Technical Report TR03-018

Department of Computer Science
Univ. of North Carolina at Chapel Hill

Federating Programs Artfully with DeCo

Dean Herington and David Stotts

Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599-3175

stotts@cs.unc.edu

May 23, 2003

Federating Programs Artfully with DeCo

Dean Herington
University of North Carolina at Chapel Hill
Campus Box 3175, Sitterson Hall
Chapel Hill, N.C. 27599-3175 USA

heringto@cs.unc.edu

ABSTRACT

Program federation is assembling a software system from co-
operating but independent application programs. We pre-
sent DeCo, a declarative framework for specifying and ex-
ecuting federations. Participating programs and data files
are described in the functional language Haskell, extended
with operations for large-grain program description and co-
ordination. The declarative expression of a federation in
terms of data flow among the component programs cap-
tures synchronization requirements implicitly and exploits
the inherent concurrency automatically.

DeCo’s construction as a domain-specific language embed-
ded in Haskell confers many benefits. High-level features
(especially monads, higher-order functions, polymorphism,
and type classes) allow the federation language to be si-
multaneously concise, natural, and powerful. Lightweight
concurrency makes the data-flow approach feasible. Type
checking ensures the static consistency of the federation,
while type inference avoids the need for most type annota-
tions. The full power of Haskell is available where necessary
for adding function beyond that of the existing programs
being federated.

DeCo is currently being used to federate two existing For-
tran models that simulate environmental processes in the
Neuse River estuary of North Carolina.

Keywords
domain-specific embedded language, Haskell, program coor-
dination

1. INTRODUCTION

We use the term program federation to refer to assembling a
software system from cooperating but independent applica-
tion programs. Combining existing large-scale components
has several well-known benefits: reduced cost of construc-
tion, better modularity, greater concurrency, and increased

David Stotts
University of North Carolina at Chapel Hill
Campus Box 3175, Sitterson Hall
Chapel Hill, N.C. 27599-3175 USA

stotts@cs.unc.edu

potential for reuse.

Manual programming is typically used to combine and coor-
dinate the components of a program federation. While such
a manual process can achieve some of the benefits of program
federation, it fails to realize these benefits fully. Moreover,
a manual process is unnecessarily tedious and error-prone.

We believe that adopting a more disciplined approach to
program federation can produce higher-quality results with
less work. The first step in this direction is to describe
the components of a federation explicitly and more formally.
Providing such metadata about the participating programs
and data files has benefits at increasing levels of sophistica-
tion.

o It sharpens understanding of the components and doc-
uments their behavior.

e It enables the consistency of a proposed federation to
be checked automatically.

o It allows for automatic mediation between components
in the case of mismatch.

The second step is to raise the level of abstraction as much
as possible. Put another way, the specification of a feder-
ation should be as declarative as possible. A declarative
specification suppresses irrelevant detail, uses independent
constructs that compose well, and minimizes the context de-
pendence of its parts. The result tends to be a specification
that is more concise, more natural, and more understand-
able, whose components are more interoperable and more
reusable.

One good way to realize a highly declarative framework for
program federation is to define and implement a domain-
specific language embedded in Haskell [6]. Our experimen-
tal system DeCo (for Declarative Coordination) embodies
such an approach. The DeCo system consists of approxi-
mately 2150 lines of Haskell (using common extensions to
Haskell 98 [9]). It is built using the Glasgow Haskell Com-
piler and runs on the Linux operating system.

DeCo is targeted at scientific model federations suited to
large-grain coordination, that is, where the unit of execution
tends to be an entire invocation (possibly repeated many
times) of a component program. The constituent models

tend to be existing application programs, usually large and
written in imperative programming languages such as For-
tran. They communicate, as whole programs, through files
and operating system channels, rather than as subroutines
via shared variables or message passing. The models deal
with many, often large files containing data in a variety of
formats.

Despite its bias toward scientific model federations, how-
ever, DeCo is suited to large-scale program federation more
generally. In particular, it makes no assumption about the
language(s) in which the external programs to be federated
are written.

The remainder of this paper is structured as follows. Sec-
tion 2 gives an overview of the architecture of the framework
provided by DeCo. Sections 3 and 4 describe the data and
control models in more detail. Section 5 treats some prac-
tical details of file and directory management. Section 6
discusses our experience to date with DeCo. Section 7 men-
tions related work. Section 8 concludes.

2. OVERVIEW

This section gives an overview of the DeCo architecture by
introducing its main components. A fuller account of the
semantic model is deferred to later sections.

The preexisting components from which a federation is con-
structed are application programs and data files. DeCo
models these entities with the more abstract notions of ez-
ecutor and stream to present a simple yet rich semantic
model for coordination. These abstract notions are real-
ized as concrete Haskell entities in the Haskell code that
constitutes the federation.

2.1 Stream
A stream is represented by the abstract datatype

newtype Data t

An entity of type (Data t) represents an aggregation of data
of type t. The type of a stream is arbitrary, and thus so also
is its size.

Note that a stream is not necessarily a sequence of elements.
(Data Char) denotes a stream consisting of a single charac-
ter, while (Data [Char]) denotes one consisting of a se-
quence of characters. The use of the term “stream” is in-
tended to indicate that the stream’s contents are read and
written in order from the beginning toward the end, not
that the stream implicitly contains a sequence of elements.
At the same time, the name Data is chosen for the abstract
type to emphasize that a stream’s contents can be treated
as a whole, as will be seen.

A stream’s contents can exist in one of three forms: as a
Haskell value, as the contents of a file, or as the contents
of a channel (the data read from or written to an operating
system file descriptor). By making Data an abstract type,
the framework allows the three forms of stream to be used
interchangeably while accommodating different sorts of data
connection between processes in an efficient manner.

2.2 Executor
An executor is represented by a Haskell function with ab-
stract result type

newtype EX t

Having a result type of (EX t) allows a function to manip-
ulate streams.

The most important kind of executor is one that serves as
a proxy in the federation program for an existing external
application program. Such an executor invokes a DeCo-
supplied utility to start a subordinate process, having set
up input and output connections appropriately. On the
other hand, an executor may also be implemented purely
in Haskell, creating no subordinate process. Such an execu-
tor might be used to transform stream contents from one
set of types to another, for example. However an executor
is implemented, it is used in the same way. Moreover, since
an executor is simply a Haskell function, it is first-class: it
may be higher-order, it may be partially applied, etc.

A stream connection represents a unidirectional data flow
between executors. The executor providing the stream (and
hence defining the contents of the stream) is termed its pro-
ducer. The executor using the stream (and hence relying on
the contents of the stream) is termed its consumer.

2.3 Metadata

Federation metadata—descriptions of the federation’s com-
ponents—are expressed in Haskell. This fact is crucial to
two of DeCo’s capabilities. First, it means that Haskell type
checking ensures the static consistency of a federation. Sec-
ond, it allows DeCo to mediate stream connections between
executors where there exist discrepancies.

Expressing metadata in Haskell allows metadata to enjoy
the characteristics of Haskell code, including its functional
nature and its rich set of features for abstraction. In partic-
ular, the metadata for an application program are expressed
as an executor, in other words, as a stylized Haskell function.

The use of Haskell-expressed metadata integrates well with
the domain-specific embedded language approach used by
DeCo. In fact, as will be seen, it is difficult (and fortunately
pointless) to distinguish sharply between metadata and fed-
eration code.

2.4 Federation

The expression of the federation itself is also given in Has-
kell. A federation is cast simply as an executor that intercon-
nects preexisting external components, using streams, other
executors, and metadata.

The abstract datatype (EX t) is an extension of Haskell’s
built-in type (I0 t). Hence, an executor, whose result type
is (EX t), may perform such side effects as part of its exe-
cution.

io :: I0 a -> EX a

This ability is crucial for executors that serve as proxies for
application programs, as they need to create processes, files,
and directories.

A federation is executed with

runEX :: [String]l -> EX a -> I0 a

The function runEX is passed a list of option strings and an
executor. The executor is executed and its result returned.

The design of the executor abstraction—in particular, that
an executor can serve as a proxy for an application pro-
gram—has another advantage. A federation expressed as a
Haskell program can be used as an application program in
a yet larger federation. Thus, federations are appropriately
compositional.

3. DATA MODEL

To allow for widely varying data storage formats while pro-
viding maximum flexibility for data streams, DeCo defines
a two-level typing scheme.

e The (abstract or high-level) type of a stream, expressed
as a Haskell type, captures the high-level semantics of
the stream data.

e The (concrete or low-level) representation of a stream,
encoded separately, specifies the storage format of
stream data in a particular context.

This two-level scheme separates the essential type of data
from its packaging as a stream. The separation is akin to
the difference between abstract and concrete syntax in a
programming language.

The two-level approach to stream typing provides several
key benefits.

e DeCo’s notion of stream compatibility is simple and
clear, being defined in terms of Haskell types.

e Stream compatibility is very general, as it is defined
to ignore matters of representation.

e DeCo can automatically mediate between a stream
producer and its consumer when the produced and
consumed representations differ.

Recall that a stream has the Haskell abstract type (Data t),
for some t. The type parameter t exactly encodes the high-
level type of the stream. As a result, Haskell’s type check-
ing ensures that streams are used in a type-safe manner.
Moreover, Haskell’s type inferencing relieves the federation
programmer in most cases from the need to declare stream
types explicitly.

At the level of data storage, the contents of a stream are
deemed to comsist of a sequence of bytes. The low-level
representation of a stream is cast as a translation between

-- universal representation for a ‘Data‘ repr
data ReprRep = ReprRep [String] [ReprRep]
deriving (Show)

-- declare a ‘Data‘ repr
class (Show r) => Repr r where
reprRep :: r -> ReprRep

-- equality of two ‘Data‘ reprs
reprEq :: (Repr rl, Repr r2) => rl -> r2 -> Bool
reprEq rl r2 = reprRep rl == reprRep r2

-- associate a representation and a type

class (Repr r) => ReprType r t where
putData :: r -> t -> DW () -- encode function
gmbData :: r -> DR (Maybe t) -- decode function

-- decode function that fails at end-of-stream
getData :: (ReprType r t) => r -> DR t

Figure 1: Expressing Representations for Types

a stream of bytes and a Haskell value of the appropriate
type. A decoding function translates a stream of bytes to
a Haskell value. An encoding function translates a Haskell
value to a stream of bytes.

An important property of (low-level) representations is that
there may be more than one of them for a given (high-level)
type. The alternative representations for a type are ex-
pressed as distinct Haskell types that are instances of a type
class Repr r. A representation type r is associated with a
Haskell type t by an instance declaration for ReprType r t.
In this way, both new representations and new associations
between representations and types can easily be defined.
Figure 1 defines the essential mechanism for expressing data
representations. (DW and DR, not shown, are monads for
“data writing” and “data reading” that manage the book-
keeping for stream data access.)

A decoding function returns a type wrapped by Maybe to
signal stream exhaustion: Just v indicates that a value v of
the desired type was extracted from the stream at its cur-
rent position and properly decoded, while Nothing indicates
that the end of the stream was encountered instead. This
behavior allows for the very convenient use of end-of-stream
to delimit a sequence of items.

The function getData is an alternate decoding function used
when end-of-stream is not permitted. It is defined in terms
of gmbData and implicitly evokes an error if the stream con-
tents have been exhausted.

We show two examples of representation definitions. Fig-
ure 2 shows a representation for unsigned integers that ap-
plies to types Integer and Int. Figure 3 gives an example
of a compound representation. It shows the definition of
TailSeq r, which is a representation for a sequence of items
of like type and representation, where the end of the stream
marks the end of the sequence. Such a sequence is called a
tail sequence because the sequence uses up the “tail” of the
stream. The parameter r gives the representation for each

data Endian = LE | BE
deriving (Show)

-- little- or big-endian

-- unsigned integer repr (length is in bits)
data UInt = UInt Endian Int
deriving (Show)

instance Repr Ulnt where
reprRep (UInt e 1) =
ReprRep ["UInt", show e, show 1] []

instance FollowableRepr Ulnt

instance ReprType UInt Integer where
putData (UInt e 1) x =
putFixed (encodeBinary 1) e 1 x
gmbData (UInt e 1) =
gmbFixed decodeBinary e 1

instance ReprType Ulnt Int where
putData (UInt e 1) x =

putFixed (encodeBinary 1 .
gmbData (UInt e 1) =

gmbFixed (fmap fromInteger .

tolnteger) e 1 x
decodeBinary) e 1

-- types for utility functions

encodeBinary :: Int -> Integer -> DW [Bytel

decodeBinary [Byte] -> DR Integer

putFixed :: (t -> DW [Byte]) -> Endian -> Int
->t ->DW ()

gmbFixed :: ([Byte]l -> DR t) -> Endian -> Int

-> DR (Maybe t)

Figure 2: Unsigned Integer Representation

sequence item. The most typical use of the representation,
that for a list, is also shown.

There is a subtlety concerning TailSeq that illustrates the
power of Haskell’s type system and its use in DeCo. Because
a tail sequence uses up the remainder of a stream, it is not
possible for any other data to follow a tail sequence in a
stream. DeCo enforces this constraint at compilation time
by embedding it in the Haskell type system. A representa-
tion is declared as followable if it can be followed by more
data in a stream.

class (Repr r) => FollowableRepr r

All common representations, with the notable exception of
TailSeq r, are declared to be followable. Where a repre-
sentation occurs in a stream followed by other data, the
representation is required to be followable. Hence, the rep-
resentation

TailSeq (UInt BE 16)

is valid (and represents a tail sequence of 16-bit unsigned
integers in big-endian order), whereas the representation

data (FollowableRepr r) => TailSeq r = TailSeq r
deriving (Show)

instance (FollowableRepr r) => Repr (TailSeq r)
where reprRep (TailSeq r) =
ReprRep ["TailSeq"] [reprRep rl

instance (FollowableRepr r, ReprType r t) =>
ReprType (TailSeq r) [t] where
putData (TailSeq r) xs = mapM_ (putData r) xs
gmbData (TailSeq r) = do xs <- many
return (Just xs)
where
many = do mx <- gmbData r
case mx of Nothing -> return []
Just x -> do xs <- many
return (x:xs)

Figure 3: Tail Sequence Representation

TailSeq (TailSeq (UInt BE 16))

is invalid, resulting in the following compilation error mes-
sage:

No instance for (FollowableRepr (TailSeq UInt))

DeCo predefines a number of other representations, includ-
ing those for common scalar types, counted sequences, and
tuple types. As can be seen from the examples shown, it is
straightforward to extend this set as needed.

4. CONTROL MODEL

A federation is essentially expressed as a directed data-flow
graph, where the nodes are executor invocations (ezecu-
tions) and the edges are stream connections among them.
Federation control flow—that is, the temporal sequence of
executions—is derived automatically from the data flow.
The characteristics of the stream connections among exe-
cutions imply the appropriate synchronization among those
executions and allow DeCo to realize the inherent concur-
rency of the federation automatically. The complexities of
this data-flow machinery are hidden from the federation pro-
grammer by the abstract type (EX t). We will have more to
say about this when we return to executors in Section 4.2;
first we treat streams in greater detail.

4.1 Stream design

Control flow complexities are also hidden by the abstract
type (Data t). In certain situations, it is essential that a
stream be accessed incrementally. That is, it must not be
necessary for later portions of a stream to be generated by
its producer before earlier portions of that stream may be
consumed by another concurrent execution. For example, if
a stream connecting two executors could be of unbounded
size, it may not be acceptable for the consumer to wait for
the entire stream to be produced before starting to consume
it. Similarly, if the stream connecting two executors is not
of unbounded size but rather subject to unbounded delay

during its production, it may not be acceptable for the con-
sumer to wait for the entire stream.

At the same time, it is useful to treat the contents of a
stream in its entirety, as a single Haskell datum. Stream
processing—especially data transformation—is greatly sim-
plified if the entire contents of a stream can be directly pat-
tern matched, passed among functions, mapped over, etc.
Eliminating the need for explicit, incremental manipulation
of stream contents allows for a much more declarative treat-
ment of stream data.

Fortunately, these two seemingly contradictory views of a
stream can be reconciled by exploiting Haskell’s ability to
read lazily. Access by an EX action to a stream’s contents
is made with either readFile or hGetContents, as appro-
priate. The resulting string is, therefore, read lazily from
the stream. In this way, DeCo is able to provide a fully
declarative treatment of streams.

Recall from Section 2.1 that a stream may exist in one of
three forms, as a value, file, or channel. Although a stream
usually can and should be manipulated without regard to its
form, this is not always possible. A federation must com-
mit to the form of a stream where it originates and where
it terminates, including at the interface to an external pro-
gram. For this purpose DeCo provides types with which to
describe the forms of a stream.

data File t = forall r. ReprType r t =>
File FilePath r
data Channel t = forall r. ReprType r t =>

Channel Fdx r

Value t ()

data Value t

e A (File path repr :: File t) represents a file with
pathname path that contains (or will contain) data of
type t in representation repr.

e A (Channel fdx repr :: Channel t) represents a
channel with extended file descriptor fdx that contains
(or will contain) data of type t in representation repr.

e A (Value val fin :: Value t)represents a value val
with finish value fin. The finish value enables detec-
tion of “run-on” streams in the context of lazy reading
of stream contents. Evaluating the finish value for a
value stream strictly reads any remaining bytes corre-
sponding to the value val, then raises an error if the
stream contents continue past that point.

Thus, a stream, as represented by a Data value, carries a
form and, except for the value form, a representation. A
stream of a given type (Data t for some t) can be used
wherever a stream of that type is needed, despite any differ-
ence in form and/or representation between the stream and
the requirements of its use site. DeCo performs any me-
diation necessary to account for differences in form and/or
representation. This automatic stream mediation is one of
the main benefits of DeCo. It greatly improves the modu-
larity and reusability of executors.

4.2 Executor design

We now come to the most complex part of DeCo, the design
of an executor. In order to support the data-flow model
of execution, each executor is implemented by a concurrent
Haskell thread [10]. When an executor cannot immediately
complete access to one of its input or output streams, that
executor’s thread will pend. (This could occur because an
input stream was not yet available, because the next byte of
an input stream was not yet available, or because the buffer
associated with an output stream was full.) However, other
executors’ threads can continue executing. In fact, executor
threads will generally schedule themselves according to the
availability of stream data.

So far, so good; however, there is an additional complication.
In order to effect an efficient connection between a stream’s
producer and its consumer, it is necessary to know not only
the form of the actual stream generated by the producer but
also the form of stream desired by its consumer. But a new
stream is created as the result of invoking its producer’s EX
action, which necessarily completes before any consumer of
the stream exists. Hence, we try to defer creating a stream
connection until at least one consumer of the stream has
become known. More precisely, we normally require an ex-
ecutor’s thread to wait until each of its output streams has
been requested by at least one consumer before it commits
to the actual forms for its output streams. Permitting an
executor to commit to the forms for its output streams we
call triggering that executor.

But what if one of an executor’s output streams is requested
by no other executor? This situation will lead eventually
to temporary deadlock, that is, no executors being able to
proceed. When we detect temporary deadlock we forcibly
trigger all current executors waiting to be triggered, and
execution proceeds.

We can now explain the general structure of an executor.
The body of an executor is the portion executed by a separate
thread.

An executor performs these actions, generally in the order
presented.

1. It registers a request for each stream it will consume.
The request specifies the form of stream needed by the
executor. The response to the request is a computation
to be used in the body to receive the actual stream in
the requested form.

2. It registers a promise for each stream it will produce.
The promise specifies the form of stream that will
be produced by the executor. The response to the
promise is the Data object for the new stream along
with a computation to be used in the body to fulfill
the promise.

3. It registers the body. The body has its own structure,
described next.

4. Finally, it returns its results, which include all the pro-
duced streams returned by its promises.

1 text = TailSeq (ASCII 8)
2

3 example :: Data [Int] -> Data String

4 -> EX (Data [Double], Data String)
5 example fileIn chanIn = executor $ do

6 fileIn’ <- wantFile Nothing

7 (Just (TailSeq (UInt BE 32)))

8
9

fileln

chanIn’ <- wantChannel (Just text) chanln
10 (fileOut, fileOut’) <-
11 makeFile (Just "example.out")
12 (Just (TailSeq ws_sp))
13 (chanQut, chanQut’) <-
14 makeChannelWant (Just text)
15 body $ \ bh -> do
16 File pathIn _ <- fileIn’ Nothing Nothing
17 inChan <- chanIn’ Nothing
18 awaitTrigger bh
19 (outChan, readyChan) <- chanOut’ Nothing
20 process <- startProgram "example" False
21 False [pathIn] Nothing Nothing
22 [(0, inChan), (1, outChan)]
23 status <- awaitTermination process
24 checkStatus status
25 fileQut’ Nothing Nothing
26 readyChan
27 return (fileOut, chanOut)

Figure 4: Example Executor Definition

The body of an executor performs these actions, in the order
presented.

1. Tt awaits availability of each input stream by perform-
ing the computation received earlier with each input
stream request. When each such computation returns,
information about the associated input stream is made
available to the body.

2. It waits to be triggered. Under normal circumstances,
the body of an executor is not triggered until each of
the executor’s output streams has been requested at
least once.

3. It supplies the necessary information for each output
stream by performing the computation received earlier
with each output stream promise.

Note that actions in the first of the two lists above should
usually not pend, whereas actions in the second list may
pend.

Consider the example definition of an executor in Figure 4.
This example consists of correct and complete DeCo code.
However, we will not describe every detail therein.

Executor example consumes two input streams. The first
input, fileln, of type (Data [Int]), is requested as a file
of arbitrary pathname containing a tail sequence of 32-bit
integers in big-endian order (lines 6-8). The second input,
chanIn, of type (Data String), is requested as a channel

containing plain text (line 9 and line 1). The executor
produces two output streams. The first output, fileOut,
of type (Data [Doublel]), is a file named "example.out"
containing a tail sequence of whitespace-delimited double-
precision values (lines 10-12). The second output, chanDut,
of type (Data String), is a channel to be created by DeCo
containing plain text (lines 13-14). The body is established
(lines 15-26) and the results are returned (line 27).

In the executor’s body, the input file is awaited; on receipt,
pathIn is bound to its pathname (line 16). The input chan-
nel is awaited; on receipt, inChan is bound to it (line 17).
Having received all its inputs, the executor then awaits its
trigger (line 18). After triggering, the output channel and a
readying computation are received from DeCo (line 19). The
program "example" is started, with the input file pathname
as its sole argument and the input and output channels at-
tached to standard input and output (lines 20-22). Program
termination is awaited (line 23) and the termination status
is checked (line 24). The output file (line 25) and output
channel (line 26) are readied.

The example just described shows how executor metadata
are provided procedurally and that wide variation is accom-
modated in a stylized format. Although an executor defini-
tion is somewhat complicated due to the staging required to
support data-dependent scheduling of executor bodies, Has-
kell’s type checking is of considerable help in managing this
complexity. Note also how there is little that is extraneous
in the definition.

Due to space considerations we omit the remaining details
of executor definition. Fortunately, a typical federation re-
quires only a small number of executor definitions, and they
are rather formulaic. More often used are the higher-level
operations described next.

4.3 Federation construction

This section defines some higher-level operations that are
useful for constructing federations. The design of DeCo
makes it easy to add new operations similar to those de-
scribed here.

The first group below includes basic functions for produc-
ing and consuming streams. The stream producers, whose
names begin with “from”, never pend. (The result Data
value, which is a sort of stream handle, is produced immedi-
ately. Subsequent access to the stream contents may pend,
of course.) The stream consumers, whose names begin with
“to”, may pend, waiting for the contents of the stream to
be available.

Value t -> EX (Data t)

fromValue ::

fromValue makes a stream from a value stream specifier.
This function does not pend.

toValue :: Data t -> EX (Value t)

toValue makes a value stream specifier from a stream. This
function pends until reading of the stream can begin.

fromVal :: t -> EX (Data t)

fromVal makes a stream from a Haskell value, supplying a
finish value whose evaluation simply succeeds. This function
does not pend.

toVal :: Data t -> EX t

toVal extracts the Haskell value from a stream, first eval-
uating the enclosed finish value. This function pends until
the entire stream has been read.

fromFile :: File t -> EX (Data t)

fromFile makes a file stream from a file specifier, assuming
the file is ready. This function does not pend.

toFile :: File t -> Data t -> EX ()

toFile arranges for the contents of a stream to be written
to a file. This function pends until the entire file has been
written.

fromChannel :: Channel t -> EX (Data t)

fromChannel makes a channel stream from a channel speci-
fier, assuming the channel specifier’s extended file descriptor
is ready for reading. This function does not pend.

toChannel :: Channel t -> Data t -> EX ()

toChannel arranges for the contents of a stream to be writ-
ten to a channel. This function does not pend. The stream
contents are written to the channel as the contents become
available, and the channel is closed on completion of writing.

Sometimes a stream connection does not naturally involve
a file (that is, the stream is neither produced nor consumed
as a file), yet it is useful to record the contents of the stream
in a file. Perhaps the contents need to be accessed again
later, either during federation execution or after the feder-
ation completes. Perhaps serialization is needed—that is,
the stream consumer must wait to begin execution until the
stream producer has completed execution. These require-
ments can be met with the following function.

:: File t -> Data t -> EX (Data t)

viaFile

viaFile arranges to write the contents of a stream to a file
and returns a file stream for that file.

viaFile file stream

class From c where
from :: ¢ t -> EX (Data t)

instance From Value where
from = fromValue

instance From File where
from = fromFile

instance From Channel where
from = fromChannel

class To c where
to :: ¢t -> Data t -> EX ()

instance To File where
to = toFile

instance To Channel where
to = toChannel

via = viaFile

Figure 5: Implementing the from, to, and via Short-

hands

is equivalent to

do toFile file stream
fromFile file

except that in the former, waiting for the entire file to be
written is delayed until the result file stream is demanded,
whereas in the latter the waiting occurs as part of the con-
struct (due to the use of toFile).

Convenient shorthands are provided for some of the most
common of the operations described above. Use of Haskell
type classes (see Figure 5) provides an overloaded function
from that can be used in place of fromValue, fromFile,
and fromChannel, and an overloaded function to that can
be used in place of toFile and toChannel, plus a simple
synonym via for viaFile.

For the remaining operations described in this section, we
include implementations as further illustrations of executor
definition.

Figure 6 gives the definition of programFilter, which can
be used to define an executor that serves as a proxy for a
simple Unix filter program. The external program is defined
by its pathname (path) and arguments (args). The executor
hooks its input stream (input) to the program’s standard
input (using representation ir) and the program’s standard
output (using representation or) to its output stream.

The last two operations are examples of higher-order oper-
ations; they take executors as arguments.

programFilter (ReprType ir String,
ReprType or String)
=> String -> [Stringl -> ir -> or
-> Data String -> EX (Data String)
programFilter path args ir or input = executor $ do
ichan <- wantChannel (Just ir) input
(output, ochan) <- makeChannelWant (Just or)
body $ \ bh -> do
ich <- ichan Nothing
awaitTrigger bh
(och, oready) <- ochan Nothing
proc <- startProgram path True True args
Nothing Nothing
[(0, ich), (1, och)]
oready
awaitTermination proc >>= checkStatus
return output

Figure 6: programFilter

mapEX :: (Data a -> EX (Data b)) -> Data [a]
-> EX (Data [bl)
mapEX forEach input = executor $ do
inValue <- wantValue input
(output, outValue) <- makeValue Nothing
body $ \ bh -> do
Value inVal inFin <- inValue
awaitTrigger bh
outValues <- mapM each inVal
let (outVals, outFins) =
unzip [(val, fin)
| Value val fin <- outValues]
let outFin = inFin ‘seq‘ mergeFins outFins
outValue (Just (Value outVals outFin))
return output
where each a = fromVal a >>= forEach >>= toValue

Figure 7: mapEX

Figure 7 shows mapEX, which is similar to Haskell’s mapM
function but specialized to the EX monad.

Similarly, Figure 8 shows foldEX, which is similar to Has-
kell’s foldM function but specialized to the EX monad.

5. FILESAND DIRECTORIES

During the execution of a federation, three directories are
maintained by DeCo.

e The top directory is the directory that was current
when the federation began execution. The top direc-
tory remains fixed for the duration of federation execu-
tion. It serves as a reference point within the invoker’s
directory environment.

e The run directory is a new directory created when the
federation begins execution. It is the root of a direc-
tory subtree that serves as a repository for new files
created by the federation. The run directory name and
location are under control of the invoker of the federa-

foldEX :: (Data a -> Data b -> EX (Data a))
-> Data a -> Data [b] -> EX (Data a)
foldEX forEach initial elems = executor $ do
elemsValue <- wantValue elems
(output, outValue) <- makeValue Nothing
body $ \ bh -> do
Value elemsVal elemsFin <- elemsValue
awaitTrigger bh
Value finalVal finalFin <-
foldM each initial elemsVal >>= toValue
let outFin = elemsFin ‘seq‘ finalFin
outValue (Just (Value finalVal outFin))
return output
where
each input elem = fromVal elem >>= forEach input

Figure 8: foldEX

tion. The run directory remains fixed for the duration
of federation execution.

e The current directory is a directory within the subtree
rooted at the run directory that associates a portion
of that subtree with the currently executing federation
code. The current directory starts out equal to the
run directory but may vary under control of federation
code. It defines a “directory scope” during execution;
in particular, it provides the default initial directory
for external program invocations.

The operating system maintains a “current working direc-
tory” for a process that may vary during process execu-
tion. Varying the current working directory during federa-
tion execution, however, would lead to unpredictable results,
because executors are implemented as concurrent Haskell
threads. Instead, DeCo leaves the actual current working
directory unchanged and provides a virtual one (the cur-
rent directory introduced above) that works properly in the
presence of multiple threads.

Federation code manages the current directory with inDir.
inDir :: FilePath -> EX a -> EX a

(inDir dir act) creates a directory named dir in the cur-
rent directory, then performs act with dir as the current
directory. In other words, inDir opens a new, temporary,
directory scope for the execution of a subordinate action.
Note that, although the current directory reverts after the
subordinate action completes, the file subtree rooted at the
newly created directory persists.

DeCo’s interpretation of pathnames is extended to provide
access to the top, run, and current directories, as shown
in the following table. The remainder of a pathname with
the indicated initial character is interpreted relative to the
corresponding directory.

@ | top
| run
$

current

In addition, a pathname beginning with a / character is
interpreted as usual, whereas a pathname beginning with
a character other than these four (@ # $ /) is interpreted
relative to the top directory (as if it were preceded by @).

6. DISCUSSION

In this section we give preliminary assessments of our expe-
rience using and implementing DeCo.

6.1 Casestudy experience

We have applied DeCo to a realistically complex case study
in order to evaluate its effectiveness. The case study in-
volves the federation of two existing environmental models
for aspects of the Neuse River estuary in eastern North Car-
olina. The first models estuary water quality through time,
given initial concentrations, inflow rates, and outflow rates
of water constituents, plus meteorological data for the mod-
eled time period. The second models chemical processes in
the sediment underlying the river, computing fluxes of con-
stituents between water and sediment.

The water model is a single program of approximately 9300
lines. The sediment model consists of two programs, whose
total size is approximately 4700 lines. Both models are writ-
ten in Fortran 77. Together the two models read and write
dozens of files during their execution.

The goal of combining these two models is to obtain a more
precise simulation of the physical, chemical, and biological
processes occurring in the Neuse River estuary. When run
separately, each model makes simple assumptions about the
other’s medium: the water model about the sediment, and
the sediment model about the water. In the federation,
each model provides a more sophisticated simulation of its
medium for the other model.

Few modifications needed to be made to the Fortran models
to get them to run under control of DeCo. For the water
model, a very small effort (approximately 30 lines added
or changed) was required by the maintainer of the program
to add the capability to read constituent fluxes at program
initiation. For the sediment model, the two programs needed
to be enhanced to run in batch mode, as they were originally
written to read input parameters from the keyboard. (These
changes involved many more lines, but they were mostly the
same changes repeated dozens of times.)

The challenging part of federating these models was resolv-
ing mismatches of four types:

e Spatial mismatch. The water model divides the stud-
ied portion of the Neuse River estuary into 59 seg-
ments, whereas the sediment model divides the same
portion of the estuary into 4 regions. This mismatch
was resolved by interposing executors to average data
passed from the water model to the sediment model
and replicate data passed in the other direction.

e Temporal mismatch. The water model runs with much
smaller time steps than the sediment model. This mis-
match was resolved by interposing an executor to av-
erage the data passed from the water model to the
sediment model.

e Units mismatch. Some parameters common to the
models are represented in different units (g/m?/d ver-
sus mmol/m?/d, for example). Simple scaling by ex-
isting executors resolved these mismatches.

e Data format mismatch. Some parameters common
to the models are represented in different formats in
their respective files. DeCo representation specifica-
tions handled these mismatches.

The use of DeCo in the Neuse River case study has been both
pleasant and effective. The separate specification of stream
type and stream representation copes with varying data for-
mats while allowing streams to be treated abstractly. The
abstraction of the form of a stream’s content (as file, chan-
nel, or value) successfully supports the data-flow approach
while allowing (in cooperation with lazy stream reading) the
contents of a stream to be treated as a whole. Synchroniza-
tion of component programs according to their mutual data
flows makes for a highly declarative expression of control
flow. Simple but declarative DeCo features reduce the bur-
den of file and directory management to a minimum. Over-
all, these features enhance interoperability and reusability
for federation components and make DeCo effective at au-
tomating program federation.

Based on the Neuse River case study alone, a conclusion
cannot yet be drawn concerning conciseness and efficiency
of program federation using DeCo. The Neuse River pro-
gram federation consists of approximately 850 lines of code.
Although this may seem like a large amount of code for coor-
dinating the multiple executions of three Fortran programs,
it should be noted that these programs are executed repeat-
edly in alternation, that their data formats are rather com-
plex, and that considerable data manipulation is required to
combine the programs. The very high code density of the
program federation suggests that its size is not excessive for
the problem.

A current shortcoming in the Glasgow Haskell Compiler’s
runtime system has prevented us from precisely comparing
the time spent executing the federation itself to the time
spent in the federation’s subordinate program executions.
However, coarse wall-clock timing during execution of the
case study shows that the executions of the subordinate
Fortran programs heavily dominate. Although more pre-
cise measurement is desirable, DeCo performance is clearly
not a limiting factor in the Neuse River case study.

6.2 Useof Haskdll

The use of Haskell has been very positive, both as a base
for the program federation language and as a base for the
implementation of DeCo.

As the base for the federation language, Haskell offers a
highly declarative foundation that greatly eases construction
of a declarative domain-specific language. Haskell’s abstrac-
tion capabilities—especially monads, higher-order functions,
polymorphism, and type classes—allow the federation lan-
guage to be both simple and powerful. Haskell’s strong typ-
ing provides static consistency checking for federation pro-
grams, while its capable type inferencing greatly reduces the
number of type annotations needed. Haskell’s power and

expressiveness make it easy for a federation programmer to
provide the “connective tissue” that is inevitably required
in federating existing components.

As the base for implementation of DeCo, Haskell has also
been very successful. First, all of the advantages cited above
concerning its use as a base for the federation language per-
tain to its use as a base for framework implementation. More
specifically, however, the power, simplicity, and efficiency
of Haskell’s concurrency (threads) support made design of
DeCo not only feasible but also elegant and relatively easy.
The availability of an interface to Posix capabilities made
programming the external interactions of DeCo quite com-
fortable. Finally, the expert and willing assistance of the
volunteers who build, maintain, and use the Glasgow Has-
kell Compiler system was invaluable.

7. RELATED WORK

Three strains of prior research are most relevant to our work
on DeCo: coordination languages, domain-specific embed-
ded languages, and functional shells and scripting languages.

Coordination languages (also called configuration languages
or module interconnection languages) aim to provide a frame-
work in which to express an application as an aggregation
of components. At this high level, DeCo’s goal is the same.
However, there are significant differences in emphasis. Co-
ordination languages tend to focus on issues of distribu-
tion and finer-grained parallelism, whereas DeCo focuses
on expressing components abstractly to facilitate adapta-
tion, composability, and reuse. In addition, coordination
languages are usually deliberately distinct from the com-
putation languages in which the federated components are
written, whereas DeCo exploits the fact that Haskell can be
used not only for coordination but also for as much compu-
tation as is useful for a given federation (for data adaptation,
for example). Examples of coordination languages include
Polylith [11], Strand and PCL [4], and Linda [2].

A domain-specific language (DSL) is a language tailored to a
particular application domain. A domain-specific embedded
language (DSEL) is a DSL built as an extension to an exist-
ing base language. DeCo is constructed as a DSEL based on
Haskell whose domain is program federation. As such it is
part of a recent trend toward basing DSELs on Haskell [6].
Examples of other application domains (and representative
DSELs) for which Haskell-based DSELs have been built in-
clude web programming (HaXml [15] and WASH/CGI [13]),
hardware description (Lava [1] and Hawk [7]), animation
(Fran [3]), and robotics (Frob [8]).

Shells and scripting languages share with coordination lan-
guages the high-level aim of facilitating aggregation of ex-
isting computational components, though their style is that
of a more traditional programming language. Although one
tends to think of a shell language as interactive and a script-
ing language as batch-oriented, the two notions are essen-
tially similar, and both can be used in both ways. DeCo can
be viewed as a scripting language for federations of applica-
tions. DeCo is not intended particularly for interactive use,
but it can be used that way, and could easily be extended to
be more convenient for such use. Shells and scripting lan-
guages are numerous; however, many fewer are especially

functional in nature as is DeCo. Examples of functional
shells and scripting languages include Es [5], scsh [12], and
the shell included in Famke [14], a prototype of a strongly
typed operating system.

8. CONCLUSIONSAND FUTURE WORK

We have presented DeCo, a framework for large-scale pro-
gram federation. Specifications in DeCo are concise, conve-
nient, and highly declarative.

With DeCo, data are treated abstractly as streams, for which
the data type, data representation, and form (as value, file,
or operating system channel) are specified separately. The
type gives the high-level semantics of the stream and is
checked by Haskell. The representation gives the low-level
encoding of the stream. The set of representations is easily
extended to handle formats particular to a federation. The
various forms of stream content facilitate reuse of streams in
different contexts. DeCo automatically resolves mismatches
between the actual and desired representations and/or forms
of a stream.

External programs and Haskell functions are treated sim-
ilarly and abstractly as erecutors. Haskell type checking
ensures that executors are combined properly. Control flow
is derived from the data flow among executors rather than
being specified explicitly. Hence, DeCo automatically syn-
chronizes the execution of external programs and realizes the
inherent concurrency of a federation. DeCo also provides
constructs to simplify the bookkeeping aspects of program
federation, such as file and directory management.

An important characteristic that distinguishes DeCo from
other coordination frameworks is that its basic entities—
streams and executors—are composable. That is, larger,
more complex entities can be built simply and predictably
from smaller entities. Along with the abstract nature of
streams and executors, this composability makes federation
components more flexible, more interoperable, and more
reusable.

DeCo has been applied to a realistically complex case study,
a federation of existing environmental models for the Neuse
River of North Carolina. The experience has shown that
federation specification in DeCo can be comfortable and ef-
fective. However, more application experience is needed to
substantiate such a conclusion on a usefully wide range of
model federations. We plan, therefore, to apply DeCo to a
number of federations with varying characteristics.

DeCo’s advantages would have been difficult or impossible
to achieve in combination were it not based on a high-level,
declarative language like Haskell and a robust implemen-
tation such as the Glasgow Haskell Compiler. Our experi-
ence with DeCo reinforces our belief that functional lan-
guages in general—and Haskell in particular—are highly
suitable bases on which to build domain-specific embedded
languages.

9. ACKNOWLEDGMENTS

This work was supported by the U.S. Environmental Pro-
tection Agency, under grant R82-795901-3.

10.

[1]

[2]

(3]

[4]

[5]

[6]

REFERENCES
P. Bjesse, K. Claessen, M. Sheeran, and S. Singh.
Lava: Hardware design in Haskell. In International
Conference on Functional Programming, pages
174-184, 1998.

N. Carriero and D. Gelernter. Linda in context.
Communications of the ACM, 32(4):444-458, 1989.

C. Elliott and P. Hudak. Functional reactive
animation. In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming
(ICFP ’97), volume 32(8), pages 263-273, 1997.

I. Foster. Compositional parallel programming
languages. ACM Transactions on Programming
Languages and Systems (TOPLAS), 18(4):454-476,
1996.

P. Haahr and B. Rakitzis. Es: A shell with
higher-order functions. In USENIX Winter, pages
51-60, 1993.

P. Hudak. Modular domain specific languages and
tools. In P. Devanbu and J. Poulin, editors,
Proceedings: Fifth International Conference on
Software Reuse, pages 134-142. IEEE Computer
Society Press, 1998.

J. Matthews, B. Cook, and J. Launchbury.
Microprocessor specification in Hawk. In International
Conference on Computer Languages, pages 90-101,
1998.

J. Peterson, P. Hudak, and C. Elliott. Lambda in
motion: Controlling robots with Haskell. Lecture
Notes in Computer Science, 1551:91-105, 1999.

[9]

[10]

[11]

[12]

[13]

[15]

S. Peyton Jones, editor. Haskell 98 Language and
Libraries: The Revised Report. Cambridge University
Press, Apr. 2003.

S. Peyton Jones et al. Control.Concurrent.
http://www.haskell.org/ghc/docs/latest /html/base/
Control.Concurrent.html.

J. M. Purtilo. The POLYLITH software bus. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 16(1):151-174, 1994.

O. Shivers. A Scheme shell. Technical Report
MIT/LCS/TR~635, Massachusetts Institute of
Technology, 1994.

P. Thiemann. WASH/CGI: Server-side web scripting
with sessions and typed, compositional forms. In
Practical Aspects of Declarative Languages, pages
192-208, 2002.

A. van Weelden and R. Plasmeijer. Towards a strongly
typed functional operating system. In Selected Papers
Proceedings 14th International Workshop on the
Implementation of Functional Languages, IFL 2002,
Madrid, Spain, 2002.

M. Wallace and C. Runciman. Haskell and XML:
Generic combinators or type-based translation? In
P. Lee, editor, Proc. international conference on
functional programming 1999, pages 148-259, New
York, NY, 1999. ACM Press.

