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Abstract 

 
Information leakage through covert channels and 

side channels is becoming a serious problem, 
especially when these are enhanced by modern 
processor architecture features. We show how 
processor architecture features such as simultaneous 
multithreading, control speculation and shared caches 
can inadvertently accelerate such covert channels or 
enable new covert channels and side channels. We first 
illustrate the reality and severity of this problem by 
describing concrete attacks. We identify two new 
covert channels. We show orders of magnitude 
increases in covert channel capacities. We then 
present two solutions, Selective Partitioning and the 
novel Random Permutation Cache (RPCache). The 
RPCache can thwart most cache-based software side 
channel attacks, with minimal hardware costs and 
negligible performance impact. 
 
1. Introduction 
 

Covert channels and side channels are two types of 
information leakage channels. A covert channel uses 
mechanisms that are not intended for communications, 
e.g., writing and checking if a file is locked to convey 
a �1� or �0�. In a covert channel [1], an insider process 
leaks information to an outsider process not normally 
allowed to access that information.  The insider 
(sending) process could be a Trojan horse program 
previously inserted stealthily into the computer. An 
outsider (receiving) process need only be an 
unprivileged process. 

In a physical side channel attack, unconventional 
techniques are used to deduce secret information.  
Typically, the device has been stolen or captured by 
the adversary who then has physical access to it for 
launching a physical side-channel attack. Traditional 
side channel attacks involved differential power 

analysis [2-5] and timing analysis [6-10]. Different 
amounts of power (or time) used by the device in 
performing an encryption can be measured and 
analyzed to deduce some or all of the key bits.  The 
number of trials needed in a power or timing side 
channel attack could be much less than that needed in 
mathematical cryptanalysis. 

In this paper, we consider software side channel 
attacks. In these attacks, a victim process inadvertently 
assumes the role of the sending process, and a listening 
(attacker) process assumes the role of the receiving 
process. If the victim process is performing an 
encryption using a secret key, a software side channel 
attack allows the listening process to get information 
that leads to partial or full recovery of the key. The 
main contributions of this paper are: 

• Identification of two new covert channels due to 
processor architecture features, like simultaneous 
multi-threading (SMT) and speculation. 

• Showing that covert channel capacities have 
increased by orders of magnitude. 

• Analysis of cache-based side channel attacks. 
• Insufficiency of software isolation approaches for 

mitigating information leakage through processor-
based covert and side channels. 

• Selective partitioning solution for SMT-based 
covert channels.  

• Novel Random Permutation Cache (RPCache) 
solution that can thwart cache-based software side 
channel attacks. 

Section 2 describes the threat model. Section 3 
illustrates the problem with real attacks and analysis of 
newly identified cache side channels. Section 4 shows 
the insufficiency of software solutions, motivating the 
need for hardware solutions to a hardware-induced 
problem. Section 5 provides our Selective Partitioning 
solution. Section 6 presents our novel Random 
Permutation Cache solution, and experimental results 
on its performance and security. Section 7 reviews 
related work and section 8 presents our conclusions. * This work was supported in part by DARPA and NSF Cybertrust 

0430487, and NSF ITR 0326372. 



2. Threat model 
 

The threat model is that of an adversary whose goal 
is to learn information that he has no legitimate access 
to.  Within the computer system, an adversary is one or 
more unprivileged user processes. 

Since our focus in this paper is on the impact of 
processor architecture features on the problem, we 
assume that the critical modules of the software system 
(like the OS kernel and the modules enforcing security 
policies) are free of software vulnerabilities. Other 
software modules, such as the guest OS in a Virtual 
Machine or the application software, may have 
security flaws that allow a cooperating process of the 
adversary, e.g. an insider, to gain access to the 
information. In this case, we assume that appropriate 
security policies are enforced so that the cooperating 
process is isolated from the adversary. In this paper we 
consider software attacks and do not consider physical 
attacks like bus probing and power analysis. 

 
3. Processor covert and side channels 
 
3.1. New SMT/FU covert channel 
 

Simultaneous Multi-Threaded (SMT) processors 
[15] run many processes concurrently, sharing almost 
all processor resources in a very tightly coupled way.  
In particular, the concurrent threads share a pool of 
functional units (FUs) that are allocated dynamically to 
each process every cycle. By contending for the shared 
FUs, one process can interfere with another, leading to 
covert channels. Though in principle this is a typical 
covert timing channel [13], it is orders of magnitude 
faster than traditional covert channels.   

 
Consider a system which contains two processes 

that are not allowed to communicate at all with each 
other. The insider (sender) process can modulate the 
use of functional units, e.g. the multipliers, to send 
information to the receiver process. Figure 1 shows the 
pseudocode for both processes. To send a �1� bit, the 
insider calls MULTIPLY() to execute a fixed number 
of instructions which try to use up all the integer 

multipliers. It calls NULL(), which executes several 
hundred NOP instructions, to send a �0� bit. The 
observer senses the modulated signal by comparing its 
progression with a timer T. By calling RUN(), he 
executes integer multiply instructions at a constant 
rate. When a �1� is sent, most multipliers are used by 
the insider and the observer can detect this because his 
execution will be slowed down.  

We implemented this channel on a Pentium-4 
processor with hyper-threading (Intel�s SMT), which 
supports only two simultaneous threads [16]. Figure 2 
shows an example of the received waveform. The bit 
string shown is transmitting �10101010�� 
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Figure 2. Observed signal waveform 
 

3.2. SMT/cache side channel 
 

In an SMT processor, caches are also shared.  An 
attacker can run a receiver (or observer) process 
simultaneously with the victim process on an SMT 
processor. This enables observation of the victim 
process�s cache usage at run time. In [12], Percival 
demonstrated an attack on RSA using this approach. 
The attack is simple: the attacker accesses an array of 
his own data repeatedly so that he occupies all cache 
lines. During the execution of the victim process, i.e. 
the RSA encryption process in this case, if the 
encrypting process accesses a cache line, the attacker�s 
data will be evicted. The next time the attacker 
accesses his data corresponding to this cache line, he 
will experience a cache miss. By measuring his 
memory access time, the attacker can detect such cache 
misses. The attacker therefore can learn the victim 
process�s cache access pattern, based on which he can 
determine when multiplication and squaring operations 
used in RSA encryption occur in the victim process. 
He can also learn which table entry is accessed during 
a key-dependent table lookup in RSA. The attacker 
then can recover the RSA key of the victim process, 
based on the observed cache usage information. 

In [22] Osvik et al. applied this approach to AES 
and demonstrated how easy it is to recover the key. 
They showed that after just 800 writes to a Linux dm-
crypt encrypted partition, the full AES key can be 
recovered. 

int bit; 
� 
do { 
    bit = get_bit(); 
    if ( bit == 1 )  
         MULTIPLY();  
    else 
         NULL(); } 
while ( !TX_end() ); 

int time, dt; 
� 
time = 0; 
do { 
    dt = time; 
    RUN(); 
    time = get_time();
    STORE(time-dt); } 
while ( !RX_end() ); 

insider observer

Figure 1. Pseudocode for SMT/FU channel  



3.3. Statistical cache side-channel 
 

In non-SMT processors, cache-based software side 
channel attacks are also possible. Bernstein�s attack on 
AES [11] illustrates such an attack. The victim is a 
software module that can perform AES encryption for 
a user. The module is a �black box� and the user is 
only able to choose the input to the AES software 
module and measure how long it takes to complete the 
encryption. He found that for most software AES 
implementations running on modern processors, the 
execution time of an encryption is input-dependent and 
can be exploited to recover the secret encryption key. 

Attack Description: The attack consists of three steps. 
1. Learning phase: Let the victim use a known key K; 

the attacker generates a large number, N, of random 
plaintexts P. He then sends the plaintexts to the 
cipher program (a remote server in [11]) and 
records the encryption time for each plaintext. He 
uses the algorithm shown in Figure 3 to obtain the 
timing characteristics for K. 

2. Attacking phase: Repeat the same operation in the 
learning phase except that an unknown key K� is 
used. Note that the input set is randomly generated 
and not necessarily the same as used in step 1. 

3. Key recovery: Given the two sets of timing 
characteristics, use the correlation algorithm shown 
in Figure 4 to recover the unknown key K�. 
Function findMax() searches for the maximum 
value in the input array and returns its index. 

In Figure 3, P denotes a plaintext block that will be 
encrypted with the secret key K.  pi and ki denote the i-
th byte of P and K, i∈[0,15] (We assume 128-bit AES 
in this example; hence both the block to be encrypted, 
P, and the key, K, are 16 bytes long). A large number 
of random plaintext blocks P are encrypted with the 
same key K. For each byte pi in the plaintext blocks, 
find the encryptions where pi = 0, and calculate 
tavg

i(0,K) which is the average of the execution times of 
the AES encryptions where the ith plaintext byte is 0, 
using key K. Repeat for pi = 1, 2, �, 255. This can be 
plotted as a timing characteristic chart for byte i using 
key K as shown in Figure 5(a), where i=0. (This is 
obtained in our experiments over a Pentium M 
processor with Cygwin/OpenSSL0.9.7a). The x-axis 
represents the value of the plaintext byte pi, from 0 to 
255, and the y-axis the average encryption time (minus 
a fixed offset). Sixteen such charts are plotted, one for 
each byte position of the plaintext blocks. These 16 
charts together represent the timing characteristic, 
denoted tavg

i(j,K), for 0 ≤ i ≤ 15 and 0 ≤ j ≤ 255, of 
AES encryption on a given platform for a given K. 

 
Figure 3. Timing characteristic generation 

 

 
Figure 4. Key-byte searching algorithm 

 
Experiments show that the average execution time 

tavg
i(j,K) is pretty much fixed for a given system 

configuration. Furthermore, it is found that when a 
different key K� is used, the timing charts roughly 
remain the same except that the locations of the bars in 
the charts are permuted, as shown in Figure 5 (a) and 
(b). More specifically, the following equation holds: 

tavg
i(pi , K) = tavg

i(p�i , K�) if  p�i ⊕ k�i = pi ⊕ ki       (1) 
where ⊕ is the bit-wise XOR operation, and ki and k�i 
are the i-th byte of K and K� respectively. 

Attack Analysis: We try to explain why (a) there are 
high bars corresponding to certain x-values in Figure 
5, and (b) why these same peaks occur, but are 
permuted, when different keys are used. 

(a) Table lookups are intensively used in various 
AES implementations. During the AES encryption, the 
tables will gradually be loaded into the cache when 
table entries are actually used. If there are no other 
cache accesses in addition to these table lookups, 
eventually the tables should all be loaded into the 
cache and there will not be any cache misses, if the 
cache is large enough. In reality, however, there are 
wrapper and other background processes that cause 
cache accesses which evict some entries of the tables 
out of the cache. Moreover, some of these cache 
accesses evict cache lines at fixed locations. The index 
used in table lookup in the first round is pi ⊕ ki. Given 
a key K, some values of pi will cause the table lookup 
to access those evicted cache lines and will experience 
a cache miss that leads to longer execution time (on 

For key K: 
For s = 1 to N do begin 

Generate a random 128-bit Plaintext block, Ps; 
Ts = time taken for AES encryption of Ps using K;

end; 
For i = 0 to 15 do begin 

For j = 0 to 255 do begin 
count = 0;             
For s = 1 to N do begin 

If  pi = j then  
TSUMi(j) = TSUMi(j) + Ts; 
count = count+1; 

end; 
tavg

i(j,K) = TSUMi(j)/count;  
      end; 
end; 

For i = 0 to 15 do begin 
   For j = 0 to 255 do begin 
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   end; 
   ki�= findMax(Corr); 
end; 



average). These can be seen as high bars in the timing 
charts at the x-axis values corresponding to these pi.  

(b) When a different key K� is used, since the index 
used for a table lookup is the XOR of the plaintext 
byte and the key byte, another set of plaintext values 
p�i that satisfies pi ⊕ ki = p�i ⊕ k�i will generate the 
same index for table lookups using pi and ki, and cause 
accesses to the same cache lines. This explains why 
their average encryption times are about the same, as 
in equation (1). Since Figure 5 (a) and (b) is plotted in 
terms of pi and pi�, respectively, they have similar 
peaks, but in different locations. In Bernstein�s attack, 
the key recovery step exploits this fact: tavg

i( j , K ) = 
tavg

i( j ⊕ ki ⊕ k�i , K� ) that is derived from equation (1). 
Since ki is known, the attacker can try all 256 possible 
values of k�i to permute the timing charts obtained in 
the attacking phase. The correct value of k�i should 
make the permuted chart most similar to the one 
obtained in the learning phase. The similarity is 
quantitatively measured via correlation, using the 
algorithm shown in Figure 4. 
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(a) Timing characteristic chart for a known key K 

Byte 0 - Unknown Key K'
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(b) Timing characteristic chart for a different key K� 

Figure 5. Timing characteristic charts of byte 0 
 

3.4. New speculation-based covert channel 
 

While the previous examples leak out information 
due to contention for shared resources (either cache or 
functional units), we have identified a different type of 
covert channel based on exposing events to 
unprivileged software that were previously not visible 
to it (e.g., exceptions). This has happened recently in 
some processors supporting speculative execution. 

To hide the long latency that a load instruction may 
introduce, control speculation in IA-64 allows a load 

instruction to execute speculatively [14]. IA-64 adds a 
one-bit flag, the NaT bit, to each general-purpose 
register. If the speculative load instruction (ld.s) would 
cause an exception, the NaT bit of the target register is 
set, but the exception is not taken right away. Control 
speculation allows deferral of the exception, allowing 
the program itself to handle the exception when 
necessary. In current Itanium processors, TLB misses 
or TLB access bit violations are typical examples of 
ld.s exceptions which can be deferred. In addition, 
speculative loads may also be deferred by hardware 
based on implementation-dependent criteria, such as 
the detection of a long-latency cache miss. Such 
deferral is referred to as spontaneous deferral [14]. 

Such a mechanism, however, can be exploited to 
facilitate information leakage. For example, in the 
cache-based side channel attacks described earlier, 
cache misses are detected by measuring cache access 
timing. However, if spontaneous deferral is 
implemented in a future version of the Itanium 
processor such that cache misses can be deferred, the 
observer can observe the cache miss using control 
speculation. He can access a cache line using the ld.s 
instruction to check the NaT bit of the target register. 
If the NaT bit is set, a cache miss is detected. In 
contrast to timing measurement which suffers from 
noise, this mechanism is like a noiseless channel. 

Similar methods can be used to detect exceptions 
such as a TLB miss. This is particularly useful when an 
insider is available. The insider can choose any 
exception sources available, not limited to cache or 
TLB misses. To encode a bit, the insider makes certain 
changes in the system such that later on, when the 
observer executes the speculative instruction, these 
changes will cause a deferred exception which sets the 
NaT bit. The observer can then see the bit sent by 
checking the NaT bit. 

 
3.5. Data rates of covert channels 
 

Table 1 shows the data rates of the new processor-
based covert channels. To make the data comparable, 
we implement the SMT/FU channel on the same 
processor as used in [12], i.e., a 2.8GHz Pentium-4 
processor with hyper-threading. The rate of the 
SMT/Cache channel reported in [12] is approximately 
400 Kilobytes per second, or 3.2 Mbps (Megabits per 
second). We measured the rate of the SMT/FU channel 
as approximately 500 Kbps (Kilobits per second), 
which can be even higher if further optimized. We 
estimated the rate of the speculation-based channel 
based on a processor model with settings typical of an 
Itanium (IA-64) processor (1GHz clock rate; a 16-way 



2MB cache with 128-byte cache lines.) A conservative 
estimation of this rate is about 200Kbps.  

In contrast, traditional OS-based covert channels, 
e.g., the Inode table channel and the upgraded 
directory channel, exploit shared resources at system 
level. The resulting rates are much lower, e.g., around 
50bps and 0.5bps respectively with typical data in the 
1990�s [13]. Even if we assume a linear increase in 
such OS covert channel rates with a 100X increase in 
processor clock rate, the processor-based covert 
channels are still orders of magnitude faster than the 
traditional OS-based covert channels.   

Table 1. Data rates of new covert channels 
SMT/cache SMT/FU Control Spec. 

~3.2Mbps ~500Kbps ~200Kbps 

 
4. Insufficiency of software isolation 
 

Software isolation methods providing Mandatory 
Access Control (MAC) and Virtual Machine (VM) 
technology may erroneously lull us to think that they 
also prevent information from being leaked out. 
Unfortunately, without being aware of these attacks, 
software isolation can be completely ineffective. 

 
Figure 6. A VMM based system. 

Figure 6 illustrates a recent trend towards 
implementing Virtual Machines, managed by a Virtual 
Machine Monitor (VMM), e.g., Terra [17], Xen [18]. 
A VM could be an open-box one (shown in white), 
which is allowed to communicate with other VMs via 
legitimate communications channels, or a closed-box 
one (shown in gray), which is completely isolated from 
other VMs. Security policies need to be established 
and enforced by the VMM. Such a system architecture 
can provide many desirable properties other than 
isolation, e.g., extensibility, compatibility and security. 

As an example, consider an online banking 
application running in one of the closed-box VMs. 
Since it involves the use of important secrets such as 
the user�s password, cryptographic keys, bank account 
information, etc., it is isolated from all other VMs and 
is only allowed to communicate with the authenticated 
bank server. The underlying VMM enforces security 

policies which disallow any form of communications 
between the closed-box VM and all other VMs. This 
ensures that the adversary outside the closed-box VM 
has no access to the user�s secrets. Even if there is an 
insider in the closed-box VM, e.g. a Trojan horse or a 
backdoor in the banking application itself, and it gains 
access to the secrets, it has no way to distribute them 
outside of the VM, except to the trusted bank server. 

While this sounds safe at first glance, such software 
isolation can be broken by exploiting certain processor 
architecture features. As described in section 3, a 
recent attack [12] on a hyper-threading processor 
allows a user process to extract the RSA key of another 
process which is performing RSA encryption. No 
special equipment is needed in the attack and the attack 
does not even require any software flaw for 
exploitation. The spy process only needs to execute a 
series of memory accesses and observe the timing 
while the victim process is running on the same 
processor. A VMM system running on top of a SMT 
processor therefore is vulnerable to this attack. An 
adversary outside the closed-box VM can steal the 
RSA keys involved in the online banking transaction. 

A very important observation here is that unlike 
other security problems, the information leakage 
mechanism shown above does not break any protection 
mechanisms and can escape detection. Even with 
perfect access control, information flow monitoring 
and auditing, information can still be leaked out by 
exploiting processor architecture features, without 
being detected. In the next two sections, we propose 
two solutions to mitigate SMT-based covert channel 
attacks and cache-based software side-channel attacks. 
 
5. Selective partitioning solution 
 

The first general solution approach is to minimize 
resource sharing, and hence prevent interference 
between processes. The SMT/FU covert channel 
exploits the sharing of functional units by multiple 
simultaneously active threads. A straightforward way 
to block such a channel is to disallow any other 
processes from running when a protected thread is 
scheduled for execution. This strict partitioning can 
have severe performance consequences. This can be 
meliorated by allowing protected processes to be 
executed with other processes, only disallowing the 
simultaneous execution of processes that should be 
isolated from each other. We refer to this as a selective 
partitioning solution.  It is similar to a �Chinese Wall� 
separation policy, but at the hardware thread level.  

Selective partitioning can be implemented in 
software, e.g., by having the OS enforce this restriction 



in process scheduling. This applies scheduling 
restrictions only to critical processes that operate on 
sensitive data. These processes may be cryptographic 
routines, which tend to have small working sets 
compared to other applications. A typical mix of 
applications used in ordinary PC systems consists of 
mostly non-critical processes. 

Selectively partitioning can also be based on 
leveraging existing hardware mechanisms. For the 
hardware solution, we leverage the �fairness control� 
mechanism implemented in some SMT processors to 
prevent overuse of certain shared resources by a 
process. For example, in Intel�s hyper-threading 
processor, the allocator has fairness control logic for 
assigning buffers to micro-ops from different logical 
processors and the instruction scheduler has fairness 
control on the number of active entries in each 
scheduler�s queue. Our hardware solution proposes 
that such fairness control logic can be leveraged to 
mitigate covert channels as well. For the SMT/FU 
covert channel we identified in section 3, the existing 
fairness control logic in the instruction scheduler can 
be modified slightly so that, when necessary, it 
allocates a fixed number of entries for each process in 
each queue. This would minimize the interference 
between the two concurrent processes running on the 
chip.  

The performance degradation of the system with 
our selective partitioning solution can be estimated as: 

    10)1( RpRpR ⋅+−=              (3) 
where R0 is the throughput when there is no scheduling 
restriction, R1 the throughput when a critical process is 
running on the processor, and p is the probability of 
the occurrence of such restricted execution. The 
relative throughput therefore can be written as: 

pp
R
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         (4) 

To estimate the performance degradation incurred 
by Selective Partitioning, we first estimate the 
coefficient α in (4), by performing a preliminary test 
on a HT processor. We wish to compare the 
performance of a system with HT enabled versus with 
HT disabled (simulating the restricted execution, i.e. 
only one process can execute at a time). With HT 
enabled, we observed up to 30% performance increase 
in terms of overall system throughput, though in a few 
occasions we also observed performance degradation. 
In general, we found that in most cases, the relative 
throughput of HT-disabled vs. HT-enabled system is in 
the range of 0.75-0.95, or equivalently, α is in the 
range of 0.05-0.25. Figure 7 shows the performance 
degradation curve when the probability of restricted 
scheduling p changes from 0 to 1. In the worst case, 

when α equals 0.25 and p equals 1, the performance 
degradation is approximately 25%.  In typical cases, p 
is likely to be in the range of 0.1 to 0.15, in which case 
the performance degradation is less than 5%. 
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Figure 7. Performance of selective partitioning 
 
6. Random permutation cache solution 
 

A second general solution is to use �signal 
randomization�. Any signal sent by the sending 
process is randomized with respect to a receiving 
process. Our solution is to use different memory-to-
cache mappings for processes that need to be isolated 
from others. Other processes cannot deduce what 
cache index bits are used by a process when the 
mapping is unknown. Furthermore, this mapping 
should not be fixed since the attacker may be able to 
learn the mapping by doing a number of experiments.  

Changing the memory-to-cache mapping for each 
process can be implemented by a variety of 
mechanisms, such as XORing the cache index bits with 
a random number or hashing the cache index bits. 
XOR and hash-based mapping are simple to 
implement, but may not provide enough randomness. 
Rather, we propose to use random permutation that 
gives the best 1-to-1 random mapping. This can be 
achieved with one level of indirection: keep a table 
that contains the permuted index for each original 
cache index. When accessing the cache, the original 
index is used to look up this table for the 
corresponding permuted index, which is then used to 
access the cache. This extra level of indirection for 
Level 1 data cache accesses is costly in terms of cycle-
time latency or cycles per access.  Below, we show 
how we achieve random permutation mapping without 
an extra level of indirection for table lookup and 
without lengthening the cache access time. 

 
6.1. Low-overhead RPCache implementation 
 

Figure 8 shows the functional block diagram of a 
generic cache. During a cache access, a portion of the 
N bits of the effective address, used to index the cache, 
is sent to the address decoder. The decoder outputs 2N 
word lines and in each access only one of them is 



driven high to select the cache set that contains the 
data being accessed. For each word line there is a 
comparison module which compares the effective 
address A with the current word line number k. The 
cache set is selected only when these are equal. We 
can add an N-bit register, which we denote a 
Permutation Register (PR), for each word line which 
contains a permuted cache index, feeding this into the 
comparison module instead of the original constant for 
the word line number k. We call such a set of 
permutation registers a Permutation Register Set 
(PRS). By changing the contents of the PRS, arbitrary 
cache index mapping can be achieved. 

 

 
Figure 8. A generic cache architecture. 

 
In real implementations, the comparators in the 

address decoder for the cache are not implemented as 
separate units.  Also, the fact that A is compared to a 
constant word line number k is exploited to simplify 
circuit design. The only difference between using the 
variable contents of a Permutation Register (in our 
RPCache) rather than a constant word line number k is 
that fixed connections between a grid of wires in the 
address decoder circuit are replaced with switches. 
Though the drain capacitance of the switches increases 
the load in the address decoder circuits, proper circuit 
design can easily overcome this problem with no extra 
delay introduced. 

To prevent the attacker from learning the memory-
to-cache mapping via experiments, the mapping needs 
to be gradually changed. This can be implemented by 
swapping cache sets, two at a time. To change the 
cache mapping, two permutation registers of the PRS 
are selected and their contents swapped. The 
corresponding cache lines are invalidated, which 
triggers the cache mechanism to write back any �dirty� 
cache lines, i.e., cache lines that have newer data 
written in it since they were brought into the cache 
from memory. Subsequent accesses to these 
invalidated cache sets will miss in the cache, which 
will degrade performance.  However, as we will show 
in section 6.4, the performance impact is very small. 

After investigating different swapping policies, 
including periodically swapping, we have found an 
optimal swapping strategy from the information-
theoretic perspective. This is based on realizing that 
only cache misses that cause replacements give side-
channel information, so no swapping needs to be done 
when there are no such cache misses.  Upon a cache 
replacement, we swap the cache index of the cache set 
that contains the incoming cache line with any one of 
the cache sets with equal probability. So for any cache 
miss that the receiver process detects, it can be caused 
by a victim process�s cache access to any one of all 
cache sets with equal probabilities. Hence, when the 
receiver process detects a cache miss, he cannot learn 
anything about the cache locations used by the sender 
process. This cache swapping policy also incurs very 
little performance overhead, as shown later. 
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Figure 9. A processor with RPCache 

 
6.2. RPCache architecture 
 

The RPCache requires permutation registers (PR), 
one for each set of the L1 (Level 1) Data cache.  In a 
direct-mapped cache, there is one PRS register for 
each cache line.  The processor can contain one or 
more sets of such permutation registers. There is also a 
new bit per Instruction Translation Look aside Buffer 
(ITLB) entry that we call the Critical Code Page (CCP) 
bit. 

 
6.3. RPCache usage model 

 
Each PRS set may be associated with a segment of 

code that needs to be protected. This may be a whole 
process, or a critical part of a process, e.g., the crypto-
related shared library calls. When such a segment of 
code is executing on the processor, the corresponding 
PRS is used to permute the index to the cache.  

The CCP bit in an ITLB entry indicates if the code 
on that page needs to be protected. When an 
instruction is fetched for execution, the CCP bit in the 



corresponding ITLB entry is checked.  If it is set, the 
cache access of a load or store instruction will go 
through the PRS mapping, otherwise the cache access 
will use the original cache index. Critical processes 
and the critical segments of a process are marked. 

The PRS can be managed solely by hardware. 
During a context switch, the old PRS values are simply 
discarded and a new set of values are generated (if the 
ITLB of the new process has its CCP bit set). Dirty 
cache lines may need to be written back, because next 
time this process is swapped in, it will use a different 
PRS to index the cache. It has to get a copy of the data 
from the next level cache or from the main memory, 
and the freshness of the data must be ensured. For a 
write-through cache, however, no such overhead is 
necessary since the next level cache always has the 
latest data.  

The PRS can also be maintained by the OS. Upon 
each context switch, the PRS of the process that is 
swapping out should be saved as part of the context 
and the OS should load the PRS values of the 
incoming process to the on chip PRS registers. 
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Figure 10. RPCache Performance 

 
6.4. Performance evaluation  
 

The RPCache may introduce extra overhead when a 
change of the cache permutation mapping occurs. This 
may be during a context switch or when two cache sets 
are swapped. For a context switch, the overhead is 
insignificant relative to the time between two context 
switches. For the hardware-managed swapping, we 
swap just the contents of the pair of PRS registers 
while invalidating their associated cache lines. 

To evaluate the performance degradation, we run a 
set of SPEC2000 benchmarks on the Simplescalar 
simulator [25]. Figure 10 shows the normalized 
execution time. The baseline machine has a 2-way set-
associative write-back L1 data cache. The data marked 
with �RPCache� is generated on a machine using the 
cache set swapping scheme where the two cache sets to 
be swapped are invalidated with dirty lines written 
back to the next cache level. 

The performance degradation is very low: 1.1% 
worst case (perlbmk) and only 0.15% on average. This 
appears to be because cache misses and cache line 
replacements normally occur infrequently. The 
performance degradation is mainly due to the extra 
cache misses caused by the invalidation of the cache 
lines. However, since each time the invalidated sets are 
only two out of all cache sets, the resulting 
performance degradation is also insignificant. 
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(a) Key searching chart without cache-index permutation 

Key Searching Chart (with permutation)

0

0.2

0.4

0.6

0.8

1

1.2

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241 253

Key Byte Value (0-255)

N
or

m
al

iz
ed

 C
or

re
la

tio
n

  
(b) Key searching chart with cache-index permutation 

Figure 11. Key searching charts  
 

6.5. Security analysis 
 

Three of the attacks described in sections 3 involve 
cache-based information leakage.   

Bernstein�s statistical cache attack: We first 
evaluate the effectiveness of the RPCache in mitigating 
Bernstein�s statistical cache attack and illustrate this in 
Figure 11. We simulate the effect of cache permuting 
by swapping the memory blocks of the AES tables 
once per 25 AES encryptions. This is roughly 
equivalent to swapping two cache sets per 10,000 
cycles. In Figure 11, the x-axis is the key value that is 
used in the key-byte searching algorithm described in 
Section 3. The y-axis is the normalized correlation of 
the two timing characteristic charts given the 
corresponding x value as the guessed key byte. The 
higher the y value, the more the two charts match. The 
x value that has the highest correlation value is the 
discovered key-byte. Figure 11(a) shows a distinct 
high y value for a given x value (x=143), leading to a 
likely key-byte match. In Figure 11(b), the same key is 
used, but with the RPCache remapping, the correlation 



is rather random, resulting in non-recovery of the key 
byte. In fact, the highest peaks are actually misleading, 
since they indicate values that are not the correct key-
byte. This shows the effectiveness of our RPCache 
remapping in thwarting Bernstein�s attack. 

SMT/Cache side channel attack: in the SMT/Cache 
side channel attack, the receiver process can directly 
detect the memory locations used by the sender 
(victim) process by detecting cache misses. The 
RPCache thwarts this attack since each time the 
receiver process observes a cache miss, the swapping 
policy ensures that this cache miss can be caused by a 
victim process�s cache access to any one of the cache 
sets with equal probability. Therefore no information is 
gleaned about which cache line was accessed by the 
victim (sender) process. This effectively stops 
SMT/Cache side channel attacks. 

Speculation-enhanced cache attack: the control-
speculation mechanism, described in section 3.4, can 
provide a more reliable way to detect cache misses. 
However, this will not help if our RPCache is used. 
Recall that RPCache does not prevent the attacker 
from detecting cache misses. Instead, RPCache makes 
the victim process�s cache accesses unrelated to the 
attacker�s cache miss pattern, and hence no 
information can be inferred even if the attacker can 
accurately detect cache misses. 
 
7. Related work 
 

Past work on covert channels analyzed system 
specifications and implementations for illegal 
information flows [13]. Past work on side-channel 
attacks focused on differential power [2-5] and timing 
[6-10] analysis. Cache-based side channel attacks were 
studied in [26-27]. Some side-channel attacks were 
reported recently which allow complete key recovery 
during AES and RSA encryption [11][12][22]. 

The control flow information leakage problem due 
to the exposure of address traces on the system 
memory bus is studied in [21][24]. Both proposed 
probabilistic approaches for hiding the real access 
sequence. Our work is different since we focus on 
information leakage caused by resource interference, 
e.g., cache interference, which has fundamentally 
different assumptions. Our solutions are also very 
different. In [23], an approach different from ours, i.e. 
cache partitioning, was proposed to mitigate one type 
of cache-based side channel attacks. This incurs 
performance penalties and also requires changes in the 
ISA, compiler and operating system. Other relevant 
work include special purpose secure devices such as 
the IBM 4758 cryptographic coprocessor [20]. 

8. Summary and conclusions 
 

Information leakage attacks that exploit processor 
architecture features are particularly dangerous for 
many reasons. They dramatically increase the 
bandwidth and reliability of covert and side channels, 
and they exist even when strong software isolation 
techniques are present. 

Unlike traditional covert channels, processor-based 
covert channels are much faster and more reliable. 
They are much faster because microprocessors operate 
at the highest clock rate in the system and resource 
sharing can be very tightly coupled, as we showed for 
Simultaneous Multi-Threaded (SMT) processors. 
Processor-based covert channels also result in more 
reliable covert channel communications since the 
global on-chip clock makes the synchronization easier. 
In fact, we showed that the data rate of these 
processor-based covert channels can be orders of 
magnitude larger than traditional covert channels.  

We showed that processor-based covert channels 
are not prevented (or even impacted) by strong 
software isolation architectures like Virtual Machine 
technology with secure Virtual Machine Monitors or 
secure hypervisors. In fact, the software trends toward 
portable design methodology and virtualization 
techniques both try to �hide� the hardware, making 
most of the system design and development 
independent of hardware. This can be very dangerous, 
since it can lead to oblivion of the serious and growing 
threat of hardware processor-based information 
leakage. Also, since covert channels and side channels 
only rely on legitimate use of the system and do not 
directly access secrets, the system can not detect the 
existence of such an attack even if perfect access 
control, monitoring and auditing mechanisms are 
implemented.  

This paper demonstrated the information leakage 
problem at the processor architecture level, with 
detailed covert and side channel examples. We 
identified two new convert channels based on highly-
touted processor features, viz., Simultaneous Multi-
Threading and Speculative Execution. We also 
provided detailed analysis of why the two recently 
publicized cache-based side channel attacks work. 

We then suggested two solutions, Selective 
Partitioning and the novel RPCache. Selective 
partitioning by software (or hardware) can prevent the 
SMT/FU covert channel problem. Here, we estimated 
the performance degradation at no more than 25%, 
with an expected value of less than 10%. Our RPCache 
proposal uses an efficient cache-index randomization 
solution that thwarts software cache-based side 
channel attacks. Performance degradation is less than 



1%, and the solution is transparent to software. We 
believe this solution can defeat most cache-based 
attacks that try to find which cache locations are used 
by another process. 

In conclusion, hardware processor-based covert 
channels and cache side channels can be very 
dangerous.  Mitigation of these at the hardware level is 
often necessary since these hardware-based channels 
are not impacted by even strong software isolation 
mechanisms. We hope to have alerted both the security 
and computer architecture communities to this 
processor-induced information leakage threat. Future 
work will attempt to identify more processor features 
that facilitate covert channels and side channels and 
will study other solutions for this growing threat. 
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