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When an endmill is used in high-speed machining, chatter vibration of the tool can
cause undesirable results. This vibration increases tool wear and leaves chatter marks on
the cutting surface. To reduce the chatter vibration, a layered-beam damper is inserted
into the hole at the center of the tool. The friction work done by the relative motion
between the tool and damper reduces chatter vibration. The purpose of this research is to
design and optimize the configuration of the damper to obtain the maximum damping
effect.

The analytical method has been reviewed, which is based on the assumption of
constant contact pressure and uniform deflection. For the numerical approach, nonlinear
finite element analysis is employed to calculate the distribution of the contact pressure
under the centrifugal and cutting forces. The analytical and numerical results are

compared and discussed.
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In order to identify the effect of the damper’s configuration, two design variables
are chosen: the inner radius of the damper and the number of slotted dampers. During the
parameter study and optimization, the inner radius is varied from 1.5mm to 3.5mm and
the number of slotted dampers is varied from 2 to 10.

Results show that the damping effect is maximum when the inner radius is 1.5mm
and the number of slotted dampers is 5. However, this result depends on the operating
condition. Thus, it is suggested to prepare a set of dampers and to apply the appropriate

one for the optimum damping effect for a given operating condition.



CHAPTER 1
INTRODUCTION

Milling is widely used in many areas of manufacturing. Traditionally, milling has
been regarded as a slow and costly process. Therefore, many efforts have been made to
improve the efficiency of milling. The main limitation of milling is caused by the
vibration of the machine tool and workpiece. As the speed and the power of milling are
increased, it is very important to control vibration of the tool.

Two different kinds of vibration affect the cutting operation. The one is the self-
excited (chatter) vibration at the high spindle speed, and the other is vibration at the
critical natural frequency. This research is focused on the former, which produces a wavy

surface during the milling operation, as shown in Fig.1-1.

Figure 1-1. Chatter mark.

Various methods of preventing chatter have been incorporated into machine tool
systems. In 1989, Cobb [2] developed dampers for boring bars. These dampers are
composed of two different types. The first type, which Cobb calls a shear damper, has

two end “caps” that fit snugly around a boring bar. Between these are sandwiched an



annular mass with plastic at each end, either in the form of ring or of several blocks at
each end. This middle section of a mass and plastic pieces has a clearance from the
boring bar, and is preloaded between the end caps with bolts. When the boring bar
vibrates, the end caps transmit this vibration through the plastic pieces to the annular
mass, which vibrates in tune. Since the plastic pieces do not slide on the faces of either
one, a shear force is produced on the end faces of the plastic. The viscoelastic properties
of the plastic provide damping for the system. The other type of damper proposed by
Cobb is the compression damper in which the mass is again an annulus. This annulus is
cut in half down its axis to form two half annuli. These are then bolted together around
rings of plastic that are in contact with the boring bar. The bolts provide a preload on the
plastic rings, and when the bar vibrates, the annular mass vibrates out of phase with it,
compressing one side and then the other of the plastic rings. This alternate squeezing of
the plastic creates damping, again by deforming the plastic, but in a compressive rather
than shearing manner.

In 1998, Dean [3] focused on increasing the depth of cut and increasing axis
federates to improve the metal removal rate (MRR). While he does not present any
original ideas on chatter reduction, his thesis refers to work done by Smith [6] in which a
chatter recognition system was developed. This system uses a microphone to detect the
frequency of chatter when it occurs. The system then selects a different speed(according
to the parameters of the system) and tries to machine again. This process repeats itself
until chatter no longer occurs.

Much work in the field of structural damping has been done by Slocum [5]. In

order to damp vibrations, Slocum uses layered beams with viscoelastic materials between



the layers. Two cantilevered beams are stacked on top of each other, and a force is
applied to the end of the top beam. It is known that beams experience an axial shear force
when displaced in this manner. Slocum’s derivation calculates a relative displacement
between corresponding points on the un-deformed beams. This is incorporated into a
selfdamping structure by placing several small beams inside of a larger beam and
injecting a viscoelastic material between them. This material bonds to each surface and
thus, when there is a relative displacement, is deformed. The stretching of this material
causes a dissipation of vibration energy and thus, damping.

In 2001, Sterling [7] explored the possibility of deploying a damper directly inside
of a rotating tool. To reduce the chatter vibration, a layered-beam damper, which Sterling
calls a finger, is inserted into the hole at the center of the tool. Due to the high-speed
rotation, the outer surface of the damper contacts with the inner surface of the tool. When
chatter vibration occurs, which is a deflection of the tool, work is done in the contact
interface due to the friction force and the relative motion. This work is dissipative and
reduces chatter vibration. He developed an analytical model and performed an
experiment for the layered beam damper.

In this research, the work done by Sterling is further extended. Using finite element
analysis, his analytical approach is compared to the numerical results. The objective of
this research is to calculate the amount of friction work and to maximize its effect by
changing the damper’s configuration.

The organization of thesis is as follows. In Chapter 2, a simplified model of the
endmill is introduced that can be used for analytical study and numerical simulation. In

Chapter 3, the analytical approach is reviewed that qualitatively estimates the damping



work. Chapter 4 presents the background knowledge of finite element analysis in contact
problems. Chapter 5 describes the numerical simulation procedure using the finite
element method. Chapter 6 represents the parameter study according to the change of two

design variables, followed by conclusions and future work at Chapter 7.



CHAPTER 2
SIMPLIFIED MODEL

The machine tool that we are considering in this research is a 4" long endmill, as
shown in Fig.2-1. Most endmills are of the solid beam type as shown in Fig.2-1 (a). In
this type of tool, the only available damping mechanism is structural damping, which is
very small. Structural damping, which is a variant of viscous damping, is usually caused
by internal material friction. When the damping coefficient is small, as in the case of
structures, damping is primarily effective at frequencies close to the resonant frequency

of the structure.

(a)

Figure 2-1. Endmill and damper. (a) the original solid endmill and (b) the damper
inserted model

When a layered-beam damper (see Fig.2-1 (b)) is inserted into the hollow tool, the
high-speed rotation causes a strong contact between the beam and tool. When chatter
vibration occurs, it generates a relative motion between the beam and tool. Due to the

contact force, this relative motion causes a friction force in the interface, which damps



the vibration. In this research, this damping mechanism will be referred to as a
mechanical damper.

While the tool geometry is very important for cutting performance, the objective of
this research is on the vibration of the tool. Thus, we want to simplfy the tool geometry
so that the analytical and numerical studies in the following chapters will be convenient.

The first step of simplifying the endmill model is to suppress unnecessary
geometric details, while maintaining the endmill’s mechanical properties. The endmill
model can be simplified as a cylinder because we are only interested in the contact

surface, which is the inner surface of the tool. Fig.2-2 (b) illustrates the simplified model.

(b) ®©=2722.71 rad/s

Figure 2-2. Model simplification. (a) the detailed tool model in which the damper is
inserted and (b) the simplified model using hollowed cylinder.

The simplified endmill model is composed of two-hollowed cylinders. The outer
cylinder represents the endmill tool, and the inner cylinder represents the damper. For
convenience, the outer part (tool) is denoted as a shank, while the inner part (damper) is
denoted as a finger. As schematically illustrated in Fig.2-3, the outer radius R1 of the
finger is 1.5 mm, the inner radius R2 of the finger is 4.7625 mm, the inner radius R3 of

the shank is 4.7625 mm, and the outer radius R4 of the shank is 9.525 mm. The length of



the endmill is 101.6mm. Because the gap between two contact surfaces is ignored, R2 is

equal to R3. R1 will be varied from 1.0 mm to 3.5 mm during the parameter study in

Chapter 6.

Figure 2-3. Dimensions of geometry.

Although Fig.2-3 shows only two fingers, the number of fingers can be altered to
improve the damping performance. The parameter study in Chapter 6 will examine the
effect of varying the number of fingers between 2 and 10. Because a damper with only
one finger would have a lower contact pressure than the other cases, this case will not be
considered.

Next, the operating condition is also simplified. The applied force is assumed to be
sequential. It is first assumed that the tool is rotated with a constant angular velocity. The

constant angular velocity will generate a constant contact force at the interface. For this



particular model, an angular velocity of 2,722.713rad/sec is used, which is equal to
26,000 rpm. In this initial state the endmill has not started cutting the surface. When the
endmill starts cutting the surface, the tool undergoes a vertical force at the end of the
endmill. To approximate the cutting process of the tool, a vertical force is applied at the
tip. To accurately approximate the cutting force, the vertical force on the endmill needs to
be measured and then an equal force needs be applied at the tip. However, since the
objective of this research is vibration control, a representative force of 100N is applied.
Thus, the damping work that will be calculated is not the actual magnitude, but rather a
relative quantity.

For simplicity, the same material properties are assumed for both the shank and
finger even though the stiffness of the finger is actually slightly higher than that of the
shank. The material properties used are listed in Table 2-1.

Table 2-1. Material properties used for the shank and finger.

Material Property Value
Young’s Modulus 206780 MPa
Mass Density 7.82x10” ton/mm’
Friction Coefficient 0.15

In the following chapters analytical and finite element analysis will use the

simplified model to determine the conditions for maximum damping of the endmill.



CHAPTER 3
REVIEW OF ANALYTICAL APPROACH

It would be beneficial to review an analytical model before starting the finite
element analysis because it will provide a qualitative estimation of the numerical
approach. Sterling [7], a former researcher, developed an analytical method that can
estimate the amount of friction work during chatter vibration. In this chapter, his
analytical approach is reviewed and the results will be compared with finite element
analysis results in Chapter 5.

The work done by the friction force that occurs between the inner surface of the
endmill and the outer surface of the damper causes the damping effect that reduces the
chatter vibration. According to the Coulomb friction model [9], the friction force and the
damping work can be written as follows:

W,=FxU,
where F I is the friction force, u is the friction coefficient, N is the normal contact force,

W, is the friction work, and U, is the relative displacement between the two contact

surfaces. The normal force N is mainly caused by the centrifugal force created when the

endmill is rotating. The relative displacement U, is mainly caused by the vertical

deflection of the tool when the endmill starts cutting. Therefore, we can divide the
endmill system into two states. The first state is when the endmill is rotating without any

cutting operation. In this case, only the centrifugal force is applied. The second state is
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when the endmill starts cutting. In this state, the vertical force is added at the tip of the
endmill. Both the centrifugal force and the vertical force are applied in this state. If we
assume that there is no relative motion in the first state, then we can calculate the work
done by the friction force during the second state.

Calculation of the Normal Force and the Contact Pressure

In this section, the normal force and pressure that are caused by the rotational
motion of the tool will be calculated. There are three assumptions for the analytical
method in this step. Those are listed as below.

o There is no angular acceleration, which means the angular velocity is constant.

o There is no relative motion between the two contact surfaces during the first step,
which means there is no slip in the contact surface during the rotational motion.

o Contact occurs throughout the entire contact area during the second state. In the
actual case, contact may not occur in some portions of the interface. For example
there will be no contact near the fixed end or on the two sides where the neutral

axis lies. All of these effects are ignored, and it is assumed that contact occurs
throughout the entire area.

Due to the second assumption, the contact pressure is calculated using the
centrifugal force only and is assumed to remain constant. Now let us consider the
simplified model, which was developed in Chapter 2 (Fig.2-3). The shank and the finger
are hollowed cylinders. For simplicity, we only consider the case of a two-finger
configuration. Figure 3-1 (a) shows the cross-sectional area and dimensions of the
endmill system in which two fingers are inserted. Considering the symmetric geometry of
the fingers, we can consider one finger, which is illustrated in Fig.3-1 (b). Since the
finger can have an arbitrary location, & represents the start angle of the finger. The point

G indicates the first moment (centroid) of the finger’s cross section, and R is the distance
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between the center of the tool and the centroid G. The normal force N and contact

pressure P can then be obtained as,

N = MR&® p - MR
5 c A

c

(3.2)

where A, 1is the contact surface area, M is the mass of the finger, and @ is the angular

velocity. The first step of calculating the contact pressure is to calculate the distance R,

which is determined by the centroid of the finger’s cross section.

(@) (b)

0 = start angle

~ |

— |

— «—R1=1 mm
R2=R3=4.7625 mm
R4=9.525 mm

A
A4

Y
Y

Figure 3-1. Cross sectional area of the endmill system. (a) Cross sectional area and
dimension of the original model in which two fingers are inserted. (b) Cross
sectional area of the finger. G is the mass center of the cross section, and & is
the start angle.

The centroid (first moment) of an assemblage of n similar quantities, A,, A,, A;,

..., A, situated at point A, P, B,,..., P, for which the position vectors relative to a

selected point O are r,, r,, I;, ..., I, has a point vector r defined as



where A is the ith quantity (for example, this could be the length, area, volume, or mass

of an element), r,is the position vector of i th element, ZAl is the sum of all » elements,
i=1

and ZI}AI 1s the first moment of all elements relative to the selected point O. In terms of
i=1

X, y, and z coordinates, the centroid has coordinates

where A is the magnitude of the i th quantity (element), X, ;, z are the coordinates of

centroid of the assemblage, and x,, y,, z are the coordinates of P at which A is
concentrated.

The centroid of a continuous quantity may be located though calculus by using
infinitesimal elements of the quantity. Thus, for area A and in terms of X, y, z

coordinates, we can write

;:deA Qyz
jdA A
—_[yaa_o
jdA A
- IZdA _ 0.,
jdA A
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where Q. , 0., 0, are first moments with respect to the xy, yz, and xz planes,

Xy

respectively. The following table indicates the first moments Q of various quantities A

about the coordinate planes. In Table 3-1 O, ., O, O,. are the first moments with respect to

Xy, yz, xz planes, L is the length, and m is the mass, respectively. Note that in two-dimensional

work, e.q. in the xy plane, O, becomes O, , and O, becomes O, .

Table 3-1. First moment Q of various quantities.

A 0, 0, 0. Dimensions
Line j zdL jde j ydL I?
Area [ zd4 [ xda [ yda 5

Volume j zdV I xdV I vdV I
Mass J‘ zdm J‘ xdm j vdm mL

Now let us consider the case illustrated in Fig.3-2, which is a cross section of the

finger. According to the figure, )_/ can be expressed as

- dA
i L)

jdA_A

If we choose the polar coordinate system y is represented by,

y=rcosd

Using this polar coordinate system, the ; of the centroid can be calculated by,

0 J.ydA jfj;zrcos(ﬁ)rdrdﬁ
A faa ("] rdrao
a IR,

Ry
B rﬂ [ cos(o)drde

a
Rl

1 B s
[ﬁ} j drd@
20 e

y:
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sin(f) +sin(&)

4

sin(f) +sin(&)

p-a

cos{

y:

Figure 3-2. Cross sectional area of the finger.

If =0,

‘?‘(Rz3 _R13) sin( )
3(RP-R?) B

X =

Since the centroid of the cross section is always located along the symmetric line of
the finger, it is convenient if the y-axis is chosen such that the centroid is located on the
y-axis, as illustrated in Fig.3-3. Due to the symmetry, the integration of the domain can
be done between —« and @ for angles, which provides a convenient formula. If we
choose the polar coordinate system, from the Fig.3-3, y is represented by,

y=rcost
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ar

do

cos{

y:

[24 [24
' R Ry

Figure 3-3. Cross sectional area of the finger.

Using this polar coordinate system, the ; of the centroid can be calculated by,

o0 [vaa [[, reos@rdrd

T T [ anao

R,
B rﬂ [ cos(@)drdo

— 1

_ R’)
3(R'-RY)  a-(-a)

R)

)

This equation can be used for the general case which undergoes the centrifugal

force. For the simplified model in Chapter 2, = z, R, =4.7625mm, R, =1.5mm .

(3.3)
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Substituting these values into the above equation yields; = R =2.1738mm . Substituting
this value into Eq.(3.2) yields the normal force and the contact pressure between two
contact surfaces. In Eq.(3.2), the contact area 4 can be calculated by

A =7R,L=rx47625%101.6=1520 [mm’]

which assumes that all parts of the surface are in contact. Using the material properties

shown in Table 2-1, the mass M can be calculated by.

M=pV =7.82x10" ><%(4.76252 ~1.5%)x101.6

=2.5499x107 [kg]
Therefore the contact pressure can be obtained from Eq.(3.2), as

p - MRw®  2.5499x107 x2.1738x2722.713
Y4 1520

=270.33 [KPa]=0.2703 [MPa]

It is noted that the contact pressure P is calculated from the assumption that the whole

surface is in contact with a constant pressure.

Calculation of the Relative Displacement and the Work

In this section the relative displacement that is caused by the vertical force (cutting
force) will be calculated and the work that has been done by the friction force will be
calculated. This state represents the one in which the endmill starts the cutting operation.
The same assumptions are used as in the last case except for the second one because there
is now a relative motion between the two contact surfaces. The assumptions are:

. There is no angular acceleration, which means the angular velocity is constant.
J There is no normal contact force change caused by the vertical force.

o Contact occurs throughout the entire contact area.
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Because the centrifugal force is dominant in this endmill system, the change of the
normal contact force due to the vertical force is ignored in this step. The first step of
calculating the frictional work is to obtain the second moment of inertia of the finger. The
following definitions of the second moment, or moment of inertia are analogous to the
definitions of the first moment of a plane area, which were given in the previous section.
The derivation of load-stress formulas for beams may require solutions of one or more of

the following equations:

I,=[yd4
I, = szdA (3.4)
I, = IxydA

where dA is an element of the plane area 4 lying in the x-y plane. 4 represents the
cross-sectional area of a member subjected to bending and/or torsional loads. The
integrals in the above equations are commonly called moments of inertia of the area A
because of the similarity with integrals that define the moment of inertia of bodies in the
field of dynamics. From Eq.(3.4), if we choose the polar coordinate system, x and y are
represented as,

x=rcosd, y=rsind

and/_, 1,1, are

X

B R 5 . 1 ' '
I, ZL JRI r* sin’ Odrd 0 Zg(R24 —Rl4)(ﬂ—0!—SlnﬂCOSﬂ+Slnacosa)

I, = .[:.[1:2 7’ cos’ Odrd 6 :é(Rz4 —Rf‘)(ﬂ—a +sin Bcos f—sinacosa) (3.5)

I, = J.j J.: 7’ sin @ cos Odrd O = %(R; —Rl“)(sin2 B —sin’® a)

If @ =0 the Eq.(3.5) can be written as
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I = Ioa J:z r* sin® Odrd @ = %(Rz4 —Rf)(a —sina cos)

I, = I: L:z 7’ cos’ Odrd@ = %(Rz4 —Rf)(a +sin & cos a) (3.6)

I, = '[: L:z 7 sin @ cos Odrd @ = %(Rz4 —Rf)sin2 a

For the simplified model in Chapter 2, a =7, R, =1.5mm, R, =4.7625mm .

Substituting those values into the above equation yields,

I, =%(4.76254 ~1.5*)(z ~sinzcos z) =%(4.76254 ~1.5*)

Thus, the moment of inertia of the upper finger is

I :%(R;‘ -R') :%(4.76254 ~1.5')=200 [mm']

X

The moment of inertia of the lower finger can be obtained in the same way because the
two fingers are symmetric about the x-axis, and the two values would be the same.

Now let us calculate the relative displacement and the friction work. It is well
known that beams undergo internal shear deformations along their axes during bending.
Members of a composite beam that are not securely fixed together will slide over each
other in proportion to their distance from the neutral axis of entire composite beam. It is
known that for a cantilevered beam with a point load at the end, the vertical deflection at

any point in the beam’s neutral surface is
5= i(—f +3x[* -2L)
6EI
where F is the force on the end of the beam, F is the beam’s elastic modulus, / is the

beam’s moment of inertia, x is the position along the length of the beam measured from

the free end, and L is the length of the beam.
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If a composite beam is bent, all members will have the same deflection at the tip.

Therefore it can be written that

F
5o E(renroar) - (oanrar) 6o
6F 1 6E,1,

where, subscript s means the shank, and f means the finger. The external force F at the tip

of the endmill must equal the sum of the forces required to deflect each member.
F=F +) F, (3.8)

If there are only two fingers inside the shank Eq.(3.7) can be written as

F_ Fn _ Fp
EI Efllfl Ef2[f2

The above equation can be written as follows

F = Ff‘EY[S and F.. = F.’flEilef2
s 2 f2
Ef 1]f 1 Ef 1[./’ 1
Substituting these equations into (3.8) yields
F.E]I FLE I,

F=F +F, +F,=—""*,F 4
s f1 f2 S1
Efllfl E./'llfl

Solving above equation for £/, yields

F. = FEfllfl
n=
(Ed,+Eq 0, +E )
This equation can be reduced to
FE 1
AA
Ffl = 11 1
E?Is + zEﬂIﬂ
i=1

The same operation for F, and F',, yields
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FEI
r= o
El +Y E,,
i=1
FE I,
S27 12
Fy, = n
El +Y E,,
i=1

The normal stress at any point in a cantilevered beam is given by

where o is the stress, F'is the force on the free end, x is the position along the beam
measured from the free end, c is the distance from the beam’s neutral axis to the point of
interest, and / is the area moment of inertia of its cross section. The axial strain in the

beam is then

where ¢ is the axial strain and £ is the Young’s Modulus of the material. ¢ is the sum of
the quantity (d+y) where d is the distance of the neutral axis of the finger from the neutral
axis of the composite beam and y is the perpendicular distance from the point in question
to the neutral axis of the finger.

For any point in any component member of the composite beam, the change in

position of the point related to x=0 (the free end of the beam) can be written as
5axial = J-O de

Substituting the previously obtained equations into this integral for both the fingers and

the shank, the following equations are obtained. The value of d of the finger can be
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represented by R xsiné , where € is the start angle. Note that in the equation for the

shank, d is zero because its neutral axis lies on the neutral axis of the composite beam.

s _J-LFxxx(der)dx_ FE I (0+y)(L2_x2)_ Fxyx(L*—x%)
saxial - =
«EH . 2E 1 :
Bl + Zl:EﬁIﬁ o 2(Esls + ZEﬁIﬁJ

i= i=1

5 _J'LFXXX(dJFJ’)dx_ FEl, (d+y)(L2_x2)_F><(d+y)><(L2—x2)
Saxial — J - n - n

=l =1

The relative displacement can then be obtained by subtracting the above two equations

_Fx(d+y)><(L2—x2)_ Fxyx (L’ =x%) Fxdx (L’ —x7)

2(ES15 + Z}Eﬁlﬁj 2(Es15 + Zl:Eﬁ.zﬁj 2(E51S + Z} Eﬁ]ﬁj

S fuviat ~ Osaviar =
The work done through this displacement is by friction. The amount of work done

is equal to the integral solved over the entire length of the beam of the frictional force

(friction coefficient times the normal force, which is the force/unit length at a point times

the differential length) multiplied by the relative displacement. Writing this equation

(assuming the pressure, P, is uniform over the entire area of the finger)

Fxdx([*—x%)

2(ES1S + ZEﬁIﬁ)
i=1

uP(s, dx

axial

= O iat) = J-OL upP

The work done by friction for a displacement of the end of the beam by a specified
force, F, is then

1 d

W =—LuPF -
(EY]S +21Eﬂ1/tJ

(3.9)
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The MATLAB code used for calculating this friction work is implemented in

appendix A. Figure 3-4, 3-5 and 3-6 show the results of theoretical analysis.

Work(J)

Inner Radius of Damper Finger (m) -3

Figure 3-4. Plot of work done by the friction force according to the change of the inner
radius of finger.

Figure 3-4 is the work according to the change of the inner radius of the finger. As
the radius increases the work decreases because the mass decreases. When the radius is

1.5mm and the number of finger is 2, the work done by the friction force
is 7.1182x107°[J]. Figure 3-5 is the work calculated for different values of the start angle

when the number of damper fingers is two and the inner radius is 1.5 mm. When the start
angle is 0 it has its maximum value and this value gradually decreases as the angles
decrease. Even when the number of fingers is held constant, the damping values differ for
different positions of the finger. This result is reasonable because the relative
displacement is zero at the neutral axis. In Chapter 6 this effect will be discussed in more

detail.
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140

Start Angle of Damper Finger (degree)

x 10

10

Figure 3-5. Plot of work done by the friction force for varying start angles of the finger.
The radius of the finger is 1.5 mm and the number of the finger is 2.

Number of Damper Finger

Figure 3-6. Plot of the work done by the friction force for different numbers of damper

fingers. The inner radius of the finger is 1.5 mm and the start angle is chosen

to have the maximum damping in each number of the finger.
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Figure 3-6 shows the work for different numbers of fingers. The inner radius of the
finger is 1.5 mm and the start angle is chosen to have the maximum damping for the
number of fingers being used. The work increases gradually as the number of fingers is
increased. Finite element analysis will be done for these analytical results in the

following chapter.



CHAPTER 4
BACKGROUND OF FINITE ELEMENTANALYSIS
IN CONTACT PROBLEMS

Since the material properties of the endmill is linear elastic, the classical finite
element can be used without difficulty. Major concern is the contact constraints in the
interface. Contact problems are highly nonlinear and require significant computer
resources to solve for. Contact problems present two significant difficulties. First, the
regions of contact are generally unknown until running the model. Depending on the
loads, material, boundary conditions, and other factors, surfaces can come into and go out
of contact with each other in a largely unpredictable and abrupt manner. Second, most
contact problems need to account for friction. Frictional response can be chaotic, making
solution convergence difficult. In addition to these two difficulties, many contact
problems must also address multi-field effects, such as the conductance of heat and
electrical currents in the areas of contact. In this chapter the general procedure of
performing the contact analysis using FEA is discussed.

Contact problems are characterized by contact constraints which must be imposed
on contacting boundaries. To impose the contact constraints, two basic methods are
available: the Lagrange multiplier method [9] and the penalty method [9]. Other
constraint methods based on the basic methods have been proposed and applied. The
augmented Lagrangian method [9] and the perturbed Lagrangian method [9] are two

examples.

25
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Contact Formulation in Static Problems

To introduce the basic constraint methods, we consider static mechanical problems
subjected to contact constrains on known contacting boundaries. For small displacements,

the total potential energy of the structure can be written as,
H(u)—lj eTCedQ—j u-bdQ—j u-qdS -U’F 4.1)
DRI O U d ’

where IT is the total potential energy of the body, eis the engineering strain, C is the

elastic modulus, b is the body force, g is the surface traction. By using standard element

procedures, the discretized form of Eq.(4.1) can be obtained as follows:
1 T T
H(U)=5U KU-UF (4.2)

where U is the global displacement vector, K is the global stiffness matrix, and F is the
global load vector.

The virtual work due to the contact load is calculated as
‘L
SW, =Y (6w,)" 4.3)
n=1

where ( )" indicates that the quantity in the parentheses is evaluated in association with a

hitting node n, ‘L is the total number of hitting nodes at time t, and Sw, the virtual work
due to the concentrated contact force at hitting node » and is calculated as

Sw, =" f(du’-su') N, (4.4)
where ‘f; is the components of the contact force at a target point in the directions of ‘N, .

The virtual displacement Su’ at the target point can be evaluated by using equation

N

su’ = g4.ou> 4.5)

n=1
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where N denotes the total number of target nodes on the target segment, ¢, denotes the

shape function associated with contact node 7 on the contact segment and Su””is the

displacement of target node n.
To obtain a matrix expression for Su’ —Ju', the following notation is used:
1 2,N 2,N

T
_ 1 1 2,1 2,1 2,1 2,N
u, = {ul u, u; u o ouy uy ..U uy" u }

-1 0 0 4 0 0 4 0 0 0 4 0 O
Q=0 -1 0 04 0 0 ¢4 0 .. 0 ¢ 0
0 0 -1 0 044 0 04 0 0 0 ¢

Then Eq.(4.4) can be written as
Sw, =5u’ (Qf N ’fi) =ou’'r,

where

where ‘N, denotes the j th component of the boundary unit vector ‘N,.

We realize that ‘r, is a nodal force vector contributed by the contact at the

associated contacting node. It will be convenient to distinguish, in the evaluation of 'r,,

between the contribution of normal contact forces and the contribution of tangential

friction forces. Thus we write

where

Tt
trcn = Qc Nl tﬁ

v, =Q"'N 'f summation on J=2,3
of c J JJ 5



28

The penetration of the hitting node can be calculated as

where ‘x' and ‘x” are the position vectors of the hitting node and target point,

respectively.

Expressing ‘x' and ‘x’in terms of the displacementsu' and u’, respectively, we

have the following discrete form of the kinematic contact condition:

tp:(tXZ _t Xl)_t N1 +(u2_u1)_t Nl

) (4.6)
='N/Qu,+ p=0

where

‘p= N/ X

X = {Txlz =Txl, T =T xy, Tx T x;}T
This means that for small displacements the configuration of the contact system may be
considered unchanged after the displacements. Thus, we can approximatetN1 , by ONI in

Eq.(4.6). Furthermore, we assume only one load step. This means that we need to move

only one step in the “time” domain and * p and  p in Eq.(4.6) can be replaced by ° p and

p , respectively, where ° p denotes any initial penetration (or gap) and p any penetration

after deformation. Therefore, the discretized kinematic contact condition can now be

written as
p="N/Qu, +° p=0 (4.7)
Eq.(4.7) applies to a single contacting node. If there are L(L > 1) contacting nodes,

there will be L contact constraint equations, each taking the form of Eq.(4.7). Those

L contact constraint equations can be assembled to obtain
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P=QU+"P=0 (4.8)

where

T

P={p'.p’,...p"}
Q=i[°N€QC],

Since the contacting boundaries are known, all the contacting nodes can be identified and
Eq.(4.8) can be established explicitly.

Based on the above preparations, the contact problem can be stated as follows:
Minimize IT(U)in Eq.(4.2) subject to the constraints in Eq.(4.8) [P-1]

It must be observed that the mechanical contact condition should be satisfied
automatically by assuming that all the L contact nodes are actual contacting nodes. In
general, actual contacting nodes are not known a priori and an iterative trial-and-error
procedure is required to find all contacting nodes. In the following, we discuss the
solution of problem [P-1] with alternative constraint methods.

The Lagrange Multiplier Method

In the Lagrange multiplier method, the function to be minimized is replaced by the

following function:
[1,(U,A)= %UTKU ~U'F+A"(QU+'P) 4.9)

where A is an unknown vector which contains as many elements as there are constraint

equations in Eq.(4.8). The elements in A are known as Lagrange multipliers.
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The constrained minimization problem [P-1] is now transformed into the following

saddle-point problem:

Find Uand A such that [, (U, A) is stationary, i.e.

o, _,
ou
o, _,
oA

Eq.(4.10) yields

KU-F+QH'A=0
QU+'P=0

Combining Eq.(4.11), we obtain

KLUL = FL

where

%o ]
Q 0

[P-2]

(4.10)

(4.11)

(4.12)

By solving Eq.(4.12), we can obtain the displacement U and the Lagrange multiplier A .

The elements in A are interpreted as contacting forces at the corresponding contacting

nodes.

The Penalty Method

In the penalty method, the potential energy of the structure is penalized when a

penetration occurs on the contact surface. The following penalty potential is added to the

structural potential:



31

TT,= lPTozP
2

where a is a diagonal matrix with elements ¢, , which is the penalty parameters and P is

a vector of penetration..
The function to be minimized is now replaced by
I, =Il+7,

(4.13)
=%UTKU—UTF +%P2aP

The constrained minimization problem [P-1] is then transformed into the following

unconstrained minimization problem:

Find U such that I1 » 1s minimized.

To find its minimum, IT, is held stationary by invoking the following condition:

orl
2 = () (4.14)
ou

Substituting Eq.(4.13) and (4.8) into (4.14), we can obtain

K, U=F, (4.15)
where
K, =K+Q'aQ
F,=F-Q'a'P

The solution of Eq.(4.15) gives the displacement U . The contacting forces are then
calculated as
F.=aP

where the penetration P is a function of the displacement vector U .



CHAPTER 5
FIITE ELEMENT ANALYSIS

In this chapter, the finite element analysis procedure and results of the endmill
system are presented. Even though the cutting process is dynamic, a static finite element
analysis is performed with the centrifugal force and the cutting force at the tip. Thus, the
friction work obtained must be interpreted as a qualitative measure. Since the simulation
condition is the same as that of the analytical method in Chapter 3, it is still valid to
compare the results of finite element analysis with the analytical results.

Finite Element Model

Figure 5-1. Solid 95, 20 node solid element

The first step of finite element analysis is to build a computational model. The

simplified geometry for the endmill in Chapter 2 is used in the FEA. Using the same
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material properties listed in Table 2-1, 20-node solid elements in ANSYS (solid 95) are
used to build the shank and finger. Figure 5-1 illustrates a 20-node solid element that is
used in ANSYS, and Fig.5-2 plots the finite element model of the endmill with boundary
conditions. In Fig.5-2, the shank is modeled using two elements through the radial
direction, and fingers are modeled inside the shank. The cutting force F=100N is
distributed to 4 nodes at the tip. Table5-1 shows the number of elements used in the

endmill finite element model.

FIFMENTS

Ju 14 2003
) 19:47:56
o PLCT NO. 1
QMEG

Figure 5-2. FEA model of the endmill using 20 node cubic elements and 8 node contact
elements with boundary conditions.

Table 5-1. The number of nodes and elements.

Node 24826
Element 6480
SOLID95 4320
TARGE170 1080

CONTA174 1080
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Because the contact area is curved, higher order elements must be used to prevent
inaccurate representation of the surface. Since the contact element is defined on the
surface of solid elements, the consistent order of the element must be used for the
structure and contact surface. The counter part of SOLID9S structural element is 8-node
contact element, as illustrated in Fig.5-3. The contact elements are defined between the
shank and finger.

Target Segment Elernent

Associated Target Surfaces - K

= N 2 MNode Quadrilateral
TSHAP, QUAR

Contact Elements

&

Surface of Solid/Shell Elerment  Sufaceto-Surface
Contact Eement
CONTAL73 or CONTAT74

Figure 5-3. 8-node contact (CONTA174) and target (TARGE170) element description.

ANSYS offers CONTA174 and TARGE170 for contact and target elements,
respectively. CONTA174 is used to represent the contact and sliding between 3-D
“target” surfaces and a deformable surface, defined by this element. The element is
applicable to 3-D structural and coupled thermal-structural contact analysis. This element
is located on the surfaces of 3-D solid or shell elements with midside nodes. It has the
same geometric characteristics as the solid or shell element face with which it is
connected. Contact occurs when the element surface penetrates one of the target segment

elements on a specified target surface. Coulomb and shear stress friction is allowed.
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TARGE170 is used to represent various 3-D target surfaces for the associated
contact elements. The contact elements themselves overlay the solid elements describing
the boundary of a deformable body and are potentially in contact with the target surface,
defined by TARGE170. This target surface is discretized by a set of target segment
elements (TARGE170) and is paired with its associated contact surface via a shared real
constant set. Any translational or rotational displacement, temperature, and voltage on the
target segment element can be imposed. Forces and moments on target elements can also
be imposed.

Boundary Conditions

According to the forces applied to the endmill, we can divide the analysis
procedure into two steps. The first step is when the endmill starts rotating. In this step,

only the angular velocity of 2,722.713 [rad /sec] is applied without considering the

cutting force.

Force 4
Vertical Force
=100 [N]
/ Rotational Velocity
/ =2722.713 [rad/s]
/
/ /
/
/
Time Step 1 Time Step 2 Time (sec)

Figure 5-4. Force boundary conditions in each time step. Each time step is divided into 5
steps.
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The second step is when the endmill starts the cutting process. At this time a
vertical force of 100 N is applied at the tip of the endmill. Figure 5-4 illustrates the force
boundary conditions in each step. Each time step is divided into 5 substeps in order to
improve the convergence of nonlinear analysis.

Calculation of Friction Work

Even if the structure is linear elastic, the contact constraints make the problem
nonlinear. In ANSYS, a Newton-Raphson iterative method is employed to solve the
nonlinear system of equations. All default parameters in ANSY'S are used in nonlinear

analysis.

_Contact Surface

.. Slide
Friction Stress

(Relative Displacement)

Damping = Dot Product of Friction Force and Slide (Relative Displacement)

Figure 5-5. Diagram explaining how to calculate the damping work.

After finishing FEA, the damping work which is done by the friction force is
calculated. The input commands to ANSY'S for obtaining the frictional work are listed in
Appendix D. Figure 5-5 shows a schematic procedure of the calculation. First, the friction
stress and the relative slide in each contact element are obtained for each load step. By

assuming a constant stress within an element, the friction force can be obtained by
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multiplying the friction stress with the element area. The dot product of the friction force
vector and the relative displacement vector in each substep and in each element yields the

friction work.

Finite Element Analysis Results

Load Step 1
Figure 5-6 is the results at load step 1 when only the angular velocity is applied. In

Chapter 3, the analytical method estimates the contact pressure to be 0.27[MPa].

[ AN | AN |
NODAL SOLUTION (a) NODAL SOLUTION (b)
STEP=1 .0532 STEP=1
SUB =5 SUB =5
TIME=1 gimiin TIME=1
SEQV (AVG) 1.4012 CONTPRES (AVG)

DMX =.0004 2.0752 RSYS=0
SMN =.0532 2.7493 DMX =.0003
SMX =6.1193 3.4233 SMX =.5818
4.0973
4.7713
5.4453
6.1193

: (c) (@ =
NODAL SOLUTION NODAL SOLUTION
STEP=1 0 STEP=1 0
SUB =5 SUB =5
TIME=1 0097 TIME=1 0
CONTSFRI (AVG) 01394 CONTSLID (AVG) o
RSYS=0 0291 0001
DMX =.0003 0388 0001
X =.0873 0485 0001

0582 0001
0679 0001
0776 0002
0873 0002

Figure 5-6. FEA result for load step 1 when only the angular velocity is applied. (a) is the
von misses stress (MPa), (b) is the contact pressure (MPa), (¢) is the frictional
stress (MPa), and (d) is the slide (mm). MX indicates where the maximum
value and MN means the minimum value.
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Whereas, the maximum contact pressure from FEA is 0.58[MPa], as shown in

Fig.5-6 (b). Since the actual contact occurs only half of the contact surface, the higher
contact pressure from FEA is expected. In addition, the contact pressure is not constant:
maximum at the top and the bottom surface and zero at both sides. Even though we
assume that there is no relative motion between the contact surfaces during load step 1 in
Chapter 3, there is a relative motion due to the diameter change. However, the relative
motion in load step 1 should not be counted because it is not related to the chatter
vibration.

Load Step 2 (Centrifugal Force + Vertical Force)

In the load step 2, a vertical force (cutting force) is applied on top of the centrifugal
force. Figure 5-7 shows the results of load step 2. The frictional work is calculated by dot
producing the friction force (Fig.5-7 (¢)) and the relative slide (Fig.5-7 (d)). Since the

load step is divided into five sub steps, the friction work at each sub step must be

summed. The total friction work during load step 2 is 3.3426x107°[J]. By comparing

with the analytical results 7.1182x107°[J] in Chapter 3, the finite element analysis

estimates about 50% of the analytical result. The friction work calculated from FEA is
less than that from the analytical approach because the actual contact area is small in
FEA. There is no contact on two sides: the neutral axis lies and the fixed end. In addition,
the contact pressure is not constant. That is why the analytical result is about two times
higher than the FEA result. Another interesting observation is that most of the relative
displacement occurs on the bottom side of the finger (see Fig.5-7 (d)). That happens

because the vertical force is applied to the top side of the endmill.
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AN AN
NODAL SOLUTION (a) NODAL SOLUTION (b)
STEP=2 .0182 STEP=2 0
§¥3E=2 80862 233E=2 .3901
SEQV (AVG) 6.1542 CONTPRES (AVG) - 7802
DMX =.0281 9.2222 RSYS=0 1.1703
SMN =.0182 12.2902 DMX =.0275 1.5604
SMX =27.6302 15.3582 SMX =3.511 1.9505
18.4262 2.3406
21.4942 2.7307
24.5622 3.1209
27. 6302} 3.511)
AN AN
NODAL SOLUTION NODAL SOLUTION
STEP=2 (N STEP=2 @ ,
i .0585 e .0001
CONTSFRI (AVG) -117 CONTSLID (AVG) - 0002
RSYS=0 .1755 RSYS=0 .0003
DM¥ =.0275 .2341 DMX =.0275 .0003
SMX =.5266 2926 SMX =.0008 o604
.3511 .0005
4096 .0006
. 4681 .0007
.5266)] .0008

Figure 5-7. FEA result for load step 2 when both ngular velocity and vertical force are
applied. (a) is the von misses stress (MPa), (b) is the contact pressure (MPa),
(c) is the frictional stress (MPa), and (d) is the slide (mm). MX indicates
where the maximum value and MN means the minimum value.

Figure 5-8, a schematic diagram of endmill bending according to the applied force,
explains in more detail. This figure is exaggerated; the real deformation is very small.
Fig.5-8 (a) shows the initial state. When the endmill starts rotating, the centrifugal force
is applied and the deformed shape looks like Fig.5-8 (b). Due to the mass conservation,
the length of the shank reduces as the diameter increases. Whereas, the length of the
finger is not reduced because the cylindrical finger is cut along its neutral axis. When the
vertical load is applied on top of the centrifugal force, the shank and the finger are
deformed, as illustrated in Fig.5-8 (c). Due to the difference in geometric center, the

deflected shape has the largest slide at the bottom surface.
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(a)

Figure 5-8.Schematic diagram of endmill behavior according to the applied forces. (a)
shows the initial state, in (b) the angular velocity is applied and in (c) the
vertical force is added.




CHAPTER 6
PARAMETER STUDY

In this chapter, a parameter study is performed to find the maximum value of the
damping work. Two design variables, the inner radius of the finger and the number of the
fingers, are changed. The results of the parameter study are discussed with respect to the
results of the analytical approach.

Determination of the Mesh Size

It is very important to determine the proper mesh size. A fine mesh will usually
give an accurate result, but it requires a large amount of computational cost. Since the
finite element analysis needs to be repeated 45 times during the parameter study,

computational cost is an important issue.

x 10
3.35
I I I I I I I I I
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
33 L L4
| | | | | | | | |
| | | | | | | | |
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I Oo— L s — T I I I I I
| | | | | | | | |
| | | | | | | | |
— | | | | | | | | |
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X 325L - L b ]
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| | | | | | | | |
= A | | | | | | | |
el | | | | | | | |
/1 | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
e 2572 T T
| | | | | | | | |
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| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
3.15 I I I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Element Number

Figure 6-1. Damping according to the number of elements. Number of fingers = 2, inner
radius R1=1mm, and start angle « = 0.
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Figure 6-1 shows the damping work according to the change of the number of

elements. The work gradually increases until the element number reaches 4200, and then
it converges on 3.28x107°[J]. Based on these results the number of elements is chosen

to be 4200.

Determination of the Start Angle.

Before starting the parameter study, a start angle must be chosen for different
configurations. This is because the damping value changes with starting angle even if the

same number of fingers is used.

Start Angle=0" Start Angle =45 Start  Angle =90° Start Angle =135
Work =3.28x107°[J] Work =2.01x107°[J] Work =0.95x107[J] Work =2.01x107°[J]

Start Angle=0" Start  Angle =30° Start  Angle = 60 Start  Angle =90
Work =2.86x107°[J] Work =2.16x107[J] Work =2.86x107°[J] Work =3.41x107[J]

Start Angle =0’ Start Angle =18 Start Angle =36 Start Angle =54
Work =3.40x107°[J] Work =2.82x107[J] Work =3.40x107°[J] Work =3.70x107°[J]

Figure 6-2. Damping according to the position of the finger
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Figure 6-2 illustrates the difference of damping work according to the finger’s
position. The magnitude of damping work is different for different start angle. Thus, it is
necessary to evaluate the maximum and minimum values together. Figure 6-3 is the plot
of the minimum and maximum values for the same number of fingers when the inner
radius is 1.0 mm. The results show a large difference between the minimum and
maximum values when the number of fingers is small. However the difference is reduced
as the number of fingers is increased. If we compare this result with the analytical result,
shown in Fig.3-6, the FEA estimated damping work converges to a third of analytical
damping work. Possible explanations are from the fact that not all portion of the fingers

are in contact and the relative slide is large at the bottom surface.
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Figure 6-3. The maximum and the minimum values of the damping work for the given
number of fingers.
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Let us consider the cases where the number of fingers is 2 and 5 more in detail.
Figure 6-4 shows the relative displacement for the two-finger case. Figure 6-4 (a) and (b)
show the case where the start angle of the finger is90°. Fig.6-4 (c) and (d) show the result

when the start angle is 0° . In both cases the pressure between the contact surfaces is

almost the same for each position of the finger. But the relative displacement is different.

(a) Top (b) Bottom
e -
NODAL SOLUTION - NODAL SOLUTION
STEP=2 X 0 STEP=2 243 0
SUB:=5 .833E-04 SUB:=5 .833E-04
TIME=2 TIME=2
CONTSLID (AVG) +16TE- 05 CONTSLID (AVG) +16TE- 05
RSYS=0 .250E-03 | RSYS=0 .250E-03 |
DM =.026878 .333E-03 DM =.026878 .333E-03
SMX =.265E-03 g SMX =.265E-03 g
.500E-03 | .500E-03 |
.583E-03 | .583E-03 |
.667E-03 | .667E-03 |
.750E-03 || .750E-03 ||
(c) Top (d) Bottom
AN [ AN
NODAL SOLUTION NODAL SOLUTION
STEP=2 ~ STEP=2 0
SUB =5 SUB =5 i
TIME=2 A TiMEnZ ﬁ:ﬁ E;I
CONTSLID (AVG) -168E-03 CONTSLID (AVG) . =
RSYS=0 .251E-03 RSYS=0 .251E-03
DMX =.027511 .335E-03 DMX =.027511 .335E-03
SMX =.754E-03 .419E-03 | SMX =.754E-03 .419E-03 |
.503E-03 .503E-03 |
.586E-03 .586E-03 |
. 670E-03 . 670E-03 |
.754E-03 | MY 7545-03 ]

Figure 6-4. Relative displacement of the two-finger case. (a), (b) is when the start angle
of the finger is90°, and (c), (d) is0°. MX indicates where the maximum value
occurs and MN means the minimum value.

The figure shows that most sliding occurs in the bottom part of the contact surface.

That is because the force is applied at the top surface. If we use this relative displacement
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for calculating the frictional work, the work calculated when the start angle is0° is bigger

than90°.
(a) Top (b) Bottom
AN AN
NODAL SOLUTION MN NODAL SOLUTION
STEP=2 X 0 STEP=2 0
SUB =5 > SUB =5 .
s .110E-03 s .110E-03
CONTSLID (AVG) -219E-03 CONTSLID (AVG) -219E-03
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Figure 6-5. Relative displacement of five-finger case. (a), (b) is when the start angle of

the finger is 18°, and (c), (d) is 54°. MX indicates where the maximum value
occurs and MN means the minimum value.

The five-finger case is very similar to the two-fingered case. Figure 6-5 shows the
five-finger case. Parts (a) and (b) are for a start angle of 18" and parts (c) and (d) are for a
start angle of 54°. If we compare Fig.6-5 (b) with Fig.6-5 (d), the latter has almost twice
greater sliding region than the former. This is because the location of the finger

differently affects the damping work. However, Fig.6-3 shows that these effects
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disappear as the number of fingers increases. This means that when the number of fingers
is small the work done by the friction force depends on the start angle.

Parameter Study

To find the maximum value of damping, a parameter study was done for two
design variables. Figure 6-6 shows the first design variable, which is the inner radius of

the finger, and Fig.6-7, the second design variable, the number of fingers.

Figure 6-6. The first design variable: the inner radius (R1) of the finger (varied from 1.5
mm to 3.5 mm).

Figure 6-7. The second design variable: the number of fingers (from 2 to 10).
Change the Inner Radius of the Finger.

First the radius is changed from 1.0mm to 3.5mm for the two-finger case. Figure 6-

8 shows the result.
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Work(J)

Inner Radius of Damper Finger (mm)

Figure 6-8. The result of the parameter study in which the inner radius of finger was
changed.

It’s obvious that the work done by the friction force is gradually reduced, since the
mass of the finger is reduced when the radius is reduced. When the radius is 1.0mm the
damping is 3.28x107°[J], and when the radius is 3.5mm it is 2.53x107°[J].

Change the Number of the Finger

Next the number of fingers is changed from 2 to 10 for the case where the inner
radius is 1.5 mm. The damping work shows a minimum value for the four-finger case,
and a maximum value for the five-fingered case. The start angle of the finger (position of

the finger) is chosen to have the maximum damping.
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Work(J)

Number of Finger

Figure 6-9. The result of the parameter study in which the number of fingers was changed.
Final Results

The parameter study is repeated for all cases, and the results are as follows.

Table 6-1. The results of parameter study x107 []]
2 3 4 5 6 7 8 9 10

1.0mm 3.28 3.41 3.21 3.69  3.55 354 354 348  3.51
1.5mm 334 343 324 372 358 355 3.57 352  3.56
20mm 336 341 324 369 354 347 352 345 3.50
25mm 3.31 3.31 3.18 357 336 3.33 339 335 3.42
3.0mm 3.08 310 3.02 332 310 3.08 312 3.04 3.16
3.5mm_ 2.53 262 2,65 283 2.61 263 265 2.60 2.68
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Work(J)

Number of Finger 2

Inner Radius of Damper Finger (mm)

Figure 6-10. The plot of the Table 6-1.

In order to find the configuration that yields the maximum damping work, the first
design variable (R1) is changed by six different values and the second design variable
(number of finger) is changed by nine different values. Table 6-1 shows the results in 6x9
matrix. In each configuration, the start angle is chosen such that the maximum damping
work can be occurred. Figure 6-10 plots the response surface of the damping work. Even
if the second design variable is discrete, a continuous surface is plotted for illustration
purpose. It is noted that the local peak when the number of fingers is five is maintained
throughout all different radii. The general trend of the response surface is consistent.
Based on the response surface, we can conclude that the damping work has its maximum

value when the inner radius is 1.5 mm and the number of fingers is 5. However, the large



50

difference in maximum and minimum damping values in this configuration, as shown in

Fig.6-3, may reduce the significance of this choice of design.

As a conclusion, the effect of damping work increases as the number of fingers is

increased and the inner radius is decreased.

Comparison between the Analytical and Numerical Results

Figure 6-9 shows the analytical and numerical results of friction work as a function

of the number of fingers. The friction work estimated from finite element analysis is less

than half of the friction work obtained from the analytical method. The possible

explanations of such discrepancy are the assumption of constant contact pressure.

Work(J)

pal —H]

- ----F-----4{ 3 Analytical Results |----|
l ' | =&~ Numerical Results

i S S S
1 1 1 1 1 1 1
3 4 5 6 7 8 9

Number of Fingers

Figure 6-9. Plot of the analytical and numerical resutls.

10

In reality, the contact pressure is not constant and same portion of the finger does

not contact with the shank. And most relative motion occurs at the bottom part of the
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endmill. That is because the vertical force is applied at the top and the nonlinearity
associated with the centrifugal force contributes the asymmetry between the top and
bottom fingers. During the nonlinear analysis ANSYS automatically update the geometry
and refer to the deformed configuration, which means the body force is calculated at the
deformed geometry. Even though the analytical and numerical results show the
difference, the general trends of both results are very similar each other.

In order to explain the general trends of friction work, consider the analytical

explanation of the contact pressure:

M : D ) )
where; and o 1s constant. Value R , which is the distance between the rotational center

c

and the mass center of the finger, can be calculated by

B 2(R23 _R13) sin(ar)
C3(RP-R}) «

If we assume that the friction work is proportional to the contact pressure, then the
friction work is proportional to R , which increases as the number of fingers increases. If
the number of the finger increases, which means the angle @ goes to zero, R is converges

to

Therefore, the maximum value of the contact pressure can be calculated by

MRo* 2(R’-R’) Mo’
P = =
4 3(R-R’) 4

c c
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As a conclusion, the friction work increases along with the number of fingers, but

its effect is reduced as the number of fingers increases.



CHAPTER 7
CONCLUSION AND FUTURE WORK

The goal of this research was to design the mechanical damper which is inserted
into the endmill. Through the nonlinear finite element analysis and parameter study, the
trend of the damping effect is identified.

The results from the analytical method were used to verify the FEA result.
Although the number and the inner radius of finger were varied in finite element analysis,
only the two-finger case was considered in the comparison. The FEA results were smaller
than those of the analytical approach because some regions did not contact and the
contact pressure was not constant.

A parameter study was carried out by changing the inner radius and the number of
fingers. The inner radius was varied from 1.0 mm to 3.5 mm, and the number of fingers
was varied from 2 to 10. The results show general trends of the damping work according

to the change of the two design variables. As the inner radius decreased and the number
of finger increased, the damping work increased. The Maximum value was 3.72x107°[J]

when the inner radius was 1.5 mm and the number of fingers was 5. The parameter study
also showed that when the number of the fingers is small the damping work is affected by
the position of the finger, but that this dependence disappears as the number of finger
increases.

Recommendations for Future Research

As discussed in Chapter 6, the damping work depends on the start angle. However,

in practice the endmill is continuously rotating. Thus, it is recommended to perform a

53
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series of static FEA by rotating the endmill by on cycle and to calculate the integrated
damping work. This procedure will provide more accurate estimation of the real damping

work.



APPENDIX A
MATLAB CODE FOR THEORITICAL ANALYSIS

%
% Matlab function to calculate the work done by the friction force
%
% By Dongki Won
%
function cal work
%
% Material Properties, radius and applied forces.
%
E=2.0678el1; %- Modulus of Elasticity : 2.0%10"1 1[MPa]
rho=7820; %- Mass Density : 7820[kg/m"3]
mu=0.15; %- Friction Coefficient : 0.15
r1=1.5e-3;
12=4.7625¢-3;
r3=r2;
14=9.525¢-3;
L=101.6e-3;
omega=2722;
F=100;
%
% Calculate the work according to the chage of the inner raius of finger.
%
n=2;m=1;
for r1=1.0e-3:0.5e-3:3.5¢-3
ang(1)=0;
for i=1:n
ang(i+1)=ang(1)+(360/n)*1;
end
ang=ang™*(pi/180);
I=(1/4)*((r4)"4-(r3)"4)*pi;
for i=1:(n-1)
tmp I=sin(ang(i+1))*cos(ang(i+1))-sin(ang(i))*cos(ang(i))-(ang(i+1)-ang(i));
tmp I=tmp1*((r1)"4-(r2)"4);
tmp [=tmp1*(1/8);
[I=+tmp1;
end
work=0;
for i=1:n
alpha=(ang(i+1)-ang(i))/2;

55



56

d1=(2*sin(alpha).*(r2"3-r1"3))/(3*alpha*(r2"2-r1"2));
d2=d1*sin((ang(i)+ang(i+1))*0.5);
V=(ang(i+1)-ang(i))*(r2"2-r1"2)*L*0.5;
P=abs(V*rho*(omega”2)*d1/L);
work=work+abs((1/3)*(L"3)*mu*P*F*d2/(E*II));
end
yl(m)=work;
m=m+1;
end
x1=[1.0e-3:0.5¢e-3:3.5¢-3];
plot(x1,y1,'b-0");
grid;
xlabel('Inner Radius of Damper Finger (m)');
ylabel("Work(J)");
[tmp,n]=size(x1);
clc
fprintf("\nCalculate the work according to the chage of the inner raius of finger.\n");
fprintf("The Number of Finger=%3.0f\nStart Angle=%3.0f [Degree]\n',n,0);
for i=1:n
fprintf('Inner Raius of Finger =%16.9¢ [m]\t\tWork=%16.9¢ [J]\n',x1(1),y1(1));
end
%
% Calculate the work according to the chage of the start angle of finger.
%
n=2;m=1;r1=1.5¢-3;
atmp=(360/n)/4;
for a=0:atmp:atmp*3
ang(1)=a;
for i=1:n
ang(i+1)=ang(1)+(360/n)*i;
end
ang=ang*(pi/180);
I=(1/4)*((r4)"4-(r3)"4)*pi;
for i=1:(n-1)
tmpl=sin(ang(i+1))*cos(ang(i+1))-sin(ang(i))*cos(ang(i))-(ang(i+1)-ang(i))
tmp [=tmp1*((r1)"4-(r2)"4);
tmp1=tmp1*(1/8);
[I=[+tmpl;

end
work=0;
for i=1:n

alpha=(ang(i+1)-ang(i))/2;
d1=(2*sin(alpha).*(r2"3-r1"3))/(3*alpha*(r2"2-r1"2));
d2=d1*sin((ang(i)+ang(i+1))*0.5);
V=(ang(i+1)-ang(i))*(r2"2-r1"2)*L*0.5;
P=abs(V*rho*(omega”2)*d1/L);,
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work=work+abs((1/3)*(L"3)*mu*P*F*d2/(E*II));
end
y2(m)=work;
m=m+1;
end
x2=[0:atmp:atmp*3];
figure;
plot(x2,y2,'b-0');
grid;
xlabel('Start Angle of Damper Finger (degree)');
ylabel('Work(J)");
[tmp,n]=size(x2);
fprintf("\nCalculate the work according to the chage of the start angle of finger.\n");
fprintf('Number of Finger=%>5.0f\nlnner Radius of the Finger=%16.9¢ [m]\n',2,r1);
for i=1:n
fprintf('Start Angle =%16.9¢ [Degree]\t\tWork=%16.9¢ [J]\n',x2(1),y2(1));
end
%
% Calculate the work according to the change of the number of finger.
%
m=1;clear ang
for n=2:10
clear ang
atmp=(1+(-1)"(n-1))/2;
ang(1)=((360/n)/4)*atmp;
for i=1:n
ang(i+1)=ang(1)+(360/n)*1;
end
ang=ang™*(pi/180);
I=(1/4)*((r4)"4-(r3)"4)*pi;
for i=1:(n-1)
tmp I=sin(ang(i+1))*cos(ang(i+1))-sin(ang(i))*cos(ang(i))-(ang(i+1)-ang(i));
tmp I=tmp1*((r1)"4-(r2)"4);
tmp [=tmp1*(1/8);
[I=I+tmp1;

end
work=0;
fori=1:n

alpha=(ang(i+1)-ang(i))/2;
d1=(2*sin(alpha).*(r2"3-r1"3))/(3*alpha*(r2"2-r12));
d2=d1*sin((ang(i)+ang(i+1))*0.5);
V=(ang(i+1)-ang(i))*(12"2-r1"2)*L*0.5;
P=abs(V*rho*(omega”2)*d1/L);
work=work+abs((1/3)*(L"3)*mu*P*F*d2/(E*II));

end

y3(m+1)=work;
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m=m+1;
end
x3=[1:10];
figure;
plot(x3,y3,'b-0");
axis([0,10,0,11e-5]);
grid;
xlabel('Number of Damper Finger');
ylabel('Work(J)");
[tmp,n]=size(x3);
fprintf("\nCalculate the work according to the chage of the number of finger.\n');
fprintf('Inner Radius of the Finger=%16.9¢ [m]\n',r1);
for i=1:n
fprintf('Number of Finger =%3.0f\t\tWork=%16.9¢ [J]\n',x3(1),y3(1));
end



APPENDIX B
ANSYS INPUT FILE 01

!
' ANSYS input file to determine the mesh size according to the change of

I elemnt number. The results are stored in mesh_size,txt.
!

! Dongki Won

!

/SHOW JPEG

*SET,rad in,1.5 ! Inner radius of the finger
*SET,rad outl,4.7625 ! Outer radius of the finger
*SET,rad_out2,9.525 ! Outer radius of the shank
*SET,f num,2 ! The number of fingers

*SET,f ang,360/f num ! The angle of one finger
*SET,st_ang,(f ang/4)*0 ! Start angle of the finger

*DO,i1,1,8

*1F,i,EQ,1,THEN ! Element Number is 864
*SET,s _mesh,6
*SET,f mesh,6
*SET,l mesh,12
*SET,st mesh,2
*SET,ft mesh,2

*ELSEIF,ii,EQ,2 ! Element Number is 1536
*SET,s _mesh,8
*SET,f mesh,8
*SET,l_mesh,16
*SET,st mesh,2
*SET,ft mesh,2

*ELSEIF,ii,EQ,3 ! Element Number is 2400
*SET,s _mesh,10
*SET,f mesh,10
*SET,l_mesh,20
*SET,st_mesh,2
*SET,ft mesh,2

*ELSEIF,ii,EQ.4 ! Element Number is 4200
*SET,s mesh,14
*SET,f mesh,14
*SET,l_mesh,25
*SET,st mesh,2
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*SET,ft_mesh,2
*ELSEIF,i11,EQ,5 ! Element Number is 6480
*SET,s _mesh,18
*SET,f mesh,18
*SET,l_mesh,30
*SET,st_mesh,2
*SET,ft mesh,2
*ELSEIF,i1,EQ,6 ! Element Number is 8640
*SET,s _mesh,18
*SET,f mesh,18
*SET,l_mesh,30
*SET,st_ mesh,3
*SET,ft mesh,3
*ELSEIF,i1,EQ,7 ! Element Number is 11500
*SET,s _mesh,18
*SET,f mesh,18
*SET,l _mesh,40
*SET,st_mesh,3
*SET,ft mesh,3
*ELSEIF,i1,EQ,8 ! Element Number is 19200
*SET,s _mesh,20
*SET,f mesh,20
*SET,l_mesh,60
*SET,st_mesh,3
*SET,ft mesh,3
*ENDIF
tmpl=s_mesh*] mesh*2*(1+st _mesh)
tmp2=f mesh*]_mesh*2*(1+ft mesh)
num_elem=tmp1+tmp2
/INPUT,endmill_model,inp
/INPUT,endmill_work,inp
/OUTPUT,mesh_size,txt,, APPEND
*VWRITE,num_elem,work
(F7.0,3X,F16.9,3X)
/OUTPUT
*ENDDO



APPENDIX C
ANSYS INPUT FILE 02

!

' ANSYS input file to determine the start angle of the finger.

! The results are stored in start_angle,txt.
!

! Dongki Won

!

/SHOW.,JPEG

*SET,rad _in,1 ! Inner radius of the finger
*SET,rad outl,4.7625 ! Outer radius of the finger
*SET,rad_out2,9.525 ! Outer radius of the shank

*SET,s_mesh,14
*SET,l_mesh,30
*SET,st mesh,2
*SET,ft mesh,2

*DO,i1,8,10
*SET,f num,ii
*SET.,f ang,360/f num
*IF,i1,EQ,2, THEN
*SET,f mesh,14
*ELSEIF,ii,EQ,3
*SET,f mesh,9
*ELSEIF,ii,EQ.,4
*SET,f mesh,7
*ELSEIF,ii,EQ,5
*SET,f mesh,6
*ELSEIF,ii,EQ,6
*SET,f mesh,5
*ELSEIF,i1,EQ,7
*SET,f mesh,4
*ELSEIF,ii,EQ,8
*SET,f mesh,4
*SET,s _mesh,16
*SET,ft mesh,2
*ELSEIF,ii,EQ,9
*SET,f mesh,4
*SET,s mesh,18
I*SET,ft_mesh,2
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*ELSEIF,ii,EQ,10
*SET,f mesh,3
*SET,s _mesh,15
*SET,ft mesh,3

*ENDIF

*DO0O,jj,0,3
*SET,st_ang,(f ang/4)*jj
/INPUT,endmill model,inp
/INPUT,endmill_work,inp
/OUTPUT ,start_angle,txt,, APPEND
*VWRITE,f num,jj,st ang,work
(F7.0,3X,F7.0,3X,F16.9,3X,F16.9,3X)
/OUTPUT

*ENDDO

*ENDDO



APPENDIX D
ANSYS INPUT FILE 03

!
' ANSYS input file to do the parameter study as the change of two design

I variables, the number of the finger(f num) and the inner radius of the finger
! (rad_in). The results are stored in parameter_study,txt.

!

! Dongki Won

!
/SHOW,JPEG

*SET,rad outl,4.7625 ! Outer radius of the finger
*SET,rad_out2,9.525 ! Outer radius of the shank
*SET,s_mesh,14
*SET,]l mesh,25
*SET,st mesh,2
*SET,ft mesh,2

*DO0,i1,2,10

*SET,f num,ii
*SET.,f ang,360/f num
*IF,ii,EQ,2,THEN

*SET,f mesh,14

*SET,st_ang,(f ang/4)*0
*ELSEIF,ii,EQ,3

*SET,f mesh,9

*SET,st ang,(f ang/4)*3
*ELSEIF,ii,EQ,4

*SET,f mesh,7

*SET,st ang,(f ang/4)*2
*ELSEIF,ii,EQ,5

*SET,f mesh,6

*SET,st_ang,(f ang/4)*3
*ELSEIF,ii,EQ,6

*SET,f mesh,5

*SET,st ang,(f ang/4)*2
*ELSEIF,ii,EQ,7

*SET,f mesh,4

*SET,st ang,(f ang/4)*3
*ELSEIF,ii,EQ,8

*SET,f mesh,4
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*SET,s _mesh,16
*SET,st_ang,(f ang/4)*2

*ELSEIF,ii,EQ,9
*SET,f mesh,4
*SET,s mesh,18
*SET,st_ang,(f ang/4)*3
*SET,ft mesh,2
*SET,l mesh,30

*ELSEIF,ii,EQ,10
*SET,f mesh,3
*SET,s _mesh,15
*SET,st_ang,(f ang/4)*2
*SET,ft mesh,2
*SET,l mesh,25

*ENDIF

*DO0O,jj,1,3.5,0.5
*SET,rad in,jj
/INPUT,endmill model,inp
/INPUT,endmill_work,inp
/OUTPUT ,parameter_study,txt,, APPEND
*VWRITE,f num,rad in,work
(F7.0,3X,F16.9,3X,F16.9,3X)
/OUTPUT

*ENDDO

*ENDDO



APPENDIX E
ANSYS INPUT FILE 04

!

' ANSYS input file to solve the endmill model. This input file is used
!'in endmill run.inp and endmill_start.inp

!

! Dongki Won
!

PARSAV
/CLEAR
PARRES

/FILNAME,endmill, 1

/UNITS,MPA

/TITLE,Damping Design of Endmill
/prep7

!

! Element Type and Material Properties
!
ET,1,SOLID95 1- 20-Nodes Cubic Element
MP,EX,1,206800 I- Modulus of Elasticity : 206780[MPa]
MP,DENS,1,7.82¢-9 I- Mass Density : 7.82e-6[kg/mm”3]
MP,NUXY,1,0.29 I- Poisson's Ratio : 0.29

MP MU,1,0.15 I- Friction Coefficient : 0.15

!

! Create Model Geometry
!
!= Shank:contact surface is 3, 8
K,1,0,0,0

K,2,0,0,1

K,11,rad out2,0,0

K,12,rad outl,0,0

K,13,rad out1,0,101.6
K,14,rad out2,0,101.6
A,11,12,13,14
VROTAT,1,,,,,,1,2,360,2

!= Finger:contact surfaces are 13,19,25,31,37

*DO,1,1,f num,1

CYLIND,rad _in,rad_outl,101.6,,st ang+f ang*(i-1),st ang+f ang*i
*ENDDO
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|

! Generating Mesh
!
LSEL,S,LENGTH,,101.6
LESIZE,ALL,,,l mesh

vsel,S,volu,,1,2,1,1
LSEL,R,RADIUS, rad outl
LSEL,A,RADIUS,,rad_out2
LESIZE,ALL,,,s mesh
LSEL,S,LENGTH,,rad_outl
LESIZE,ALL,,,st mesh

vsel,S,volu,,3,3+f num,1,1
LSEL,R,RADIUS,,rad outl
LSEL,A,RADIUS,,Rad in
LESIZE,ALL,,.,f mesh
LSEL,S,LENGTH,,rad outl-rad in
LESIZE,ALL,,.ft mesh

AlISEL

MSHAPE,0,3D !=hexahedral-shaped elements,3D
MSHKEY,2 != Map meshing

VMESH,ALL

!
! Designating Contact Pairs
!
ET,2,TARGE170
ET,3,CONTA174
ASEL,S,,,3,8,5,1

NSLA,S,1

ESLN,0

TYPE,2

ESURF,, TOP
ASEL,S,,,13,13+(f num-1)*6,6,1
NSLA,S,1

ESLN,0

TYPE,3

ESURF,, TOP

FINISH

/SOLU
!

! Apply Boundary Conditions and Sove
!

NSEL,S,LOC,Z,0
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D,ALL,ALL
ALLSEL
SOLCONTROL,ON

! Load Step 1
OMEGA,0,0,2722.713,0
TIME, 1
NROPT,UNSYM
NSUBST,5,10,2
AUTOTS,OFF
OUTRES,BASIC,ALL
KBC,0

LSWRITE, 1

! Load Step 2

CSYS,1

NSEL,S,LOC,Z,101.6

NSEL,R,LOC,X,rad out2

NSEL,R,LOC,Y,90

F,ALL,FY,-25

*DO,kk,1,2
NSEL,S,LOC,Z,101.6
NSEL,R,LOC,X,rad_out2
NSEL,R,LOC,Y,90+(360/(s_mesh*4))*((-1)**kk)
F,ALL,FY,-25

*ENDDO

*DO,kk,1,2
NSEL,S,LOC,Z,101.6
NSEL,R,LOC,X,rad_out2
NSEL,R,LOC,Y,90+(360/(s_mesh*4))*2*((-1)**kk)
F,ALL,FY,-12.5

*ENDDO

CSYS,0

ALLSELL

TIME,2

NROPT,UNSYM

NSUBST,5,10,2

AUTOTS,OFF

OUTRES,ALL,ALL

KBC,0

LSWRITE,2

LSSOLVE,1,2,1

FINISH



APPENDIX F
ANSYS INPUT FILE 05

!

! ANSYS input file to calculate the work done by the frictional force.

! This input file is used in endmill run.inp and endmill_start.inp

!

! Dongki Won
!

/POSTI1

SET,1,1

ESEL,S,ENAME,,174
*GET,emin,ELEM,0,NUM,MIN
*GET,emax,ELEM,0,NUM,MAX
*GET,aa, ELEM,emin,VOLU
aa=aa*(.25

!

! Read Friction Stress of R and S direction in each elements
!
ETAB,taurl,SMISC,5
ETAB,taur2,SMISC,6
ETAB,taur3,SMISC,7
ETAB,taur4,SMISC,8
ETAB,taus1,SMISC,9
ETAB,taus2,SMISC,10
ETAB,taus3,SMISC,11
ETAB,taus4,SMISC,12
!

I Calculate Friction Force of R and S direction by multiplying area
!
SMULT,rforcel taurl,,aa
SMULT,rforce2,taur2,,aa
SMULT,rforce3,taur3,,aa
SMULT,rforce4,taur4,,aa
SMULT,sforcel,tausl,,aa
SMULT,sforce2,taus2,,aa
SMULT,sforce3,taus3,,aa
SMULT,sforce4,taus4,,aa
!

! Read Slide(Relative Displacement) of R and S direction in each elements
!

ETAB,tasr1, NMISC,17

68



69

ETAB,tasr2, NMISC,18
ETAB,tasr3,NMISC,19
ETAB,tasr4 NMISC,20
ETAB,tass1,NMISC,21
ETAB,tass2, NMISC,22
ETAB,tass3,NMISC,23

ETAB,tass4 NMISC,24
!

I Calculate the work done by the friction force in each elements.
!

VDOT,work1,rforcel,sforcel,,tasrl,tass1
VDOT,work2,rforce2,sforce2,,tasr2,tass2
VDOT,work3,rforce3,sforce3, tasr3,tass3
VDOT,work4,rforce4,sforce4, tasr4,tass4
SABS,1

SSUM
*GET,workl,SSUM,,ITEM,work1
*GET,work2,SSUM,,ITEM,work2
*GET,work3,SSUM,,ITEM,work3
*GET,work4,SSUM,,ITEM,work4
work=work 1+work2+work3+work4

SABS,0
!

I Save the slide value for the next step.
!

ETAB,tasr1tmp,NMISC,17
ETAB,tasr2tmp,NMISC,18
ETAB,tasr3tmp,NMISC,19
ETAB,tasr4tmp,NMISC,20
ETAB, tass1tmp,NMISC,21
ETAB,tass2tmp,NMISC,22
ETAB, tass3tmp,NMISC,23

ETAB,tass4tmp,NMISC,24
!

! Repeat the procedure until reaches to the last set
!

ww=0
*DO,uu,1,2
*DO,vv,1,5
*IF,uu,EQ,1,AND,vv,EQ,1,CYCLE
SET,uu,vv
ww=ww+1

!

I Read Friction Stress of R and S direction in each elements
|

ETAB,taurl,SMISC,5
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ETAB,taur2,SMISC,6
ETAB,taur3,SMISC,7
ETAB,taur4,SMISC,8
ETAB,taus1,SMISC,9
ETAB,taus2,SMISC,10
ETAB,taus3,SMISC,11

ETAB,taus4,SMISC,12
!

I Calculate Friction Force of R and S direction by multiplying area
!
SMULT,rforcel,taurl,,aa
SMULT,rforce2,taur2,,aa
SMULT,rforce3,taur3,,aa
SMULT,rforce4,taur4,,aa
SMULT,sforcel tausl,,aa
SMULT,sforce2,taus2,,aa
SMULT,sforce3,taus3,,aa

SMULT,sforce4,taus4,,aa
!

! Read Slide(Relative Displacement) of R and S direction in each elements
!
ETAB,tasr1 NMISC,17
ETAB,tasr2, NMISC,18
ETAB,tasr3,NMISC,19
ETAB,tasr4 NMISC,20
ETAB,tass1,NMISC,21
ETAB,tass2, NMISC,22
ETAB,tass3,NMISC,23
ETAB,tass4 NMISC,24
SMULT,tasr1tmp,tasr1tmp,,-1
SMULT,tasr2tmp,tasr2tmp,,-1
SMULT,tasr3tmp,tasr3tmp,,-1
SMULT,tasr4tmp,tasr4tmp,,-1
SMULT,tass1tmp,tass1tmp,,-1
SMULT,tass2tmp,tass2tmp,,-1
SMULT,tass3tmp,tass3tmp,,-1
SMULT,tass4tmp,tass4tmp,,-1
SADD,tasrl,tasrl,tasr1tmp
SADD,tasr2,tasr2,tasr2tmp
SADD,tasr3,tasr3,tasr3tmp
SADD,tasr4,tasr4,tasr4tmp
SADD,tass1,tass1,tass1tmp
SADD,tass2,tass2,tass2tmp
SADD,tass3,tass3,tass3tmp
SADD,tass4,tass4,tass4tmp
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!

! Calculate the work done by the friction force in each elements.
!

VDOT,work],rforcel,sforcel,,tasrl,tassl
VDOT,work2,rforce2,sforce2,,tasr2,tass2
VDOT,work3,rforce3,sforce3,,tasr3,tass3
VDOT,work4,rforce4,sforced, tasr4, tass4
SABS,1

SSUM
*GET,work1,SSUM,,ITEM,work]1
*GET,work2, SSUM,,ITEM,work2
*GET,work3,SSUM,,ITEM,work3
*GET,work4,SSUM, ITEM,work4
work=work+work1+work2+work3+work4

SABS,0
!

I Save the slide value for the next step.
!

ETAB, tasr1tmp,NMISC,17
ETAB,tasr2tmp,NMISC,18
ETAB, tasr3tmp,NMISC,19
ETAB,tasr4tmp,NMISC,20
ETAB, tass1tmp,NMISC,21
ETAB,tass2tmp,NMISC,22
ETAB,tass3tmp,NMISC,23
ETAB,tass4tmp,NMISC,24
*ENDDO
*ENDDO
FINISH
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