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Optimal decision network with distributed representation
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Abstract

On the basis of detailed analysis of reaction times and neurophysiological data from tasks involving choice, it has been proposed that the brain
implements an optimal statistical test during simple perceptual decisions. It has been shown recently how this optimal test can be implemented in
biologically plausible models of decision networks, but this analysis was restricted to very simplified localist models which include abstract units
describing activity of whole cell assemblies rather than individual neurons. This paper derives the optimal parameters in a model of a decision
network including individual neurons, in which the alternatives are represented by distributed patterns of neuronal activity. It is also shown how
the optimal weights in the decision network can be learnt via iterative rules using information accessible for individual synapses. Simulations
demonstrate that the network with the optimal synaptic weights achieves better performance and matches fundamental behavioural regularities
observed in choice tasks (Hick’s law and the relationship between the error rate and the time for decision) better than a network with synaptic
weights set according to a standard Hebb rule.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Experimental studies have shed light on the neural bases
of simple perceptual decision-making and indicated that they
involve at least three basic processes. First, sensory cortical
areas provide noisy evidence in support of alternative choices
(Britten, Shadlen, Newsome, & Movshon, 1993; Ditterich,
Mazurek, & Shadlen, 2003; Hanks, Ditterich, & Shadlen,
2006). The noisy evidence supporting a particular alternative is
represented in the firing rate of the sensory neurons selective
for this alternative. Hence the goal of the decision process
may be formulated as choosing the alternative for which
the corresponding neuronal population has the highest mean
firing rate (Gold & Shadlen, 2001, 2002). Second, it has been
observed that in certain cortical regions (e.g. lateral intraparietal
area (LIP) and frontal eye field (FEF)) neuronal firing rates
gradually increase during the decision process, and it has been
proposed that these areas integrate sensory evidence over time
(Schall, 2001; Shadlen & Newsome, 2001). This integration
averages out the noise present in the sensory evidence. Third,
in the free-response paradigm in which animal can respond at
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any time, it has been observed that when the firing rate of these
integrator neurons exceed a certain threshold, the decision is
made and the action execution is initiated (Roitman & Shadlen,
2002).

The integration process during decision-making tasks takes a
certain amount of time which is referred to as the decision time
(DT). In tasks under the free-response paradigm, the reaction
time consists of the DT and an additional period connected
with visual and motor processes. DTs have been estimated from
behavioural data (Ratcliff, Van Zandt, & McKoon, 1999; Usher
& McClelland, 2001) and directly from neurophysiological data
(Reddi, 2001; Sato, Murthy, Thompson, & Schall, 2001). In
difficult tasks, the DT often constitutes the majority of the
reaction time (e.g. Ratcliff et al. (1999)).

Due to the evolutionary pressure for the speed and the
accuracy of choices, it may be plausible that the neural decision
circuits operate in an optimal or nearly optimal way, i.e.
minimizing the DT. Indeed, on the basis of careful studies
of human DTs, psychologists (Laming, 1968; Ratcliff, 1978;
Ratcliff et al., 1999; Stone, 1960) have proposed that during
simple perceptual choice between two alternatives the brain
effectively performs a sequential probability ratio test (SPRT)
— an optimal algorithm allowing the fastest decisions for
any required accuracy (Barnard, 1946; Wald, 1947; Wald
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Nomenclature

Throughout the paper the following notational convention
is used: all variables in localist models are denoted by
capital letters, while all variables in distributed models —
by small letters.

A number of alternative decisions
a sparseness of coding in the distributed decision

network
C magnitude of noise in localist models
c magnitude of noise in distributed stimuli
dt integration constant
hv

i input to integrator neuron i via recurrent weights
vi, j

hw
i input to integrator neuron i via feedforward

weights wi, j
K decay or leak in the localist decision network
k decay or leak of integrator neurons
KUM decay or leak in the Usher and McClelland model
li, j matrix of linear coefficients in the distributed

decision network
MI mean input to unit I
n number of neurons in each layer of the distributed

decision network
V weight of self-excitatory connections in the

localist decision network
vi, j weights of connections between integrator neuron

j and integrator neuron i
wi, j weights of connections between input neuron j

and integrator neuron i
WINH weight of inhibitory connections in the localist

decision network
winh,i weights of connections between integrator and

inhibitory neurons
WUM weight of inhibitory connections in the Usher and

McClelland model
X I input to localist unit I
x j activity of input neuron j
x j,I membership of input neuron j in assembly I
YI activity level of localist unit I
yi activity of integrator neuron i
yi,I membership of integrator neuron i in assembly I
α learning rate
ηI independent Wiener processes

& Wolfowitz, 1948). The theory postulating that the brain
performs SPRT has also been shown to be consistent with
neurophysiological data (Gold & Shadlen, 2001, 2002; Shadlen
& Newsome, 2001; Smith & Ratcliff, 2004). This theory claims
that the decision is made as soon as the difference between
integrated evidence in support of the first and second alternative
exceeds a positive or a negative threshold. It has been recently
shown how SPRT may be implemented in biologically plausible
neural network models in which the difference between the
integrated evidence is computed via feedforward (Mazurek,
Roitman, Ditterich, & Shadlen, 2003; Shadlen & Newsome,
2001) or feedback inhibitory connections (Bogacz, Brown,
Moehlis, Holmes, & Cohen, 2006; Brown et al., 2005).

However, the above analyses were restricted to very
simplified localist models which include abstract units or
variables describing activity of whole cell assemblies rather
than individual neurons. Cell assemblies (Hebb, 1949) are
the distributed patterns of neuronal activity which represent
visual stimuli in certain cortical areas (e.g. Gochin, Colombo,
Dorfman, Gerstein, and Gross (1994). The computational
models including separate units or variables describing
activity of individual neurons are referred to as distributed
models. Wang (2002) developed a biologically realistic
distributed model of decision-making in area LIP (involved in
controlling eye movements) during a task in which a monkey
has to discriminate whether dots presented on the screen move
left or right and to indicate its decision by making a saccade
in the direction of movement. Recently, Wong and Wang
(2006) have shown how SPRT may be implemented in the
Wang (2002) model. In this model, each alternative decision is
represented by a separate population of neurons, because in area
LIP neurons selective for very different directions of saccade
are located in separate locations of area LIP. Hence in the Wang
(2002) model, the assemblies were non-overlapping: if a neuron
belongs to the assembly representing one alternative, it does not
belong to the assembly representing the other.

However, in the case of many other decisions, alternative
choices are likely to be represented by overlapping assemblies
so that a neuron selective for one alternative may also
be selective for others. Many computational models have
been proposed for how distributed overlapping representations
may develop (e.g. Olshausen and Field (1996)) and be
stored (e.g. Hopfield (1982)). Such overlapping distributed
representations allow coding of many more alternatives by a
group of neurons than non-overlapping representations. This
property is particularly important in choices with many possible
answers. For example, in the case of motor decisions, there is
practically infinite number of possible movements, e.g. of an
arm (including all combinations on angular velocities of all
joints). And indeed, neurophysiological data suggest that the
motor actions are encoded in distributed overlapping patterns of
neuronal activity (e.g. Chapin (2004), Georgopoulos, DeLong,
and Crutcher (1983), Georgopoulos, Pellizzer, Poliakov, and
Schieber (1999), Schieber and Hibbard (1993)). Similar
arguments apply to perceptual decisions (e.g. deciding what is
the animal you are looking at, before choosing an appropriate
action), which are the focus of this paper. During such
perceptual decisions, alternative choices are also likely to be
represented by overlapping assemblies, because complex visual
stimuli are represented in this way in the visual areas in last
stages of the vental stream (Erickson, Jagadeesh, & Desimone,
2000) and in the prefrontal cortex (Averbeck, Crowe, Chafee,
& Georgopoulos, 2003; Miller, Erickson, & Desimone, 1996).

The following experimental data suggest that during
perceptual decisions: the sensory evidence is being integrated
over time, and the alternatives are represented by overlapping
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patterns of neuronal activity. First, fMRI data indicate that
prefrontal neurons integrate sensory information in the task
in which human subjects were asked to decide whether a
noisy stimulus is a face or a house (Heekeren, Marrett,
Bandettini, & Underleider, 2004), and the prefrontal neurons
have been shown to encode complex visual stimuli in
overlapping distributed patterns of their activity (Averbeck
et al., 2003; Miller et al., 1996). Second, DTs in tasks involving
word discrimination have been well described by the models
assuming evidence integration (e.g. Ratcliff (1978)), and the
overlapping representations are likely to encode words as such
representations encode vocalizations in primates (Romanski,
Averbeck, & Diltz, 2005).

A response may not be required immediately after
perceptual decisions (e.g. a predator may identify an animal
and wait with the action) and the data show that the integration
process is not limited to the tasks in which an immediate
response is required: The gradually increasing firing rates have
been observed in FEF also if there was a delay between stimulus
offset and the response (Kim & Shadlen, 1999). Furthermore,
in this study the FEF neurons represented the correct alternative
even in the passive viewing condition when no response was
required. Moreover, in the study of Gold and Shadlen (2003),
the animals did not know which motor response was required
for which alternative during stimulus viewing, and nevertheless,
the accuracy increased with viewing time providing evidence
for information integration.

Although the data reviewed above suggest plausibility of de-
cision processes with overlapping distributed representations,
there is neither experimental evidence demonstrating them di-
rectly nor theoretical work showing whether optimal decision
making is possible with overlapping distributed representations.
The latter theoretical question is addressed in this paper and the
experiments that would confirm the existence of these decision
processes are suggested in the discussion. This paper derives the
values of the weights of connections in decision networks us-
ing distributed overlapping representation, which minimize DT
for any fixed accuracy, and, in case of two alternatives, allow
the network to implement SPRT. It is shown that these weights
can be learnt via iterative rules using information accessible for
individual synapses.

The derivation of the optimal parameters is achieved
by finding the relationships between the parameters of the
distributed and the localist decision networks for which
both models perform exactly the same computations. Since
the optimal parameters of the localist decision network are
known, these relationships give the optimal parameters of the
distributed decision network. But these relationships may also
have value on their own as they bridge the two different levels of
modelling of the neural circuits: localist and distributed. Hence
they may be useful for deriving distributed versions also for
other localist models, and thus grounding these models in the
neurobiological implementation.

The model of decision network with distributed overlapping
representation considered in this paper is not intended to map
directly onto a particular cortical area, because the location
of input neurons and integrator neurons may depend on the
decision task. However in general, the input during this kind
of perceptual decisions is likely to be provided by visual areas
in the late ventral stream, representing complex features. The
integration is likely to occur in frontal or in parietal areas, where
it has been shown before (e.g. Heekeren et al. (2004), Shadlen
and Newsome (2001)).

In this paper, the individual neurons are described as linear
elements to enable mathematical tractability and to allow
finding explicit conditions under which the localist and the
distributed decision networks perform equivalent computations.
The assumption of linearity in processing can be justified by
assuming that attention acts to place non-linear integrators in
the most sensitive, linear range of their response functions
(e.g. Cohen, Dunbar, and McClelland (1990)).

The paper is organized as follows. Section 2 reviews localist
models of decision making and conditions under which their
performance is optimal. Section 3 derives an optimal distributed
decision network. Section 4 shows that this network achieves
faster decision times and matches behavioural data better than
the networks in which the weights are set up according to a
standard Hebb rule. Section 5 discusses the predictions of the
theory and the direction of the future work.

2. Optimal localist decision networks

This section reviews three localist decision networks: the
simplest one, i.e. the race model, and two optimal networks.
Let A denote the number of alternative choices. All models
reviewed here include A integrator units corresponding to
assemblies accumulating evidence for each alternative. Let us
denote the activity levels of these units (which may correspond
to the total activity of neurons in cell assemblies) by YI (I ∈

{1, . . . , A}). It is assumed that at the beginning of the decision
process all YI (0) = 0. Each unit receives noisy input

X I = MI + CηI (1)

with mean MI , and standard deviation C (ηI denote
independent Wiener processes). All models reviewed here
assume that whenever the activity of any unit exceeds a
particular threshold, decision has been made in favour of the
alternative represented by the first unit which crossed the
threshold. The decision is considered to be correct if the mean
input MI to this unit is the highest among all units (this
assumption is common in many models of decision making,
e.g. Gurney, Prescot, and Redgrave (2001), Mazurek et al.
(2003), Shadlen and Newsome (2001), Usher and McClelland
(2001), Vickers (1970), Wang (2002)).

In the race model (Vickers, 1970) the units simply integrate
their input X I , so that the change in YI (or its derivative
over time) is equal to: ẎI = X I . The race model, however,
produces slower DTs than the model reviewed below (Bogacz
et al., 2006; McMillen & Holmes, 2006), and is inconsistent
with neurophysiological data: It predicts that integrators
representing all alternatives should increase their activity
during the integration process, while it has been observed that
neurons representing the “losing” alternative decrease their
activity (Shadlen & Newsome, 2001).
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Fig. 1. The architectures of (a) the Usher and McClelland (2001), (b) the localist, and (c) the distributed decision networks. Small circles denote individual neurons,
large circles denote cell assemblies. Arrows denote excitatory connections, lines ended with black circles denote inhibitory connections. For clarity, in panel (c) only
sample connections are shown.
Usher and McClelland (2001) proposed a localist model
of decision making with the architecture shown in Fig. 1(a).
The changes in the activity of integrators are described by the
following stochastic differential equations:

ẎI = X I − KUMYI − WUM

A∑
J=1
J 6=I

YJ . (2)

The activity levels of units decay (or leak) with
proportionality constant KUM. The model also includes
competition between all units in the form of all-to-all inhibitory
connections with weight WUM.

Bogacz et al. (2006) have shown that for two alternatives
(A = 2), when KUM = WUM and the values of both
these parameters are high (relative to input and noise), the
performance of the Usher and McClelland (2001) model is
optimal. For these parameters, the activity levels of the units
are proportional to the difference between integrated evidence
in support of the two alternatives, and hence the model
approximates SPRT. As mentioned in the introduction, SPRT
gives the fastest DTs for any required accuracy, which can
be illustrated on the example of the race and the Usher and
McClelland models. In both models, for given MI and C , the
DT and the accuracy depend on the height of the decision
threshold. However, if the decision threshold is chosen in each
of the models to give the same accuracy (e.g. 90%), then
the optimally parameterized Usher and McClelland model will
give faster average DT than the race model. Intuitively, this
advantage of the Usher and McClelland model comes from
its ability to adaptively react to the level of conflict between
alternatives: If on a given trial the average input to the losing
alternative is higher (due to noise), the winning unit will have
to integrate for longer as it will receive more inhibition from the
losing unit. Such adaptation of integration time is not present in
the race model.

In case of multiple alternatives (A > 2), there exists a
generalization of SPRT, known as Multihypothesis SPRT
(Dragalin, Tertakovsky, & Veeravalli, 1999), but its imple-
mentation would require a network with architecture much
more complex than that of the Usher and McClelland
model. McMillen and Holmes (2006) have shown that for A >

2, the Usher and McClelland model achieves the lowest DT pos-
sible within this simple architecture also when KUM = WUM
and both these parameters are high. Let us call the parameters
satisfying these constraints optimal, and in general, in this paper
let us use the word optimal to refer to parameters that allow the-
oretically best possible performance (i.e. the shortest DTs for a
fixed error rate) for A = 2, and that allow the best possible
performance within the architecture considered for A > 2.

Wang (2002) proposed a detailed distributed model of
decision making in area LIP. Fig. 1(b) shows a localist model
with the architecture (connections between various neuronal
populations) of the Wang (2002) model. It will be referred as
the localist decision network. This model does not capture the
complexity of the Wang (2002) model, but the simplifications
made allow mathematical tractability. The localist decision
network is very similar to the Usher and McClelland (2001)
model with just two differences. First, the integrators do not
inhibit one another, but rather send excitatory connections to a
pool of inhibitory neurons, which then inhibit the integrators.
Second, the integrator neurons send excitatory connections
(denoted by V in Fig. 1(b)) within an assembly. These
connections were found to be necessary to enable a network
of individual model neurons, whose membrane voltages decay
rapidly (on a millisecond scale), to integrate information on
the timescales of decisions (hundreds of milliseconds). The
changes in the activity of the localist units are described by
the following stochastic differential equations (Bogacz et al.,
2006):

ẎI = X I − K YI + V YI − WINH

A∑
J=1

YJ . (3)

To find the optimal parameters of the localist decision
network, let us rewrite Eq. (3) as:

ẎI = X I − (K − V + WINH) YI − WINH

A∑
J=1
J 6=I

YI . (4)

Comparing Eqs. (2) and (4) shows that Usher and
McClelland (2001) model and the localist decision network
are computationally equivalent, when there are the following
relationships between their parameters: KUM = K −V +WINH,
WUM = WINH. Hence given that the optimal parameters of the
Usher and McClelland model must satisfy: KUM = WUM and
both are high, the optimal parameters of the localist decision
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network must satisfy K − V + WINH = WINH, i.e. K = V , and
WINH is high (Bogacz et al., 2006).

3. Optimal distributed decision networks

This section derives a distributed decision network
computationally equivalent to the optimal localist decision
network. Let us define that two networks are computationally
equivalent if for a given input both networks make the same
choice after the same DT. This definition implies that the
repeated simulation of two equivalent networks will yield
exactly the same error rate and DT distribution. Since we know
the optimal parameters of the localist decision network, the
relationship between the parameters of the localist and the
distributed decision networks giving computational equivalence
will allow us to compute the optimal parameters of the
distributed decision network.

3.1. Network architecture

The architecture of the distributed decision network is shown
in Fig. 1(c). In this model, both layers of integrators and inputs
are described as populations of n neurons. Let us denote the
activities of the integrator neurons by yi and the activities of the
input neurons by x j . Let us denote the weights of connections
between input neuron j and integrator neuron i by wi, j , and
the weights of connections between integrator neuron j and
integrator neuron i by vi, j (see Fig. 1(c)).

For simplicity, the inhibitory neurons are not modelled
individually, but as a population, because they are not selective
for different alternatives, by contrast to integrator and input
neurons. Let us denote the weights of connections between
integrator neuron i and the population of inhibitory neurons
by winh,i , and for simplicity assume that the weights of
connections between inhibitory and integrators neurons are
equal to 1. Finally, let us denote the decay rate of the integrator
neurons by k. For simplicity, let us model the individual
integrator neurons as simple linear units. Hence the changes
in the activity of these neurons are described by the following
stochastic differential equations:

ẏi =

n∑
j=1

wi, j x j − kyi +

n∑
j=1

vi, j y j −

n∑
j=1

winh, j y j . (5)

3.2. Distributed representation

Let us assume that each alternative I is represented by
an assembly of an neurons (hence a denotes the sparseness
of coding in the distributed network). Let us encode the
relationship of integrator neurons belonging to assemblies in
matrix [yi,I ], in particular: yi,I = 1 if neuron i belongs to
assembly I , and yi,I = 0 otherwise (note that one neuron
may belong to many assemblies). Similarly, let x j,I = 1 if
neuron j belongs to assembly I , and x j,I = 0 otherwise.
The theory described below works for any 0 < a < 1,
and also generalizes to a more biologically realistic case of
neurons having different continuous responses to different
stimuli (rather than responding or not as implied before). To
represent this case the elements of matrices [yi,I ] and [x j,I ]

would be continuous and would have to be normalized such
that the average of each column is equal to a. However, for the
clarity of argument, in the remainder of the paper only binary
patterns will be used.

Let us now relate the variables of the localist and the
distributed decision networks. It is most natural to assume that
the activity of localist unit I corresponds to the total activity of
neurons belonging to assembly I , which can be written as (all
the variables indexed once, e.g. yi , become column vectors):

[X I ] =
[
x j,I

]T [
x j

]
, [YI ] =

[
yi,I

]T [yi ] . (6)

3.3. Parameters giving equivalence and optimal performance

To establish the equivalence between the localist and
the distributed decision networks, we seek the relationships
between parameters which will satisfy Eqs. (3), (5) and (6).
Appendix A shows that if the following relationships are
satisfied and pseudo-inverses of [x j,I ]

T and [yi,I ]
T exist,

the computations of the localist and the distributed decision
networks are equivalent:

k = K , (7)

winh,i = WINH
1

an

A∑
I=1

yi,I , (8)

[
vi, j

]
= V

[
yi,I

] [
yi,I

]−1
, (9)

[wi, j ] =
[
yi,I

]T−1 [
xi,I

]T
. (10)

Below the intuition is provided for why the above conditions
need to be satisfied, and it is considered how the weights in
the distributed decision network described by Eqs. (8)–(10)
can be learnt in a biologically plausible manner, i.e. using
only information accessible to individual synapses. It is usually
assumed that a synapse (e.g. storing weight vi, j ) can only
“access” information about activity of presynaptic and post
synaptic neurons (e.g. yi and y j ). Eqs. (9) and (10) seem to
violate this condition, as they involve computation of pseudo-
inverses (e.g. which requires an “access” to all elements of
matrix yi,I ), but it will be shown that there exist simple
iterative learning algorithms using only information locally
accessible to synapses that converge to the weights satisfying
Eqs. (9) and (10).

The condition of Eq. (7) ensures that the individual neurons
decay with the same rate as units in the localist model. Eq. (8)
ensures that the inhibition received by each integrator neuron is
equal to (left-hand side of this equation comes from Eq. (5), the
two transformations use Eqs. (8) and (6)):

n∑
j=1

winh, j y j =

n∑
j=1

WINH
1
an

A∑
I=1

y j,I y j

= WINH
1

an

A∑
I=1

YI . (11)
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Since there is an neurons in each assembly, the total
inhibition received by all neurons in any assembly is an times
higher, i.e. equal to WINH

∑A
J=1 YJ yielding the equivalence

with the localist model (compare with Eq. (3)). The weights
of inhibitory connections of Eq. (8) could be learnt in the
following way: they can be initialized to 0, and whenever a new
assembly is introduced, the weights from the active integrator
neurons to the inhibitory neurons are increased by WINH/an.

Let us now consider the weights of connections between
integrator neurons of Eq. (9). If one ignores constant V ,
Eq. (9) expresses the pseudo-inverse rule (Hertz, Krogh, &
Palmer, 1991). To explore the properties of these weights, we
first need to define the input to the integrator neuron i via the
feedback weights as:

hv
i =

n∑
j=1

vi, j y j . (12)

The key property of the weights vi, j set according to the
scaled pseudo-inverse rule is the following: if the integrator
neurons are set to the pattern representing alternative I , i.e. yi =

yI,i , then the input hv
i to each neuron i is equal to the activity

of neuron i itself (Hertz et al., 1991) scaled by constant V :

hv
i = V yi . (13)

Therefore, the feedback to the integrator neurons belonging
to assembly I is equal to the activity of neurons in this assembly
scaled by V , yielding equivalence with the localist model.

It has been shown that the weights vi, j can be learnt
iteratively in the following procedure aiming to achieve the
relationship expressed in Eq. (13) (Diederich & Opper, 1987;
Hertz et al., 1991). One needs to repeat (until convergence)
for every assembly I the following operations: (i) Set activities
of integrator neurons to the pattern representing alternative I ,
and (ii) For every neuron i modify the weights in order to
minimize the following cost function: Cost = (−V yi + hv

i )
2.

To minimize this cost function, the weights should be modified
in the direction opposite to the gradient of Cost, i.e. Diederich
and Opper (1987), Hertz et al. (1991):

∆vi, j = α
(
V yi − hv

i
)

y j . (14)

In Eq. (14) α denotes learning rate. Note the above equation
uses only information locally available for an individual
synapse, as the terms in the bracket correspond to a post-
synaptic neuron, while y j is the activity of a pre-synaptic
neuron. Diederich and Opper (1987) showed that the above
procedure converges to the weights satisfying Eq. (13), even if
the integrator neurons do not project to themselves (vi,i = 0).

Eq. (10) describing the weights between the inputs and
the integrator neurons does not have any obvious biologically
plausible implementation. However, it will be shown in the next
subsection that making plausible assumption about patterns yi,I
simplifies Eq. (10) to the pseudo-inverse rule that, as explained
above, can be easily learnt by a biological neural network.

When the parameters of the distributed decision networks
are set according to Eqs. (7)–(10) and the underlying
parameters of the localist network are set to optimal values
(V = K , WINH is high), then the performance of the distributed
decision network is optimal for input patterns x j satisfying
Eqs. (1) and (6). In particular in this case, for A = 2, the
distributed decision network implements the SPRT, and for
A > 2, it achieves the best performance possible for the Usher
and McClelland (2001) model.

3.4. Weights of feedforward connections

In this subsection we show that the rule for computing the
feedforward weights of Eq. (10) simplifies to the biologically
plausible pseudo-inverse rule, when it is assumed that for
any two alternatives the similarity in their representations
in the input layer is exactly the same (i.e. preserved) in
their representations in the integration layer. To provide an
intuition and the motivation for this assumption, we first
explore the properties of the input to integrator neurons via the
feedforward weights set according to Eq. (10). Then we prove
the simplification of Eq. (10) to the pseudo-inverse rule, and
finally, we discuss the possibility that the optimal feedforward
weights can also be found by a large class of models of feature
extraction.

3.4.1. Dependence of input to integrator neurons on the
overlap in representations

Let us denote the input to the integrator neurons via
feedforward weights, by:

hw
i =

n∑
j=1

wi, j x j . (15)

Fig. 2 explores the implications of Eq. (10) concerning the
changes in hw

i as a result of learning the representation of a
new alternative. Each panel corresponds to one simulation and
each simulation was performed as follows: initially, the input
pattern x j,1 and the output pattern yi,1 corresponding to the
first alternative were generated and are shown in rows 1 and
3 of the figure. Then, the feedforward weights were generated
according to Eq. (10). Next, the input neurons were set to the
first pattern x j = x j,1, and the input hw

i to the integrators was
computed and it is shown in the fifth row of Fig. 2. Notice that
hw

i is equal to the representation of the first alternative in the
integration layer, i.e. hw

i = yi,1 (compare rows 3 and 5).
Then it was explored how this hw

i changes after learning
the representation of another alternative. Thus the input pattern
x j,2 and the output pattern yi,2 corresponding to the second
alternative were generated and are shown in rows 2 and 4 of
Fig. 2. Then, the feedforward weights were generated according
to Eq. (10), but this time using matrices x and y containing the
representation of A = 2 alternatives. Next, the input neurons
were set to the first pattern (as in the paragraph above) x j =

x j,1, and the input hw
i to the integrator neurons was computed

and it is shown in the sixth row of Fig. 2. As will be described
in detail below, hw

i sometimes changes and sometimes does
not (compare rows 5 and 6) depending on the preservation
of similarity between the input representations in the output
representations.
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Fig. 2. The change in the input to integrator neurons as a result of the modification of feedforward weights. Each panel corresponds to one simulation and illustrates
different effects (see text). In each simulation two input patterns and two output patterns of length n = 15 and sparseness a = 0.2 were generated randomly and are
shown in four rows of the figure. The bottom two rows show inputs hw

i to the integrators neurons after presentation of the first input pattern, when one pattern is
stored in the weights (fifth row) and when two patterns are stored (sixth row; see main text for details).
In Fig. 2(a) there is no overlap between the representations
of the two alternatives either in the input (compare rows 1 and
2) or in the output (compare rows 3 and 4). Since the patterns do
not interfere with one another, it is not surprising that hw

i also
do not change after learning the representation of the second
alternative.

By contrast in Fig. 2(b) the input representations of the
two alternatives overlap in the 10th bit (overlapping bits are
indicated by black bars), but there is no overlap in the output
representations. Here, after learning, hw

i increased its activity
in the positions representing the second alternative (compare
rows 4, 5, 6). This happens because x j,1 also provides evidence
supporting the second alternative (if x j = x j,1, then X1 =

4, X2 = 1 from Eq. (6)) and hence the integrator neurons
representing the second alternative also receive the input.

Fig. 2(c) shows an opposite case in which there is no overlap
in the input representations, but the output representations
overlap in the 14th bit. In this case, hw

i is decreased in the
positions representing the second alternative (compare rows 4,
5, 6). This happens because x j,1 only provides the support for
the first alternative (X1 = 4, X2 = 0), but unchanged hw

i (as
in row 5) would imply that the second alternative also receives
input. Therefore, to counterbalance the overlap in the output
representations, the integrator neurons representing the second
alternative have decreased input.

The effects of overlap in the input and the integration layers
are additive. In particular, when the numbers of overlapping
bits in the input and the output representations are the same,
the effects cancel each other, and hw

i do not change during
learning, as illustrated in Fig. 2(d). Let us now prove this
property. The equality of the overlap in the input and the output
representations for any two alternatives can be written as:[

x j,I
]T [

x j,I
]

=
[
yi,I

]T [
yi,I

]
. (16)
The two sides of Eq. (16) contain matrices with the numbers
of overlapping bits in all possible pairs of patterns. For, example
in case of Fig. 2(d), these matrices are equal to

[
3 1
1 3

]
. Let

us refer to the property described by Eq. (16) as similarity
preservation.

We now show that if the similarity preservation is satisfied
and the weights are computed from Eq. (10), then when input
neurons encode pattern x j,I , the input to integrator neurons hw

i
is equal to the corresponding pattern yi,I (in the calculation
below, the first three transformations use Eqs. (15), (10) and
(16) respectively),[

hw
i
]

=
[
wi, j

] [
x j,I

]
=

[
yi,I

]T−1 [
x j,I

]T [
x j,I

]
=

[
yi,I

]T−1 [
yi,I

]T [
yi,I

]
=

[
yi,I

]
. (17)

Let us notice that the property illustrated in Fig. 2(d)
of hw

i being preserved by learning the representation of a
new alternative is a very desirable property. If it were not
satisfied, then the response of the integrator neurons to the
same input would change after learning of a new alternative,
which would make the processing of the information from
integrator neurons more difficult. Hence it would be beneficial
for the neural system to choose representations satisfying the
similarity preservation, and in fact we will show later that such
representation is generated by a large class of feature extraction
algorithms.

3.4.2. Simplification of the optimal rule to the pseudo-inverse
rule

We now prove that when the similarity preservation is
satisfied, then the rule for finding the feedforward weights of
Eq. (10) simplifies to the pseudo-inverse rule (in the calculation
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below, the first transformation uses Eq. (10), and the third uses
Eq. (16)).

[wi, j ] =
[
yi,I

]T−1 [
x j,I

]T
=

[
yi,I

]T−1 [
x j,I

]T [
x j,I

] [
x j,I

]−1

=
[
yi,I

]T−1 [
yi,I

]T [
yi,I

] [
x j,I

]−1

=
[
yi,I

] [
x j,I

]−1
. (18)

The weights given by the right hand side of Eq. (18) can
be computed by a biologically plausible iterative process using
local information only (Hertz et al., 1991) analogous to that
described in Section 3.3 for the feedback weights. Namely one
needs to repeat (until convergence) for every assembly I the
following operations: (i) Set the activities of integrator neurons
to the pattern representing alternative I , and (ii) modify the
feedforward weights according to:

∆wi, j = α
(
yi − hw

i
)

x j . (19)

3.4.3. Finding optimal feedforward weights by feature extrac-
tion

The iterative process described above could be used to find
the weights satisfying Eq. (10) (i.e. the optimal weights) if the
particular representation of alternatives satisfying the similarity
preservation is somehow given by some external requirements.
However, in the brain the representations in a certain processing
stage often result from the process of feature extraction from the
representations in the previous stage. Many feature extraction
algorithms assume that the new representation can be computed
by a linear feedforward network, and the algorithms learn the
weights wi, j of the feedforward connections. In the context
of the distributed decision network discussed here (in which
the output neurons are the integrators), we could assume for
simplicity that the output representation is equal to the input to
the integrators via the feedforward weights (this would be the
equilibrium state of the network given by Eq. (5) when neuronal
decay k = 1, and other connections are not providing input):[

yi,I
]

=
[
wi, j

] [
x j,I

]
. (20)

In the previous part of this subsection we considered the case
when we are given the representations of alternatives in both
layers x j,I and yi,I , and we sought weights wi, j associating
them in an optimal way, while here let us consider the case in
which we are given only the input representation x j,I , and we
find weights wi, j via feature extraction, and yi,I from Eq. (20).

Within the last decade it has been shown that models
extracting features by a simple linear transformation of Eq. (20)
may describe many properties of the features observed in
the visual cortex (Bell & Sejnowski, 1997; Olshausen &
Field, 1996). Neurophysiological data demonstrate that the
representations of two similar stimuli are more similar than
of two different stimuli (e.g. Freedman, Riesenhuber, Poggio,
and Miller (2003), Kreiman, Koch, and Fried (2000)). Hence
it is safe to assume that representations generated by feature
extraction are likely to closely approximate the condition
of similarity preservation. In fact, Appendix B shows that
some more classical models of feature extraction give features
satisfying similarity preservation exactly.

We now prove that the weights learnt by any linear feature
extraction algorithm (i.e. producing features via Eq. (20))
generating the representation satisfying similarity preservation,
also satisfy the condition required for optimal decision making
of Eq. (10) (in the calculation below, the second transformation
uses Eq. (20), and the third uses Eq. (18) which we proved to
be correct when similarity preservation is satisfied):[
wi, j

]
=

[
wi, j

] [
x j,I

] [
x j,I

]−1
=

[
yi,I

] [
x j,I

]−1

=
[
yi,I

]T −1 [
x j,I

]T
. (21)

This implies that the optimal feedforward weights for
decision making of Eq. (10) can be closely approximated by
biologically realistic feature extraction algorithms.

In summary, this subsection shows that the optimal values
of the feedforward weights of the distributed decision network
can be learnt using local learning rules in two ways: (i) if
the distributed representations are “given” and they satisfy
similarity preservation, the weights can be learnt using iterative
version of the pseudo-inverse rule (Hertz et al., 1991); (ii) if
the output representation can be chosen by the network itself,
any feature extraction algorithm generating the representation
satisfying similarity preservation will find the optimal weights.

4. Performance comparison

This section assesses the performance of the distributed
decision network described in the previous section. First,
Section 4.1 confirms in simulation that the distributed decision
network achieves exactly the same error rates (ER) and DTs
as the localist decision network with corresponding parameters
and inputs. Then Sections 4.2 and 4.3 compare the performance
and the match with behavioural data of the distributed decision
network with the networks in which feedforward weights w or
feedback weights v are set up according to a standard Hebb
rule.

4.1. Equivalence between localist and distributed networks

To illustrate the equivalence between the localist and the
distributed decision networks, the networks were simulated and
their ER and DT were measured. The parameters of the localist
network are given in the caption of Fig. 3, and the optimal
parameters of the distributed network were derived as described
in Section 3.3. In the simulated trials it was assumed that the
first alternative is correct. Hence in each step of integration, the
inputs x j to the distributed network was equal to the first input
pattern multiplied by a constant M1 and integration step dt , with
added Gaussian noise with variance c2dt , i.e.

x j = M1x j,1dt + N (0, c2dt), (22)

where N denotes a random number sampled from a normal
distribution with mean and variance given in brackets. Eq. (22)
implies that the noise is independent between neurons.
Although it is not the case in early sensory areas (e.g. Zohary,
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Fig. 3. Error rate and decision time (in seconds) of the localist decision network
(solid line) and the distributed decision network (dashed line) for different
values of decision threshold (shown on horizontal axes). The models were
simulated using Euler method with dt = 0.01 [s]. The localist model was
simulated with the following parameters: A = 5, K = V = WINH = 10 [1/s].
The distributed model was simulated with n = 20, a = 0.2, and other
parameters chosen to be equivalent to those of the localist model as described
in Section 3.3. The weights of the integrator neurons were obtained from the
iterative rules of Eqs. (14) and (19) (rather than 9, 10; it was assumes that
vi,i = 0). The inputs were generated as described in the main text with
M1 = 1.41 [1/s] and c = 0.33 [1/s] (the values estimated from sample
participant of the experiment in study of Bogacz et al. (2006)). For each value
of the decision threshold the simulations were repeated 1000 times and the error
bars show the standard error.

Shadlen, and Newsome (1994)), in case of perceptual
decisions considered in this paper, in which alternatives are
represented by overlapping assemblies, the input is likely to
be provided by the late areas in the ventral visual stream (see
introduction). Erickson et al. (2000) report that in the last
area in the ventral stream, the perirhinal cortex, the average
correlation between noise in the responses of two neurons to the
same stimuli is equal only to 0.017 (see Fig. 5(b) in Erickson
et al. (2000)). So there, the noise processes are practically
uncorrelated between neurons, as assumed in Eq. (22). The
inputs to the localist decision network were generated on the
basis of the inputs to the distributed network using Eq. (6).

Fig. 3 shows that neither ER nor DT differed significantly
between the localist and the distributed decision networks.
This result is not surprising, as the networks are shown to be
equivalent in Section 3.3, but the result is given here to provide
an independent validation of the equivalence.

4.2. Hebbian feedforward connections

We compare the performance of the distributed decision
network with the network with feedforward weights wi, j
set according to the Hebb rule for sparse associative
memories (Amit, 1989) adapted for a hetero-associative
memory (Kosko, 1988):

wi, j =
1

na (1 − a)

A∑
I=1

(
yi,I − a

) (
x j,I − a

)
. (23)

The Hebb rule allows rapid learning based on a single
presentation of a stimulus (the rules of the distributed network
require iterative learning described in Section 3). The Hebb rule
has the following property: if only one stimulus association is
learnt by the network, i.e. A = 1, and it is presented on input
[x j ] = [x j,1], then the input to the integrator neurons is equal
to the output representation of this stimulus decreased by a
constant: [hw

i ] = [yi,1] − a (analogous to the optimal rule; but
for A > 1 this relation is only approximate (Amit, 1989)).

As the criterion of performance we choose DT for fixed
ER (ER = 10%), i.e. the criterion optimized by SPRT
(see Section 2). In the simulations, the underlying localist
parameters (which occur in the equations for parameters of the
distributed network) are set to satisfy the optimal values i.e.
Winh high and K = V (see Section 2). To focus exclusively
on the effect of the feedforward connections on performance
(the effect of the feedback connections will be analysed in
Section 4.3), here we assumed that the neurons are perfect
integrators (K = 0) and hence the feedback connections are
not present (V = 0). During the simulations, the network with
Hebbian feedforward weights had inhibition set as described
in Eq. (8). Fig. 4 shows that the network with Hebbian
feedforward connections is slower than the optimal distributed
decision network for a higher number of alternatives. Hence,
it is useful for the brain to invest in more complex iterative
learning (e.g. required by the optimal distributed decision
network), as it reduces the DT.

The above result is not surprising, as the optimal distributed
decision network by definition achieves better (or equal)
performance than any other networks. However, the simulation
shown in Fig. 4 allows the comparison of the network
performance with behavioural data. In particular, the DT of the
optimal distributed network is proportional to the logarithm of
the number of alternatives A (note that there is a straight line
in Fig. 4 with logarithmic scale for A), and thus follows Hick’s
law (Teichner & Krebs, 1974) widely observed in behavioural
experiments involving choice between multiple alternatives.
The optimal distributed network follows Hick’s law, because
it is equivalent to the localist decision network which has been
shown to follow Hick’s law (McMillen & Holmes, 2006). By
contrast the network with Hebbian feedforward connections
does not follow Hick’s law (the points in Fig. 4 for the Hebbian
network do not form a line).

4.3. Hebbian feedback connections

Let us now compare the optimal distributed decision
network against the network with non-optimal ways of setting
the feedback weights vi, j between the integrator neurons. First
let us recall that the optimal way to set the feedback weights
of Eq. (9) is the pseudo-inverse rule. We compare it against the
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Fig. 4. Decision time (in seconds) of the optimal distributed decision network
(solid line), and the network with feedforward Hebbian connections (dotted
line) as a function of the number of alternatives A. The models were simulated
using Euler method with dt = 0.01 [s]. During all simulations the following
parameters were kept constant: K = V = 0 [1/s], WINH = 10 [1/s], n = 20,
a = 0.2, M1 = 1.41 [1/s], c = 0.33 [1/s]. The number of alternatives A is
shown on the horizontal axis. For each model and each number of alternatives,
the decision threshold was found numerically that resulted in an error rate of
10% ± 0.2% (s.e.); this search for threshold was repeated 10 times. For each
of these 10 thresholds, the decision time was then found in simulation and their
average used to construct the data points. The standard error of mean decision
time estimation was <2 ms for all data points; as indicated by very short error
bars.

network with the feedback weights set according to the Hebb
rule (Amit, 1989) analogous to that of Eq. (23):

vi, j =
V

na (1 − a)

A∑
I=1

(
yi,I − a

) (
y j,I − a

)
. (24)

To better illustrate the problems arising with the Hebb rule
we use slightly different measure of model performance: ER for
different times allowed for decision. This measure corresponds
to the interrogation paradigm often used in psychological
experiments (e.g. Usher and McClelland (2001)), in which
participants are allowed a specified time for decision: from
stimulus presentation to a special response cue presented
at time T , after which the participants have to respond
immediately. In the simulation of the interrogation protocol,
the response at time T is considered to be correct if the most
active assembly corresponds to the alternative with the highest
mean input. Fig. 5 compares ER of the optimal distributed
network, and the network in which the rule for setting feedback
connections vi, j is changed to the Hebb rule of Eq. (24).
The larger the values of decay parameter K and the strength
of the feedback connections V , the more the performance of
the network with Hebbian feedback weights departs from the
optimal performance. To understand this result let us recall that
the function of the feedback connections is to counterbalance
the rapid decay of neuronal activity in the absence of input.
If there is no such decay, the neurons integrate information
perfectly, and there is no need for the feedback connections.
The optimal rule of Eq. (9) is able to counterbalance the
neuronal decay precisely, so the network integrates the input
in the same way as the network without the neuronal decay and
Fig. 5. Error rate in the interrogation paradigm of the optimal distributed
network, and the network with Hebbian feedback connections, with different
values of parameters V , K (shown in figure key in units of [1/s]). The models
were simulated using Euler method with dt = 0.01 [s]. During all simulations
the following parameters were kept constant: A = 5, WINH = 10 [1/s],
M1 = 1.41 [1/s], c = 0.33, n = 20, a = 0.2. The time allowed for decision is
shown on the horizontal axis in units of seconds.

the feedback connections. The feedback weights set according
to the Hebb rule do not counterbalance the neuronal decay
as precisely (some assemblies have their level of activity
maintained better than other). Hence the larger the strength
of the feedback connections (necessary due to faster neuronal
decay), the more imprecision is introduced to the integration
process by the Hebbian feedback connections, and hence the
larger is the ER.

Fig. 5 also shows that for the Hebbian feedback weights and
for larger values of K and V (e.g. 8 and 12 in Fig. 5), the ER
initially decreases but then starts to increase. The justification
for this effect is given in Appendix C. The experimental results
from the interrogation paradigm (Usher & McClelland, 2001)
show that, as the time for decision increases, the ER of human
participants decrease to a constant, as in the case of the optimal
decision network in Fig. 5 (this constant may differ from 0 due
to other factors not included in this simulation; see Usher and
McClelland (2001)). The increase in ER with the increase of
the time for decision, as in the case of the network with the
Hebbian feedforward weights and with V = K = 8 or 12, is
inconsistent with the experimental observations of Usher and
McClelland (2001).

5. Discussion

This paper derives the optimal parameters of the decision
network in which the alternatives are represented by neuronal
cell assemblies, and shows that the optimal synaptic weights
can be learnt by the rules using only information locally
available to the synapses. Due to the evolutionary pressure
for the speed and the accuracy of decisions, it is predicted
that the parameters of biological decision networks will follow
the derived optimal values. Simulations demonstrate that the
distributed decision network with the optimal parameters
is indeed consistent with Hick’s law and the relationship
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between ER and the time for decision. The consistency with
experimental observations is not present for the distributed
decision network with the weights set up to the standard Hebb
rule.

5.1. Experimental predictions

This paper has demonstrated that it is biologically
plausible for the optimal decision networks with distributed
representation to exist in brain, and this subsection describes
experimental predictions that would confirm the existence of
such networks.

The main reported manifestation of the decision processes
is the gradual increase in the firing rate of the integrator
neurons during presentation of noisy stimuli, thus similar
increases should be observed in perceptual decisions based on
noisy stimuli. These could be recorded from single neurons in
certain frontal or parietal cortices during any task requiring
discrimination between many complex visual stimuli (e.g.
delayed matching to sample task (Miller et al., 1996), or
recognition memory task (Xiang & Brown, 1998)). Initially,
the stimuli (e.g. pictures of real world objects) could be
presented without noise to establish the patterns of response of
the neurons to individual stimuli. Then, the stimuli could be
presented with different degrees of flickering white noise (as in
a TV without an antenna) overlaid on top of them. The existence
of decision networks with distributed representation predicts
that there will exist integrator neurons with the following
properties: (i) If the neurons are selective for a particular visual
stimulus (when presented without noise), they will gradually
increase their firing rate when this stimulus is presented
with noise. (ii) The slope of this increase will be inversely
proportional to the amount of the noise in the stimulus. (iii) The
neurons (or at least some of them) should show these increases
for more than one stimulus (as the distributed representations
were assumed to be overlapping).

Furthermore, if the brain’s distributed decision networks
are equivalent to the Usher and McClelland (2001) model, as
proposed in this paper, then these integrator neurons should
show the dynamics similar to that of the localist units in
the Usher and McClelland (2001) model. In particular, Usher
and McClelland (2001) show that when two alternatives both
receive high input, both integrator units initially increase, and
then due to the mutual inhibition, the winner increases while the
other decreases. Thus in the above mentioned experiment, if on
some trials a noisy mixture of two stimuli is presented, then the
firing rates of the neurons selective for the first stimulus and the
neurons selective for the second should also initially increase,
and then one population should increase and inhibit the other.

5.2. Linking with more detailed levels of description

This paper also describes iterative learning rules of Eqs. (14)
and (19) resulting in the optimal weights, hence one can ask
if they make any predictions regarding the synaptic plasticity.
It is worth noticing that these rules do not fully specify the
mechanism of plasticity, e.g. the postsynaptic neuron needs to
provide the synapse with two values: yi and hi , and it is not
obvious how it can be done, hence making the predictions about
the synaptic plasticity may require a more precise model. One
candidate for such a model could be the model of synaptic
plasticity recently proposed by Norman, Newman, Detre, and
Polyn (2006), since preliminary work of Xu (2006) suggests
that it implements the learning described in Eqs. (14) and (19).
In the Norman et al. (2006) model, the synapse can “access”
hi − yi due to the changes in the level of inhibition during theta
oscillations.

In this paper only very simplified linear models of individual
neurons were considered, and it would be interesting to
extend the theory to more realistic description of neuronal
behaviour. In particular, more experimental predictions would
be generated by deriving the optimal parameters of a realistic
distributed decision network with overlapping representations,
as it has been done for non-overlapping representations (Wong
& Wang, 2006). This paper is a first step in this direction.
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Appendix A. Optimal distributed decision network

This appendix shows that when the relationships of
Eqs. (7)–(10) are satisfied, then the distributed decision network
of Eq. (5) is equivalent to the localist decision network of
Eq. (3).

Let us rewrite Eq. (3) in matrix notation. Let [1]N ,M denote
an N by M matrix filled with ones:[

ẎI
]

= [X I ] − K [YI ] + V [YI ] − WINH [1]A,A [YI ] . (25)

Let us rewrite Eq. (5) in matrix notation:

[ẏi ] =
[
wi, j

] [
x j

]
− k [yi ] +

[
vi, j

]
[yi ]

− [1]n,1
[
winh,i

]T [yi ] . (26)

Let us rewrite Eq. (8) in matrix notation and transpose it:

[
winh,i

]T
= WINH

1
an

[1]1,A
[
yi,I

]T
. (27)

Let us notice that matrix [vi, j ] is symmetric (Hertz et al.,
1991) so it is equal to its transpose, hence Eq. (9) can be
rewritten as:[
vi, j

]
= V

[
yi,I

]T−1 [
yi,I

]T
. (28)

It will be now shown that when Eqs. (7), (9), (10), (27) and
(28) are substituted into Eq. (26), then algebraic manipulations
will yield Eq. (25).
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Substituting Eqs. (7), (9), (10), (27) and (28) into Eq. (26),
and using Eq. (6) we obtain:

[ẏi ] =
[
yi,I

]T−1
[X I ] − K [yi ] + V

[
yi,I

]T−1
[YI ]

− [1]n,1 WINH
1
an

[1]1,A [YI ] . (29)

Let us multiply the above equation by [yi,I ]
T. Notice that

[yi,I ]
T multiplied by vector [1]n,1 (occurring in the last term of

above equation) will result in a column vector of length A filled
with an, because we assumed that each column of matrix [yi,I ]

contains exactly an ones (each assembly consist of an neurons).
We obtain:[

ẎI
]

= [X I ] − K [YI ] + V [YI ]

− WINH [1]A,1 an
1

an
[1]1,A [YI ] . (30)

The multiplication and the cancellation in the last term of the
above equation will result in Eq. (25).

Appendix B. Similarity preservation due to feature extrac-
tion

This appendix shows that the similarity preservation is
satisfied by the representation generated by a set of classical
models of feature extraction.

First we prove that the similarity preservation is satisfied
when the columns of matrix wi, j with feedforward weights
of the feature extraction network are orthonormal (in the
calculation below, the first transformation uses Eq. (20), and
the second transformation uses the orthonormality):[

yi,I
]T [

yi,I
]

=
[
x j,I

]T [
wi, j

]T [
wi, j

] [
x j,I

]
=

[
x j,I

]T [
x j,I

]
. (31)

If the features were orthogonal but not normal, the Eq.
(16) would be preserved modulo a scaling constant. The
orthonormal weight wi, j are generated by the Principal
Component Analysis which can be implemented by a number
of models of feature extraction with local learning rules
(e.g. Oja (1989), Sanger (1989)). Hence given the discussion
in the end of Section 3.4, the weights of the feedforward
connections generated by these rules would satisfy Eq. (10)
precisely.

Appendix C. Dynamics with Hebbian feedback weights

This appendix provides justification for the effect observed
in Fig. 5 that for the Hebbian feedback weights and for larger
values of K and V (e.g. 8 and 12 in Fig. 5), the ER initially
decreases but then starts to increase. To understand this result
let us consider the linear coefficients of the Eq. (26) describing
the dynamics of the distributed decision network; they are
equal to [li, j ] = [vi, j ] − k[I ] − [1]n,1[winh,i ]

T (where [I ]
denotes the identity matrix). Numerical explorations revealed
that for the Hebbian feedback weights the matrix [li, j ] has
some eigenvalues negative while some positive. Hence the fixed
point of the deterministic part of Eq. (26) is a saddle point.
Although the fixed point usually lies in the part of the state
space corresponding to the correct alternative, the direction of
the eigenvector corresponding to the highest eigenvalue does
not depend on the input, thus it does not depend on which
alternative is correct on a given trial. Hence initially, the system
is attracted to the fixed point which is reflected by the decrease
in ER, but then it is “captured” by the repulsion in the direction
corresponding to the positive eigenvalues which is reflected by
the increase in ER.
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