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Abstract— Current state-of-the-art association rule-based clas-
sifiers for gene expression data operate in two phases: (i)
Association rule mining from training data followed by (ii)
Classification of query data using the mined rules. In the worst
case, these methods require an exponential search over the subset
space of the training data set’s samples and/or genes during at
least one of these two phases. Hence, existing association rule-
based techniques are prohibitively computationally expensive on
large gene expression datasets.

Our main result is the development of a heuristic rule-based
gene expression data classifier called Boolean Structure Table
Classification (BSTC). BSTC is explicitly related to associa-
tion rule-based methods, but is guaranteed to be polynomial
space/time. Extensive cross validation studies on several real
gene expression datasets demonstrate that BSTC retains the
classification accuracy of current association rule-based methods
while being orders of magnitude faster than the leading classifier
RCBT on large datasets. As a result, BSTC is able to finish
table generation and classification on large datasets for which
current association rule-based methods become computationally
infeasible.

BSTC also enjoys two other advantages over association rule-
based classifiers: (i) BSTC is easy to use (requires no parameter
tuning), and (ii) BSTC can easily handle datasets with any
number of class types. Furthermore, in the process of developing
BSTC we introduce a novel class of boolean association rules
which have potential applications to other data mining problems.

I. INTRODUCTION

Microarray technology allows biologists to simultaneously
measure the expression of thousands of genes in a single
experiment. This technology provides a unique tool to examine
how a cell’s gene expression pattern changes under various
conditions. Microarray methods could also play a critical role
in personalized medicine as they could be used to determine
the unique genetic susceptibility of an individual to disease.

See Table I for a sample microarray dataset shown using
the common discretized relational representation. In this table,
each sample row consists of (i) a list of discretized genes and
(ii) a class label. A gene is present in a sample row if the
sample expresses the gene. The absence of a gene in a row
implies that the gene is not expressed in that sample. Thus, the
sample/gene expression relationships for relational microarray
data are essentially boolean.

Leading associated rule-based methods such as Top-k [1],
FARMER [2], CLOSET+ [3], and CHARM [4] which have
been applied to microarray datasets aim to correlate gene
expression patterns with the classification labels. For these
algorithms the discovered correlations take the form of associ-
ation rules [5]. For an example association rule, consider the
data shown in Table I. Note that only the Cancer samples s1

Sample Expressed Genes Class Label
s1 g1 g2 g3 g5 Cancer
s2 g1 g3 g6 Cancer
s3 g2 g4 g6 Cancer
s4 g2 g3 g5 Healthy
s5 g3 g4 g5 g6 Healthy

TABLE I

RUNNING EXAMPLE OF MICROARRAY DATA

and s2 express both genes g1 and g3. Based on this observation
we can create the following association rule: g1, g3 ⇒ Cancer.
This rule implies that if a query sample express both g1 and
g3 (i.e., if g1 and g3’s associated genes are both expressed in
their associated expression intervals), then the query sample
is likely to be of type Cancer. Hence, we can use this rule
to classify query samples of unknown type as Cancer if they
express both g1 and g3. Note that there is nothing special
about the class label Cancer. After noticing that only Healthy
sample s5 expresses both g5 and g6, we can also create the
association rule g5, g6 ⇒ Healthy.

In this paper we focus on association rule-based classifiers
(hereafter referred to simply as rule-based classifiers) for gene
expression data. We focus on rule-based classifiers for two
reasons: (i) rule-based classifiers have been demonstrated to
be more accurate for gene expression analysis than other
methods [1], [2], [6], [7] such as SVM [8] and tree-based C4.5
family algorithms [9], and (ii) as opposed to other classifiers
such as SVM, rule-based classifiers can produce rules that can
be used to understand the class characteristics. However, rule-
based methods are not scalable due to their high association
rule mining costs. Although these rule mining costs are “one-
time costs” in the sense that rules must only be mined once
per training set, larger training data sets are being generated
at an ever increasing rate. It is very challenging for any
exponential time method to keep up. Consequently, in this
paper, we focus on extending accurate association rule-based
classification methods to larger data sets.

This paper develops a scalable rule-based classifier called
Boolean Structure Table Classification (BSTC) for microarray
datasets. Given a labeled training set, such as the example
in Table I, BSTC efficiently builds an accurate classifier. The
emphasis on accuracy is easy to appreciate and comes from
BSTC being related to association rule-based methods. Hence,
BSTC supports its classifications with intuitive rules. The em-
phasis on efficiency is also critical since large gene expression
datasets are computationally taxing for existing association



rule-based algorithms and, as successful microarray techniques
fuel the growth of gene expression datasets, these methods
will quickly become infeasible. In contrast, BSTC’s space and
runtime costs are only polynomial. Hence, BSTC is scalable
to large data sets on which current association rule-based
methods are challenged computationally.

In an attempt to control runtime many current association
rule methods [1], [2], [10] utilize support based rule pruning.
Using a large enough support cutoff does allow rule mining to
finish more quickly, but doesn’t completely resolve the issue.
If the user sets the support cutoff too small, then the rule
mining step can take prohibitively long to complete. On the
other hand, setting the support cutoff too high excludes the
generation of important high-confidence lower-support rules
[11]. In order to not miss too many important rules the user
can’t set the support cutoff too high. The end result is that
in practice support cutoffs are difficult and time intensive to
tune. In contrast, BSTC is fast and easy to use.

In addition, to the best of our knowledge all current associa-
tion rule-based classifiers for gene expression data only handle
datasets with two class labels. Although our example Table I
data contains just two class labels, in practice microarray data
can contain an arbitrary, though small, number of class types.
Unlike previous association rule-based classifiers, BSTC easily
generalizes to datasets with more than two class types.

To develop an accurate, scalable, multi-class, and easy to use
rule-based classifier we carefully considered the underlying
primitives that power association rule-based methods. These
methods use conjunctive association rules (CARs), where the
rule antecedent is restricted to being a conjunction of terms.
In contrast, we approach this problem by relaxing the types
of rules to an important and larger subset of the more general
class of boolean association rules (BARs). We develop a novel
method for compactly storing these BARs in a simple data
structure called a Boolean Structure Table (BST). BSTs can
then be used for BAR generation and classification. BST clas-
sification (BSTC) collectively considers many simple BARs
with 100% confidence in bulk. Because the rules are simple
BSTC avoids extensive rule mining. Furthermore, considering
rules in bulk keeps the computational cost low.

The main contributions of this paper are:
1) We propose a new polynomial time and space rule-

based classifier for gene expression data analysis that
is accurate, scalable, easy to use, and generalizable to
multi-class classification.

2) We extensively evaluate our method against the current
leading association rule-based method (RCBT [1]), and
show that our method is orders of magnitude faster
on large datasets while maintaining high classification
accuracy.

3) We introduce a subclass of more general boolean asso-
ciation rules and relate them to existing CARs.

The remainder of this paper is organized as follows: First,
in Section II we formalize the concept of BARs. Then in
Section III, we define a concept called Boolean Structure
Tables (BSTs) which are related to an important class of

BARs. Section IV provides a polynomial time and parameter-
free classifier based on BSTs. Section V presents an extensive
empirical evaluation of our classifier. Finally, Section VI
discusses related work, and Section VII briefly presents our
conclusions and directions for future work.

II. PRELIMINARIES

We work with the following type of data: We are given a
finite set G of genes and N collections of subsets from G.
These N collections are disjoint and represented as C1 =
{s1,1, . . . , s1,m1}, . . . , CN = {sN,1, . . . , sN,mN

}. Each Ci is
called a class type or class label. Furthermore, we will refer
to each set si,j ⊂ G as a sample and every element g ∈ G as
a gene. We denote the total set of samples by S = ∪N

i=1Ci.
If g ∈ si,j we will say that sample si,j expresses gene g.
Otherwise, if g ∈ G and g /∈ si,j we will say that sample si,j

doesn’t express gene g. Similarly, we say that sample s is of
class type Ci if and only if Ci contains s ⊂ G. Consider the
Table I data. Here we have samples S = {s1, s2, s3, s4, s5}
and genes G = {g1, g2, g3, g4, g5, g6}. Furthermore, we have
N = 2 classes: C1 = Cancer = {s1, s2, s3} and C2 =
Healthy = {s4, s5}.

Given such relational training data, a conjunctive associa-
tion rule (CAR) is any element of 2Gx{1, . . . , N}. A CAR
gj1 , . . . , gjr

⇒ n can be interpreted as follows: “If a query
sample s contains all genes gj1 , . . . , gjr

then it should be
grouped with class type Cn.” Naturally, of the 2|G| · N
possible association rules some are more useful than others.
The following standard definitions were introduced in [5] to
compare association rules:
Support: The support of a CAR gj1 , . . . , gjr

⇒ n, called
supp[gj1 , . . . , gjr

⇒ n], is:

|{sn,j s.t. {gj1 , . . . , gjr
} ⊂ sn,j , 1 ≤ j ≤ mn}|.

Confidence: The confidence of a CAR gj1 , . . . , gjr
⇒ n is:

supp[gj1 , . . . , gjr
⇒ n]

|{si,j s.t. {gj1 , . . . , gjr
} ⊂ si,j∀i, j}| .

Consider the CAR g1, g3 ⇒ Cancer for our running
example in Table I. We can see that the example CAR has a
support of 2 since only two Cancer samples, s1 and s2, contain
both g1 and g3. Furthermore, we can see that the example CAR
has confidence 1 (or 100%) since no healthy samples contain
both g1 and g3.

A. Boolean Association Rules
For any sample s and gene gi, 1 ≤ i ≤ n = |G|, let

s[gi] ∈ {0, 1} represent whether or not sample s expresses
gene gi. Furthermore, define s[−gi] to be −s[gi] ∀gi ∈ G.
Now suppose that B(x1, . . . , xn) is a Boolean expression
whose value depends on some subset of {x1, . . . , xn}. We
can evaluate B to true or false given a sample s by com-
puting B(s[g1], . . . , s[gn]). For example, consider the boolean
expression:

B̂(x1, x2, x3, x4, x5, x6) = (x1 ∧ x3) ∨ (x2 ∧ x4).
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Fig. 1. Example BST for the Cancer Class

Using Table I we can evaluate

B̂(s1[g1], s1[g2], s1[g3], s1[g4], s1[g5], s1[g6]) (1)

to be (1∧ 1)∨ (1∧ 0) = 1. Note that B̂ will only evaluate the
Table I Cancer samples to True.

For a given class set Ci and boolean expression B we
can create a Boolean association rule (BAR) of the form
B ⇒ Ci. The interpretation of any such BAR, B ⇒ Ci, is
“if B(s[g1], . . . , s[gn]) evaluates to true for a given sample s,
then s should belong to class Ci.” From this point on we will
work with the following generalized definitions of support
and confidence:

Support: The support of any BAR B ⇒ Ci, represented as
supp(B ⇒ Ci), is:

{samples s ∈ Ci s.t. B(s[g1], . . . , s[gn]) evaluates to true}.
The corresponding numerical support value of B ⇒ Ci is
denoted as |supp(B ⇒ Ci)|.

Confidence: The confidence of a BAR B ⇒ Ci is

|supp(B ⇒ Ci)|
|{samples s s.t. B(s[g1], . . . , s[gn]) evaluates to true}|

For CARs these definitions coincide with the CAR defi-
nitions of support and confidence found in [5], [12]. Hence,
they are natural generalizations of the previous definitions (see
section III-C).

Consider our example boolean expression B̂ in terms of
Table I. We can see that the BAR B̂ ⇒ Cancer (shown in
Eq. 1) has support 3 and confidence 1.

III. BSTS AND BARS

The discussion in this section will focus on tables for each
class Ci. These tables, called Boolean Structure Tables (BSTs),
will form the basis for our classification method. In order to
motivate the utility of BSTs for classification, we will present
their close relationship to a special category of BARs which,
in turn, will be related back to CARs. Through this discussion
we will demonstrate that BSTs contain all the information of
the high confidence CARs already known to be valuable for
microarray data classification.

Algorithm 1 Create-BST: The BST Creation Algorithm
1: Input: Finite set of Genes G, set of samples S, Class Ci

2: Output: The BST Table for Class Ci.
3: for all (c, h) ∈ Ci × S − Ci do
4: initialize a pointer ← NULL
5: end for
6: for all (g, c) ∈ G× Ci s.t. g ∈ c and g /∈ ∪h∈S−Cih do
7: Set BST (g, c)← Black Dot
8: end for
9: for all (g, c, h) ∈ G× Ci × S − Ci s.t. g ∈ c and g ∈ h do

10: if pointer (c, h) �= NULL then
11: push a copy of (c, h)→ BST (g, c)
12: else
13: L = {g ∈ G s.t. g ∈ h & g �∈ c}
14: if L �= ∅ then
15: (c, h)← L’s address
16: else
17: L = {g ∈ G s.t. g �∈ h & g ∈ c}
18: (c, h)← L’s address
19: end if
20: end if
21: Push a copy of (c, h)→ BST (g, c).
22: end for

A. Boolean Structure Tables

A Boolean Structure Table (BST) T (i) is a two di-
mensional table, T (i) = G × Ci, where each table entry
refers to a maximum of |S| − |Ci| lists of up to |G| genes
each. For every Ci the associated BST, T (i), will require
O ((|S| − |Ci|) · |G| · |Ci|) space and can be constructed with
the same time complexity via Algorithm 1.

When the Algorithm 1 is run on the Table I example input
and for class Cancer, the Boolean Structure Table shown in
Figure 1 is produced. In Figure 1 a black dot at location
(g, s) indicates that no healthy samples express gene g but
some cancerous sample does. A cell (g, s) is left blank only if
sample s didn’t express gene g. If (g, s) contains a list of the
form (h : −g1, . . . ,−gn) it means that s may be distinguished
from sample h by the non-expression of any one of genes
g1 through gn. Similarly, if (g, s) contains a list of the form
(h : g1, . . . , gn) it means that s may be distinguished from
sample h by the expression of any one of genes g1 through
gn. Such lists will hereafter be referred to as exclusion lists.

Note that there is no reason why the BST in Figure 1 was
created for the Cancer class. We can just as easily build a
BST for the Healthy class using the example shown in Table I.
In general, if a relational gene expression dataset contains N
classes, we can construct N different BSTs for the data set
(one for each class).

1) Runtime Complexity for BST Creation: We can see that
the total time to construct BSTs via Algorithm 1 for all of
C1, . . . , CN is O

(∑N
i=1(|S| − |Ci|) · |Ci| · |G|

)
. Given that

the class sets Ci are all disjoint, we have
∑N

i=1(|S| − |Ci|) ·
|Ci| · |G| ≤ ∑N

i=1 |S| · |Ci| · |G| = |S|2 · |G|. Hence, BSTs can
be constructed for all Cis in time O(|S|2 · |G|).



Gene g1: (g1 expressed) ⇒ Cancer.
Gene g2: (g2 expressed AND [EITHER (g1 expressed) OR (either
g5 or g3 not expressed)] ) ⇒ Cancer.
Gene g3: (g3 expressed AND [EITHER {(g1 expressed) AND

(either g4 or g6 not expressed)} OR { (either g2 or g5 not expressed)
AND (either g4 or g5 not expressed)} ] ) ⇒ Cancer.
Gene g4: (g4 expressed AND [either g5 or g3 not expressed] ) ⇒
Cancer.
Gene g5: (g5 expressed AND [g1 expressed AND (either g4 or g6

not expressed)] ) ⇒ Cancer.
Gene g6: ( g6 expressed AND [(either g4 or g5 not expressed) OR

(either g3 or g5 not expressed)] ) ⇒ Cancer.

Fig. 2. Gene Row BARs with 100% Confidence Values.

B. BST Generable BARs

We view every BST cell, (g, c), as an atomic 100%
confident BAR. For example, Figure 1’s (g3, s1)-cell
corresponds to the BAR

g3 expressed AND g1 expressed AND (either g4 or g6 not
expressed) ⇒ Cancer.

We refer to this rule as the Figure 1 BST’s (g3, s1)-
cell rule. Note that the cell rule is both (i) 100% confident,
and (ii) supported by sample s1. Throughout the remainder
of this section we will use such cell rules as atomic building
blocks to construct more complicated BARs. Furthermore, in
Section IV, we will directly employ BST cell rules to build a
new classifier called BSTC.

1) Mining More Complicated BST BARs: Let T (i) be a
BST for sample type Ci. We can view each row of T (i) as a
100% confident BAR by combining the row’s cell rules. To see
this, choose any gj ∈ G and consider the CAR gj ⇒ Ci. This
CAR can be augmented with exclusion list clauses from each
of T (i)’s gj-row cells. The result will be a BAR with 100%
confidence which is logically equivalent to a disjunction of
T (i)’s gj-row cell rules. See Figure 2 for the gene row BARs
which result from applying this idea to the BST in Figure 1.

For the remainder of this paper we will restrict our attention
to BARs that may be generated by taking conjunctions of
BST cell rule disjuncts. Henceforth we simply refer to these
as BARs. It is very important to notice that all such BARs
have a special form: Their antecedents consist of a CAR
antecedent ANDed with a disjunction of BST exclusion list
clause conjunctions. Consider the BAR for gene g6 in Figure 2.
Gene g6’s rule antecedent consists of a CAR antecedent,
g6, conjoined to a disjunction of the Figure 1 exclusion list
clauses: (either g4 or g5 not expressed) and (either g3 or g5

not expressed). Progressive polynomial time algorithms for
mining more complicated BARs via a BST can be found in
an extended version of this paper [13].

C. BARs Relationships to CARs

Let R ⇒ Ci be any 100% confident BST created BAR
containing exclusion clauses for non-Ci samples h1, . . . hm.

Removing all exclusion list clauses related to {ĥ1, . . . , ĥp} ⊂
{h1, . . . , hm}, p ≤ m, will create a new boolean association
rule, R̂ ⇒ Ci, with support = supp(R ⇒ Ci) and confidence
≥ |supp(R⇒Ci)|

|(supp(R⇒Ci)|+p . Let’s consider the g3-row BAR from our
running example:

(g3 expressed AND [EITHER {(g1 expressed) AND (either
g4 or g6 not expressed)} OR { (either g2 or g5 not expressed)
AND (either g4 or g5 not expressed)} ] ) ⇒ Cancer.

It has 100% confidence and support {s1, s2}. Now, if
we remove all exclusion list clauses related to sample row s5
we end up with the boolean association rule:

(g3 expressed AND [EITHER (g1 expressed) OR (either g2

or g5 not expressed) ] ⇒ Cancer.

This new rule has support {s1, s2} and a confidence of
|{s1,s2}|

|{s1,s2,s5}| = 2
3 . The preceding observation leads us to the

following theorem:
Theorem 1: Let D be a relational data set containing s

samples no two of which are the same (i.e. no two sample
rows express the exact same set of genes). Then, there exists
a pure conjunction B implying a class type C (i.e., a CAR)
with confidence c and support supp for D ⇐⇒ there exists
a 100% confident BST generated BAR B̂ ⇒ C for D that:
(i) has supp(B̂ ⇒ C) = supp, and (ii) contains exclusion
list clauses actively excluding (1

c − 1)|supp| non-C samples.
Proof: See the extended version of this paper [13].

Theorem 1 tells us how we can get CARs from BARs.
Furthermore, it says 100% confident BARs with large support
and a small number of excluded samples are equivalent to high
support/confidence CARs. Hence, genes that show up in many
high confidence, high support CARs will also be prevalent in
many 100% confident BARS with high support and a low
number excluded samples. Most importantly, we see that all
high confidence CARs (which tend to be good classifiers) have
closely related BAR counterparts.

IV. BST-BASED CLASSIFICATION

In principal, 100% confident BST-generable BARs should
be sufficient for classification because they contain at least as
much information as all generable CARs do (see section III-
C). Indeed, beyond what CARs with similar support are
capable of, 100% confident BARs supply us with “unpolluted”
ground truth. Thus, it’s not too surprising that the class of
BST-generable BARs we’ve looked at so far will be enough
to enable highly accurate classification.

Let Ci be a class set of interest and T (i) be the BST
for class Ci constructed from the given training data. From
section III-B we can see that all BST generable BARs for class
Ci are created by combining T (i) cell rules. Thus, we expect
that by restricting our attention to the O(|G| · |Ci|) atomic
T (i) cell rules we will be, in some sense, still considering all
T (i) generable BARs for Ci. Our new scalable classifier, the



Algorithm 2 BST Cell rule quantized Evaluation (BSTCE)
1: Input: Class Ci, BST for the class T (i), Samples S, Query

sample Q
2: Output: Classification value
3: for all non-empty exclusion lists e in T (i)’s cells do
4: Ve ← |{ĝ∈e s.t. Q[ĝ]=1}|

|e|
5: end for
6: for all (g, s) ∈ {g ∈ G s.t. Q[g] = 1} × Ci do
7: if T (i)(g, s) contains a • then
8: T (i)[g][s]← 1
9: else

10: T (i)[g][s]← Min {Ve s.t. e is in T (i)(g, s)}
11: end if
12: end for
13: for all non-blank sample columns s ∈ T (i) do
14: Vs ← Mean of non-blank T (i)[�][s] values
15: end for
16: Return the Mean of step 16’s Vs values

Boolean Structure Table Classifier (BSTC), capitalizes on
this line of thought by ignoring BAR generation and focusing
exclusively on atomic BST cell rules.

A. BSTC Overview

Let Q be a test/query gene expression data sample and
T (i) be a BST for class set Ci. BSTC is a heuristic rule-
based classifier motivated by standard Boolean formula arith-
metization techniques [14] such as those employed in fuzzy
satisfiability [15]. By using these ideas we can avoid the
highly costly process of support/confidence based association
rule mining. Instead of explicitly generating rules, BSTC
decides (heuristically), for all Ci, how well Q collectively
satisfies T (i)’s atomic cell rules. BSTC then classifies Q as
the sample class whose BST has the highest expected atomic
rule satisfaction level from Q.

Intuitively, we expect BSTC to be accurate because it
approximates the results of CAR-based classification: Suppose
that a high support/confidence CAR exists which classifies our
query sample Q as class Cj . This will only happen if all the
CAR’s antecedent genes, AG, appear in both (i) Q and, (ii)
most of the training samples in the CAR’s consequent class
Cj . Let T (j) be the BST for class Cj . Because of (ii) most
of T (j)’s sample columns must contain cell entries for all
the AG genes. Furthermore, all T (j)’s AG cell entries will
have few exclusion lists in common (by Theorem 1). Hence,
T (j)’s expected atomic rule satisfaction level from Q (i.e., Q’s
classification value) should be heavily influenced (increased)
by the AG rows and their few shared lists.

B. BST Cell Rule Satisfaction

As above, let Q be a test/query gene expression data sample
and T (i) be a BST for class set Ci. Algorithm 2, BSTCE,
gives BSTC’s method of calculating the level that Q satisfies
a given atomic T (i) cell rule. We next explain the rational
behind BSTCE.

We know that each T (i) (g, s)-cell exclusion list, L, cor-
responds to a disjunction in T (i)’s (g, s)-cell rule. Hence, if
Q satisfies any one negation/inclusion in L, Q will satisfy L.

Algorithm 3 The BSTC Algorithm
1: Input: BSTs for all dataset classes T (1), . . . , T (N), Query

sample Q
2: Output: Classification for query sample Q
3: for all i ∈ {1, . . . , N} do
4: CV (i)← BSTCE(T (i), Q)
5: end for
6: Return min{i|CV (i) = max{CV (1), . . . , CV (N)}}

However, if Q expresses most of its genes in common with
L’s associated non-Ci sample we assume it’s probably not of
type Ci (i.e., Q is weakly excluded). Hence, we use BSTCE’s
line 4 ratio to approximate the probability that L correctly
excludes Q from being of L’s associated sample’s class.

In order for the (g, s)-cell rule to be satisfied, all of
(g, s)’s exclusion lists must be satisfied (i.e., logical AND).
If independence of each exclusion list’s correct classification
is assumed it’s natural to multiply all of (g, s)’s list’s proba-
bilities. We don’t assume independence and use a min instead
(line 10). Finally, recall that all black dots in T (i) correspond
to genes expressed only in class Ci samples. If Q expresses
a black dot gene it automatically satisfies all that gene’s non-
empty T (i) cell rules. Hence, black dots are all assigned values
of 1 in BSTCE’s line 8.

Once we have used BSTCE lines 1-12 to calculate Q’s
classification values (i.e., T (i)’s atomic rule satisfaction levels
from Q) for each relevant simple (g, s)-cell rule, we are
nearly finished. We have all the values required to judge
Q’s similarity to T (i) via an expectation calculation. For the
sake of T (i)’s expectation calculation, all that is left to do is
imagine choosing a relevant simple T (i) rule at random and
then using it to classify Q. To randomly select a (g, s) rule
we first imagine selecting a non-empty T (i) sample column
uniformly at random and then picking a cell-rule from that
column uniformly at random. The expected probability of
correctly classifying Q with T (i) via this method (which
heuristically is proportional to T (i)’s expected satisfaction
level from Q) is then calculated by averaging the approximate
cell rule satisfaction levels down each non-empty sample
column (line 14) and then averaging the resulting non-empty
sample averages (line 16).

C. BSTC Algorithm

Suppose we are given relational training data D containing
sample rows S split up into disjoint class sets C1, . . . , CN .
BSTC uses D to construct N BSTs, T (1), . . . , T (N). Next,
let G be the union of the elements contained in each sample
row of D (i.e. the gene set of D) and let Q be a query sample
with expression information regarding G. BSTC will use the
BSTCE algorithm to classify Q as being the Ci with smallest i
such that BSTCE(T (i), Q) = max{BSTCE(T (j), Q)|0 ≤ j ≤
N}. See Algorithm 3 for the BSTC algorithm.

Note that there is no reason why N must be 2. BSTC easily
generalizes to datasets containing more than two class labels.

1) BSTC Runtime: As noted in section III-A.1 it takes
time and space O(|S|2 · |G|) to construct all the BSTs
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Fig. 3. BSTC cell rule Evaluation Example

T (1), . . . , T (N). Thus, BSTC requires time and space O(|S|2 ·
|G|) to construct. Furthermore, during classification BSTC
must calculate BSTCE(T (i), Q) for 1 ≤ i ≤ N . BSTCE
(Algorithm 2) runs in O ((|S| − |Ci|) · |G| · |Ci|) time per
query sample. Therefore the BSTC worst case evaluation time
is also O(|S|2 · |G|) per query sample. See Section VII for
more on BSTC’s per-query classification time.

2) Biological Meaning of BSTC Classification: Association
rules mined from gene expression data provide an intuitive
representation of biological knowledge (e.g., the expression
of certain genes implies cancer). Hence, CAR-based clas-
sifiers have the desirable ability to justify each non-default
consequent class query classification with the biologically
meaningful CAR(s) the query satisfied. BSTC, being rule-
based and related to CAR-classifiers, also has this property.

BSTC can support it’s query classifications with BARs of
any user specified complexity. Most simply, for any given
query sample Q and c ∈ (0, 1], BSTC can justify it’s
classification of Q as class Ci by reporting all T (i) atomic
cell rules with satisfaction levels ≥ c. Note that returning
this information requires no additional per-query classification
time. Also note that section III-B.1 methods can be used to
mine more complex highly satisfied BARs if desired.

D. BSTC Example

Consider our running example from Table I. In order
to construct BSTC we must construct both T (Healthy)
and T (Cancer) (shown in Figure 1). Once both BSTs
have been constructed we can begin to classify query sam-
ples. Suppose, for example, we are given the query sam-
ple Q = {g1 expressed, g2 not expressed, g3 not expressed,
g4 expressed, g5 expressed, g6 not expressed}. To classify
this query we must first calculate BSTCE(T (Cancer), Q) and
BSTCE(T (Healthy), Q).

The evaluation of BSTCE(T (Cancer), Q) proceeds as fol-
lows: Since our query sample Q expresses gene g5 we can
see that we must, for example, determine the fraction of
both of the (g5, s1)-cell’s exclusion lists satisfied by Q. The
(g5, s1)-cell’s (s4 : g1) exclusion list is totally satisfied since
Q expresses g1. Hence, it gets a value of 1. However, the
(s5 : −g4,−g6) exclusion list is only half satisfied since,

# Class 1 Class 0 # Class 1 # Class 0
Dataset Genes label label samples samples
ALL/AML (ALL) 7129 ALL AML 47 25
Lung Cancer (LC) 12533 MPM ADCA 31 150
Prostate Cancer (PC) 12600 tumor normal 77 59
Ovarian Cancer (OC) 15154 tumor normal 162 91

TABLE II

GENE EXPRESSION DATASETS

although Q doesn’t express g6, Q does expresses g4. Thus,
in total, we only consider half of the simple (g5, s1)-cell
rule to be satisfied (i.e. the s5 exclusion list is the weakest
link). Continuing to use BSTC’s approximation scheme for the
expected probability of Q’s correct Cancer classification via
the Figure 1 BST we obtain Figure 3. Note that only Figure 3
gene rows corresponding to genes expressed in Q are non-
empty.

If we now evaluate BST-EXPECT(T (Healthy), Q) we ob-
tain a final value of 3

8 . To finish, BSTC will compare Q’s
Cancer classification value of 3

4 to Q’s Healthy classification
value of 3

8 and conclude that Q is most probably Cancer.
Hence, Q will be classified as Cancer.

V. EXPERIMENTAL EVALUATION

All experiments reported here were carried out on a 3.6 GHz
Xeon machine with 3GB of memory running Red Hat Linux
Enterprise 4. For our empirical evaluation we use four standard
real microarray datasets [16] Table II lists the dataset names,
class labels, and the number of samples of each class. All
discretization was done using the entropy-minimized partition
[17] as in [1].

Executables for both RCBT and Top-k were provided by
the authors of [1]. In all experiments, the Top-k rule generator
was used to generate rule groups for RCBT. Unless otherwise
noted we ran both Top-k and RCBT with the author suggested
parameter values (i.e., support = 0.7, k = 10, nl = 20, 10 RCBT
classifiers). Hence, while generating rules for RCBT we used
Top-k with a minimum support value of 0.7 and found the 10
most confident covering rule groups (i.e. k = 10). Furthermore,
during classification we used RCBT with the suggested 10
classifiers (1 primary and 9 standby). Finally, nl, the number
of lower bound rules to use for classification per Top-k mined
rule group, was set equal to 20. We coded BSTC in C++.

A. Preliminary Experiments

Each of Table II’s four gene expression datasets comes
with a clinically determined training set. The authors of [1]
provided us with their discretizations of these four datasets.
We ran BSTC on their discretizations and BSTC matched
RCBT’s reported mean accuracy (about 96%) outperforming
CBA (87%), IRG (81%), Weka 3.2 (C4.5 family single tree
(74%), bagging (78%), boosting(74%)), and SVMlight 5.0
(93%) in reported mean performance [1].

To compare BSTC and RCBT with the most recent R
e1071 package SVM implementation [18] and randomForest
version 4.5 [19] we rediscretized the four datasets and reran



# Class 1 # Class 0 Genes random-
Training Training After BSTC RCBT SVM Forest

Dataset Samples Samples Discr. Accur. Accur. Accur. Accuracy
ALL 27 11 866 82.35% 91.18% 91.18% 85.29%
LC 16 16 2173 100% 97.99% 93.29% 99.33%
PC 52 50 1554 100% 97.06% 73.53% 73.53%
OC 133 77 5769 100% 97.67% 100% 100 %
Avg.
Accuracy 95.59% 95.98% 89.5% 89.54%

TABLE III

RESULTS USING GIVEN TRAINING DATA

BSTC/RCBT. To keep comparisons fair we ran SVM and
randomForest on the same genes selected by our entropy
discretization except with their original undiscretized gene
expression values. SVM was run with its default radial kernel.
We ran randomForest 10 times with its default 500 trees for
ALL, LC, and OC and its accuracy was constant. For PC we
had to increase randomForest’s number of trees to 1000 before
its accuracy stabilized over the 10 runs.

Table III contains the number of class 0/1 samples in the
clinically determined training set, the number of genes selected
by our entropy discretization, and our experimental results. As
shown in this table, the overall average accuracies of BSTC
and RCBT are again best at about 96% each. When compared
against RCBT, SVM, and randomForest on the individual tests
we can see that BSTC is alone in having 100% accuracy on
the majority of datasets.

However, BSTC’s performance on the preliminary
AML/ALL dataset test is relatively poor. This is likely due to
over fitting. Every error BSTC made mistook a class 0 (AML)
test sample for a class 1 (ALL) test sample (i.e., all errors
were made in this same direction). And, the ALL training data
has both (i) about 2.5 times as many class 1 samples as class
0 samples, and (ii) a small number of total samples/genes.
When the training set is more balanced and the number of
samples/genes is larger we can expect that cancellation of
errors will tend to neutralize/balance any over fitting effects
in BSTC. And, BSTC is a method meant primarily for large
training sets where CAR-mining is prohibitively expensive.
As we will see below in Section V-B.1, BSTC’s performance
is much better for larger AML/ALL training set sizes.

B. Holdout Validation Studies

Holdout validation studies make comparisons less suscep-
tible to the choice of a single training dataset and provide
performance evaluations that are likely to better represent
program behavior in practice. We next present results from
a thorough holdout validation study completed using 100
different training/test sets from each of the ALL, LC, PC, and
OC data sets. For these holdout validation tests we benchmark
BSTC against Top-k/RCBT because (i) BSTC/RCBT perform
best in our preliminary experiments, (ii) Top-k/RCBT is the
fastest/most accurate CAR-based classifier for microarray data,
and (iii) we are interested in BSTC’s CAR-related vs Top-
k/RCBT’s CAR-based scalability.

For the holdout validation study we generated training sets
of sizes 40%, 60%, and 80% of the total samples. Each
training set was produced by randomly selecting samples from
the original combined dataset. We then used the standard R
dprep package’s entropy minimized partition [17] to discretize
the selected training samples. Finally, the remaining dataset
samples were used for testing the two classifiers after rule/BST
generation on the randomly selected training data. For each
training set size we produced 25 independent tests. In addition
to these training sets, we created an additional 25 1-x/0-y
tests. To create these tests we chose training data by randomly
selecting x class 1 samples and y class 0 samples to be used
as training data. As before, the remaining samples were then
used to test both classifiers. For each dataset the x and y values
are chosen so that the resulting 25 classification tests have the
exact same training/test data proportions as the single related
dataset test reported in section V-A. For each training set size
we plot our results using a boxplot.

Boxplot Interpretation: Each boxplot that we show in
this section can be interpreted as follows: The median of
the measurements is shown as a diamond, and a box with
boundaries is drawn at the first and the third quartile. The
range between these two quartiles is called the inter-quartile
range (IQR). Vertical lines (a.k.a. “whiskers”) are drawn from
the box to indicate the minimum and the maximum value,
unless outliers are present. If outliers are presents, the whiskers
only extend to 1.5×IRQ. The outliers that are near (i.e. within
3 × IRQ are drawn as an empty circle, and further outliers
are drawn using an asterisk.

1) ALL/AML (ALL) Experiment: Figure 4 shows the clas-
sification accuracy for the ALL/AML dataset. As can be seen
in this figure, BSTC and RCBT have similar accuracy across
the ALL/AML tests as a whole. BSTC outperforms RCBT in
terms of median and mean accuracy on the 40% and 80%
training set sizes while RCBT has better median/mean accu-
racy on the 1-27/0-11 training size tests. And, both classifiers
have the same median on the 60% training set size. Over the
100 ALL/AML tests we see that BSTC has a mean accuracy
of 92.13% while RCBT has a mean accuracy of 91.39% (they
are very close).

It’s noteworthy that BSTC is 100% accurate on the majority
of 80% training size tests. However, BSTC appears to have
slightly higher variance than RCBT on all but the 40% training
tests. Considering all the results together both BSTC and
RCBT have essentially equivalent classification accuracies on
the ALL/AML dataset.

2) Lung Cancer (LC) Experiment: The results for the Lung
Cancer dataset are reported in Figure 5. Here, again, both
BSTC and RCBT have similar classification behavior. RCBT
has higher mean and median accuracies on the 40% and 60%
tests while BSTC outperforms RCBT on the 1-16/0-16 tests.
Meanwhile, both classifier have the same median on the 80%
training test. Over all 100 LC tests we find that BSTC has a
mean accuracy of 96.32% while RCBT has a mean accuracy
of 97.08% (again, they are very close).

As before, BSTC is alone in having 100% accuracy more
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Fig. 4. ALL Holdout Validation Results Fig. 5. LC Holdout Validation Results

then half the time for any training set size (see Figure 5 (d)).
However, RCBT has smaller variance for 3 of the 4 training
set sizes. Therefore, as for the ALL/AML data set, both BSTC
and RCBT have about the same classification accuracy on LC.

3) Prostate Cancer (PC) Experiment: RCBT begins to run
into a computational difficulties on PC’s larger training set
sizes. This is because before using a Top-k rule group for
classification RCBT must first mine nl lower bound rules for
the rule group. RCBT accomplishes rule group lower bound
mining via a pruned breadth-first search on the subset space of
the rule group’s upper bound antecedent genes. This breadth-
first search can be quite time consuming. In the case of the
Prostate Cancer (PC) dataset all 100 classification tests (25
tests for each of the 4 training set sizes) generated at least one
top-10 rule group upper bound with more than 400 antecedent
genes. Due to the difficulties involved with a breadth-first
search over the subset space of a several hundred element
set, RCBT began suffering from long run times on many PC
classification tests.

Table IV contains four average classification test run times
(in seconds) for each PC training size. The ‘BSTC’ column
run times reflect the average time required to build both class
0 and class 1 BSTs and then use them to classify all the test
samples. Each ‘Top-k’ column run time is the average time
required for Top-k to mine the top 10 covering rule groups
(with minimum support 0.7) for each training set.

Table IV’s ‘RCBT’ column gives average run times for
RCBT using a time cutoff value of 2 hours for all the training
sets. For each classification test, if RCBT was unable to
complete the test in less than the cutoff time, it was terminated
and it’s run time was reported as the cutoff time. Hence, the

Training BSTC Top-k RCBT # RCBT DNF
40% 2.13 0.09 418.81 0/25
60% 4.93 5.06 ≥ 7110.00 24/25
80% 5.78 120.63 ≥ 7200 † 25/25†
1-52/0-50 5.57 21.32 ≥ 7200 † 25/25†

TABLE IV

AVERAGE RUN TIMES FOR THE PC TESTS (IN SECONDS). † INDICATES

nl WAS LOWERED TO 2.

‘RCBT’ column gives lower bounds on RCBT’s average run
time per training set test. Finally, the ‘# RCBT DNF’ column
gives the number of tests RCBT was unable to finish in < the
cutoff time, over the number of tests for which Top-K finished
mining rule group upper bounds.

Explanation for varying nl values: Run time cutoffs
were necessary to mitigate excessive holdout validation CAR-
mining times. Even with a cutoff of 2 hours these 100 PC
experiments required about 11 days of computation time, with
most experiments not finishing. For the 80% and 1-52/0-50
training set sizes RCBT with nl = 20 failed to finish lower
bound rule mining for all 50 tests within 2 hours. Thus,
RCBT’s nl parameter was lowered from the default value of
20 to 2 in an attempt to improve its chances of completing
tests. Not surprisingly, decreasing nl (i.e., mining fewer lower
bound rules per Top-k rule group) decreases RCBT’s runtime.
However, RCBT was still unable to finish lower bound rule
mining for any tests.

Classification Accuracy: Figure 6 contains accuracy results
for BSTC on all four Prostate Cancer test sets. Prostate Cancer
boxplots for RCBT weren’t constructed for training set sizes
that RCBT was unable to complete all 25 tests within the
time cutoffs. In contrast, BSTC was able to complete each
of the 100 PC classification tests in less than 6 seconds.
Table V contains mean accuracies for the PC dataset with
40%, 60%, 80%, and 1-52/0-50 training. For each training
set, the average accuracies were taken over the tests RCBT
was able to complete within the cutoff time. Hence, the 40%
row means were taken over all 25 results. Since RCBT was
unable to complete any 80% or 1-52/0-50 training size tests we
report these BSTC means over all 25 tests. RCBT has slightly
better accuracy then BSTC on 40% training. For 60% training

Training BSTC RCBT
40% 75.08% 79.27%
60% 78.18% 85.45%
80% 84.98% —
1-52/0-50 81.65% —

TABLE V

MEAN ACCURACIES FOR THE PC TESTS THAT RCBT FINISHED.
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RCBT outperforms BSTC on the single test it could finish
by more then 7%, although it should be kept in mind that
RCBT’s results for the 24 unfinished tests could vary widely.
Note that BSTC’s (mean) accuracy increases monotonically
with training set size as expected. At 60% training BSTC’s
accuracy behaves almost identically to RCBT’s 40% training
accuracy (see Figure 6).

4) Ovarian Cancer (OC) Experiment: For the Ovarian Can-
cer dataset, which is the largest dataset in this collection, the
Top-k mining method that is used by RCBT also runs into long
computational times. Although Top-k is an exceptionally fast
CAR group upper bound miner, it still depends on performing
a pruned exponential search over the training sample subset
space. Thus, as the number of training samples increases Top-k
quickly becomes computationally challenging to tune/use.

Table VI contains four average classification test run times
(in seconds) for each Ovarian Cancer(OC) training size. As
before, the second column run times each give the average
time required to build both class 0/1 BSTs and then use them
to classify all test’s samples with BSTC. Note that BSTC was
able to complete each OC classification test in about 1 minute.
In contrast, RCBT again failed to complete processing most
classification tests within 2 hours.

Table VI’s third column gives the average times required
for Top-k to mine the top 10 covering rule groups upper
bounds for each training set test (with the same 2 hour cutoff
procedure as used for PC testing). The fourth column gives
the average run times of RCBT on the tests for which Top-
k finished mining rules (also with a 2 hour cutoff). Finally,
the ‘# RCBT DNF’ column gives the number of tests that
RCBT was unable to finish classifying in < 2 hours each,

Training BSTC Top-k RCBT # RCBT DNF
40% 30.89 0.6186 273.37 0/25
60% 61.28 41.21 ≥ 5554.37 19/25
80% 71.84 ≥ 1421.80 ≥ 7205.43 † 21/22
1-133/0-77 70.38 ≥ 1045.65 ≥ 6362.86 † 20/23

TABLE VI

AVERAGE RUN TIMES FOR THE OC TESTS (IN SECONDS). † INDICATES

nl WAS LOWERED TO 2.

over the number of tests for which Top-k finished. Because
RCBT couldn’t finish any 80% or 1-133/0-77 tests within 2
hours with nl = 20, we lowered nl to 2.

Classification Accuracy: Figure 7 contains boxplots for
BSTC on all four OC classification test sets. Boxplots were not
generated for RCBT with 60%, 80%, or 1-133/0-77 training
since it was unable to finish all 25 tests for all these training
set sizes in < 2 hours each. Table VII lists the mean accuracies
of BSTC and RCBT over the tests on which RCBT was able
to produce results. Hence, Table VII’s 40% row consists of
averages over 25 results. Meanwhile Table VII’s 60% row
results are from 6 tests, 80% contains a single test’s result,
and 1-133/0-77 results from 3 tests. RCBT has better mean
accuracy on the 40% training size, but the results are closer on
the remaining sizes ( < 4% difference over RCBT’s completed
tests). Again, RCBT’s accuracy could vary widely on its
uncompleted tests.

CAR Mining Parameter Tuning and Scalability: We
attempted to run Top-k to completion on the 3 OC 80%
training and 2 OC 1-133/0-77 training tests. However it could
not finish mining rules within the 2 hour cutoff. Top-k finished
two of the three 80% training tests in 775 min 43.6 sec and 185
min 3.3 sec. However, the third test ran for over 16,000 min
(> 11 days) without finishing. Likewise, Top-k finished one
of the two 1-133/0-77 tests in 126 min 45.2 sec but couldn’t
finish the other in 16,000 min (> 11 days). After increasing
Top-k’s support cutoff from 0.7 to 0.9 it was able to finish the
two unfinished 80% and 1-133/0-77 training tests in 5 min
13.8 sec and 35 min 36.9 sec, respectively. However, RCBT
(with nl = 2) then wasn’t able to finish lower bound rule
mining for either of these two tests within 1,500 min. Clearly,
CAR-mining and parameter tuning on large training sets is

Training BSTC RCBT
40% 92.05% 97.66%
60% 95.75% 96.73%
80% 94.12% 98.04%
1-133/0-77 93.80% 96.12%

TABLE VII

MEAN ACCURACIES FOR THE OC TESTS THAT RCBT FINISHED.



computationally challenging. As training set sizes increase, it
is likely that these difficulties will also increase.

VI. RELATED WORK

While operating on a microarray dataset, current CAR [1],
[2], [3], [4] and other pattern/rule [20], [21] mining algorithms
perform a pruned and/or compacted exponential search over
either the space of gene subsets or the space of sample subsets.
Hence, they are generally quite computationally expensive
for datasets containing many training samples (or genes as
the case may be). BSTC is explicitly related to CAR-based
classifiers, but requires no expensive CAR mining.

BSTC is also related to decision tree-based classifiers such
as random forest [19] and C4.5 family [9] methods. It is
possible to represent any consistent set of boolean association
rules as a decision tree, and vice versa. However, it is gen-
erally unclear how the trees generated by current tree-based
classifiers are related to high confidence/support CARs which
are known to be particularly useful for microarray data[1], [2],
[6], [7], [11]. BSTC is explicitly related to, and motivated by,
CAR-based methods.

To the best of our knowledge there is no previous work on
mining/classifying with BARs of the form we consider here.
Perhaps the work closest to utilizing 100% BARs is the TOP-
RULES [22] miner. TOP-RULES utilizes a data partitioning
technique to compactly report item/gene subsets which are
unique to each class set Ci. Hence, TOP-RULES discovers
all 100% confident CARs in a dataset. However, the method
must utilize an emerging pattern mining algorithm such as
MBD-LLBORDER [23], and so generally isn’t polynomial
time. Also related to our BAR-based techniques are recent
methods which mine gene expression training data for sets of
fuzzy rules [24], [25]. Once obtained, fuzzy rules can be used
for classification in a manner analogous to CARs. However,
the resulting fuzzy classifiers don’t appear to be as accurate
as standard classification methods such as SVM [25].

VII. CONCLUSIONS AND FUTURE WORK

To address the computational difficulties involved with
preclassification CAR mining (see Tables IV and VI), we
developed a novel method which considers a larger subset
of CAR-related boolean association rules (BARs). These rules
can be compactly captured in a Boolean Structure Table (BST),
which can then be used to produce a BST classifier called
BSTC. Comparison to the current leading CAR classifier,
RCBT, on several benchmark microarray datasets shows that
BSTC is competitive with RCBT’s accuracy while avoiding
the exponential costs incurred by CAR mining (see Section V-
B). Hence, BSTC extends generalized CAR-based methods to
larger datasets then previously practical. Furthermore, unlike
other association rule-based classifiers, BSTC easily general-
izes to multi-class gene expression datasets.

BSTC’s worst case per-query classification time is worse
then CAR-based methods, after all exponential time CAR
mining is completed (O(|S|2 · |G|) versus O(|S| · |G|)). As
future work we plan on investigating techniques to decrease
this cost by carefully culling BST exclusion lists.
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