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When an endmill is used in high-speed machining, chatter vibration of the tool can 

cause undesirable results. This vibration increases tool wear and leaves chatter marks on 

the cutting surface. To reduce the chatter vibration, a layered-beam damper is inserted 

into the hole at the center of the tool. The friction work done by the relative motion 

between the tool and damper reduces chatter vibration. The purpose of this research is to 

design and optimize the configuration of the damper to obtain the maximum damping 

effect. 

The analytical method has been reviewed, which is based on the assumption of 

constant contact pressure and uniform deflection. For the numerical approach, nonlinear 

finite element analysis is employed to calculate the distribution of the contact pressure 

under the centrifugal and cutting forces. The analytical and numerical results are 

compared and discussed. 

ix 



In order to identify the effect of the damper’s configuration, two design variables 

are chosen: the inner radius of the damper and the number of slotted dampers. During the 

parameter study and optimization, the inner radius is varied from 1.5mm to 3.5mm and 

the number of slotted dampers is varied from 2 to 10. 

Results show that the damping effect is maximum when the inner radius is 1.5mm 

and the number of slotted dampers is 5. However, this result depends on the operating 

condition. Thus, it is suggested to prepare a set of dampers and to apply the appropriate 

one for the optimum damping effect for a given operating condition. 
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CHAPTER 1 
INTRODUCTION 

Milling is widely used in many areas of manufacturing. Traditionally, milling has 

been regarded as a slow and costly process. Therefore, many efforts have been made to 

improve the efficiency of milling. The main limitation of milling is caused by the 

vibration of the machine tool and workpiece. As the speed and the power of milling are 

increased, it is very important to control vibration of the tool.  

Two different kinds of vibration affect the cutting operation. The one is the self-

excited (chatter) vibration at the high spindle speed, and the other is vibration at the 

critical natural frequency. This research is focused on the former, which produces a wavy 

surface during the milling operation, as shown in Fig.1-1.  

   
 

Figure 1-1. Chatter mark. 

Various methods of preventing chatter have been incorporated into machine tool 

systems. In 1989, Cobb [2] developed dampers for boring bars. These dampers are 

composed of two different types. The first type, which Cobb calls a shear damper, has 

two end “caps” that fit snugly around a boring bar. Between these are sandwiched an 

1 
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annular mass with plastic at each end, either in the form of ring or of several blocks at 

each end. This middle section of a mass and plastic pieces has a clearance from the 

boring bar, and is preloaded between the end caps with bolts. When the boring bar 

vibrates, the end caps transmit this vibration through the plastic pieces to the annular 

mass, which vibrates in tune. Since the plastic pieces do not slide on the faces of either 

one, a shear force is produced on the end faces of the plastic. The viscoelastic properties 

of the plastic provide damping for the system. The other type of damper proposed by 

Cobb is the compression damper in which the mass is again an annulus. This annulus is 

cut in half down its axis to form two half annuli. These are then bolted together around 

rings of plastic that are in contact with the boring bar. The bolts provide a preload on the 

plastic rings, and when the bar vibrates, the annular mass vibrates out of phase with it, 

compressing one side and then the other of the plastic rings. This alternate squeezing of 

the plastic creates damping, again by deforming the plastic, but in a compressive rather 

than shearing manner. 

In 1998, Dean [3] focused on increasing the depth of cut and increasing axis 

federates to improve the metal removal rate (MRR). While he does not present any 

original ideas on chatter reduction, his thesis refers to work done by Smith [6] in which a 

chatter recognition system was developed. This system uses a microphone to detect the 

frequency of chatter when it occurs. The system then selects a different speed(according 

to the parameters of the system) and tries to machine again. This process repeats itself 

until chatter no longer occurs. 

Much work in the field of structural damping has been done by Slocum [5]. In 

order to damp vibrations, Slocum uses layered beams with viscoelastic materials between 
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the layers. Two cantilevered beams are stacked on top of each other, and a force is 

applied to the end of the top beam. It is known that beams experience an axial shear force 

when displaced in this manner. Slocum’s derivation calculates a relative displacement 

between corresponding points on the un-deformed beams. This is incorporated into a 

selfdamping structure by placing several small beams inside of a larger beam and 

injecting a viscoelastic material between them. This material bonds to each surface and 

thus, when there is a relative displacement, is deformed. The stretching of this material 

causes a dissipation of vibration energy and thus, damping. 

In 2001, Sterling [7] explored the possibility of deploying a damper directly inside 

of a rotating tool. To reduce the chatter vibration, a layered-beam damper, which Sterling 

calls a finger, is inserted into the hole at the center of the tool. Due to the high-speed 

rotation, the outer surface of the damper contacts with the inner surface of the tool. When 

chatter vibration occurs, which is a deflection of the tool, work is done in the contact 

interface due to the friction force and the relative motion. This work is dissipative and 

reduces chatter vibration. He developed an analytical model and performed an 

experiment for the layered beam damper. 

In this research, the work done by Sterling is further extended. Using finite element 

analysis, his analytical approach is compared to the numerical results. The objective of 

this research is to calculate the amount of friction work and to maximize its effect by 

changing the damper’s configuration. 

The organization of thesis is as follows. In Chapter 2, a simplified model of the 

endmill is introduced that can be used for analytical study and numerical simulation. In 

Chapter 3, the analytical approach is reviewed that qualitatively estimates the damping 
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work. Chapter 4 presents the background knowledge of finite element analysis in contact 

problems. Chapter 5 describes the numerical simulation procedure using the finite 

element method. Chapter 6 represents the parameter study according to the change of two 

design variables, followed by conclusions and future work at Chapter 7. 

 

 

 



CHAPTER 2 
SIMPLIFIED MODEL 

The machine tool that we are considering in this research is a 4″ long endmill, as 

shown in Fig.2-1. Most endmills are of the solid beam type as shown in Fig.2-1 (a). In 

this type of tool, the only available damping mechanism is structural damping, which is 

very small. Structural damping, which is a variant of viscous damping, is usually caused 

by internal material friction. When the damping coefficient is small, as in the case of 

structures, damping is primarily effective at frequencies close to the resonant frequency 

of the structure. 

   

(b) (a) 

 
Figure 2-1. Endmill and damper. (a) the original solid endmill and (b) the damper 

inserted model 

When a layered-beam damper (see Fig.2-1 (b)) is inserted into the hollow tool, the 

high-speed rotation causes a strong contact between the beam and tool. When chatter 

vibration occurs, it generates a relative motion between the beam and tool. Due to the 

contact force, this relative motion causes a friction force in the interface, which damps 
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the vibration. In this research, this damping mechanism will be referred to as a 

mechanical damper. 

While the tool geometry is very important for cutting performance, the objective of 

this research is on the vibration of the tool. Thus, we want to simplfy the tool geometry 

so that the analytical and numerical studies in the following chapters will be convenient. 

The first step of simplifying the endmill model is to suppress unnecessary 

geometric details, while maintaining the endmill’s mechanical properties. The endmill 

model can be simplified as a cylinder because we are only interested in the contact 

surface, which is the inner surface of the tool. Fig.2-2 (b) illustrates the simplified model.  

   

ω=2722.71 rad/s (a) (b) 

F=100 N

 
Figure 2-2. Model simplification. (a) the detailed tool model in which the damper is 

inserted and (b) the simplified model using hollowed cylinder. 

The simplified endmill model is composed of two-hollowed cylinders. The outer 

cylinder represents the endmill tool, and the inner cylinder represents the damper. For 

convenience, the outer part (tool) is denoted as a shank, while the inner part (damper) is 

denoted as a finger. As schematically illustrated in Fig.2-3, the outer radius R1 of the 

finger is 1.5 mm, the inner radius R2 of the finger is 4.7625 mm, the inner radius R3 of 

the shank is 4.7625 mm, and the outer radius R4 of the shank is 9.525 mm. The length of 
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the endmill is 101.6mm. Because the gap between two contact surfaces is ignored, R2 is 

equal to R3. R1 will be varied from 1.0 mm to 3.5 mm during the parameter study in 

Chapter 6. 

 
Figure 2-3. Dimensions of geometry. 

Although Fig.2-3 shows only two fingers, the number of fingers can be altered to 

improve the damping performance. The parameter study in Chapter 6 will examine the 

effect of varying the number of fingers between 2 and 10. Because a damper with only 

one finger would have a lower contact pressure than the other cases, this case will not be 

considered. 

Next, the operating condition is also simplified. The applied force is assumed to be 

sequential. It is first assumed that the tool is rotated with a constant angular velocity. The 

constant angular velocity will generate a constant contact force at the interface. For this 
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particular model, an angular velocity of 2,722.713rad/sec is used, which is equal to 

26,000 rpm. In this initial state the endmill has not started cutting the surface. When the 

endmill starts cutting the surface, the tool undergoes a vertical force at the end of the 

endmill. To approximate the cutting process of the tool, a vertical force is applied at the 

tip. To accurately approximate the cutting force, the vertical force on the endmill needs to 

be measured and then an equal force needs be applied at the tip. However, since the 

objective of this research is vibration control, a representative force of 100N is applied. 

Thus, the damping work that will be calculated is not the actual magnitude, but rather a 

relative quantity. 

For simplicity, the same material properties are assumed for both the shank and 

finger even though the stiffness of the finger is actually slightly higher than that of the 

shank. The material properties used are listed in Table 2-1. 

Table 2-1. Material properties used for the shank and finger. 
Material Property Value 
Young’s Modulus 206780 MPa 

Mass Density 7.82×10-9 ton/mm3 
Friction Coefficient 0.15 

 
In the following chapters analytical and finite element analysis will use the 

simplified model to determine the conditions for maximum damping of the endmill. 

 

 

 



CHAPTER 3 
REVIEW OF ANALYTICAL APPROACH 

It would be beneficial to review an analytical model before starting the finite 

element analysis because it will provide a qualitative estimation of the numerical 

approach. Sterling [7], a former researcher, developed an analytical method that can 

estimate the amount of friction work during chatter vibration. In this chapter, his 

analytical approach is reviewed and the results will be compared with finite element 

analysis results in Chapter 5. 

The work done by the friction force that occurs between the inner surface of the 

endmill and the outer surface of the damper causes the damping effect that reduces the 

chatter vibration. According to the Coulomb friction model [9], the friction force and the 

damping work can be written as follows: 

 f

f f

F N

W F U f

µ= ×

= ×
 (3.1) 

where fF is the friction force, µ is the friction coefficient, is the normal contact force, 

is the friction work, and U is the relative displacement between the two contact 

surfaces. The normal force N is mainly caused by the centrifugal force created when the 

endmill is rotating. The relative displacement U  is mainly caused by the vertical 

deflection of the tool when the endmill starts cutting. Therefore, we can divide the 

endmill system into two states. The first state is when the endmill is rotating without any 

cutting operation. In this case, only the centrifugal force is applied. The second state is 

N

fW f

f

9 
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when the endmill starts cutting. In this state, the vertical force is added at the tip of the 

endmill. Both the centrifugal force and the vertical force are applied in this state. If we 

assume that there is no relative motion in the first state, then we can calculate the work 

done by the friction force during the second state. 

Calculation of the Normal Force and the Contact Pressure 

In this section, the normal force and pressure that are caused by the rotational 

motion of the tool will be calculated. There are three assumptions for the analytical 

method in this step. Those are listed as below. 

• There is no angular acceleration, which means the angular velocity is constant. 

• There is no relative motion between the two contact surfaces during the first step, 
which means there is no slip in the contact surface during the rotational motion. 

• Contact occurs throughout the entire contact area during the second state. In the 
actual case, contact may not occur in some portions of the interface. For example 
there will be no contact near the fixed end or on the two sides where the neutral 
axis lies. All of these effects are ignored, and it is assumed that contact occurs 
throughout the entire area. 

Due to the second assumption, the contact pressure is calculated using the 

centrifugal force only and is assumed to remain constant. Now let us consider the 

simplified model, which was developed in Chapter 2 (Fig.2-3). The shank and the finger 

are hollowed cylinders. For simplicity, we only consider the case of a two-finger 

configuration. Figure 3-1 (a) shows the cross-sectional area and dimensions of the 

endmill system in which two fingers are inserted. Considering the symmetric geometry of 

the fingers, we can consider one finger, which is illustrated in Fig.3-1 (b). Since the 

finger can have an arbitrary location, θ  represents the start angle of the finger. The point 

G indicates the first moment (centroid) of the finger’s cross section, and R is the distance 
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between the center of the tool and the centroid G. The normal force N and contact 

pressure  can then be obtained as, cP

(a)

 
2

2 , c
c

MRN MR P
A
ωω= =  (3.2) 

where is the contact surface area, cA M is the mass of the finger, andω is the angular 

velocity. The first step of calculating the contact pressure is to calculate the distance R, 

which is determined by the centroid of the finger’s cross section. 

R1= 1 mm

 
R4= 9.525 mm

R2= R3= 4.7625 mm

G

R

(b)

= start angleθ

 
Figure 3-1. Cross sectional area of the endmill system. (a) Cross sectional area and 

dimension of the original model in which two fingers are inserted. (b) Cross 
sectional area of the finger. G is the mass center of the cross section, and θ  is 
the start angle. 

The centroid (first moment) of an assemblage of n similar quantities, 1∆ , 2∆ , 3∆ , 

…,  situated at point , , ,…,  for which the position vectors relative to a 

selected point O are , , , …,  has a point vector 

n∆ 1P

2r

2P

3r

3P nP

1r nr r defined as 
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1

1

n

i
i

n

i

ι

ι

=

=

∆
=

∆

∑

∑

r
r  

where ι∆ is the th quantity (for example, this could be the length, area, volume, or mass 

of an element), r is the position vector of i th element, 

i

i
1

n

i
ι

=

∆∑ is the sum of all  elements, 

and 

n

1
i

n

i
ι

=
∑ ∆r is the first moment of all elements relative to the selected point O. In terms of 

x, y, and z coordinates, the centroid has coordinates 

1

1

n

i
i

n

i

x
x

ι

ι

=

=

∆
=

∆

∑

∑
, 1

1

n

i
i

n

i

y
y

ι

ι

=

=

∆
=

∆

∑

∑
, 1

1

n

i
i

n

i

z
z

ι

ι

=

=

∆
=

∆

∑

∑
 

where ι∆ is the magnitude of the i th quantity (element), , ,x y z  are the coordinates of 

centroid of the assemblage, and , ,i i ix y z  are the coordinates of  at which iP ι∆ is 

concentrated. 

The centroid of a continuous quantity may be located though calculus by using 

infinitesimal elements of the quantity. Thus, for area A and in terms of x, y, z 

coordinates, we can write 

 

yz

xz

xy

xdA Q
x

AdA

ydA Qy
AdA

zdA Q
z

AdA


 = =


 = =




= =


∫
∫
∫
∫
∫
∫
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whereQ , Q , Q  are first moments with respect to the xy, yz, and xz planes, 

respectively. The following table indicates the first moments Q  of various quantities 

xy yz xz

∆  

about the coordinate planes. In Table 3-1 Q , Q , Q  are the first moments with respect to 

xy, yz, xz planes, is the length, and m is the mass, respectively. Note that in two-dimensional 

work, e.q. in the xy plane, Q becomes Q , and becomes . 

xy yz

yzQ

xz

L

xy x yQ

Table 3-1. First moment Q of various quantities. 
∆  xyQ  yzQ  xzQ  Dimensions 

Line zdL∫  xdL∫  ydL∫  2L  

Area zdA∫  xdA∫  ydA∫  3L  

Volume zdV∫  xdV∫  ydV∫  4L  

Mass zdm∫  xdm∫  ydm∫  mL  

 
Now let us consider the case illustrated in Fig.3-2, which is a cross section of the 

finger. According to the figure, y can be expressed as 

x
ydA Qy R

AdA
= = =∫

∫
 

If we choose the polar coordinate system y is represented by, 

cosy r θ=  

Using this polar coordinate system, the y  of the centroid can be calculated by, 

 

2

1

2

1

2

1

2

1

3

2

cos( )

1 cos( )
3

1
2

R

Rx
R

R

R

R
R

R

r rdrydAQy
A dA rdrd

r drd

r drd

β

α
β

α

β

α

β

α

dθ θ

θ

θ θ

θ

= = =

 
  

=
 
  

∫ ∫∫
∫ ∫ ∫

∫

∫
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( )
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( )
( )

3 3
2 1

2 2
2 1

3 3
2 1

2 2
2 1

2 sin( ) sin( )
3

2 sin( ) sin( )
3

R R

R R

R R

R R

β α
β α

β α
β α

− +
=

−−

− +
=

−−

 

α

dθ

R2 R1

r
dr

X

Y

β

y=
co

s

θ

 
Figure 3-2. Cross sectional area of the finger. 

If 0α = , 

 
( )
( )

3 3
2 1

2 2
2 1

2 sin( )
3

R R
x

R R
β

β

−
=

−
 

Since the centroid of the cross section is always located along the symmetric line of 

the finger, it is convenient if the y-axis is chosen such that the centroid is located on the 

y-axis, as illustrated in Fig.3-3. Due to the symmetry, the integration of the domain can 

be done between α− andα  for angles, which provides a convenient formula. If we 

choose the polar coordinate system, from the Fig.3-3, y is represented by, 

cosy r θ=  
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α

θ

α

dθ

R2 R1

r

dr

X

Y

y=
co

s

 
 

Figure 3-3. Cross sectional area of the finger. 

Using this polar coordinate system, the y  of the centroid can be calculated by, 

2

1

2

1

2

1

2

1

3

2

cos( )

1 cos( )
3

1
2

R

Rx
R

R

R

R
R

R

r rdrydAQy R
L dA rdrd

r drd

r drd

α

α
α

α

α

α

α

α

dθ θ

θ

θ θ

θ

−

−

−

−

= = = =

 
  

=
 
  

∫ ∫∫
∫ ∫ ∫

∫

∫

 

( )
( )
( )
( )

3 3
2 1

2 2
2 1

3 3
2 1

2 2
2 1

2 sin( ) sin( )
3

2 sin( )
3

R R

R R

R R

R R

α α
α α

α
α

− − −
=

− (− )−

−
=

−

 

 
( )
( )

3 3
2 1

2 2
2 1

2 sin( )
3

R R
R

R R
α

α

−
∴ =

−
 (3.3) 

This equation can be used for the general case which undergoes the centrifugal 

force. For the simplified model in Chapter 2,
2
πα = , 2 4.7625R mm= , 1 1.5R mm= . 
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Substituting these values into the above equation yields 2.1738y R mm= =

21520 [ ]

. Substituting 

this value into Eq.(3.2) yields the normal force and the contact pressure between two 

contact surfaces. In Eq. , the contact area can be calculated by cA

4.7625 mm=

2
2
π

−

×

[

(3.2)

2 101.6cA R Lπ π= = × ×  

which assumes that all parts of the surface are in contact. Using the material properties 

shown in Table 2-1, the mass M can be calculated by. 

( )6 2 27.82 10 4.7625 1.5 101.6

2.5499 10 [ ]

M V

kg

ρ −= = × − ×

= ×
 

Therefore the contact pressure can be obtained from Eq.(3.2), as 

2 22.5499 10 2.1738 2722.713
1520

270.33 ] 0.2703 [ ]

c
c

MRP
A

KPa MPa

ω −× × ×
∴ = =

= =

 

2

It is noted that the contact pressure is calculated from the assumption that the whole 

surface is in contact with a constant pressure. 

cP

Calculation of the Relative Displacement and the Work 

In this section the relative displacement that is caused by the vertical force (cutting 

force) will be calculated and the work that has been done by the friction force will be 

calculated. This state represents the one in which the endmill starts the cutting operation. 

The same assumptions are used as in the last case except for the second one because there 

is now a relative motion between the two contact surfaces. The assumptions are: 

• There is no angular acceleration, which means the angular velocity is constant. 

• There is no normal contact force change caused by the vertical force. 

• Contact occurs throughout the entire contact area. 
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Because the centrifugal force is dominant in this endmill system, the change of the 

normal contact force due to the vertical force is ignored in this step. The first step of 

calculating the frictional work is to obtain the second moment of inertia of the finger. The 

following definitions of the second moment, or moment of inertia are analogous to the 

definitions of the first moment of a plane area, which were given in the previous section. 

The derivation of load-stress formulas for beams may require solutions of one or more of 

the following equations: 

 

2

2

x

y

xy

I y dA

I x dA

I xydA

 =

 =


=

∫
∫
∫

 (3.4) 

where  is an element of the plane area dA A  lying in the x-y plane. A  represents the 

cross-sectional area of a member subjected to bending and/or torsional loads. The 

integrals in the above equations are commonly called moments of inertia of the area A  

because of the similarity with integrals that define the moment of inertia of bodies in the 

field of dynamics. From Eq.(3.4), if we choose the polar coordinate system, x and y are 

represented as, 

cosx r θ= , siny r θ=  

and xI , yI , xyI  are 

 

( )( )

( )( )

( )( )

2

1

2

1

2

1

3 2 4 4
2 1

3 2 4 4
2 1

3 4 4 2 2
2 1

1sin sin cos sin cos
8
1cos sin cos sin cos
8

1sin cos sin sin
8

R

x R

R

y R

R

xy R

I r drd R R

I r drd R R

I r drd R R

β

α

β

α

β

α

θ θ β α β β α α

θ θ β α β β

θ θ θ β α

 = = − − − +

 = = − − + −

 = = − −

∫ ∫

∫ ∫

∫ ∫

α α  (3.5) 

If 0α =  the Eq.(3.5) can be written as 
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( )( )

( )( )

( )

2

1

2

1

2

1

3 2 4 4
2 10

3 2 4 4
2 10

3 4 4
2 10

1sin sin cos
8
1cos sin cos
8

1sin cos sin
8

R

x R

R

y R

R

xy R

I r drd R R

I r drd R R

I r drd R R

α

α

α 2

θ θ α α α

θ θ α

θ θ θ α

 = = − −

 = = − +

 = = −

∫ ∫

∫ ∫

∫ ∫

α α  (3.6) 

For the simplified model in Chapter 2, α π= , 1 1.5R mm= , 2 4.7625R mm= . 

Substituting those values into the above equation yields, 

( )( ) ( )4 4 4 41 4.7625 1.5 sin cos 4.7625 1.5
8 8xI ππ π π= − − = −  

Thus, the moment of inertia of the upper finger is 

( ) ( )4 4 4 4
3 4 4.7625 1.5 200 [ ]

8 8x
4I R R mmπ π

= − = − =  

The moment of inertia of the lower finger can be obtained in the same way because the 

two fingers are symmetric about the x-axis, and the two values would be the same.  

Now let us calculate the relative displacement and the friction work. It is well 

known that beams undergo internal shear deformations along their axes during bending. 

Members of a composite beam that are not securely fixed together will slide over each 

other in proportion to their distance from the neutral axis of entire composite beam. It is 

known that for a cantilevered beam with a point load at the end, the vertical deflection at 

any point in the beam’s neutral surface is 

( )3 23 2
6
F 3x xL L
EI

δ = − + −  

where F is the force on the end of the beam, E is the beam’s elastic modulus, I is the 

beam’s moment of inertia, x is the position along the length of the beam measured from 

the free end, and L is the length of the beam. 
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If a composite beam is bent, all members will have the same deflection at the tip. 

Therefore it can be written that 

 ( ) (3 2 3 3 23 2 3 2
6 6

fs

s s f f

FF )3x xL L x xL L
E I E I

δ = − + − = − + −  (3.7) 

where, subscript s means the shank, and f means the finger. The external force F at the tip 

of the endmill must equal the sum of the forces required to deflect each member. 

 s fF F F= +∑  (3.8) 

(3.8)

If there are only two fingers inside the shank Eq.(3.7) can be written as 

1 2

1 1 2 2

f fs

s s f f f f

F FF
E I E I E I

= =  

The above equation can be written as follows 

1

1 1

f s s
s

f f

F E I
F

E I
= , and 1 2 2

2
1 1

f f f
f

f f

F E I
F

E I
=  

Substituting these equations into  yields 

1 1
1 2 1

1 1 1 1

2 2f s s f f f
s f f f

f f f f

F E I F E I
F F F F F

E I E I
= + + = + +  

Solving above equation for 1fF  yields 

( )
1 1

1
1 1 2 2

f f
f

s s f f f f

FE I
F

E I E I E I
=

+ +
 

This equation can be reduced to 

1 1
1

1

f f
f n

s s fi
i

FE I
F

E I E I
=

=
+∑ fi

 

The same operation for sF and 2fF yields 
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1

s s
s n

s s f
i

FE IF
E I E I

=

=
+∑ i fi

 

2 2
2

1

f f
f n

s s fi
i

FE I
F

E I E I
=

=
+∑ fi

 

The normal stress at any point in a cantilevered beam is given by 

Fxc
I

σ =  

whereσ is the stress, F is the force on the free end, x is the position along the beam 

measured from the free end, c is the distance from the beam’s neutral axis to the point of 

interest, and I is the area moment of inertia of its cross section. The axial strain in the 

beam is then 

Fxc
E EI
σε = =  

whereε  is the axial strain and is the Young’s Modulus of the material. c is the sum of 

the quantity (d+y) where d is the distance of the neutral axis of the finger from the neutral 

axis of the composite beam and y is the perpendicular distance from the point in question 

to the neutral axis of the finger. 

E

For any point in any component member of the composite beam, the change in 

position of the point related to x=0 (the free end of the beam) can be written as 

0

x

axial dxδ ε= ∫  

Substituting the previously obtained equations into this integral for both the fingers and 

the shank, the following equations are obtained. The value of d of the finger can be 
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represented by sinR θ× , where θ is the start angle. Note that in the equation for the 

shank, d is zero because its neutral axis lies on the neutral axis of the composite beam. 

2 2
2 2

1 1

( ) (0 ) ( )( )
2 2

L s s
saxial n nx

s s
s s fi fi s s fi

i i

FE IF x d y y F y L xdx L x
EI E IE I E I E I E I

δ

= =

× × + + × × −
= = − =

 + + 
 

∫
∑ ∑ fi

 

2 2
2 2

1 1

( ) ( ) ( ) (( )
2 2

L fi fi
faxial n nx

fi fi
s s fi fi s s fi fi

i i

FE IF x d y d y F d y L xdx L x
EI E IE I E I E I E I

δ

= =

× × + + × + × −
= = − =

 + + 
 

∫
∑ ∑

)  

The relative displacement can then be obtained by subtracting the above two equations 

2 2 2 2 2 2

1 1

( ) ( ) ( ) ( )

2 2 2
faxial saxial n n

1

n

s s fi fi s s fi fi s s fi
i i

F d y L x F y L x F d L x

E I E I E I E I E I E I
δ δ

= =

× + × − × × − × × −
− = − =

     
+ + +     

     
∑ ∑ fi

i=
∑

 

The work done through this displacement is by friction. The amount of work done 

is equal to the integral solved over the entire length of the beam of the frictional force 

(friction coefficient times the normal force, which is the force/unit length at a point times 

the differential length) multiplied by the relative displacement. Writing this equation 

(assuming the pressure, P, is uniform over the entire area of the finger) 

2 2

0

1

( )( )
2

axial

L

f saxial n

s s fi fi
i

F d L xP P
E I E I

µ δ δ µ

=

× × −
− =

 
+ 

 

∫
∑

dx  

The work done by friction for a displacement of the end of the beam by a specified 

force, F, is then 

 3

1

1
3 n

s s fi
i

dW L PF
E I E I

µ

=

=
 

+ 
 

∑ fi

 (3.9) 
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The MATLAB code used for calculating this friction work is implemented in 

appendix A. Figure 3-4, 3-5 and 3-6 show the results of theoretical analysis. 
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Figure 3-4. Plot of work done by the friction force according to the change of the inner 

radius of finger. 

Figure 3-4 is the work according to the change of the inner radius of the finger. As 

the radius increases the work decreases because the mass decreases. When the radius is 

1.5mm and the number of finger is 2, the work done by the friction force 

is 7.1182 . Figure 3-5 is the work calculated for different values of the start angle 

when the number of damper fingers is two and the inner radius is 1.5 mm. When the start 

angle is 0 it has its maximum value and this value gradually decreases as the angles 

decrease. Even when the number of fingers is held constant, the damping values differ for 

different positions of the finger. This result is reasonable because the relative 

displacement is zero at the neutral axis. In Chapter 6 this effect will be discussed in more 

detail. 

510 [ ]J−×
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Figure 3-5. Plot of work done by the friction force for varying start angles of the finger. 

The radius of the finger is 1.5 mm and the number of the finger is 2. 
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Figure 3-6. Plot of the work done by the friction force for different numbers of damper 

fingers. The inner radius of the finger is 1.5 mm and the start angle is chosen 
to have the maximum damping in each number of the finger. 
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Figure 3-6 shows the work for different numbers of fingers. The inner radius of the 

finger is 1.5 mm and the start angle is chosen to have the maximum damping for the 

number of fingers being used. The work increases gradually as the number of fingers is 

increased. Finite element analysis will be done for these analytical results in the 

following chapter. 

 

 

 



CHAPTER 4 
BACKGROUND OF FINITE ELEMENTANALYSIS 

IN CONTACT PROBLEMS 

Since the material properties of the endmill is linear elastic, the classical finite 

element can be used without difficulty. Major concern is the contact constraints in the 

interface. Contact problems are highly nonlinear and require significant computer 

resources to solve for. Contact problems present two significant difficulties. First, the 

regions of contact are generally unknown until running the model. Depending on the 

loads, material, boundary conditions, and other factors, surfaces can come into and go out 

of contact with each other in a largely unpredictable and abrupt manner. Second, most 

contact problems need to account for friction. Frictional response can be chaotic, making 

solution convergence difficult. In addition to these two difficulties, many contact 

problems must also address multi-field effects, such as the conductance of heat and 

electrical currents in the areas of contact.  In this chapter the general procedure of 

performing the contact analysis using FEA is discussed. 

Contact problems are characterized by contact constraints which must be imposed 

on contacting boundaries. To impose the contact constraints, two basic methods are 

available: the Lagrange multiplier method [9] and the penalty method [9]. Other 

constraint methods based on the basic methods have been proposed and applied. The 

augmented Lagrangian method [9] and the perturbed Lagrangian method [9] are two 

examples. 
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Contact Formulation in Static Problems 

To introduce the basic constraint methods, we consider static mechanical problems 

subjected to contact constrains on known contacting boundaries. For small displacements, 

the total potential energy of the structure can be written as, 

 1( )
2

T
dd d dS

Ω Ω Ω
Π = Ω− ⋅ Ω− ⋅ −∫ ∫ ∫u e Ce u b u q UT F  (4.1) 

where Π  is the total potential energy of the body, is the engineering strain, is the 

elastic modulus, is the body force, is the surface traction. By using standard element 

procedures, the discretized form of Eq.(4.1) can be obtained as follows: 

e C

b q

 1( )
2

TΠ = −U U KU UT F

c

 (4.2) 

where U is the global displacement vector, K is the global stiffness matrix, and F is the 

global load vector. 

The virtual work due to the contact load is calculated as 

  (4.3) 
1
( )

t L
n

c
n

W wδ δ
=

=∑

where ( ) indicates that the quantity in the parentheses is evaluated in association with a 

hitting node n, t  is the total number of hitting nodes at time t, and 

n

L cwδ  the virtual work 

due to the concentrated contact force at hitting node n and is calculated as 

 2 1( )t
c iw fδ δ δ t

i= − ⋅u u N  (4.4) 

where t
if  is the components of the contact force at a target point in the directions of t . 

The virtual displacement 

iN

2δu at the target point can be evaluated by using equation  

  (4.5) 2

1

N
n

n
n

δ φ δ
=

=∑u 2,u
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where N denotes the total number of target nodes on the target segment, nφ  denotes the 

shape function associated with contact node n on the contact segment and is the 

displacement of target node n. 

2,nuδ

To obtain a matrix expression for 2 1δ δ−u u , the following notation is used: 

 { }1 1 1 2,1 2,1 2,1 2, 2, 2,
1 2 3 1 2 3 1 2 3...

TN N N
c u u u u u u u u u=u  

 
1 2

1 2

1 2

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 ... 0 0
0 0 1 0 0 0 0 0 0 0

N

c N

N

φ φ φ
φ φ φ

φ φ φ

− 
 = − 
 − 

Q  

Then Eq.(4.4) can be written as 

 �( )tT T t T t
c c c i i cw fδ δ δ= =u Q N u rc  

where 

 
� { }

�

1 2 3

t Tt t t
i i i i

tt T t
c c i

N N N

f

=

=

N

r Q N
 

where t denotes the ijN j th component of the boundary unit vector t . iN

We realize that t is a nodal force vector contributed by the contact at the 

associated contacting node. It will be convenient to distinguish, in the evaluation of t , 

between the contribution of normal contact forces and the contribution of tangential 

friction forces. Thus we write 

cr

cr

  t t t
c cn= +r r rcf

where  

  
�

�

1 1

2,3

tt T t
cn c

tt T t
cf c J J

f

f summation on J

=

= =

r Q N

r Q N
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The penetration of the hitting node can be calculated as 

 ( )2 1
1

t t t tp = − ⋅x x N  

where t  and t  are the position vectors of the hitting node and target point, 

respectively. 

1x 2x

Expressing t  and t in terms of the displacementsu and u , respectively, we 

have the following discrete form of the kinematic contact condition: 

1x 2x 1 2

 
( ) ( )2 1 2 1

1

1 0

t t t t t

t T
c c

p

pτ

1= − ⋅ + − ⋅

= + =

x x N u u N

N Q u%
 (4.6) 

where 

 
�

{ }
1

2 1 2 1 2 1
1 1 2 2 3 3, ,

Tt

T

p

x x x x x x

ττ

τ ττ τ τ τ τ

=

= − − −

N X

X
 

This means that for small displacements the configuration of the contact system may be 

considered unchanged after the displacements. Thus, we can approximate t , by  in 

Eq.(4.6). Furthermore, we assume only one load step. This means that we need to move 

only one step in the “time” domain and 

1N% 0
1N%

pτ and t in Eq.(4.6) can be replaced by and p p0

p , respectively, where denotes any initial penetration (or gap) and p0 p any penetration 

after deformation. Therefore, the discretized kinematic contact condition can now be 

written as 

 0
1 0o T

c cp p= + =N Q u%  (4.7) 

Eq.(4.7) applies to a single contacting node. If there are contacting nodes, 

there will be contact constraint equations, each taking the form of Eq.(4.7). Those 

contact constraint equations can be assembled to obtain 

)1( >LL

L

L
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 0 0= + =P QU P  (4.8) 

where 

�

{ }

1 2

0
1

1

00 0 1 2 0

{ , ,..., }

, ,...,

L T

L
T

c II
TL

p p p

p p p

=

=

 =  

=

∑

P

Q N Q

p

 

Since the contacting boundaries are known, all the contacting nodes can be identified and 

Eq.(4.8) can be established explicitly. 

Based on the above preparations, the contact problem can be stated as follows: 

 
Minimize in Eq.(4.2) subject to the constraints in Eq.(4.8) [P-1] ( )Π U

 
It must be observed that the mechanical contact condition should be satisfied 

automatically by assuming that all the contact nodes are actual contacting nodes. In 

general, actual contacting nodes are not known a priori and an iterative trial-and-error 

procedure is required to find all contacting nodes. In the following, we discuss the 

solution of problem [P-1] with alternative constraint methods. 

L

The Lagrange Multiplier Method 

In the Lagrange multiplier method, the function to be minimized is replaced by the 

following function: 

 01( , ) ( )
2

T T T
L∏ = − + +U Λ U KU U F Λ QU P  (4.9) 

where is an unknown vector which contains as many elements as there are constraint 

equations in Eq.(4.8). The elements in are known as Lagrange multipliers. 

Λ

Λ
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The constrained minimization problem [P-1] is now transformed into the following 

saddle-point problem: 

Find and such that U Λ ( , )L∏ U Λ  is stationary, i.e. [P-2] 

 
0

0

L

L

∂∏
=

∂
∂∏

=
∂

U

Λ

 (4.10) 

Eq.(4.10) yields 

 
0

0
0

T− + =

+ =

KU F QH Λ
QU P

 (4.11) 

Combining Eq.(4.11), we obtain 

 L L L=K U F  (4.12) 

where  

0

0

T

L

L

L

 
=  
 
 

=  − 
 

=  
 

K Q
K

Q

U
F

P

U
U

Λ

 

By solving Eq.(4.12), we can obtain the displacement and the Lagrange multiplier . 

The elements in  are interpreted as contacting forces at the corresponding contacting 

nodes. 

U Λ

Λ

The Penalty Method 

In the penalty method, the potential energy of the structure is penalized when a 

penetration occurs on the contact surface. The following penalty potential is added to the 

structural potential: 
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1
2

T
pπ α= P P  

whereα is a diagonal matrix with elements ,iiα  which is the penalty parameters and  is 

a vector of penetration.. 

P

The function to be minimized is now replaced by 
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2 2

p p

T T 1

πΠ = Π +

= − +U KU U F P αP
 (4.13) 

The constrained minimization problem [P-1] is then transformed into the following 

unconstrained minimization problem:  

 
Find such that U pΠ is minimized. 

 
To find its minimum, is held stationary by invoking the following condition: LΠ

 0p∂Π
=

∂U
 (4.14) 

(4.14)Substituting Eq.(4.13) and (4.8) into , we can obtain 

 p p=K U F  (4.15) 

where 

  
0

T
p

T
P

= +

= −

K K Q αQ

F F Q α P

The solution of Eq.(4.15) gives the displacement . The contacting forces are then 

calculated as 

U

 C =F αP  

where the penetration P  is a function of the displacement vector . U

 



CHAPTER 5 
FIITE ELEMENT ANALYSIS 

In this chapter, the finite element analysis procedure and results of the endmill 

system are presented. Even though the cutting process is dynamic, a static finite element 

analysis is performed with the centrifugal force and the cutting force at the tip. Thus, the 

friction work obtained must be interpreted as a qualitative measure. Since the simulation 

condition is the same as that of the analytical method in Chapter 3, it is still valid to 

compare the results of finite element analysis with the analytical results. 

Finite Element Model 

 
 

Figure 5-1. Solid 95, 20 node solid element 

The first step of finite element analysis is to build a computational model. The 

simplified geometry for the endmill in Chapter 2 is used in the FEA. Using the same 

32 



33 

material properties listed in Table 2-1, 20-node solid elements in ANSYS (solid 95) are 

used to build the shank and finger. Figure 5-1 illustrates a 20-node solid element that is 

used in ANSYS, and Fig.5-2 plots the finite element model of the endmill with boundary 

conditions. In Fig.5-2, the shank is modeled using two elements through the radial 

direction, and fingers are modeled inside the shank. The cutting force F=100N is 

distributed to 4 nodes at the tip. Table5-1 shows the number of elements used in the 

endmill finite element model. 

 
 

Figure 5-2. FEA model of the endmill using 20 node cubic elements and 8 node contact 
elements with boundary conditions. 

Table 5-1. The number of nodes and elements. 
Node 24826 

Element 6480 
SOLID95 4320 

TARGE170 1080 
CONTA174 1080 
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Because the contact area is curved, higher order elements must be used to prevent 

inaccurate representation of the surface. Since the contact element is defined on the 

surface of solid elements, the consistent order of the element must be used for the 

structure and contact surface. The counter part of SOLID95 structural element is 8-node 

contact element, as illustrated in Fig.5-3. The contact elements are defined between the 

shank and finger. 

  
 

Figure 5-3. 8-node contact (CONTA174) and target (TARGE170) element description.  

ANSYS offers CONTA174 and TARGE170 for contact and target elements, 

respectively. CONTA174 is used to represent the contact and sliding between 3-D 

“target” surfaces and a deformable surface, defined by this element. The element is 

applicable to 3-D structural and coupled thermal-structural contact analysis. This element 

is located on the surfaces of 3-D solid or shell elements with midside nodes. It has the 

same geometric characteristics as the solid or shell element face with which it is 

connected. Contact occurs when the element surface penetrates one of the target segment 

elements on a specified target surface. Coulomb and shear stress friction is allowed. 
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TARGE170 is used to represent various 3-D target surfaces for the associated 

contact elements. The contact elements themselves overlay the solid elements describing 

the boundary of a deformable body and are potentially in contact with the target surface, 

defined by TARGE170. This target surface is discretized by a set of target segment 

elements (TARGE170) and is paired with its associated contact surface via a shared real 

constant set. Any translational or rotational displacement, temperature, and voltage on the 

target segment element can be imposed. Forces and moments on target elements can also 

be imposed. 

Boundary Conditions 

According to the forces applied to the endmill, we can divide the analysis 

procedure into two steps. The first step is when the endmill starts rotating. In this step, 

only the angular velocity of 2,722.713 [  is applied without considering the 

cutting force.  

/ sec]rad

Force

Vertical Force 
=100 [N] 

Rotational Velocity
=2722.713 [rad/s] 

Time Step 1 Time Step 2 Time (sec) 

 
 

Figure 5-4. Force boundary conditions in each time step. Each time step is divided into 5 
steps. 
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The second step is when the endmill starts the cutting process. At this time a 

vertical force of 100 N is applied at the tip of the endmill. Figure 5-4 illustrates the force 

boundary conditions in each step. Each time step is divided into 5 substeps in order to 

improve the convergence of nonlinear analysis. 

Calculation of Friction Work 

Even if the structure is linear elastic, the contact constraints make the problem 

nonlinear. In ANSYS, a Newton-Raphson iterative method is employed to solve the 

nonlinear system of equations. All default parameters in ANSYS are used in nonlinear 

analysis. 
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multiplying the friction stress with the element area. The dot product of the friction force 

vector and the relative displacement vector in each substep and in each element yields the 

friction work. 

Finite Element Analysis Results 

Load Step 1 

Figure 5-6 is the results at load step 1 when only the angular velocity is applied. In 

Chapter 3, the analytical method estimates the contact pressure to be 0.27[ ]MPa .  
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Whereas, the maximum contact pressure from FEA is 0.58[ ]MPa , as shown in 

Fig.5-6 (b). Since the actual contact occurs only half of the contact surface, the higher 

contact pressure from FEA is expected. In addition, the contact pressure is not constant: 

maximum at the top and the bottom surface and zero at both sides. Even though we 

assume that there is no relative motion between the contact surfaces during load step 1 in 

Chapter 3, there is a relative motion due to the diameter change. However, the relative 

motion in load step 1 should not be counted because it is not related to the chatter 

vibration. 

Load Step 2 (Centrifugal Force + Vertical Force) 

In the load step 2, a vertical force (cutting force) is applied on top of the centrifugal 

force. Figure 5-7 shows the results of load step 2. The frictional work is calculated by dot 

producing the friction force (Fig.5-7 (c)) and the relative slide (Fig.5-7 (d)). Since the 

load step is divided into five sub steps, the friction work at each sub step must be 

summed. The total friction work during load step 2 is 3.3426 . By comparing 

with the analytical results  in Chapter 3, the finite element analysis 

estimates about 50% of the analytical result. The friction work calculated from FEA is 

less than that from the analytical approach because the actual contact area is small in 

FEA. There is no contact on two sides: the neutral axis lies and the fixed end. In addition, 

the contact pressure is not constant. That is why the analytical result is about two times 

higher than the FEA result. Another interesting observation is that most of the relative 

displacement occurs on the bottom side of the finger (see Fig.5-7 (d)). That happens 

because the vertical force is applied to the top side of the endmill. 

510 [ ]J−×

57.1182 10 [ ]J−×
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(a)

(b)

(c)

 
 

Figure 5-8.Schematic diagram of endmill behavior according to the applied forces. (a) 
shows the initial state, in (b) the angular velocity is applied and in (c) the 
vertical force is added. 

 

 

 

 



CHAPTER 6 
PARAMETER STUDY 

In this chapter, a parameter study is performed to find the maximum value of the 

damping work. Two design variables, the inner radius of the finger and the number of the 

fingers, are changed. The results of the parameter study are discussed with respect to the 

results of the analytical approach. 

Determination of the Mesh Size 

It is very important to determine the proper mesh size. A fine mesh will usually 

give an accurate result, but it requires a large amount of computational cost. Since the 

finite element analysis needs to be repeated 45 times during the parameter study, 

computational cost is an important issue. 
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Figure 6-1. Damping according to the number of elements. Number of fingers = 2, inner 
radius R1=1mm, and start angle α = 0.  
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Figure 6-1 shows the damping work according to the change of the number of 

elements. The work gradually increases until the element number reaches 4200, and then 

it converges on 3.28 . Based on these results the number of elements is chosen 

to be 4200. 

510 [ ]J−×

Determination of the Start Angle. 

Before starting the parameter study, a start angle must be chosen for different 

configurations. This is because the damping value changes with starting angle even if the 

same number of fingers is used. 
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Figure 6-2. Damping according to the position of the finger 
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Figure 6-2 illustrates the difference of damping work according to the finger’s 

position. The magnitude of damping work is different for different start angle. Thus, it is 

necessary to evaluate the maximum and minimum values together. Figure 6-3 is the plot 

of the minimum and maximum values for the same number of fingers when the inner 

radius is 1.0 mm. The results show a large difference between the minimum and 

maximum values when the number of fingers is small. However the difference is reduced 

as the number of fingers is increased. If we compare this result with the analytical result, 

shown in Fig.3-6, the FEA estimated damping work converges to a third of analytical 

damping work. Possible explanations are from the fact that not all portion of the fingers 

are in contact and the relative slide is large at the bottom surface. 
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Figure 6-3. The maximum and the minimum values of the damping work for the given 
number of fingers. 
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Let us consider the cases where the number of fingers is 2 and 5 more in detail. 

Figure 6-4 shows the relative displacement for the two-finger case. Figure 6-4 (a) and (b) 

show the case where the start angle of the finger is . Fig.6-4 (c) and (d) show the result 

when the start angle is 0 . In both cases the pressure between the contact surfaces is 

almost the same for each position of the finger. But the relative displacement is different. 
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for calculating the frictional work, the work calculated when the start angle is 0 is bigger 

than . 
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disappear as the number of fingers increases. This means that when the number of fingers 

is small the work done by the friction force depends on the start angle. 

Parameter Study 

To find the maximum value of damping, a parameter study was done for two 

design variables. Figure 6-6 shows the first design variable, which is the inner radius of 

the finger, and Fig.6-7, the second design variable, the number of fingers. 

 

 
 

Figure 6-6. The first design variable: the inner radius (R1) of the finger (varied from 1.5 
mm to 3.5 mm). 

 
 

Figure 6-7. The second design variable: the number of fingers (from 2 to 10). 

Change the Inner Radius of the Finger. 

First the radius is changed from 1.0mm to 3.5mm for the two-finger case. Figure 6-

8 shows the result. 
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Figure 6-8. The result of the parameter study in which the inner radius of finger was 
changed. 

 

It’s obvious that the work done by the friction force is gradually reduced, since the 

mass of the finger is reduced when the radius is reduced. When the radius is 1.0mm the 

damping is , and when the radius is 3.5mm it is . 

Change the Number of the Finger 

Next the number of fingers is changed from 2 to 10 for the case where the inner 

radius is 1.5 mm. The damping work shows a minimum value for the four-finger case, 

and a maximum value for the five-fingered case. The start angle of the finger (position of 

the finger) is chosen to have the maximum damping. 

53.28 10 [ ]J−× 52.53 10 [ ]J−×
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Figure 6-9. The result of the parameter study in which the number of fingers was changed. 

Final Results 

The parameter study is repeated for all cases, and the results are as follows. 

Table 6-1. The results of parameter study ×10-5 [J] 
 2 3 4 5 6 7 8 9 10 
1.0 mm 3.28 3.41 3.21 3.69 3.55 3.54 3.54 3.48 3.51 
1.5 mm 3.34 3.43 3.24 3.72 3.58 3.55 3.57 3.52 3.56 
2.0 mm 3.36 3.41 3.24 3.69 3.54 3.47 3.52 3.45 3.50 
2.5 mm 3.31 3.31 3.18 3.57 3.36 3.33 3.39 3.35 3.42 
3.0 mm 3.08 3.10 3.02 3.32 3.10 3.08 3.12 3.04 3.16 
3.5 mm 2.53 2.62 2.65 2.83 2.61 2.63 2.65 2.60 2.68 
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Figure 6-10. The plot of the Table 6-1. 

In order to find the configuration that yields the maximum damping work, the first 

design variable (R1) is changed by six different values and the second design variable 

(number of finger) is changed by nine different values. Table 6-1 shows the results in 6×9 

matrix. In each configuration, the start angle is chosen such that the maximum damping 

work can be occurred. Figure 6-10 plots the response surface of the damping work. Even 

if the second design variable is discrete, a continuous surface is plotted for illustration 

purpose. It is noted that the local peak when the number of fingers is five is maintained 

throughout all different radii. The general trend of the response surface is consistent. 

Based on the response surface, we can conclude that the damping work has its maximum 

value when the inner radius is 1.5 mm and the number of fingers is 5. However, the large 
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difference in maximum and minimum damping values in this configuration, as shown in 

Fig.6-3, may reduce the significance of this choice of design.  

As a conclusion, the effect of damping work increases as the number of fingers is 

increased and the inner radius is decreased. 

Comparison between the Analytical and Numerical Results 

Figure 6-9 shows the analytical and numerical results of friction work as a function 

of the number of fingers. The friction work estimated from finite element analysis is less 

than half of the friction work obtained from the analytical method. The possible 

explanations of such discrepancy are the assumption of constant contact pressure.  
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Figure 6-9. Plot of the analytical and numerical resutls. 

In reality, the contact pressure is not constant and same portion of the finger does 

not contact with the shank. And most relative motion occurs at the bottom part of the 
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endmill. That is because the vertical force is applied at the top and the nonlinearity 

associated with the centrifugal force contributes the asymmetry between the top and 

bottom fingers. During the nonlinear analysis ANSYS automatically update the geometry 

and refer to the deformed configuration, which means the body force is calculated at the 

deformed geometry. Even though the analytical and numerical results show the 

difference, the general trends of both results are very similar each other. 

In order to explain the general trends of friction work, consider the analytical 

explanation of the contact pressure: 
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If we assume that the friction work is proportional to the contact pressure, then the 

friction work is proportional to R , which increases as the number of fingers increases. If 

the number of the finger increases, which means the angleα  goes to zero, R is converges 

to 
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Therefore, the maximum value of the contact pressure can be calculated by 
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As a conclusion, the friction work increases along with the number of fingers, but 

its effect is reduced as the number of fingers increases. 

 

 



CHAPTER 7 
CONCLUSION AND FUTURE WORK 

The goal of this research was to design the mechanical damper which is inserted 

into the endmill. Through the nonlinear finite element analysis and parameter study, the 

trend of the damping effect is identified. 

The results from the analytical method were used to verify the FEA result. 

Although the number and the inner radius of finger were varied in finite element analysis, 

only the two-finger case was considered in the comparison. The FEA results were smaller 

than those of the analytical approach because some regions did not contact and the 

contact pressure was not constant. 

A parameter study was carried out by changing the inner radius and the number of 

fingers. The inner radius was varied from 1.0 mm to 3.5 mm, and the number of fingers 

was varied from 2 to 10. The results show general trends of the damping work according 

to the change of the two design variables. As the inner radius decreased and the number 

of finger increased, the damping work increased. The Maximum value was  

when the inner radius was 1.5 mm and the number of fingers was 5. The parameter study 

also showed that when the number of the fingers is small the damping work is affected by 

the position of the finger, but that this dependence disappears as the number of finger 

increases. 

53.72 10 [ ]J−×

Recommendations for Future Research 

As discussed in Chapter 6, the damping work depends on the start angle. However, 

in practice the endmill is continuously rotating. Thus, it is recommended to perform a 

53 
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series of static FEA by rotating the endmill by on cycle and to calculate the integrated 

damping work. This procedure will provide more accurate estimation of the real damping 

work. 

 

 

 



APPENDIX A 
MATLAB CODE FOR THEORITICAL ANALYSIS 

%------------------------------------------------------------------------------------- 
% Matlab function to calculate the work done by the friction force 
% 
%                                                                       By Dongki Won 
%------------------------------------------------------------------------------------- 
function cal_work 
%------------------------------------------------------------------------------------- 
% Material Properties, radius and applied forces. 
%------------------------------------------------------------------------------------- 
E=2.0678e11;         %- Modulus of Elasticity : 2.0*10^11[MPa] 
rho=7820;               %- Mass Density : 7820[kg/m^3] 
mu=0.15;                %- Friction Coefficient : 0.15 
r1=1.5e-3; 
r2=4.7625e-3; 
r3=r2; 
r4=9.525e-3; 
L=101.6e-3; 
omega=2722; 
F=100; 
%------------------------------------------------------------------------------------- 
% Calculate the work according to the chage of the inner raius of finger. 
%------------------------------------------------------------------------------------- 
n=2;m=1; 
for r1=1.0e-3:0.5e-3:3.5e-3 
    ang(1)=0; 
    for i=1:n 
        ang(i+1)=ang(1)+(360/n)*i; 
    end 
    ang=ang*(pi/180); 
    II=(1/4)*((r4)^4-(r3)^4)*pi; 
    for i=1:(n-1) 
        tmp1=sin(ang(i+1))*cos(ang(i+1))-sin(ang(i))*cos(ang(i))-(ang(i+1)-ang(i)); 
        tmp1=tmp1*((r1)^4-(r2)^4); 
        tmp1=tmp1*(1/8); 
        II=II+tmp1; 
    end 
    work=0; 
    for i=1:n 
        alpha=(ang(i+1)-ang(i))/2; 
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        d1=(2*sin(alpha).*(r2^3-r1^3))/(3*alpha*(r2^2-r1^2)); 
        d2=d1*sin((ang(i)+ang(i+1))*0.5); 
        V=(ang(i+1)-ang(i))*(r2^2-r1^2)*L*0.5; 
        P=abs(V*rho*(omega^2)*d1/L); 
        work=work+abs((1/3)*(L^3)*mu*P*F*d2/(E*II)); 
    end 
    y1(m)=work; 
    m=m+1; 
end 
x1=[1.0e-3:0.5e-3:3.5e-3]; 
plot(x1,y1,'b-o'); 
grid; 
xlabel('Inner Radius of Damper Finger (m)'); 
ylabel('Work(J)'); 
[tmp,n]=size(x1); 
clc 
fprintf('\nCalculate the work according to the chage of the inner raius of finger.\n'); 
fprintf('The Number of Finger=%3.0f\nStart Angle=%3.0f [Degree]\n',n,0); 
for i=1:n 
    fprintf('Inner Raius of Finger =%16.9e [m]\t\tWork=%16.9e [J]\n',x1(i),y1(i)); 
end 
%------------------------------------------------------------------------------------- 
% Calculate the work according to the chage of the start angle of finger. 
%------------------------------------------------------------------------------------- 
n=2;m=1;r1=1.5e-3; 
atmp=(360/n)/4; 
for a=0:atmp:atmp*3 
    ang(1)=a; 
    for i=1:n 
        ang(i+1)=ang(1)+(360/n)*i; 
    end 
    ang=ang*(pi/180); 
    II=(1/4)*((r4)^4-(r3)^4)*pi; 
    for i=1:(n-1) 
        tmp1=sin(ang(i+1))*cos(ang(i+1))-sin(ang(i))*cos(ang(i))-(ang(i+1)-ang(i)); 
        tmp1=tmp1*((r1)^4-(r2)^4); 
        tmp1=tmp1*(1/8); 
        II=II+tmp1; 
    end 
    work=0; 
    for i=1:n 
        alpha=(ang(i+1)-ang(i))/2; 
        d1=(2*sin(alpha).*(r2^3-r1^3))/(3*alpha*(r2^2-r1^2)); 
        d2=d1*sin((ang(i)+ang(i+1))*0.5); 
        V=(ang(i+1)-ang(i))*(r2^2-r1^2)*L*0.5; 
        P=abs(V*rho*(omega^2)*d1/L); 
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        work=work+abs((1/3)*(L^3)*mu*P*F*d2/(E*II)); 
    end 
    y2(m)=work; 
    m=m+1; 
end 
x2=[0:atmp:atmp*3]; 
figure; 
plot(x2,y2,'b-o'); 
grid; 
xlabel('Start Angle of Damper Finger (degree)'); 
ylabel('Work(J)'); 
[tmp,n]=size(x2); 
fprintf('\nCalculate the work according to the chage of the start angle of finger.\n'); 
fprintf('Number of Finger=%5.0f\nInner Radius of the Finger=%16.9e [m]\n',2,r1); 
for i=1:n 
    fprintf('Start Angle =%16.9e [Degree]\t\tWork=%16.9e [J]\n',x2(i),y2(i)); 
end 
%------------------------------------------------------------------------------------- 
% Calculate the work according to the change of the number of finger. 
%------------------------------------------------------------------------------------- 
m=1;clear ang 
for n=2:10 
    clear ang 
    atmp=(1+(-1)^(n-1))/2; 
    ang(1)=((360/n)/4)*atmp; 
    for i=1:n 
        ang(i+1)=ang(1)+(360/n)*i; 
    end 
    ang=ang*(pi/180); 
    II=(1/4)*((r4)^4-(r3)^4)*pi; 
    for i=1:(n-1) 
        tmp1=sin(ang(i+1))*cos(ang(i+1))-sin(ang(i))*cos(ang(i))-(ang(i+1)-ang(i)); 
        tmp1=tmp1*((r1)^4-(r2)^4); 
        tmp1=tmp1*(1/8); 
        II=II+tmp1; 
    end 
    work=0; 
    for i=1:n 
        alpha=(ang(i+1)-ang(i))/2; 
        d1=(2*sin(alpha).*(r2^3-r1^3))/(3*alpha*(r2^2-r1^2)); 
        d2=d1*sin((ang(i)+ang(i+1))*0.5); 
        V=(ang(i+1)-ang(i))*(r2^2-r1^2)*L*0.5; 
        P=abs(V*rho*(omega^2)*d1/L); 
        work=work+abs((1/3)*(L^3)*mu*P*F*d2/(E*II)); 
    end 
    y3(m+1)=work; 
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    m=m+1; 
end 
x3=[1:10]; 
figure; 
plot(x3,y3,'b-o'); 
axis([0,10,0,11e-5]); 
grid; 
xlabel('Number of Damper Finger'); 
ylabel('Work(J)'); 
[tmp,n]=size(x3); 
fprintf('\nCalculate the work according to the chage of the number of finger.\n'); 
fprintf('Inner Radius of the Finger=%16.9e [m]\n',r1); 
for i=1:n 
    fprintf('Number of Finger =%3.0f\t\tWork=%16.9e [J]\n',x3(i),y3(i)); 
end 
 

 



APPENDIX B 
ANSYS INPUT FILE 01 

!------------------------------------------------------------------------------------------ 
!   ANSYS input file to determine the mesh size according to the change of 
! elemnt number. The results are stored in mesh_size,txt. 
! 
!                         Dongki Won 
!------------------------------------------------------------------------------------------ 
/SHOW,JPEG 
 
*SET,rad_in,1.5                  ! Inner radius of the finger 
*SET,rad_out1,4.7625        ! Outer radius of the finger 
*SET,rad_out2,9.525          ! Outer radius of the shank 
*SET,f_num,2                     ! The number of fingers 
*SET,f_ang,360/f_num       ! The angle of one finger 
*SET,st_ang,(f_ang/4)*0    ! Start angle of the finger 
 
*DO,ii,1,8 
   *IF,ii,EQ,1,THEN      ! Element Number is 864 
      *SET,s_mesh,6 
      *SET,f_mesh,6 
      *SET,l_mesh,12 
      *SET,st_mesh,2 
      *SET,ft_mesh,2 
   *ELSEIF,ii,EQ,2       ! Element Number is 1536 
      *SET,s_mesh,8 
      *SET,f_mesh,8 
      *SET,l_mesh,16 
      *SET,st_mesh,2 
      *SET,ft_mesh,2 
   *ELSEIF,ii,EQ,3       ! Element Number is 2400 
      *SET,s_mesh,10 
      *SET,f_mesh,10 
      *SET,l_mesh,20 
      *SET,st_mesh,2 
      *SET,ft_mesh,2 
   *ELSEIF,ii,EQ,4       ! Element Number is 4200 
      *SET,s_mesh,14 
      *SET,f_mesh,14 
      *SET,l_mesh,25 
      *SET,st_mesh,2 
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      *SET,ft_mesh,2 
   *ELSEIF,ii,EQ,5       ! Element Number is 6480 
      *SET,s_mesh,18 
      *SET,f_mesh,18 
      *SET,l_mesh,30 
      *SET,st_mesh,2 
      *SET,ft_mesh,2 
   *ELSEIF,ii,EQ,6       ! Element Number is 8640 
      *SET,s_mesh,18 
      *SET,f_mesh,18 
      *SET,l_mesh,30 
      *SET,st_mesh,3 
      *SET,ft_mesh,3 
   *ELSEIF,ii,EQ,7       ! Element Number is 11500 
      *SET,s_mesh,18 
      *SET,f_mesh,18 
      *SET,l_mesh,40 
      *SET,st_mesh,3 
      *SET,ft_mesh,3 
   *ELSEIF,ii,EQ,8       ! Element Number is 19200 
      *SET,s_mesh,20 
      *SET,f_mesh,20 
      *SET,l_mesh,60 
      *SET,st_mesh,3 
      *SET,ft_mesh,3 
   *ENDIF 
   tmp1=s_mesh*l_mesh*2*(1+st_mesh) 
   tmp2=f_mesh*l_mesh*2*(1+ft_mesh) 
   num_elem=tmp1+tmp2 
   /INPUT,endmill_model,inp 
   /INPUT,endmill_work,inp 
   /OUTPUT,mesh_size,txt,,APPEND 
   *VWRITE,num_elem,work 
   (F7.0,3X,F16.9,3X) 
   /OUTPUT 
*ENDDO 
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!------------------------------------------------------------------------------------------ 
!   ANSYS input file to determine the start angle of the finger. 
! The results are stored in start_angle,txt. 
! 
!                         Dongki Won 
!------------------------------------------------------------------------------------------ 
/SHOW,JPEG 
 
*SET,rad_in,1                     ! Inner radius of the finger 
*SET,rad_out1,4.7625        ! Outer radius of the finger 
*SET,rad_out2,9.525          ! Outer radius of the shank 
*SET,s_mesh,14 
*SET,l_mesh,30 
*SET,st_mesh,2 
*SET,ft_mesh,2 
 
*DO,ii,8,10 
   *SET,f_num,ii 
   *SET,f_ang,360/f_num 
   *IF,ii,EQ,2,THEN 
      *SET,f_mesh,14 
   *ELSEIF,ii,EQ,3 
      *SET,f_mesh,9 
   *ELSEIF,ii,EQ,4 
      *SET,f_mesh,7 
   *ELSEIF,ii,EQ,5 
      *SET,f_mesh,6 
   *ELSEIF,ii,EQ,6 
      *SET,f_mesh,5 
   *ELSEIF,ii,EQ,7 
      *SET,f_mesh,4 
   *ELSEIF,ii,EQ,8 
      *SET,f_mesh,4 
      *SET,s_mesh,16 
      *SET,ft_mesh,2 
   *ELSEIF,ii,EQ,9 
      *SET,f_mesh,4 
      *SET,s_mesh,18 
      !*SET,ft_mesh,2 
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   *ELSEIF,ii,EQ,10 
      *SET,f_mesh,3 
      *SET,s_mesh,15 
      !*SET,ft_mesh,3 
   *ENDIF 
   *DO,jj,0,3 
      *SET,st_ang,(f_ang/4)*jj 
      /INPUT,endmill_model,inp 
      /INPUT,endmill_work,inp 
      /OUTPUT,start_angle,txt,,APPEND 
      *VWRITE,f_num,jj,st_ang,work 
      (F7.0,3X,F7.0,3X,F16.9,3X,F16.9,3X) 
      /OUTPUT 
   *ENDDO 
*ENDDO 
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ANSYS INPUT FILE 03 

!------------------------------------------------------------------------------------------ 
!   ANSYS input file to do the parameter study as the change of two design 
! variables, the number of the finger(f_num) and the inner radius of the finger 
! (rad_in). The results are stored in parameter_study,txt. 
! 
!                         Dongki Won 
!------------------------------------------------------------------------------------------ 
/SHOW,JPEG 
 
*SET,rad_out1,4.7625        ! Outer radius of the finger 
*SET,rad_out2,9.525          ! Outer radius of the shank 
*SET,s_mesh,14 
*SET,l_mesh,25 
*SET,st_mesh,2 
*SET,ft_mesh,2 
 
*DO,ii,2,10 
   *SET,f_num,ii 
   *SET,f_ang,360/f_num 
   *IF,ii,EQ,2,THEN 
      *SET,f_mesh,14 
      *SET,st_ang,(f_ang/4)*0 
   *ELSEIF,ii,EQ,3 
      *SET,f_mesh,9 
      *SET,st_ang,(f_ang/4)*3 
   *ELSEIF,ii,EQ,4 
      *SET,f_mesh,7 
      *SET,st_ang,(f_ang/4)*2 
   *ELSEIF,ii,EQ,5 
      *SET,f_mesh,6 
      *SET,st_ang,(f_ang/4)*3 
   *ELSEIF,ii,EQ,6 
      *SET,f_mesh,5 
      *SET,st_ang,(f_ang/4)*2 
   *ELSEIF,ii,EQ,7 
      *SET,f_mesh,4 
      *SET,st_ang,(f_ang/4)*3 
   *ELSEIF,ii,EQ,8 
      *SET,f_mesh,4 
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      *SET,s_mesh,16 
      *SET,st_ang,(f_ang/4)*2 
   *ELSEIF,ii,EQ,9 
      *SET,f_mesh,4 
      *SET,s_mesh,18 
      *SET,st_ang,(f_ang/4)*3 
      *SET,ft_mesh,2 
      *SET,l_mesh,30 
   *ELSEIF,ii,EQ,10 
      *SET,f_mesh,3 
      *SET,s_mesh,15 
      *SET,st_ang,(f_ang/4)*2 
      *SET,ft_mesh,2 
      *SET,l_mesh,25    
   *ENDIF 
   *DO,jj,1,3.5,0.5 
      *SET,rad_in,jj 
      /INPUT,endmill_model,inp 
      /INPUT,endmill_work,inp 
      /OUTPUT,parameter_study,txt,,APPEND 
      *VWRITE,f_num,rad_in,work 
      (F7.0,3X,F16.9,3X,F16.9,3X) 
      /OUTPUT 
   *ENDDO 
*ENDDO 
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!------------------------------------------------------------------------------------------ 
!   ANSYS input file to solve the endmill model. This input file is used 
! in endmill_run.inp and endmill_start.inp 
! 
!                                                                                              Dongki Won 
!------------------------------------------------------------------------------------------ 
PARSAV 
/CLEAR 
PARRES 
 
/FILNAME,endmill,1 
/UNITS,MPA 
/TITLE,Damping Design of Endmill 
/prep7 
!--------------------------------------------------------------------- 
! Element Type and Material Properties 
!--------------------------------------------------------------------- 
ET,1,SOLID95   !- 20-Nodes Cubic Element 
MP,EX,1,206800  !- Modulus of Elasticity : 206780[MPa] 
MP,DENS,1,7.82e-9  !- Mass Density : 7.82e-6[kg/mm^3] 
MP,NUXY,1,0.29  !- Poisson's Ratio : 0.29 
MP,MU,1,0.15   !- Friction Coefficient : 0.15 
!--------------------------------------------------------------------- 
! Create Model Geometry 
!--------------------------------------------------------------------- 
!= Shank:contact surface is 3, 8 
K,1,0,0,0 
K,2,0,0,1 
K,11,rad_out2,0,0 
K,12,rad_out1,0,0 
K,13,rad_out1,0,101.6 
K,14,rad_out2,0,101.6 
A,11,12,13,14 
VROTAT,1,,,,,,1,2,360,2 
 
!= Finger:contact surfaces are 13,19,25,31,37 
*DO,i,1,f_num,1 
CYLIND,rad_in,rad_out1,101.6,,st_ang+f_ang*(i-1),st_ang+f_ang*i 
*ENDDO 
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!--------------------------------------------------------------------- 
! Generating Mesh 
!--------------------------------------------------------------------- 
LSEL,S,LENGTH,,101.6 
LESIZE,ALL,,,l_mesh 
 
vsel,S,volu,,1,2,1,1 
LSEL,R,RADIUS,,rad_out1 
LSEL,A,RADIUS,,rad_out2 
LESIZE,ALL,,,s_mesh 
LSEL,S,LENGTH,,rad_out1 
LESIZE,ALL,,,st_mesh 
 
vsel,S,volu,,3,3+f_num,1,1 
LSEL,R,RADIUS,,rad_out1 
LSEL,A,RADIUS,,Rad_in 
LESIZE,ALL,,,f_mesh 
LSEL,S,LENGTH,,rad_out1-rad_in 
LESIZE,ALL,,,ft_mesh 
AllSEL 
 
MSHAPE,0,3D   != hexahedral-shaped elements,3D 
MSHKEY,2   != Map meshing 
VMESH,ALL 
!--------------------------------------------------------------------- 
! Designating Contact Pairs 
!--------------------------------------------------------------------- 
ET,2,TARGE170 
ET,3,CONTA174 
ASEL,S,,,3,8,5,1 
NSLA,S,1 
ESLN,0 
TYPE,2 
ESURF,,TOP 
ASEL,S,,,13,13+(f_num-1)*6,6,1 
NSLA,S,1 
ESLN,0 
TYPE,3 
ESURF,,TOP 
FINISH 
 
/SOLU 
!--------------------------------------------------------------------- 
! Apply Boundary Conditions and Sove 
!--------------------------------------------------------------------- 
NSEL,S,LOC,Z,0 
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D,ALL,ALL 
ALLSEL 
SOLCONTROL,ON 
 
! Load Step 1 
OMEGA,0,0,2722.713,0 
TIME,1 
NROPT,UNSYM 
NSUBST,5,10,2 
AUTOTS,OFF 
OUTRES,BASIC,ALL 
KBC,0 
LSWRITE,1 
 
! Load Step 2 
CSYS,1 
NSEL,S,LOC,Z,101.6 
NSEL,R,LOC,X,rad_out2 
NSEL,R,LOC,Y,90 
F,ALL,FY,-25 
*DO,kk,1,2 
   NSEL,S,LOC,Z,101.6 
   NSEL,R,LOC,X,rad_out2 
   NSEL,R,LOC,Y,90+(360/(s_mesh*4))*((-1)**kk) 
   F,ALL,FY,-25 
*ENDDO 
*DO,kk,1,2 
   NSEL,S,LOC,Z,101.6 
   NSEL,R,LOC,X,rad_out2 
   NSEL,R,LOC,Y,90+(360/(s_mesh*4))*2*((-1)**kk) 
   F,ALL,FY,-12.5 
*ENDDO 
CSYS,0 
ALLSELL 
TIME,2 
NROPT,UNSYM 
NSUBST,5,10,2 
AUTOTS,OFF 
OUTRES,ALL,ALL 
KBC,0 
LSWRITE,2 
LSSOLVE,1,2,1 
 
FINISH 
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!------------------------------------------------------------------------------------------ 
!   ANSYS input file to calculate the work done by the frictional force. 
! This input file is used in endmill_run.inp and endmill_start.inp 
! 
!                                                                                              Dongki Won 
!------------------------------------------------------------------------------------------ 
/POST1 
SET,1,1 
ESEL,S,ENAME,,174 
*GET,emin,ELEM,0,NUM,MIN 
*GET,emax,ELEM,0,NUM,MAX 
*GET,aa,ELEM,emin,VOLU 
aa=aa*0.25 
!-------------------------------------------------------------------------------- 
! Read Friction Stress of R and S direction in each elements 
!-------------------------------------------------------------------------------- 
ETAB,taur1,SMISC,5 
ETAB,taur2,SMISC,6 
ETAB,taur3,SMISC,7 
ETAB,taur4,SMISC,8 
ETAB,taus1,SMISC,9 
ETAB,taus2,SMISC,10 
ETAB,taus3,SMISC,11 
ETAB,taus4,SMISC,12 
!-------------------------------------------------------------------------------- 
! Calculate Friction Force of R and S direction by multiplying area 
!-------------------------------------------------------------------------------- 
SMULT,rforce1,taur1,,aa 
SMULT,rforce2,taur2,,aa 
SMULT,rforce3,taur3,,aa 
SMULT,rforce4,taur4,,aa 
SMULT,sforce1,taus1,,aa 
SMULT,sforce2,taus2,,aa 
SMULT,sforce3,taus3,,aa 
SMULT,sforce4,taus4,,aa 
!-------------------------------------------------------------------------------- 
! Read Slide(Relative Displacement) of R and S direction in each elements 
!-------------------------------------------------------------------------------- 
ETAB,tasr1,NMISC,17 
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ETAB,tasr2,NMISC,18 
ETAB,tasr3,NMISC,19 
ETAB,tasr4,NMISC,20 
ETAB,tass1,NMISC,21 
ETAB,tass2,NMISC,22 
ETAB,tass3,NMISC,23 
ETAB,tass4,NMISC,24 
!-------------------------------------------------------------------------------- 
! Calculate the work done by the friction force in each elements. 
!-------------------------------------------------------------------------------- 
VDOT,work1,rforce1,sforce1,,tasr1,tass1 
VDOT,work2,rforce2,sforce2,,tasr2,tass2 
VDOT,work3,rforce3,sforce3,,tasr3,tass3 
VDOT,work4,rforce4,sforce4,,tasr4,tass4 
SABS,1 
SSUM 
*GET,work1,SSUM,,ITEM,work1 
*GET,work2,SSUM,,ITEM,work2 
*GET,work3,SSUM,,ITEM,work3 
*GET,work4,SSUM,,ITEM,work4 
work=work1+work2+work3+work4 
SABS,0 
!-------------------------------------------------------------------------------- 
! Save the slide value for the next step. 
!-------------------------------------------------------------------------------- 
ETAB,tasr1tmp,NMISC,17 
ETAB,tasr2tmp,NMISC,18 
ETAB,tasr3tmp,NMISC,19 
ETAB,tasr4tmp,NMISC,20 
ETAB,tass1tmp,NMISC,21 
ETAB,tass2tmp,NMISC,22 
ETAB,tass3tmp,NMISC,23 
ETAB,tass4tmp,NMISC,24 
!-------------------------------------------------------------------------------- 
! Repeat the procedure until reaches to the last set 
!-------------------------------------------------------------------------------- 
ww=0 
*DO,uu,1,2 
   *DO,vv,1,5 
      *IF,uu,EQ,1,AND,vv,EQ,1,CYCLE 
      SET,uu,vv 
      ww=ww+1 
      !-------------------------------------------------------------------------------- 
      !   Read Friction Stress of R and S direction in each elements 
      !-------------------------------------------------------------------------------- 
      ETAB,taur1,SMISC,5 
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      ETAB,taur2,SMISC,6 
      ETAB,taur3,SMISC,7 
      ETAB,taur4,SMISC,8 
      ETAB,taus1,SMISC,9 
      ETAB,taus2,SMISC,10 
      ETAB,taus3,SMISC,11 
      ETAB,taus4,SMISC,12 
      !-------------------------------------------------------------------------------- 
      !   Calculate Friction Force of R and S direction by multiplying area 
      !-------------------------------------------------------------------------------- 
      SMULT,rforce1,taur1,,aa 
      SMULT,rforce2,taur2,,aa 
      SMULT,rforce3,taur3,,aa 
      SMULT,rforce4,taur4,,aa 
      SMULT,sforce1,taus1,,aa 
      SMULT,sforce2,taus2,,aa 
      SMULT,sforce3,taus3,,aa 
      SMULT,sforce4,taus4,,aa 
      !-------------------------------------------------------------------------------- 
      !   Read Slide(Relative Displacement) of R and S direction in each elements 
      !-------------------------------------------------------------------------------- 
      ETAB,tasr1,NMISC,17 
      ETAB,tasr2,NMISC,18 
      ETAB,tasr3,NMISC,19 
      ETAB,tasr4,NMISC,20 
      ETAB,tass1,NMISC,21 
      ETAB,tass2,NMISC,22 
      ETAB,tass3,NMISC,23 
      ETAB,tass4,NMISC,24 
      SMULT,tasr1tmp,tasr1tmp,,-1 
      SMULT,tasr2tmp,tasr2tmp,,-1 
      SMULT,tasr3tmp,tasr3tmp,,-1 
      SMULT,tasr4tmp,tasr4tmp,,-1 
      SMULT,tass1tmp,tass1tmp,,-1 
      SMULT,tass2tmp,tass2tmp,,-1 
      SMULT,tass3tmp,tass3tmp,,-1 
      SMULT,tass4tmp,tass4tmp,,-1 
      SADD,tasr1,tasr1,tasr1tmp 
      SADD,tasr2,tasr2,tasr2tmp 
      SADD,tasr3,tasr3,tasr3tmp 
      SADD,tasr4,tasr4,tasr4tmp 
      SADD,tass1,tass1,tass1tmp 
      SADD,tass2,tass2,tass2tmp 
      SADD,tass3,tass3,tass3tmp 
      SADD,tass4,tass4,tass4tmp 
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      !-------------------------------------------------------------------------------- 
      !   Calculate the work done by the friction force in each elements. 
      !-------------------------------------------------------------------------------- 
      VDOT,work1,rforce1,sforce1,,tasr1,tass1 
      VDOT,work2,rforce2,sforce2,,tasr2,tass2 
      VDOT,work3,rforce3,sforce3,,tasr3,tass3 
      VDOT,work4,rforce4,sforce4,,tasr4,tass4 
      SABS,1 
      SSUM 
      *GET,work1,SSUM,,ITEM,work1 
      *GET,work2,SSUM,,ITEM,work2 
      *GET,work3,SSUM,,ITEM,work3 
      *GET,work4,SSUM,,ITEM,work4 
      work=work+work1+work2+work3+work4 
      SABS,0 
      !-------------------------------------------------------------------------------- 
      !   Save the slide value for the next step. 
      !-------------------------------------------------------------------------------- 
      ETAB,tasr1tmp,NMISC,17 
      ETAB,tasr2tmp,NMISC,18 
      ETAB,tasr3tmp,NMISC,19 
      ETAB,tasr4tmp,NMISC,20 
      ETAB,tass1tmp,NMISC,21 
      ETAB,tass2tmp,NMISC,22 
      ETAB,tass3tmp,NMISC,23 
      ETAB,tass4tmp,NMISC,24 
   *ENDDO 
*ENDDO 
FINISH 
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