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Abstract

Customers arriving in a Poisson stream are served one by one exponentially by one of the m servers S 1, S 2, S 3, . . . , S m. A

server who has just completed a service either continues the next service or is replaced by another server. The replacement

of a server at each service completion is governed by a probabilistic criterion of availability of servers. Transient solutions

in terms of Laplace transforms of the probability generating functions are obtained and among some special cases the

earlier known results for the case of 2 servers are deduced. The steady state solutions and the average queue sizes have

been obtained for some particular cases.
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1. Introduction

(Madan, 1990) has studied a 2 server queue with correlated availability of servers. The idea was motivated by some

earlier papers dealing with correlated arrivals, correlated departures and some other similar situations. cf (Chaudary,

1965), (Mohan, 1955) and (Murari, 1969). For an excellent account of the single server queue, we refer the reader to

(Cohen, 1969), Gross and (Harris, 1985) and (Saaty, 1961). In this paper, we generalize the problem studied by (Madan,

1990) to m servers. The mathematical model is briefly described by the following assumptions:

• Arrivals occur one by one in a Poisson stream with mean arrival rate λ(> 0).

• The system has m servers designated as S 1, S 2, S 3, · · · , S m and only one of them serves the customers at a time.

The service is provided on a first come, first served basis and the service times of are exponentially distributed with mean

service time 1/μ j, j = 1, 2, 3, · · · , m.

• Whenever an empty system starts with a first arriving customer, the servers S 1, S 2, S 3, · · · , S m are available in the

system with respective probabilities π j, j = 1, 2, 3, · · · , m, where
m∑

j=1
π j = 1.

• However, subsequently at the completion of each service, a server who has just completed a service either continues

the next service or is replaced by another server. The availability criterion of servers is determined by the conditional

probability pi j = probability that server S j replaces server S i, given that the server S i has just completed a service.

Obviously, when j = i, it means that the server S i continues with the next service. Thus the m × m availability matrix is

given by

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p11 p12 · · · p1m

p21 p22 · · · p2m

· · · · · · · · · · · ·
pm1 pm2 · · · pmm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
• It has been assumed that the replacement of servers is instantaneous.

2. Equations Governing the System

We define P( j)
n (t), n ≥ 0 as the probability that at time t there are n customers in the queue excluding the one being served

by the jth server S j, j = 1, 2, 3, · · · , m and let Q(t) be the probability that at time t the queue length is zero and none of

the m servers is providing service. The following set of forward equations govern the system for j = 1, 2, 3, · · · , m:

d
dt

P( j)
n (t) + (λ + μ j)P

( j)
n (t) = λP( j)

n−1
(t) +

m∑
k=1

pk jμkP(k)
n+1

(t), n > 0 (1)

d
dt

P( j)
0

(t) + (λ + μ j)P
( j)
0

(t) = λπ jQ(t) +
m∑

k=1

pk jμkP(k)
1

(t) (2)
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d
dt

Q(t) + λQ(t) =
m∑

k=1

μkP(k)
0

(t) (3)

We assume that initially there are no customers either waiting in queue or being served so that the initial condition is

Q(0) = 0 (4)

Taking Laplace transform of equations (1) to (3) and using equation (4), we have

(s + λ + μ j)P
( j)
n (s) = λP( j)

n−1
(s) +

m∑
k=1

pk jμkP(k)
n+1

(S ), n > 0 (5)

(s + λ + μ j)P
( j)
0

(s) = λπ jQ(S ) +

m∑
k=1

pk jμkP(k)
1

(S ) (6)

(s + λ)Q(s) = 1 +

m∑
k=1

μkP(k)
0

(S ) (7)

3. The Time-Dependent Solution

Let P
( j)

(s, z) =
∞∑

n=0
P

( j)
(s)zn, |z| ≤ 1 define the probability generating functions of queue length under various states of

the system in terms of their Laplace transforms. Then multiplying equations (5) and (6) by suitable powers of z and

simplifying, we obtain

(s + λ + μ j − λz)zP( j)(s, z) = λzπ jQ(s) +

m∑
k=1

pk jμkP(k)(s, z) −
m∑

k=1

pk jμk p(k)(S ), n > 0, j = 1, 2, 3, · · · ,m (8)

We solve the system of equations given by (8) for P
( j)

(s, z), j = 1, 2, · · · , m and obtain

P
( j)

(s, z) =
N( j)

Δ
(9)

Where Δ is the determinant of the m × m matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G1 −p21μ2 · · · −pm1μm

−p12μ1 G2 · · · −pm2μm

· · · · · · · · · · · ·
−p1mμ1 −p2mμ2 · · · Gm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G j = (s + λ + μ j − λz)z − p j jμ j,

Hj = λzπ jQ(s) −
m∑

k=1

pk jμkP
(k)

0 (S )

and N( j) is the m × m determinant which is obtained from the determinant Δ by replacing the jth column of Δ by the

column vector (H1, H2, · · · , Hm)′.

We note that due to the vector (H1, H2, · · · , Hm)′ appearing in N( j), the numerator of each of the equations given by (9)

involves m + 1 unknowns, namely Q(s), and P
(k)

0 (s), k = 1, 2, · · · , m. We proceed to determine these unknowns. It is

easy to see that each G j = (s + λ + μ j − λz) − p j jμ j has only one zero inside the unit circle |z| = 1 for j = 1, 2, 3, · · · , m
and, for that matter, due to the product term G1G2 · · ·Gm appearing in Δ, the denominator of the right side of (9) has m
zeros inside |z| = 1. These zeros give rise to m equations in m + 1 unknowns mentioned above. In addition, equation (6)
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also involves the same m+ 1 unknowns. Thus there are in all m+ 1 equations in m+ 1 unknowns. Hence all m probability

generating functions P
( j)

(s, z), j = 1, 2, · · · , m can be completely determined.

4. Some Particular Cases

4.1 Case 1: (Sequential Service)

If we let p12 = p23 = p34 = · · · = pm−1, m = 1 and all other transition probabilities are set to zero, then this essentially

means that the servers are providing sequential service, one after the other. In this case, the corresponding results will be

given by (9) where, now will have

G j = (s + λ + μ j − λz)z, j = 1, 2, · · · , m,

Hj = λzπ jQ(s) − μ j−1P
( j−1)

0 (s), j = 2, 3, 4, · · · , m,

H1 = λzπ1Q(s) − μmP
(m)

0 (s).

4.2 Case 2: (each server completes his cycle)

Let pii = 1 for i = 2, 3, 4, · · · , m and pi j = 0 for i � j which means that S 1, S 2, S 3, · · · , S m, whosoever starts service

continues serving the customers until the queue becomes empty again. In this case,

G j = (s + λ + μ j − λz)z − μ j,

Hj = λzπ jQ(s) − μ jP
( j)
0 (s), j = 1, 2, 3, 4, · · · , m.

And then (9) yields

P
( j)

(s, z) =
λzπ jQ(s) − μ jP

( j)
0 (s)

(s + λ + μ j − λz) − μ j
(10)

The denominator of the right side of equation (10) has one zero inside the unit circle |z| = 1. Let z = z j be this zero. This

zero yields

λzπ jQ(s) − μ jP
( j)
0 (s) = 0 for j = 1, 2, · · · , m (11)

Using equation (11) in (7), we obtain

Q(s) =
1

s + λ − λ m∑
j=1
π jz j

(12)

And hence

P
( j)
0 (s) =

λz jπ j

s + λ − λ m∑
j=1
π jz j

, j = 1, 2, · · · , m (13)

4.2.1 Steady State Queue Length Probabilities for Various States of the System

Let P( j)
n , j = 1, 2, · · · , m and Q be the respective steady state probabilities corresponding to P( j)

n (t) and Q(t) and, for

that matter, let P( j)(z) be the steady state probability generating functions for the queue length corresponding to P( j)(s, z).

Then the steady state solution can be obtained by using the well known Tauberian property lim
s→∞ s f (s) = lim

t→∞ f (t).

We proceed to derive the steady state results for this case as follows: Applying the Tauberian property, equation (10)

yields

P( j)(z) =
λzπ jQ − μ jP

( j)
0

(λ + μ j − λz) − μ j
, j = 1, 2, · · · , m (14)

Now, z = 1 is a zero of the denominator of the right hand side of equation (14). Therefore, its denominator must vanish

for this zero, giving

P( j)
0
=

⎧⎩ λ
μ j

⎫⎭π jQ, j = 1, 2, · · · , m (15)
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Using (15), equation (14) can be written as

P( j)(z) =
λ(z − 1)π jQ

(λ + μ j − λz) − μ j
, j = 1, 2, · · · , m (16)

We see than for z = 1, equation (16) is indeterminate of the 0/0 form. Therefore, using L’Hopital’s rule, we obtain

P( j)(1) =
λπ jQ
μ j − λ , j = 1, 2, · · · , m (17)

Next, utilizing (17) in the normalizing condition
m∑

j=1
P( j)(1) + Q = 1, we obtain

Q =
1

1 + λ
m∑

j=1

⎧⎩ π j

μ j−λ
⎫⎭ (18)

We note that equation (18) gives the steady state probability that the system is empty and none of the servers is providing

service.

Then using the value of Q from (18) in equation (16), we get

P( j)(z) =
[ λ(z − 1)π j

(λ + μ j − λz) − μ j

][
1 + λ

m∑
j=1

⎧⎩ π j

μ j − λ
⎫⎭]−1

, j = 1, 2, · · · , m (19)

Factoring (λ + μ j − λz)z − μ j as (z − 1)(μ j − λz) and canceling out the factor (z − 1), we can re-write equation (19) as

P( j)(z) =
[ λπ j

(μ j − λz)

][
1 + λ

m∑
j=1

⎧⎩ π j

μ j − λ
⎫⎭]−1

, j = 1, 2, · · · , m (20)

This can be again written as

P( j)(z) =
[λπ j

μ j

][
1 + λ

m∑
j=1

⎧⎩ π j

μ j − λ
⎫⎭]−1

⎧⎩1 − λz
μ j

⎫⎭−1
, n ≥ 0, j = 1, 2, · · · , m (21)

Expanding the last factor of the right hand side of equation (21) and picking up the coefficients of nth power of z and

simplifying, we have

P( j)
n = π j

[
1 + λ

m∑
j=1

⎧⎩ π j

μ j − λ
⎫⎭]−1

⎧⎩ λ
μ j

⎫⎭n+1
, n ≥ 0, j = 1, 2, · · · , m (22)

4.2.2 Steady State Mean Queue Length

Let pn =
n∑

j=1
p( j)

n be the steady state probability that the queue length is n ≥ 0, irrespective of whosoever server is providing

service. Then the mean queue lengh Lq is given by

Lq =

∞∑
n=0

npn =

∞∑
(n=0)

m∑
j=1

nπ j
[
1 + λ

m∑
( j=1)

⎧⎩ π j

μ j − λ
⎫⎭]−1

⎧⎩ λ
μ j

⎫⎭n+1
(23)

Carrying out the summations and simplifying, we have the mean queue length as

Lq =
[
1 + λ

m∑
( j=1)

⎧⎩ π j

μ j − λ
⎫⎭]−1

m∑
j=1

π j
⎧⎩ λ

μ j − λ
⎫⎭2

(24)
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4.3 Case 3: (The Case of Two Servers)

If the system has two servers, then m = 2 and, for that matter, π j = 0 = P( j)(s, z), for j = 3, · · · , m. Also pi j = 0 for

i, j = 3, · · · , m so that now we have 2 × 2 selection matrix given by
⎧⎩ p11 p12

p21 p22

⎫⎭. Then in this case, the equations in

matrix form will be ⎧⎩ G1 −p21μ2

−p12μ1 G2

⎫⎭⎧⎩ P
(1)

(s, z)

P
(2)

(s, z)

⎫⎭ = ⎧⎩ H1

H2

⎫⎭ (25)

Where

G1 = (s + λ + μ1 − λz)z − p11μ1

G2 = (s + λ + μ2 − λz)z − p22μ2

H1 = λzπ1Q(s) − p11μ1P
(1)

0 (s) − p21μ2P
(2)

0 (s)

H2 = λzπ2Q(s) − p12μ1P
(1)

0 (s) − p22μ2P
(2)

0 (s)

Solving (25) simultaneously, we have

P
1
(s, z) =

H1[(s + λ + μ2 − λz)z − p22μ2] + p21μ2H2

[(s + λ + μ1 − λz)z − p11μ1][(s + λ + μ2 − λz)z − p22μ2]
(26)

P
2
(s, z) =

H2[(s + λ + μ1 − λz)z − p11μ1] + p12μ1H1

[(s + λ + μ1 − λz)z − p11μ1][(s + λ + μ2 − λz)z − p22μ2]
(27)

Results in (26) and (27) agree with known results of (Madan, 1990)

Under the conditions of particular case 2 (each server completes his cycle), we have p11 = 1 = p22 and p12 = 0 = p21,

for j = 2. Consequently, the steady state results corresponding to equations (16), (18), (22) and (24) can be derived as

follows:

P( j)(z) =
λ(z − 1)π jQ

(λ + μ j − λz) − μ j
, j = 1, 2 (28)

Q =
(μ1 − λ)(μ2 − λ)

λπ1(μ2 − λ) + λπ2(μ1 − λ) + (μ1 − λ)(μ2 − λ)
(29)

p( j)
n (z) = π j

[ (μ1 − λ)(μ2 − λ)

λπ1(μ2 − λ) + λπ2(μ1 − λ) + (μ1 − λ)(μ2 − λ)

]⎧⎩ λ
μ j

⎫⎭n+1
, n ≥ 0, j = 1, 2 (30)

Lq =
[ (μ1 − λ)(μ2 − λ)

λπ1(μ2 − λ) + λπ2(μ1 − λ) + (μ1 − λ)(μ2 − λ)

][ 2∑
j=1

π j
⎧⎩ λ

μ j − λ
⎫⎭2]

(31)

Again, all the above results given in equations (28), (29), (30) and (31) agree with the results of (Madan, 1990) except for

notations.
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