Tech. Rep., 1993.

[30] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng, “End-to-end
text recognition with convolutional neural networks,” in Proc.
21st Int. Conf. Pattern Recognition, Tsukuba, Japan, 2012, pp.
3304–3308.

[31] P. H. O. Pinheiro and R. Collobert, “Recurrent Convo-
lutional Neural Networks for Scene Parsing,” CoRR, vol.
abs/1306.2795, 2013.

[32] J. Peng, L. Bo, and J. Xu, “Conditional Neural Fields,” in
Proc. Advances in Neural Information Processing Systems 22,
2009, pp. 1419–1427.

638


