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Abstract. In this paper we analyze a class of location disclosure in
which location information from individuals is generated in an auto-
mated way, i.e. is observed by a ubiquitous infrastructure. Since such
information is valuable for both scientific research and commercial use,
location information might be passed on to third parties. Users are usu-
ally aware neither of the extent of the information disclosure (e.g. by
carrying a mobile phone), nor how the collected data is used and by
whom.

In order to assess the expected privacy risk in terms of the possible
extent of exposure, we propose an adversary model and a privacy met-
ric that allow an evaluation of the possible privacy loss by using mobile
communication infrastructure. Furthermore, a case study on the privacy
effects of using GSM infrastructure was conducted with the goal of ana-
lyzing the side effects of using a mobile handset. Based on these results
requirements for a privacy-aware mobile handheld device were derived.

1 Introduction

Mobile communication systems as well as location-based services are now both
well established and well accepted by users. The combination of location de-
termination, powerful mobile devices (so-called Smartphones) and ubiquitous
network communication options provide a lot of useful new applications but also
bring new challenges to the users’ privacy especially when it comes to location
disclosure.

There are various occasions and motives for location disclosure. In general, one
can classify location disclosure types into two different categories based on trust
relationship between involved communication peers (cf. Fig. 1). A very common
situation today is when users exchange their whereabouts with location-based
service providers for tailored and context-sensitive information. Exchanging po-
sition information within groups through social network services (SNS) is also
gaining in popularity. These services usually involve informed users who are
aware that they are disclosing their location data. Service providers as well as
social peers are considered as partially trusted, at least for the specific commu-
nication context, as communication is voluntary and communication peers are
known.
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Fig. 1. Transfer of location information from (partially-)trusted peers to untrusted
peers

Nowadays there is typically mobile communication involved. The communi-
cation infrastructure is usually also considered as partly trusted, i.e., there is a
service agreement between the user and provider. Due to the specific nature of
mobile communication networks, the location of mobile subscribers is known to
the underlying infrastructure.

Hence, there is a second class of location disclosure, where location information
from individuals is generated automatically or is observed by the infrastructure.
Such information is valuable for scientific research [1] but also for commercial
use (e.g. traffic monitoring 1 or location-aware advertising [2]). Therefore, loca-
tion information might be passed on to third parties in an anonymized and/ or
aggregated way. In this case users are usually aware neither of the extent of their
information disclosure (e.g. by carrying a mobile phone), nor how the collected
data is used and by whom.

A lot of research has been done (e.g. [3]) on protecting a user’s anonymity.
However, when using mobile infrastructure users face two difficulties. First, due
to regulations, the quality of service, but also technical conditions, location pri-
vacy protection measures like anonymity and obfuscation techniques seem inad-
equate or difficult to employ. Second, users suffer from limited and asymmetric
knowledge. They have no knowledge on the nature, accuracy and amount of lo-
cation data they have generated by using mobile communication infrastructure
so far. As well, they cannot make a judgment about the level and quality of
anonymization if the location data is exploited for various services. Since the
data might be de-anonymized (e.g. [4]) or, even worse, if raw data leaks for
whatever reason, users bear a latent privacy risk.

Thus, disclosing location data always conflicts with the user’s privacy, since
position information or movement history might lead to the user’s identity. Col-
1 For instance A1 Traffic (http://www.a1.net/business/a1traffictechnologie

[12/1/2010]) or Vodafone HD Traffic (http://www.vodafone.de/business/
firmenkunden/verkehrsinfo-hd-traffic.html [5/1/2011]).

http://www.a1.net/business/a1traffictechnologie
http://www.vodafone.de/business/
firmenkunden/verkehrsinfo-hd-traffic.html
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lected location data can become a quasi-identifier, similar to a fingerprint [5].
Hence, by using external knowledge the identity of a specific user can be deter-
mined (e.g. [6]). Furthermore, through observing and evaluating a user’s move-
ments, his preferences and other possible sensitive information might be revealed.
Such sensitive location-related data contains places a user visits frequently or at
certain times and thus has special interest in. With the location data of other
individuals his social relations become visible.

In order to assess the expected privacy risk in terms of the possible extent
of exposure, first an adversary model has to be defined. Based on this model a
simple privacy metric is proposed in order to assess the privacy loss in mobile
communication networks and provide the groundwork for developing require-
ments for a privacy-aware communication device. As an example, we analyzed
the impact on the user’s privacy of different network configurations found at four
GSM telephony infrastructure providers.

2 Related Work

Recent analysis of mobile phone call data records (CDR) showed that even spo-
radic anonymous location data with coarse spatial resolution contain sensitive
information and could lead to possible identification. Humans tend to move in
very regular patterns. A study using six months of call data records showed that
humans stay more than 40% of the time at the same two places [1,7]. In another
study on anonymized aggregated call data records, the movement patterns of
commuters in two cities were compared [8]. Similar studies were conducted on
tourist movement patterns in New York and Rome [9,10].

Sohn et al. analyzed GSM data to determine a user’s movement mode based
on radio signal fingerprints. The authors were able to distinguish between walk-
ing, driving and stationary profiles with a success rate of about 85% [11]. De
Mulder et al. conducted a study on the possibilities of re-identification of indi-
vidual mobile phone subscribers based on available cell data. In their study they
evaluated a Markovian model and a model based on the sequence of cell-IDs.
They report a success rate of about 80% for the latter method [12].

From the aforementioned studies one could conclude that using a mobile com-
munication network (e.g. GSM) is a threat to a user’s privacy. However, from a
user’s perspective the question remains how much knowledge a network provider
has on his movement patterns and which of the available networks pose the least
threat for his privacy. Lee et al. dealt with location privacy in GSM networks only
on the protocol layer in the relation between mobile station, VLR and HLR. How-
ever, location data as a possible quasi-identifier was not discussed [13]. Ardagna
et al. introduce a scenario with a semi-trusted (mobile) network provider and
propose a multi-path communication approach to achieve k-anonymity for the
initiating sender of a message [14]. Their approach relies on a hybrid network in-
frastructure where subscribers are able to form ad-hoc networks. However, such
an approach protects only the relation between sender and final recipient (e.g.
LBS-provider).
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In order to evaluate a privacy metric an adversary model is required. A popular
model is an adversary that observes in some way generalized location data and
tries to reconstruct this data to connected traces of a single individual. In a
second step the adversary may re-identify the traced individual through his
workplace or home by incorporating external knowledge (e.g. [15]) For instance,
Shorki et al. defined a location privacy metric that measures the (in)ability of
an adversary to accurately track a mobile user over space and time [16].

A different method for measuring location privacy is to make use of the uncer-
tainty of an adversary in order to assign a new observation to a trace of a specific
individual, e.g. by assigning probabilities to movement patterns and thus compen-
sating changed pseudonyms [17]. A similar measurement was proposed as time-
to-confusion metric, the tracking time of an individual until the adversary cannot
determine the next position with sufficient certainty [15]. The (un)certainty mea-
sure is based on the entropy of the observed position and the probability of the
expected or calculated next location. Sending a variety of locations for each query
also increases the ambiguity and thus the level of privacy [18].

However, in most mobile communication relations the anonymity assumption
seems inadequate. Furthermore, the aforementioned privacy metrics usually re-
quire full insight into the set of all users to determine the level of privacy for a
single user within this set.

3 Location Privacy in Mobile Telephony Networks

When using mobile communication, location data is generated, accumulated and
stored, as a technical and possibly legal2 necessity. As an example we discuss the
GSM infrastructure, because it is widely deployed and recently software and anal-
ysis tools have become available 3,4. Its successors UMTS (3G) and LTE (4G) still
share most of its principal characteristics. The goal is to uncover hidden privacy
risks posed by the network’s background communication and the effects of differ-
ent network configurations on the user’s privacy. In contrast to active usage (e.g.
phone calls, texting), location data is not always provided voluntarily.

A typical GSM network is structured into cells, served by a single base sta-
tion (BTS) and larger cell-compounds called location area (LA). In idle state no
dedicated channel is assigned to the mobile station (MS). It only listens to the
common control channel (CCCH) and to the broadcast control channel (BCCH)
[19,20] and is otherwise in standby mode to save energy. Through System Infor-
mation Messages on the BCCH the MS receives periodically a list of neighboring
cells from the serving BTS and performs signal strength measurements on these
base stations. This way the MS can always select the BTS with good received
2 For instance EU Directive 2006/24/EC (Data retention),
http://eur-lex.europa.eu/LexUriServ/

LexUriServ.do?uri=CELEX:32006L0024:en:NOT, [5/21/2011]
3 Open Source GSM Baseband implementation, http://bb.osmocom.org [05/19/2011]
4 Open Base Station Controller OpenBSC, http://openbsc.osmocom.org

[05/19/2011]

http://eur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=CELEX:32006L0024:en:NOT
http://bb.osmocom.org
http://openbsc.osmocom.org
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signal strength in order to maintain network attachment. To establish a connec-
tion to the MS in case of an incoming connection, the network has to know if
the MS is still connected to the network and in which LA the MS is currently
located. To accomplish that, the location update procedure was introduced. Ei-
ther periodically or when changing the LA, a location update (LU) procedure
is performed. Within this procedure the phone starts an active communication
with the network infrastructure, sending a so-called measurement report to the
base station. This report consists of the received signal strength of up to six of
the strongest neighboring cells and the received signal strength of the serving
base station. The range between the periodic location updates may vary among
the infrastructure providers.

3.1 Locating Mobile Phones

Due to regulatory requirements 5 but also driven by commercial opportunities
locating mobile phones gained the attention of research and industry. There is a
variety of possibilities for determining a mobile station’s location from the view
point of the infrastructure, e.g., by Cell Origin with timing advance (TA) and
Uplink Time Difference of Arrival (U-TDOA) for GSM [21] 6. While the latter
method requires sophisticated network infrastructure, Cell Origin and TA are
available in any network setup. However, all these methods work without special
requirements for the mobile station and achieve a positioning accuracy of up to
50m in urban areas (TDOA) [23].

Another (nonstandard) method to determine a MS’s location makes use of
measurement results. Usually based on databases built from signal propagation
models used during the planning phase of the infrastructure, this data can be
used to create a look-up table for signal measurements to determine the MS’s
location. Based on the cell, TA and received signal strength of the serving cell
as well as the six neighboring cells, Zimmermann et al. achieved positioning
accuracy of below 80m in 67% and 200m in 95% in an urban scenario [24].
With a similar method but more generic setup, Peschke et al. report a positioning
accuracy of 124m in 67% [25]. While the mobile phone is in idle mode, network-
assisted positioning is not possible. The network either has to wait for the next
active period of the MS (e.g. phone call, location update) or has to initiate MS
activity. This can be done by transmitting a silent text message to the MS in
order to force an active communication, but without raising the user’s awareness.
The procedure is used for instance by law enforcement authorities or by location-
based services based on GSM positioning.

3.2 Privacy Threats

Providing a proper (especially technical) definition of location privacy has proven
to be a difficult task. Many different definitions were published, all covering
5 e.g. FCC Enhanced 911 Wireless Service,
http://www.fcc.gov/pshs/services/911-services/enhanced911 [5/15/2011]

6 Location determination options for UTRAN [22]

http://www.fcc.gov/pshs/services/911-services/enhanced911
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specific aspects. One abstract definition, first formulated by Westin [26] and
modified by Duckham & Kulik [27], describes location privacy as:

”[...] a special type of information privacy which concerns the claim of
individuals to determine for themselves when, how, and to what extent
location information about them is communicated to others.”

According to this definition the user should be in control of the dissemination
of his location information. Thus, the user’s privacy is threatened (according
to the aforementioned definition) because of technical necessities frequent loca-
tion information is generated and possibly stored for different reasons (e.g., for
technical network monitoring and improvement, regulation and law enforcement
requirements). The user’s mobile station collects and transmits location data
without notification or consent. Furthermore, besides using the mobile device
for active communication the user is unaware when location data is generated
and transmitted (e.g. location updates, silent text messages, etc.). Furthermore,
the user’s privacy is threatened because of monetization of available location in-
formation. Even though this data is usually aggregated or anonymized, users are
not aware of the technique used and thus bear a risk of re-identification (which
they can’t assess) (cf. [4]). Neither the final data consumer nor the intended
use of the location data is known. Finally, users are not aware of the extent
of the information they share. Usually one can assume that a single location
datum does not reveal much information to a ubiquitous observer. In contrast
to trusted communication peers such generic observers do not have appropriate
background knowledge on a single individual and thus have difficulties deriving
the user’s real life context or current activity, especially for service providers
with a subscriber base. However, by the accumulation of location observations
knowledge about a user can be easily created. In order to improve the privacy
situation in mobile communication networks, any location disclosure has to be
made transparent and a privacy metric is required in order to evaluate the extent
of location disclosures.

3.3 Adversary Model

In order to measure the extent of location disclosure in mobile communication
networks and to assess the effects on the user’s privacy the adversary has to be
modeled. From a user’s perspective, there is no assured knowledge on the capa-
bilities of the observing / listening adversary, especially how disclosed or observed
location data is used and what kind of conclusion the adversary is able to make
based on the information gained. In general, the user’s knowledge is limited to
common knowledge about the technical and architectural characteristics of the
mobile communication technology he or she uses (e.g. communication infrastruc-
ture service, etc.) as well as to a general estimation of the location determination
abilities, limited by technical or physical factors. Furthermore, the user is able
to monitor her own usage patterns by logging her exposure to the network, and
has knowledge about the surrounding landscape, i.e., map knowledge.
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Hence, the adversary model is limited to information an adversary may have
gained during a defined observation period. We assume that an adversary A has a
memory O = {o1, . . . , om} of observations on the user’s movement history based
on time-stamped location observations ot = (c, ε)t ∈ O, which are tuples of a
geographic coordinate c ∈ C and a spatiotemporal error estimate ε ∈ E of this
coordinate. The index t is a timestamp describing when the location observation
was made, with om being the latest observation. The function loc : O → C

extracts the location information from the tuple and err : O → E returns the
error estimate.

In our scenario we assume that the adversary’s utility (denoted as UA) is
negatively correlated with the user’s privacy level in a communication relation
with adversary A denoted as PA ∈ [0,−∞), with PA = 0 as the maximal
achievable privacy level:

UA(O) � −PA(O). (1)

For instance if the user does not disclose any location information, her privacy is
maximal but also the adversary’s utility is zero. Henceforward, there is a utility
gain if the adversary extends his knowledge either on the user’s preferences or on
his (periodic) behavior. This utility gain might be due to technical reasons (e.g.
efficient network planning) or to the reuse of the data for commercial purposes.
We can also assume that the adversary’s utility is not decreased through any
location data as long as the data is accurate, i.e., the user is not lying. Accord-
ingly, UA(O′) ≥ UA(O), with O′ := O ∪ o′, iff. o′ reveals previously unknown
information to the adversary A. Hence the user’s privacy w.r.t. adversary A can
only decrease by disclosing additional information: PA(O′) ≤ PA(O).

Furthermore, the adversary’s utility as well as the user’s privacy depends on
the nature and magnitude of the error estimate ε. First, with more accurate
information possibly more information might be disclosed and thus, err(o′) <
err(o) ⇒ UA(o′) ≥ UA(o) whereas the actual information gain is dependent, e.g.,
on landscape characteristics or additional knowledge on the user’s context. Sec-
ond, depending on the adversary and the kind of observation, the error value ε for
a given location sample is evaluated differently. If the adversary determines the
location by direct observation (oadv), e.g., through WiFi/GSM/3G infrastruc-
ture, the adversary knows the size and distribution of the expected spatial error
for the observed location sample. Furthermore, the temporal error component
can be ignored. In contrast, if location information is given by the user (ousr), the
adversary has no information about the quality and thus the magnitude of the
error ε of the observed sample. The user might have altered the spatial and/or
temporal accuracy of the location information before submission. In general we
can assume that err(oadv) ≤ err(ousr) and therefore UA(oadv) ≥ UA(ousr), since
a robust error estimation reduces the adversary’s uncertainty and thus increases
the potential information gain. But more importantly the adversary chooses time
and frequency of location observations.
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3.4 Determining an Adversary’s Knowledge Level

In order to reflect the duration, density, and quality of observation, a model
of all past disclosures (i.e. history or knowledge (K)) w.r.t. a given adversary
is required. The user’s privacy is threatened by the discovery of his regular
behavior and preferences (i.e. movement pattern). Since a user cannot change
the knowledge an adversary already has, the user may evaluate the level of
completeness of an adversary’s information and the information gain or privacy
loss involved in disclosing a further location sample.

Based on the adversary’s utility function, we require that the knowledge gain
ΔKA(O, o′) = KA(O, o′)−KA(O \ {om}, om) ≥ 0 for any o′. If no new informa-
tion is released, ΔKA = 0, and thus no privacy loss is experienced by the user.
For a user it is important to know what extra information the disclosure of a
single location sample o′ gives to each listening or observing adversary A w.r.t.
his history.

In a study on movement patterns of mobile phone users, Gonzalez et al. found
a characteristic strong tendency of humans to return to places they visited before.
Furthermore, the probability of returning to a location depends on the number
of location samples for that location. A rough estimation can be denoted as
Pr(lk) ∼ k−1 where k is the rank of the location l based on the number of
observations [1]. In a similar study it was shown that the range in the number of
significant places is limited (≈ 8-15). At these places a user spends about 85%
of the time. However, there is a long tail area with several hundred places which
were visited less than 1% but covered about 15% of the user’s total observation
time [7]. For the proposed privacy model we concentrate on the top L popular
places (with L being in the range of about 8-15), as these places are likely to be
revisited and therefore are considered as significant places in a user’s routine.

If we assume that the attacker’s a-priori knowledge on the observed location
sample o′ is limited to the generic probability distribution describing human
mobility patterns and the accumulated knowledge so far, then we can model
the adversary’s knowledge as the uncertainty assigning the observed location
information to a top L place. Entropy can be used to express the uncertainty of
the adversary and therefore the user’s privacy. Using entropy to quantify privacy
was already used in different settings (e.g [28]). In the following we consider a
location l ∈ C∗ to be an arbitrarily shaped area in C and denote the spatial
inclusion of a precise coordinate c ∈ C in the area l by writing c ∼= l. To
comply with the characteristics of human mobility patterns as described above,
we define the probability of an observed location sample o′ belonging to one of
the top L locations (li, i ∈ {1, . . . , L}) as pli := Pr(loc(o′) ∼= li) = τ

i where
τ ∈ (0, 1] is chosen in a way such that

( ∑L
i=1 pli

)
+ γ = 1 with γ ∈ [0, 1)

representing the summed probability of o′ belonging to one of the many seldom
visited places in the long tail distribution observed by Bayir et al. [7]. Assuming
that the adversary A has already discovered the top k locations of the user (by
making use of the previously observed user locations in O), we make a distinction
between two cases: (A) o′ belongs to a frequently visited location already known
to the adversary (∃i ∈ {1, . . . , k} : loc(o′) ∼= li), or (B) the adversary is not able
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to unambiguously connect the location observation to an already detected top
L location.

In case (A) no information about new frequently visited places is revealed
(which we denote by K

L(A)
A (O, o′) = 0). For case (B) we measure privacy as

the uncertainty (i.e. entropy) of assigning o′ to one of the remaining unknown
top L locations. We denote with psk :=

∑k
i=1 pli the summed probability for

the k top locations known to the adversary and accordingly psu :=
∑L

i=k+1 pli

the summed probability for the unknown top locations. Given that o′ does not
belong to one of the k known places, the probability for the remaining places
lk+1 . . . lL changes to pk

li
= pli · (1 + psk

psu
), which yields the following entropy

calculation:

K
L(B)
A (O, o′) = −(

L∑

i=k+1

pk
li log pk

li) − γ log γ, (2)

where γ denotes the summed probability of location samples which do not belong
to the top L locations. The overall uncertainty level of the adversary is the
weighted sum of the two cases (A) and (B) described above:

KL
A(O, o′) = p(A) · KL(A)

A (O, o′) + p(B) · KL(B)
A (O, o′), (3)

where p(A) = psk is the probability of case (A) and p(B) = 1−p(A) the probability
of case (B). By merging the equations of the two cases, the overall uncertainty
of an adversary in assigning o′ to a yet unknown top location can be expressed
as:

KL
A(O, o′) = (1 − psk) ·

(

−(
L∑

i=k+1

pk
li log pk

li) − γ log γ

)

. (4)

Until now, we assumed a simple binary decision as to whether a location sam-
ple belongs to a regular visited place (i.e. cluster) or not, hence ε � 0 and a
function CO(l) = |{o ∈ O | loc(o) ∼= l}| counting the number of times a user was
observed at a given location l ∈ C∗ (cf. section 3.4 above), making it possible to
rank the places by their popularity (l1, l2, . . . where CO(li) ≥ CO(li+1) – which
means that l1 is the most frequently visited location). Location information ob-
served by mobile communication infrastructure is error prone. Depending on the
communication infrastructure used, users can make assumptions on the physical
limitations of the involved technology and thus can estimate a best case value for
ε. In order to model the adversary’s uncertainty we introduce pc as the probabil-
ity of function CE assigning o′ correctly to a location l ∈ C

∗, taking ε = err(o′)
into account (and pc := 1 − pc). As the precise definition of pc depends on the
implementation of CE we only assume a correlation between the error and this
probability: pc ∼ ε−1.

However, modeling the adversary’s uncertainty based on ε is in practice both
difficult and possibly harmful to the user, since the adversary’s capabilities might
be underestimated, which may result in a higher and misleading privacy level.
Hence, in order to get a robust reflection on a user’s frequently visited places,
using a clustering approach leads to an efficient but also abstract representation
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of the user’s regular behavior. Several studies (e.g. [15,29]) demonstrate that
clustering is an effective tool for identification of a user’s significant places.

Thus, instead of modeling the uncertainty of an adversary in assigning an
observation to a certain location li, the spatial size of a possible location cluster is
increased by the estimated spatial error. Thus, the adversary’s uncertainty can be
translated into the problem of choosing a single location out of all possible (and
plausible) locations within the clustered spatial area. This uncertainty can be
calculated using map data. Fig. 2 shows the resulting clusters for GPS data (left)
and GSM data (right) from a 17-day trace with hourly location observations
(GSM) and an estimated error of 250m (GSM).

(a) (b)

Fig. 2. Clusters generated by a 17-day GPS trace (a) and (b) 17 days of hourly location
updates (GSM) with an estimated spatial error of 250 m. The radius of each cluster
denotes its significance for the user.

3.5 Determining an Adversary’s Knowledge Gain

With the uncertainty value before and after disclosure of o′, an adversary only
gains new information if a new frequently visited location is uncovered and can
be calculated as ΔKL

A(O, o′) = KL
A(O, o′) − KL

A(O \ {om}, om) where om is the
latest location observation in O (and therefore the direct predecessor of o′).

If o′ can be assigned to a known location li ∈ L, then ΔKL
A = 0, as by defi-

nition no information about new frequently visited places is revealed. However,
the weight of already determined frequently visited places may change due to
such an observation. Furthermore, people’s preferences are not static and hence
neither are their preferences as to frequently visited places. For instance, people
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change employer and/or move from time to time. Such changes in regular be-
havior disclose private information and thus compromise the user’s privacy. To
model these changes, the observation horizon can be limited and any information
older than a certain amount of time could be discarded.

To model changes in the frequency of the user’s top locations and a user’s reg-
ular behavior, we measure the change in the distribution made by a new obser-
vation. The adversary’s a-priori knowledge is the distribution of the time spent
in all known locations and hence their relative importance to the user. Thus,
an adversary gains extra knowledge if the distribution of time spent changes,
i.e., the user’s preferences change. For every detected location we assume that
the true probability q(O, o′, li) := PrO(loc(o′) ∼= li) is the relative observed
importance of location li derived from the previous observations in O (e.g.
PrO(loc(o′) ∼= li) ∼ CO(l)). We define the information gain as the difference
between the observed distribution before and after a disclosure of additional
data. One simple method for measuring the information gain is the relative en-
tropy using KL-divergence [30]

KC
A (O, o′) = −

k∑

i=1

q(O, o′, li) log
q(O, o′, li)

q((O ∪ o′), o′, li)
, (5)

where q(O, o′, li) denotes the probability of returning to li before and q((O ∪
o′), o′, li) the new probability after the new observation o′.

Finally, we express the privacy loss as

ΔKA(O, o′) = ΔKL
A(O, o′) + KC

A (O, o′). (6)

4 Case Study GSM Network

In contrast to previous work with focus on analyzing call data records, our focus
was on uncovering the side effects of using a mobile handset, since these are
currently the most personal devices we know. The mobile handset is a highly
sensitive device not only due to the huge subscriber count, but especially because
people hardly do any activity without keeping their mobile phones nearby. The
aforementioned studies showed the expressiveness of call data records. However,
we are focusing especially on location updates, since these are scheduled period-
ically and configuration among network providers differs significantly. While one
mobile telephony provider requires a client to initiate a LU every 60 minutes,
another one only requires updates every 12 hours. The remaining two telephony
providers configured their networks requiring four and six hour intervals respec-
tively. From a user’s privacy perspective, location updates are especially threat-
ening because of their regularity but also because these events happen without
the user noticing.

The information on the network infrastructure and its configuration a user
gets through the handset’s UI is usually limited to the mobile operator name,
signal strength of the serving cell and type of network connection (e.g. GSM
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or 3G). In order to analyze the user’s exposure, we developed a logger device
to record any communication between the GSM infrastructure and a mobile
phone. This device was carried by test persons; however, the phone was kept in
a passive / idle mode, i.e., no phone calls were made or received. The logger device
is based on a Nokia 3310 phone. These phones are able to provide raw network
data through a specific debug interface 7. This data can be recorded, decoded
and analyzed in a second step. To make this setup mobile, a micro controller
writing the data to an SD-Card was attached. Furthermore, a GPS device was
added to tag the network data with a time stamp and to record the user’s
movements. With this method we could not directly determine the knowledge
the network infrastructure has. However, we could record each time the user was
exposed to the infrastructure, and a network-based determination of his location
was possible or location data was generated by the network infrastructure (e.g.
measurement of the timing advance). In order to simulate the larger error of
GSM positioning, a random radial error of ε was added to the GPS position. For
our experiments we implemented a cluster algorithm based on a radius filter.
For periodic and gap-based location data (e.g. GSM) such a filter simply reflects
the frequency a user was observed at a specific place. Additionally, for GPS data
a gap filter was used. With this method we were able to detect the places a
user revisited frequently. Throughout the experiments a value of τ = 0.3 was
used, which roughly represents the results from the aforementioned studies on
human mobility patterns. Furthermore, 12 clusters were expected. We assumed
ε = 250m as the average positioning accuracy of the GSM network.

4.1 Data Analysis

The first analyzed data set was created by a test person carrying the logger de-
vice for about 17 days equipped with a SIM-card from a German provider which
requires location updates hourly. 17744 GPS points and 312 location updates
were recorded. The reason that the number of location updates is lower than
anticipated is twofold: the first and the last day were not complete, but there
were also signal losses and user operation errors like empty batteries. However,
these results should correspond with real life mobile phone usage. During that
time a total of 10 clusters could be identified through the GPS data, 8 based
on GSM data. The remaining clusters found by the GPS method were not de-
tected. This is due not only to the short evaluation period and lower spatial
resolution of the GSM positioning but also to the short length of stay at the
remaining two places (i.e. less than one hour). In a test trial with 6 hourly lo-
cation updates and an equal test period, only three clusters could be detected.
Fig. 3a shows the temporal development of the discovery of frequently visited
places using different methods and location sample frequency. Fig. 3b shows the
adversary’s knowledge on the remaining, yet uncovered, places. In a further trial
with 12-hour location update intervals, within 8 days only a single cluster could

7 GSM decoding with a Nokia 3310 phone,
https://svn.berlin.ccc.de/projects/airprobe/wiki/tracelog, [5/15/2011]

https://svn.berlin.ccc.de/projects/airprobe/wiki/tracelog
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Fig. 3. Modeling an adversary’s knowledge gain using GSM and GPS data sources. (a)
shows the temporal development of detecting frequently visited places, (b) shows the
uncertainty assigning a new observation to a yet unknown frequently visited place and
(c) shows the adversary’s knowledge gain (ΔK) by disclosing a daily data set.

be determined. One reason was the disadvantageous time points at 7:30 AM
and 7:30 PM. However, the time points were chosen by the network. For this
configuration a long term trial is pending. Due to long distance traveling, offline
phases, and time periods without reception, we expect random shifts for the
time point of location updates. Therefore, for a long term observation it seems
likely that some (2-3) additional clusters should be detected. The probability
of detecting a cluster where a user spends large amounts of time is more likely
and thus is likely to be uncovered first. The privacy measurement also implicitly
captures the distribution of the observed location samples. If the distribution of
location samples is concentrated within certain time spans, fewer clusters will
be discovered. The same applies for evenly distributed but sparse samples (e.g.
every 12 hours).

4.2 Privacy Improvements

Based on the aforementioned analysis, several enhancements could improve the
user’s privacy in mobile communication networks. First, one can observe that a
simple quantitative privacy policy as offered by network providers, stating only
the length of possible data storage is neither meaningful nor helpful for a sub-
scriber w.r.t. location privacy. Especially the density of periodic location samples
makes a significant difference as to the provider’s possible knowledge base and
thus the user’s present and future privacy risks. Therefore, subscribers also need
to know when, how and to what extent location information is generated. With
such knowledge the user’s awareness as to his privacy loss is raised. In a sec-
ond step the user should be able to control location dissemination by making
informed decisions.

A privacy aware mobile phone requires software interfaces to the mobile phone
stack controlling and exposing signaling attempts (e.g. detecting silent text mes-
sages), measurement reports and the occurrence of location updates. With the
help of osmoconbb GSM baseband implementations, first steps toward a privacy
aware phone were made. The mobile station is able to log location data and
expose it to the user, which is sent to the service provider The measurement
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results sent by the MS during location updates include signal strength mea-
surements from surrounding BTS. The measurement information is used for the
handover decision during the connection. Since a LU requires only a very brief
communication with the network, a handover between different cells is very un-
likely or even impossible. Thus, sending measurements of neighboring stations
is technically not always required. If the number of transmitted measurements
is reduced or completely omitted, the accuracy of the network’s position estima-
tion is significantly decreased. In the best case (no measurements transmitted),
the accuracy is decreased to cell origin with timing advance. A further step to
decrease the accuracy of the position determination is transmitting modified or
false measurement information. To decrease the accuracy of the position estima-
tion further, a MS could send with a slight timing offset. Such offsets have direct
impact on the timing advance calculation of the BTS. Consequently, this leads
to an incorrect distance estimation between MS and BTS. The combination of
manipulating measurement results and timing advance gives the possibility to
conceal the actual position of the MS. The rough position of the MS is still given
by the BTS used and its covered area.

5 Conclusion

We fully acknowledge that the evaluation is based on too little data to be statis-
tically significant. However, the data clearly indicates that network configuration
has an impact on the user’s location privacy. Furthermore, the proposed metric
gives the user a tool to understand the impact of mobile communication on his
privacy without knowing the adversary’s capabilities or behavior.

In contrast to other personal digital devices, mobile phones are hardly ever
switched off, thus offering unique options for (unobserved) user tracking. The
disclosure or detection of any significant place decreases the user’s privacy by
roughly the same level, independent of the relative importance or rank of the
place. The proposed user model and accordingly the privacy metric showed that
the user’s privacy loss is roughly the same for all detected clusters. Especially
for a setting with semi-trusted adversaries, this result reflects the (commercial)
importance of lower ranked clusters w.r.t. the completeness of a user’s profile.
Since lower ranked clusters are harder to detect, the ability to uncover such a
place reflects the density and/or the length of observation by an adversary and
thus on the user’s exposure. Therefore, network configuration is crucial for the
individual’s privacy. In our tests we saw time ranges for location updates range
from 60 minutes to 12 hours with different results for detecting frequently visited
places. These different network configurations have a significant impact on the
user’s location privacy especially if privacy policies only specify the duration
of data storage. Finally, countermeasures to improve the user’s privacy were
proposed. The evaluation of the effectiveness of the proposed actions remains
for future work.
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