
An algorithm for generating document-deictic references

Ivandré PARABONI
ITRI, University of Brighton

Lewes Road
Brighton, UK, BN2 4GJ

ivandre.paraboni@itri.brighton.ac.uk

Abstract

This paper will focus on how a natural
language generation system can produce
references to parts of documents such as
sections, pictures paragraphs etc., a
phenomenon we call document deixis. An
example is the definite description “picture 3
in section B” . We propose an algorithm to be
implemented as an extension of an existing
NLG system, which is able to generate
structurally complex documents, allowing the
production of document deictic references for
different purposes, such as helping the reader
to find a particular piece of information or
simplifying the reference to domain entities.

Introduction

Many documents are organised in hierarchically-
structured components (e.g., pictures, sections,
subsections, itemised lists etc.), and such
components may be referred to within the
document (e.g., “ read section 1.2.” ) for various
purposes, such as to emphasise relevant parts of
the document, to link text and corresponding
pictures, to simplify the reference to domain
entities described somewhere else in the document,
etc. Cross-media references of this kind are a
prime example of the phenomena influencing the
coherence of textual or multimedia documents,
e.g., André and Rist (1994), McKeown et al
(1992).

We call the referable parts of a document
document entities (DocEnt), and we call a
reference to a DocEnt document deixis1 (ddx). We
found substantial amounts of ddx in technical
manuals, legislation, scientific articles etc. Our
own research focuses primarily on references to
DocEnts found in medical patient information
leaflets or PILs corpus in ABPI (1997) and, more
specifically, on how documents containing such
descriptions can be generated from a medical
knowledge base.

In this paper we will discuss how the
problem of generating ddx references differs from
the generation of other forms of definite
descriptions (e.g., references to domain entities).
The problem of deciding when to produce such
references has been described elsewhere - see
Paraboni and van Deemter (1999). The deictic
aspect of such references (where the position of the
referring expression itself has to be taken into
account) and the hierarchical structure of the
domain make the generation of ddx references an
ideal area for investigation of some little explored
aspects of reference.

1 Basic concepts

1.1 Document structure and layout

We will consider as an example a hierarchical
document structure made up of terminal DocEnts
of type text and picture representing the textual and

                                                     
1 The use of the term “document deixis”  parallels the
use of “discourse deixis”  in Webber (1991): we say
“deixis”  because the expression relates utterances to the
spatio-temporal co-ordinates of the act of utterance cf.
Lyons (1977), and we say “document”  because those
entities are defined in the document structure (and not in
discourse, as the phenomena addressed by Webber).



graphical components of the document, and non-
terminal DocEnts doc, section, part, list and item
representing its hierarchical levels. A simple
example of a document constructed according to
this structure is shown in Figure 1. Although not
discussed in this paper, the present specification
could include further referable document parts
such as paragraphs, sentences, words etc., which
would be in principle equally supported by the
generic algorithm presented in section 2.

A reference to a DocEnt r can make use of
a relevant layout attribute to which a particular
value is assigned so as to distinguish the referent
from other nodes of the structure. Layout attributes
include ‘section_number’ , ‘ item_label’  etc. For
example, a given section of the document may be
described by its section number (the attribute of the
reference),  to which the value “1”  is assigned as in
“section 1” . Following Dale and Reiter (1995) we
call such pair (attribute, value) as in
(section_number, “1” ) a property. For simplicity,
we will concentrate on references which make use
of layout attributes such as numbers, titles etc.,
although the principles under discussion are
applicable to many other forms of reference, such
as the use of spatial (e.g., “ the previous section” )
and ordinal (e.g., “ the 1st section” ) attributes as
discussed in Paraboni (2000).

Layout attributes of a given DocEnt type t
are assigned values which are meant to uniquely
distinguish those DocEnts of type t within a
certain subtree of the document structure. For
example, item labels (a layout attribute of DocEnts
of type item) are assigned the distinguishing values
(“A” , “B” , “C”) within the subtree rooted in the
relevant (list) node. In our example, we assume
that the relevant layout attributes of the DocEnt
types in Figure 1 are assigned distinguishing
values as follows:

• DocEnts of type section are assigned
distinguishing values (section_number = 1...2)
throughout the document, i.e., within the
(sub)tree rooted in (doc);

• DocEnts of type  part are assigned
distinguishing values (part_label = A...B) per
section, i.e., within the subtree rooted in each
relevant (section) node;

• DocEnts of type item are assigned
distinguishing values (item_label = A...C) per
itemised list, i.e., within the subtree rooted in
each relevant (list) node and

• the enumeration of DocEnts of type picture
(either throughout the entire document or per
section) will be specified as required by the
various examples discussed in this paper.

We call the scope of a given layout
attribute a associated with DocEnts of a given type
t the subtree within which a assigns distinguishing
values for each node of type t. For example, the
scope of the layout attribute ‘ item_label’
associated with DocEnts of type item is the subtree
rooted in the corresponding (list) node. Scopes of
layout attributes are inferred from the existing
document layout and will be a key element of the
algorithm presented in section 2.

sec1

doc

txt1

itemA

pic1

itemC

list

itemB

txt2

sec2

part A

pic2

part B

txt3

Figure 1 - Example of document structure



1.2 Document-deictic descriptions

In a document structure as exemplified in Figure 1,
the text nodes represent the textual components of
the document. Since we are considering a
document that refers to its own parts, some of the
existing text nodes may in fact contain ddx
descriptions. For a given reference to any node r
of the document, we call d the text node which
contains the corresponding referring expression.
For example the text node (d = txt2) may contain
the description “ item C”, which is a reference to
the node (r = itemC) of the document.

In its simplest form, a given reference (d,
r) can be represented as a description {r, a, v} ,
where a is a layout attribute associated with all the
DocEnts of the same type as r, and v is the current
value of a taken from the layout of the document.
The pair (a, v) represents a property of r.

The surface realisation of a description
may denote more than one node in a given
document structure. For example, in a document
structure containing several lists of enumerated
items, the description “ item A”  may denote several
item nodes. Analogous to Dale and Reiter (1995),
we call distractors of a description {r, a, v}  the
set of all DocEnts of the same type of r in the
structure which are not r itself, and whose
attribute a is assigned the same value v.

The use of a particular property (a, v) in a
description may distinguish the referent r from
some or all its distractors. Accordingly, algorithms
such as presented in Dale and Reiter (1995) for
generating referring expressions make use of
properties in order to rule out distractors and
produce uniquely distinguishing descriptions.

However, apart from providing uniquely
distinguishing descriptions of referents, ddx
descriptions also have a second purpose: ddxs
serve to locate the referent in the document, and
for that reason the uniqueness of a description does
not suffice as a condition for its felicity. For
example, assuming (d = txt3, r = itemA) in the
document presented in Figure 1, the description
“ item A” , even though being a uniquely
distinguishing description of r, is misleading in
two senses: (i) the reader of the referring
expression in d cannot be assumed to know where
in the hierarchical structure of the document the

referred item is to be found and (ii) the reader
cannot be assumed to know that there is only one
“ item A”  in the whole document. We say that a
ddx reference which is misleading in one of the
senses (i) or (ii) is incomplete. For the reference to
be complete, the layout and structure of the
document have to make it clear what is the part of
the document within which the property is to be
interpreted (i.e., where the actual distractors of the
reference are).

One way in which appropriate ddx
descriptions can be generated is by taking into
account, instead of the set of distractors ruled out
by the description {r, a, v} , only the set of
distractors within the scope of a. More
specifically, a description {r, a, v}  is said to be
complete if the scope of a is a subtree which
contains the node d itself. For example, “ item A”
is a complete description of (d = txt2, r = itemA),
since the scope of the layout feature (the
item_label attribute) is a subtree rooted in the (list)
node, which contains the node d as discussed in
section 1.1. On the other hand, “ item A”  is not a
complete description if we consider (d = txt3, r =
itemA), since the scope subtree in this case does
not contain the node d.

As shown by the examples, the
completeness of a ddx reference depends on the
position of the referring expression d in the
document. This will be reflected by the algorithm
presented in the next section for the generation of
ddx references which are both distinguishing and
complete.

2 Algorithm description

Given the present definition of completeness, the
task of the algorithm is to decide how to proceed in
case a given reference is not complete. This can be
done by adding further levels of description
(namely, references to ancestor nodes of the
referent) as in “ item A of the list in section 1” .
More specifically, a ddx (d, r) will be realised as a
series of (n > 0) hierarchically ordered pairs in the
form { (x1, a1, v1)...(xn, an, vn)} , where x1 is r
itself, every xj for (j > 1) is a selected ancestor
node of xj-1 and every pair (aj, vj) is a layout
property (i.e., a pair attribute, value) of the
corresponding xj.



The number n of descriptions required to
produce a complete description in this way
depends on the scope subtree of each attribute aj.
The algorithm initially attempts to produce a
description of (xj = r) for (j = 1). For each
description, an appropriate pair (aj, vj) is selected
according to some defined criteria2 and once the
scope of aj is a subtree which contains the node d
itself, a complete description has been obtained
and the process finalises. Otherwise, a reference to
a selected ancestor node of xj will be included in
the resulting description. More specifically, xj+1
will be the root node of the scope subtree of the
previous reference attribute, i.e., aj. Although in
most cases xj+1 will coincide with the immediate
parent node of xj, the node to be selected has to be
defined as the root of the scope of aj in order to
avoid intermediate redundant levels of description.
For example, assuming that pictures are
enumerated from 1 at the beginning of each
individual section in Figure 1, for (d = txt1, r =
pic2), after producing the (incomplete) description
of (x1 = pic2), the next level to be described is (x2
= sec2), since the scope of the picture number is a
subtree rooted in (sec2), and not (part A), whose
description in this case would be redundant.

Individual references are added to the
resulting description in hierarchical order, from
lowest to highest level, making the scope of the
reference increase at each level, up to the point
where the ddx description turns out to be complete
and, consequently, unique, since the scope of a
complete ddx description is a subtree containing
the node d within which r can be uniquely
identified.

The complete example of reference (d =
txt1, r = pic2) can be illustrated as follows:
assume pictures are enumerated separately in each
section, that is, both (pic1) and (pic2) are labelled
“picture 1”  in the document of Figure 1. The
algorithm starts by referring to (x1 = pic2) and
since in this case the scope of picture numbers is a
subtree rooted in (sec2), it does not include d,
hence “picture 1”  is not (yet) a complete ddx. The
next step is to produce a reference to the root of the
scope subtree of this reference, which has to be, in
                                                     
2 For a discussion on criteria for selecting properties for
reference (e.g., “section 2”  or “ the previous section” )
see Paraboni (2000).

this case, (x2 = sec2). Since the scope of section
numbers is a (sub)tree rooted in (doc), it includes
the referring expression d, so the description
becomes complete as “picture 2 in section 2” . If
pictures were enumerated from “1”  throughout the
document, the resulting complete ddx description
would be simply “picture 1” , as the scope of such
picture number is a (sub)tree rooted in (doc),
which contains the node d.

Since the algorithm stops when a complete
reference is obtained, the resulting description does
not include references to any redundant upper
level. For example, the algorithm does not produce
“part A of section 2”  if “part A”  alone suffices as a
complete description of the referent. However, if
desired in a particular domain, this form of
redundancy can be easily allowed by taking into
account, instead of the scope subtree s of a given
attribute, a subtree of s. For example, in cases
where pictures are enumerated throughout the
entire document, the scope s of picture numbers is
the tree rooted in (doc) and, consequently,
references to such pictures will never include extra
levels of descriptions. By pretending that pictures
are enumerated per sections instead of throughout
the entire document, i.e., considering a subtree
rooted in the relevant (section) node instead of s,
the algorithm will produce slightly redundant
references such as “picture 1 in section 1” .

In this paper we greatly simplified the
algorithm, omitting, for example, its ability to
produce references based on different types of
attributes. However, it is worth noting that the
choice for a particular (aj, vj) may lead to
different lengths of descriptions. For example, in
the document presented in Figure 1, the ddx (d =
txt3, r = part A) could be realised as either one
single reference (e.g., “part A” ,  “ the previous
part”  etc.) or  two references (e.g., “ the 1st part of
this section”). The use of different types of
properties and criteria for property selection
aiming at minimality of descriptions are discussed
in Paraboni (2000).

Conclusions and future work

In this paper we have discussed some aspects of
the generation of document-deictic references, a
phenomenon ubiquitously found in structurally
complex documents made of textual and graphical
components. We discussed how this task differs



from the generation of ordinary definite
descriptions and presented an algorithm for
generating ddx descriptions which are both unique
and complete. Although further constraints may be
necessary in order to produce optimised references,
the preliminary version of the algorithm is
expected to generate most instances of the
phenomena found in our corpus.

When completed, the algorithm will allow
us to produce documents with artificially high
numbers of ddx expressions. By comparing such
documents with the corpus, we expect to precise
how ddx references are actually used and, from the
results of this investigation, we aim at expanding
the current approach towards a theory of ddx
generation.

Acknowledgements

This work is supported by the CNPq, the Brazilian
Research Council.

References

ABPI - The Association of the British
Pharmaceutical Industry (1997). 1996-1997
ABPI Compendium of Patient Information
Leaflets.

Elisabeth André and Thomas Rist (1994).
Referring to World Objects with text and
Pictures. Proceedings of Coling'94.

Robert Dale and Ehud Reiter (1995).
Computational interpretations of the Gricean
maxims in the generation of referring
expressions. Cognitive Science (19).

H.P. Grice (1975). Logic and Conversation. Cole
and Morgan (Eds.) Syntax and Semantics,
Vol.iii: Speech Acts. New York, Academic
Press.

John Lyons (1977). Semantics. Cambridge
University Press.

Kathleen McKeown et al. (1992). Generating
Cross-References for Multimedia Explanation.
Proceedings of the AAAI-92.

Ivandré Paraboni and Kees van Deemter (1999).
Issues for the Generation of Document Deixis. In
André et al (Eds.), Deixis, Demonstration and
Deictic Belief in Multimedia Contexts. 11th

ESSLLI, Utrecht, The Netherlands, pp.43-48.

Ivandré Paraboni (2000). Describing Document
Parts. In: proceedings of the 3rd Cluk
Computational Linguistics in the UK. Brighton,
UK, pp. 34-41.

Bonnie Lynn Webber (1991). Structure and
Ostension in the Interpretation of Discourse
deixis. Language and Cognitive Processes 6(2)
May 1991, pp. 107-135.


