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Abstract

Stochastic processes can model a variety of dynamic computer phenomena such as traffic in commu-
nication networks, input for packet routing or caching or load balancing, growth of the World Wide
Web, and evolving structure of dynamic networks. Stochastic analysis enables us to characterize
properties of such processes that dynamically change with time.

In this thesis, we present four results in different settings in which stochastic processes serve as
natural models for dynamic computer phenomena that arise in practical applications. The models
are useful not only in understanding these phenomena but also in designing and analyzing practical

algorithms for associated problems.

The results are:

1. Communication Networks: We address the problem of evaluating Quality-of-Service (QoS)
properties in statistically multiplexed communication networks fed by bursty sources. Using
a stochastic model for bursty sources, we give efficient Monte-Carlo algorithms for estimating

the failure probability of an arbitrary topology network under static and dynamic settings.

2. Peer-to-Peer Networks: We address the fundamental problem of building Peer-to-Peer (P2P)
networks with good topological properties. We present a practical and scalable distributed
protocol for building P2P networks and prove under a reasonable stochastic model that it

results in connected networks of constant degree and logarithmic diameter.

3. Online Computation: We propose a novel approach for measuring online performance based
on the characteristics of the input sequence; this is fundamentally different from the standard
competitive analysis of online computation. Assuming a very general stochastic model for
the input sequence, we present bounds between entropy of the input and the performance of
the best online algorithm for classical online problems such as prefetching, caching, and load

balancing.

4. Web Models: We develop and analyze new stochastic models for the Web graph which capture
a global property of the Web: the PageRank distribution. Our models explain the power
law property of the PageRank distribution while remaining faithful to the properties of the

previously studied degree distributions.
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Chapter 1

Introduction

Traditional algorithmic analyses have focused mainly on static computation problems where the
input is known before the start of the computation and the goal is to minimize the time till termina-
tion with a correct output. Many important processes in today’s computing are dynamic processes,
whereby input is continuously injected to the system, and the algorithm is measured by its long
term or steady state performance. Examples of dynamic computer processes include traffic in com-
munication networks, protocols for caching, prefetching, load balancing, or packet routing, growth
of real-world networks such as the World Wide Web, and evolving structure of dynamic networks
such as Peer-to-Peer networks or Ad hoc mobile networks.

The general theme of this thesis is using stochastic processes to model dynamic computer phe-
nomena. They are probabilistic models. Mathematically, they are simply an indexed family of
random variables representing or characterizing the input. They are ideal to model phenomena that
dynamically change with time. Stochastic models are used extensively in physics, biology, finance,
engineering and social sciences. Brownian motion, Poisson process, branching process and diffusion
process are some well-known examples of stochastic processes in the above areas. For example,
Brownian motion is used to model the price of a stock or the motion of small particles suspended
in a liquid; Poisson process is used to model the arrival of customers in a queue or the emission of
radioactive particles.

In this thesis, we present four results in different settings in which stochastic processes serve as
natural models for dynamic computer phenomena. Our motivation is to illustrate the usefulness
of stochastic models and analysis in diverse application areas ranging from Peer-to-Peer networks
to Web modeling. Stochastic analysis is useful not only in understanding the dynamic phenomena
in these settings but also in designing and analyzing practical algorithms/schemes for associated
problems. Each result also illustrates a few typical themes in stochastic analysis. One of the
themes in our analyses is handling dependencies among the random variables. When the random
variables are mutually independent analysis is easy. However, in many applications dependencies
arise naturally. The general idea in these situations is to bound the dependence by some clever

means so as to facilitate analysis.



Before going to an overview of our results, it will be illustrative to give an example of a dynamic
computer phenomenon and a stochastic model for it. We consider the fascinating dynamic phe-
nomenon of the evolution the World Wide Web graph. The Web graph is simply a directed graph
where the nodes are the webpages and the hyperlinks between webpages form the directed edges in
the natural manner. The following simple model for the Web graph was proposed by Barabasi et.al
[11]:

1. uniform growth: Nodes and edges are added one at a time;

2. preferential attachment: The incoming node connects to an existing node with probability

proportional to its total degree.

The above model was motivated by the following remarkable property of the Web graph: the degree
distribution follows a power law whose exponent is a small constant irrespective of the size of the

graph. The above model induces a stochastic graph process G = (G¢);>o defined as follows:
e (i isagraphon {v; : 0 <i <t}
e (o has one vertex vy with a self-loop;

e Given G;_1 we form G by adding the vertex v; together with an edge between v; and v; where
1 is chosen randomly with probability

_ th—l (US)

Pr(i = s) 5

0<s<t—1

The above process can be analyzed to show that it captures the power-law property of the degree
distribution of the Web. Thus, even a simple model as above gives insight into understanding a

complex dynamic phenomenon as the growth of the Web.

1.1 Overview

We now present a brief overview of our results below. More details on motivation, analysis, and
applications of the four results can be found in Chapters 3, 4, 5, and 6 respectively. Here we
would like to restrict ourselves to giving a general idea of the stochastic processes that arise in our
results. The results are ordered according to the increasing order of complexity of the corresponding
stochastic models used: a simple discrete memoryless model (Chapter 3), a Poisson model (Chapter
4), a general stationary model (Chapter 5), and a non-stationary model (Chapter 6). (For a quick

reference to the concepts and terms here the reader is referred to Chapter 2.)

Communication Networks: ([62, 61]) In the first setting, we model a communication request in
a statistically multiplexed communication network by a simple stochastic source: an on-off source.
Though simple, it captures the key feature of a bursty source, common in the Internet traffic. The
problem is to evaluate Quality-of-service (QoS) parameters in an arbitrary communication network

fed by many communication requests. Such problems are hard to analyze rigorously, and typically



ad-hoc estimates are used in practice. Two important assumptions facilitate our analysis here. The
first is independence among communication requests, which enables us to use well-known techniques
from probability theory concerning large deviations. Second is independence between time steps of
a connection. This allows us to describe the source in a very simple way, abstracting out the notion
of time.

Our main result, is an efficient Monte-Carlo algorithm for estimating the failure probability of a
general network. Our method is particularly useful in a dynamic setting in which communication
requests are dynamically added and eliminated from the system. The amortized cost in our solution
of updating the estimate after each change is proportional to the fraction of links involved in the

change rather than to the total number of links in the network.

Peer-to-Peer Networks: ([64]) We address the fundamental problem of building P2P networks
with good topological properties. We use a standard stochastic model from queuing theory to model
P2P networks: computers join the network independently according to a Poisson process with rate A
and the duration with which a computer stays connected is exponentially distributed with parameter
1. We present a simple distributed local protocol for building P2P networks and prove under the
above model that it results in connected networks of constant degree and logarithmic diameter.
An important feature of our protocol is that it operates without any global knowledge of all the
nodes in the network. To our knowledge, this is the first such protocol with provable guarantees on
connectivity and diameter under a realistic dynamic setting.

The technical contribution of our analysis is a non-trivial analysis of an evolving graph with
nodes and edges arriving and leaving the network according to the protocol. The analysis is quite
challenging because of the dependencies among the random variables which naturally arises in our
analysis. However our model has two key properties which makes it tractable: independence between

the peers and the memorylessness of the peer duration times.

Online Computation: ([63]) We model the input sequence (also called “request sequence”) for
an online problem as a stochastic process. We then analyze the performance of the best online
algorithm (for different online problems) based on the characteristics of the input sequence. This
is a very different approach compared to the standard competitive analysis of online algorithms.
We use entropy of the stochastic input to study online performance. Entropy is a measure of the
uncertainty of a stochastic process. Intuitively, we expect online algorithms to perform well on highly
predictive sequences (low entropy), rather than sequences with little pattern or high randomness
(high entropy). We study the relation between entropy of the request sequence and the performance
of the best online algorithm for three classic online problems: list accessing, caching and prefetching.
Our approach is motivated by practical applications (such as partitioning a malleable cache) where
we need to quantify the resources a system needs to allocate for a given online process.

In our stochastic model, there can be arbitrary dependencies among the random variables. How-
ever, our assumptions of stationarity and ergodicity allows us to use powerful results from information

theory.



Web Models: ([65]) We develop and analyze (both analytically and experimentally) models for the
Web graph. Our models explain the PageRank distribution (a ”global” property of the Web which is
used in Google to rank Web pages) while incorporating the previously studied degree distributions
(a "local” property). To our knowledge this represents the first modeling of the Web that goes
beyond fitting degree distributions on the Web.

The stochastic graph process induced by our models do not have the properties of stationarity or
independent increments. The models are difficult to analyze rigorously; however we do manage to
give heuristic arguments which give good insight into the main feature we are interested in modeling;:
the PageRank and degree distributions. We also perform experimental simulations to support the

theoretical analysis.

1.2 Organization

In chapter 2, we give a brief review of key results from probability theory, stochastic processes, and
information theory used in our analysis. The next four chapters (3, 4, 5, and 6) deal in detail the four
results we outlined briefly above. Each chapter starts with a detailed motivation for the problem
being addressed. Also a clear-cut rationale is presented for the stochastic modeling and analysis that
follows. Each chapter also discusses related work and pointers for further work wherever possible.

We end the thesis with a brief epilogue.



Chapter 2

Stochastic Processes and

Probabilistic Techniques

In this chapter, we briefly review basic concepts from probability theory, stochastic processes, and
information theory. The first section lists useful inequalities from probability theory. The next
section gives a brief introduction to martingales which are useful in handling dependent random
variables. The next two sections give a brief introduction to stochastic processes (in particular
Poisson processes) and information theory. This chapter is intended mainly as a quick reference for
other chapters in the thesis; readers familiar with this material can skip to a subsequent chapter of

their interest. For detailed expositions and proofs we refer to standard texts mentioned.

2.1 Inequalities from Probability Theory

We review basic inequalities which are used frequently in our analysis. Especially useful of these are
the "large-deviation” inequalities which bound the probability that a certain random variable takes
a values far away from the mean. For proofs and more detailed expositions we refer to [56] and [3].

A very useful inequality is Boole’s inequality, also called as the union bound. Let £1,&s,...,&,

be arbitrary events. Then

Pr(Up,&) < > Pr(&) (2.1)

The union bound is often used to bound the sum of probabilities of a set of events - no special
assumption on the set of events (such as independence) is needed.
Another useful inequality is the following special case of the Boole-Bonferroni inequality which

gives a lower bound on the probability of a union of events.
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Pr(UL.&) > ) Pr(&) = Y Pr(&NE)) (22)
i i<j

A common theme in probabilistic analysis is to show that a random variable is not far away from
its mean, with large probability. Let X be a random variable and let u = E[X] and 6* = Var(X). A
simple and useful inequality called Markov’s inequality which holds for any positive random variable

is

Pr(X >t) <

=

(2.3)

for any t > 0.
Another useful inequality due to Chebyshev’s gives a stronger bound for any random variable
with a finite variance:

0.2

Pr(X —pl 2 < 5 (2.4)

for any t > 0.

We will often consider random variables that are indicator functions of some events; such random
variables are called indicator or zero-one random variables. Let Xi,..., X, be independent 0-1
random variables such that Pr(X; = 1) = p;, where 0 < p; < 1. Let X =Y | X; and p = E[X] =
St pi. For any § > 0 we have the following large deviation bounds (also known as Chernoff

bounds):

é

For 0 < § < 1 we have the following bounds:

Pr(X < (1—0)p) < e 1/ (2.6)
Pr(X > (1+0)p) < e H°/3 (2.7)

Note that if p; = p for all i, then X is simply a binomially distributed random variable with mean
np. Thus the above bounds can be interpreted as bounding the tail probabilities of the binomial
distribution.

We also use Chernoff-like bounds involving distributions other than the sums of indicator random

variables. Let P have a Poisson distribution with mean p. Let € > 0. Then we have:

Pr(P < p(1—€)) < e™ 1/ (2.8)
m
Pr(P > p(1+€) < |e(1+¢)~(1H+9) (2.9)
We use Chernoff bounds extensively to bound the probability that a random variable is not far

away from the mean. The zero-one estimator theorem ([46]) used in chapter 3 is a straightforward

consequence of the Chernoff bound.



2.1.1 Martingale Inequalities

Martingales are useful in handling sums of random variables which are not totally independent.
(Note that the Chernoff bounds given above assume that the random variables are all independent.)
Our discussion on martingales will be brief and focussed. A good reference for martingales and their
algorithmic applications is [56].

A sequence of random variables Xg, X1, ..., is said to be a martingale sequence if for all i > 0,
E[X;|Xo,...,X;-1] = X;_1. An immediate consequence of this definition is that E[X;] = E[X,].
This property is very useful in obtaining Chernoff-like bounds even if the random variables are de-
pendent provided they have the property of bounded differences, made precise below. Let Xg, X1, ...

be a martingale sequence such that for each £,
| Xt — Xg—1] <

where ¢, may depend on k. Then Azuma’s inequality gives for all ¢ > 0 and any A\ > 0,

2

D
Pr(|X; — Xo| > \) < 2e 2Th=1ci (2.10)

Thus Azuma’s inequality gives a Chernoff-like bound for martingale random variables. One of the
reasons why martingales (and the method of bounded differences) prove so useful in stochastic anal-
ysis is because we can construct a martingale sequence from any random variable. Let Z1, Zo, ..., Z,
be any sequence of random variables (they can be dependent on each other in an arbitrary fashion)
and let X be any random variable. Define the random variable X; = E[X|Zy,...,Z;], i.e., the
conditional expectation of X conditioned on the variables Z; to Z;. Then Xy = E[X], X1,..., X,
form a martingale sequence. Martingales obtained in this manner are sometimes referred to as Doob
martingales.

A particular case of a Doob martingale in the context of random graphs is known as (vertezx)
exposure martingale defined as follows. Let G = (V, E) be a random graph. For each edge e; € E,
define the indicator random variable I; which takes the value of 1 when the edge e; is present in
G, and has value zero otherwise. In general, these indicator random variables can be dependent on
each other. Let Y = f(I1,I,...1g|) be any real-valued measurable function. For 1 <i <[V, let
E; be the set of all possible edges with both endpoints in {1,...,i}. Define Y; as the (conditional)
expectation of Y, conditioned by the knowledge of the indicator variables I; for all j € E;. Then
the exposure martingale sequence is defined as Yo = E(Y),Y,..., Yy =Y.

In the above setting, if |Y; — Y;_1| < ¢;, for each i, then the method of bounded differences gives

A2

Pr(|Y — E(Y)| > \) < 2¢ *Zilie? (2.11)

A martingale is a special case of a very general probabilistic concept known as a stochastic
process. For the sake of completeness we introduce the basic theory concerning stochastic processes

with emphasis on stationary processes. Our main references for the next section are [69] and [45].



2.2 Stochastic Processes

A stochastic process {X;,t € T'} is a family of random variables. The variable ¢ is often interpreted
as time, and hence X; represents the state of the process at time t. The set of possible values which
the random variables X;,t € T may assume is called the state space of the process. For example,
X; may represent the number of customers in a queue at time ¢ or the page request in a caching
system at time t or the position of a particle at time ¢. The set T is called the index set of the
stochastic process. If T is a countable set, then the stochastic process is said to be a discrete-time
process. If T is an open or a closed interval of the real line, then the stochastic process is said to be
a continuous time process. Both types of processes are encountered in this thesis: chapter 5 deals
with a discrete-time process while the graph process of chapter 4 is a continuous-time process.

An important special class of stochastic processes is stationary processes. A stationary process

is one whose probabilistic description is time invariant. More formally,

Definition 2.2.1 A discrete-time stochastic process {X:},t € {0,1,...} is stationary if the joint
distribution of any subset of the sequence of random wvariables is invariant with respect to shifts in

the time indez, i.e.,

PI‘{Xl :xl,Xg :$2,...7Xn:$n}:

PF{X1+t = x17X2+t =T2,--- 7Xn+t = xn}
for every shift t and for all x1,22,..., 2, € H.

Analogously, a continuous-time stochastic process {X;} is said to be stationary if X;, s — X, +s has
the same distribution as X;, — Xy, for all ¢1,t2 € T and s > 0.

Another important special property that many stochastic processes used in applications possess
is that of independent increments: a continuous-time process is said to have independent increments

if for all choices of tg < t; < ...t,, the n random variables
Xty — Xty Xty — Xtyy oo Xty — Xty

are independent. Well-known examples of processes with stationary independent increments are the
Poisson process and the Brownian motion (Wiener) process. We now describe in some detail the

Poisson process, an important process which arises in many modeling applications.

2.2.1 Poisson Process

A Poisson process is a special type of counting process. A stochastic process {Ng, ¢t > 0} is said to
be a counting process if N; represents the total number of events which have occurred up to time
t. Standard examples are the number of customer arrivals up to t or the number of radioactive

particles emitted up to t.

Definition 2.2.2 The counting process { Ny, t > 0} is said to be a Poisson Process if



1. NO = 0,’
2. {Ny,t > 0} has independent increments;

3. The number of events in any interval of length t has a Poisson distribution with mean At. That

is, for all s,t > 0,
(A"
n!

,n>0

Pr(Niys — Ns=n) =e

From 3, it follows that E[N;] = At and A is called the rate of the process.
Another equivalent definition which is sometimes useful in proving whether a certain process is

Poisson is the following.
Definition 2.2.3 {N;,t > 0} is a Poisson process if
1. No=0;
2. {Nt,t > 0} has stationary independent increments;
3. Pr(N; > 2) = o(t);
4. Pr(Ny =1) = At + o(t)

There is yet another way of characterizing a Poisson process in terms of the sequence of interar-

rival times.

Proposition 2.2.1 Consider a Poisson process with rate \. Let X1 denote the time from 0 to
the first event, and for n > 1, let X,, denote the time from the (n — 1)st to the nth event. Then

X,, n=1,2,... are independent identically distributed exponential random variables having mean
1

3-

The above proposition which follows from the properties of stationary and independent incre-
ments implies that the process has no memory i.e., from any point in time onwards, the process
is independent of all that has previously occurred (by independent increments) and also has the
same distribution (by stationarity) as the original process. This memorylessness property of Poisson
process is exploited quite often in stochastic analysis. We conclude our discussion with another
useful property of the Poisson process. Suppose we are given that exactly one event has taken place
in the interval [0, ¢]; then the time of the event has a uniform distribution over [0,¢]. This can be

generalized to more than one event (see [69, Theorem 2.3, page 17]).

2.3 Information Theory

Let {X;}, 7 € {0,1,...} be a discrete (time) stochastic process. To define the entropy rate of {X;}
we recall some basic information theory terms. The entropy H(X) of a discrete random variable X
with alphabet #H and probability mass function p(x) = Pr{X =z}, € H is

H(X)=-)_ p(z)lgp(x) (2.12)
zEH
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The joint entropy H (X, X2) of a pair of discrete random variables (X7, X2) with a joint distri-

bution p(z1,zs) is
Z Z p(x1, 22) lg p(z1, 2) (2.13)
T1EH x2€H
The conditional entropy H(X2|X1) is

H(X5|X1) = Y pla)H(X2| Xy =2) =
z1EH

— Z Z p(z1, 22) g p(za|z1) (2.14)

r1EH x2EH

The entropy per letter H,,(H) of a stochastic process {X;} in a sequence of n letters is defined

as

Definition 2.3.1 The entropy rate of a stochastic process {X;} is defined by
H(H)= lim H,(H)
n—oo

when the limit exists.

It can be shown that for stationary processes (with finite Hy(H))) the limit H(H) exists and

lim H,(H) =
n— oo
lim H(Xp|Xp-1,Xn-2,...,X1) = H(H) (2.16)
n—oo
H(Xn|Xn—17 N 7)(1) is
non-increasing with n (2.17)
H,(H) is non-increasing with n (2.19)
In particular when X, X, ... are independent and identically distributed random variables (also

called as a discrete memoryless source)

H(H) = lim S H(X1, Xs, ..., X,)) = lim = H(X,).
n

Informally, an ergodic source is one that cannot be separated into different persisting modes of
behavior. A good illustration is given in [34]. More formally, the law of large numbers hold for
ergodic processes. Let {X,,} be an ergodic stationary process having a finite mean m. Then with
probability one,

1
lim —(X;+--+Xp,)=m (2.20)

n—>o00 N

Good texts for an in-depth coverage of the above concepts are [23] and [34].



Chapter 3

Communication Networks

In this chapter, we study the problem of evaluating Quality-of-Service parameters in statistically
multiplexed communication networks. Communication request is modeled by a simple stochastic
source: an on-off source. Though simple, it captures the key feature of a bursty source, common
in Internet traffic. Our main result is an efficient Monte-Carlo algorithm for estimating the failure
probability of a general communication network. Our method is particularly useful in a dynamic
setting in which communication requests are dynamically added and eliminated from the system.
The amortized cost in our solution of updating the estimate after each change is proportional to the

fraction of links involved in the change rather than to the total number of links in the network.

3.1 Introduction

Modern communication protocols such as ATM (Asynchronous Transfer Mode) achieve high utiliza-
tion of channel bandwidth by multiplexing communication streams with different flow characteristics
into one communication channel. Requests for communication are submitted to the network man-
agement protocol with some statistical characterization of the required communication. The network
(flow) management protocol uses this information to statistically multiplex as many communication
requests as possible while maintaining global network performance.

Next generation communication networks are expected to provide QoS (quality of service guar-
antees) when satisfying communication requests. In particular, QoS protocol is expected to limit
to a pre-specified value the probability of communication failure due to events such as cell loss, cell
delay and cell jitter [38]. The goal (on the part of the communication provider) is to satisfy as many
communication requests as possible while maintaining pre-specified QoS guarantees. In this work,
we focus on cell loss failures due to link or buffer overflow. Our method can be modified to handle
other statistically governed communication characteristic such as cell delay and jitter.

In the case of a one link network, achieving QoS guarantees is reduced to bounding the probability
that a sum of random variables exceeds a given bound, where each random variable represents the

stream of data of one logical link, and the bound is the bandwidth capacity of the channel (or the

11
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adjacent buffers). Most previous works have focused on communication flow modeled by an on-off
source [49]. A (g,s) on-off source sends at a peak rate of s with probability ¢ and zero otherwise.
This model captures the extreme bursty nature of high speed networks based on ATM and related
technologies. On-off sources have been studied extensively both in theory [49, 76, 50] as well as in
simulation studies to evaluate performance of routing algorithms in ATM networks [38]. The work
in [76] is especially interesting as it argues that the fractal nature of Internet and Ethernet traffic
is captured very well by on-off sources. Techniques such as effective bandwidth give efficient and
practical solution for providing QoS guarantees on one link networks [28].

The problem of bounding the overflow probability in a multi-channel network of arbitrary pattern
is significantly harder. In fact the related optimization problem is # P-complete [77] even if all logical
links are fed by on-off sources with the same parameters ¢ and s. We are not aware of any known
heuristic to this problem, other than summing the failure probability on all network links. (Which
is what is done in practice [38].) Such an estimate is far too expensive, since in large networks it
can significantly over estimate overflow probability, and thus under utilizing network capacity.

In this work, we give the first non-trivial algorithms for estimating QoS properties in statistically
multiplexed networks. Our algorithms employ efficient Monte-Carlo method to accurately estimate
the overflow probability of any set of channels in an arbitrary topology network. These estimates
translate into better admission control policy that achieve higher bandwidth utilization while guar-
anteeing same quality of service. We study this problem under static and dynamic settings. In the
static setting, we assume that a set of connections are already active (routed) in the network and we
are interested in whether QoS requirements are violated. In the dynamic setting, we are interested
in admitting a new connection to the network and we desire a fast admission control algorithm to
decide whether to admit this connection subject to QoS requirement.

Figure 3.1 illustrates the procedure followed by a typical network management protocol when ad-
mitting a new connection. When a new connection request, say C' arrives, the routing algorithm (for
example, an algorithm used in telephone networks is the Dynamic Routing Algorithm (DAR) [73])
selects a path in the network, say P where this connection might be routed. Then the admission
control algorithm decides whether routing this connection through P would violate QoS guarantee.
If QoS requirement is violated, then either C' is rejected or (as in the DAR) an alternative route
might be selected for P and the QoS guarantee condition is again checked. (In DAR the connection
request is denied if there is a violation for the second time). If QoS guarantee is met, then connection
request is admitted to the network. It is useful to think of admitting a connection in this way as it
separates routing and admission control, although they might be implemented as a single algorithm
[38]. In this work, we focus only on admission control. We assume that when the admission control

protocol is invoked a path had already been selected by the routing algorithm.

3.1.1 ATM Networks and QoS Guarantees

To demonstrate the use of our estimation algorithms to achieve efficient admission control we focus

in this section on its application to ATM networks.



13

routing agorithm QoS enforcer (admission control)
connection . .
request_ C chooses apath P 1sQoS violated No (Route C viaP)
in the network if Cisrouted Yes (Reject C) Communication
through P? e Network
Yes
choose another

Figure 3.1: A schematic to illustrate how a connection is handled

ATM is emerging as a standard for Broadband Integrated Services Digital Networks (B-ISDN)
carrying a wide spectrum of new consumer services such as video-on-demand, video teleconferencing
etc. Specifically, ATM is a high-speed, virtual-circuit-oriented packet-switching technique that uses
short, fixed-length packets called cells. A wvirtual circuit in an ATM network is a contract between
the network and the customer to deliver traffic of specified quality of service (QoS).

Practical ATM networks are essentially modeled as a complete graph G of say, m edges and N
nodes (terminals). Nodes are endpoints of a communication request and edges are communication
links with specific bandwidth limits. A connection or a communication request is a (source, destina-
tion) pair with bandwidth requirements. Each edge in G can be thought of as a Virtual Path (VP)
and connections are Virtual Circuits (VC’s) ([38], [48]). When establishing a VC such that a pair of
terminals can communicate, a route consisting of a set of VP’s is selected. Following the practices
of dynamic routing in telephone networks ([38], [48]), routes that consist of more than two hops are
excluded. If a route consists of one VP, it is a direct route; otherwise, it is an alternative route.

To provide QoS guarantees, we suppose that the fraction of cells lost is not permitted to exceed
a given fraction p.! Let p;(l) denote the fraction of cells lost in the input buffer of VP, of the
network, when [ VCs are being routed through V P;. We assume that these single link probabilities
can be determined by cell level analysis [4] or by simulations [79]. We classify a VC as either a
VC; or a VCy; if the VC is assigned one-edge route {j} or two-edge route {i,j}, respectively. In an

alternatively routed VC, cell loss can occur at either of the two VPs. Notice that
Pr(“cell lost on a VCi;”|l;,1;) < pi(l;) + pj(15)

that is, the probability that a cell of a V' C;; is lost when there are [; VCs using V' P; and [; VCs
using V P; is less than the sum of two VP loss probabilities.

In [38], the QoS-permissibility conditions for setting up a new virtual circuit are as follows:

1. direct route j: (a) p;({; +1) < p and
(b) For every V P, such that a VCjy, is in progress, p;(l; + 1) + pr(lx) < p.

LA typical value of p ranges from 1076 to 10~7.
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Notice that the first of these conditions ensures that the additional VC will not cause cell loss
to be excessive for any of the directly routed VCs on V' P;. The second condition ensures that
cell loss will not be excessive for any of the “overlapping VCs” that is, the alternatively routed

VCs employing V P;.

2. alternate route {7, j}: (a) p;(l; + 1) + p;([; +1) < p and
(b) For every V P, such that a VCy is in progress, p;(I; + 1) + pr(Ix) < p; and for every V Py
such that a V'Cjy, is in progress p;(l; + 1) + pe(lx) < p.

Notice that QoS-permissibility of any route involves examining VPs that are not on the route
under consideration. In the above permissibility conditions in cases 1(b), 2(a) and 2(b) instead
of just summing probabilities which can be a gross over estimation of the overall loss probability
(especially when the two edges under consideration share a lot of common connections) we can use
the methods developed here to accurately estimate this probability in these cases. Thus one of
the main contributions of our work is to efficiently and accurately estimate such loss or overflow
probabilities when we have arbitrary pattern of connections in an arbitrary topology network.

While we focus here on the problem of bounding the probability of an edge overflow in a given
set of edges in the network (i.e. a subgraph of the network) our technique can be very easily
adapted to address weaker QoS guarantees such as the connection-based overflow constraint [50].
A connection-based overflow constraint bounds the probability of an overflow along a given logical
link. We can model overflow constraints in a network in two main ways: the [link-based overflow
constraint and the connection-based overflow constraint [50]. More formally, let the random variable
X; be the demand corresponding to connection ¢;. Let P; represent the route of the connection ¢;,
that is the edges of the path of ¢;. The link-based overflow constraint requires that for each edge
ej, we have Pr[>" X > B,] < Qo, where Qg is the overflow probability allowed by QoS. On
the other hand, the connection-based overflow constraint requires that for each connection ¢; we
have Pr[3e; € P; : >

of service to users in a network, the connection-based overflow constraint is more natural. Both

ire; €P;

iie; € P, X; > Bj] < Qo. From the perspective of providing guaranteed quality
these constraints can be enforced by our method of accurately estimating the overflow probability
in an arbitrary subnetwork. For example, bounding the probability that an edge overflows in a
suitable subgraph of the network enforces the connection-based overflow constraint. Under the QoS
permissibility conditions mentioned earlier (which enforce the connection-based overflow constraint)

we have to check for overflow condition in two-link subgraphs.

3.1.2 Problem Statement and Related Work

We consider a communication network G = (V, E') with physical channels (edges) denoted by the set
E = {e1,ez,...,¢e/g}. For each channel e; we have a constant B; specifying the maximum bandwidth
of that channel. The data flow in a logical channel, or a communication request or connection is
characterized by a distribution function specifying the probability that the channel sends a given

amount of data at a given time step. Thus a communication network consists of the physical network
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G along with the connections active in the network. A subnetwork is simply a subset S of E along
with the connections that are active in edges belonging to S. For our purposes, we simply model a
communication request as a random variable. Our goal is to satisfy as many communication requests
as possible while maintaining pre-specified Quality of Service (QoS) guarantees. We focus here on
one such guarantee, bounding the probability of overflow on a given set of edges in the network (i.e.
a given subnetwork).

Consider first a simple scenario in which all logical channels are fed by identical® (gq,s) on-
off sources, i.e. the data flow distribution in each logical channel has only two states: a flow
of rate s with probability ¢, no flow with probability 1 — ¢, and the states on different channels
are independent events. Since all logical channels have identical, independent, distributions the
probability of an overflow in a given edge can be computed by the Binomial distribution. Computing
the probability of an overflow in the entire network for example, is significantly harder and can be
shown to be #P-complete by a straightforward reduction from the union of sets problem [46]. If
the flow distribution of the logical channels is less restricted, then even the exact computation of
overflow on one edge becomes intractable. In particular, if logical channels are fed by on-off sources
with different parameters (g;, s;), even computing the overflow probability of one edge becomes
# P-complete [50].

In practice, the complexity of computing the overflow on one edge is circumvented by using the
method of effective bandwidth [43, 49, 28]:

Definition 3.1.1 The effective bandwidth of a random variable X is

_ log E[p~¥]

ﬁP(X) 10gp,1

(3.1)

The significance of the above definition will be clear from the following theorem which gives a
conservative estimate of the overflow probability in the following sense: If the sum of the effective
bandwidths of a set of independent connections does not exceed the link capacity, then the probability
that the sum of their transmission rates exceeds twice the capacity at any instant is at most p. Given
the effective bandwidth of individual logical channels a bound on the overflow probability of a given

edge can be computed using the following result due to Hui[43]:

Theorem 3.1.1 Let Xy,...,X, be independent random variables, and X =Y, X;. Let a > b. If
> Bp(X;) < b, then Pr{X >a} <p*P.

Proof: The proof is a simple application of Markov’s inequality. From, >, 6,(X;) < b we have
> log Elp~*i] < logp~®. Hence ILE[p %] < p*. Since X; are independent, IL;E[p~Xi] =
E[;p~Xi] = E[p~X: %] = E[p~¥] < p~°. Now by Markov’s inequality, Pr{X > a} = Pr{p~%
P~} < PUEpTX] < pth 0

A%

2Identical or almost identical connections capture ATM networks supporting homogeneous sources [38]. In ATM
terminology this is referred to as a VP subnetwork which is a collection of VCs transporting identical sets of traffic
sources i.e. with same traffic characteristics and QoS requirements. Statistical multiplexing is more effective for
homogeneous traffic sources. See [38] for more details.
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3.1.3 New Results

Given a method for estimating the overflow probability of a given edge (either directly for simple
flow distributions, or through the concept of effective bandwidth for more general distributions) we
are interested in estimating the overflow probability of a given set of edges in a network which is the
probability that some edge will overflow among the set of edges (a more precise definition is given

in section 3.2. More specifically we are interested in two versions of the problem:

1. The Static Problem: Given a set of edges S in a network and a set of logical channels

estimate the overflow probability of the set S in the network.

2. The Dynamic Problem: Given a network (or a subnetwork), a set of logical channels, and
a sequence of add and delete communication requests, determine for each request if granting
that communication request violates a predetermined bound on network overflow probability

in the network (or subnetwork).

Let m be the number of physical links in a subnetwork S, n be the number of active logical links
(connections) in S (i.e. the connections that use any of the edges in S). Our results apply to any
set of on-off sources (with possible different parameters to different logical links). For the static case

we present an efficient (e, §)-approximation for overflow probability in S.

Definition 3.1.2 An (¢,0) Monte-Carlo approzimation for Q) is a value Q such that
Pr(1-6Q <Q < (1+6)Q] >1-9,

where the probability depends only on random steps made by the approrimation algorithm.

Theorem 3.1.2 There is a Monte-Carlo algorithm that computes an (€,0) approximation of the

probability of overflow of a subnetwork S in O(nme=2logd™!) time.

Henceforth, when we talk about an e approximation with high probability (whp), we mean that §
is 1/m¢ for some constant ¢ > 1. We refer to it as an ¢ approximation whp algorithm.
For the dynamic setting we define an incremental version of an e approximation for determining

QoS guarantee whp.

Definition 3.1.3 Let Qo be the pre-defined QoS failure probability for a network (or subnetwork).
Let Q' be the exact failure probability of the network (or subnetwork) after adding a new communica-
tion request. A dynamic algorithm is an € approximation whp for QoS guarantee, if whp the algorithm

rejects a new request when Q' > (1 — €)Qo, or accepts the new request when Q' < (1 + €)Qo.

Theorem 3.1.3 There is a Monte-Carlo € approximation whp algorithm for the dynamic problem
with O(nflogm) amortized complexity, where f is the number of edges involved in a given change

in the communication (added or deleted requests).
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3.2 The Static Algorithm

Our static algorithm is based on the Karp, Luby and Madras (¢, d) approximation algorithm for the
cardinality of union of sets [46].

We will first briefly explain the algorithm for the union of sets problem. In the union of sets
problem we are given m sets D1, ..., Dy, and the goal is to estimate |U™, D;|. The idea is to estimate
the union by a Monte-Carlo sampling method as follows. Sample a pair (i, s), where 1 <4 < m, and
s € D;, with probability 1/ 57" | |D;| and compute the fraction of sets that contain s. By iterating
this step O(m) times one gets a tight estimate of the “overlap” between the sets, thus obtaining an
estimate of the cardinality of the union. For the union of sets problem Karp and Luby prove the

following theorem.

Theorem 3.2.1 [/6] There is a Monte-Carlo algorithm that computes an €,6 approzimation of the
cardinality of the union of m sets in (8 x (14 €) *m1In(3/5))/(1 — €2/8)e? steps.

We will now describe the static algorithm. We will assume a communication network (graph)
G = (V, E) where all communications are fed by on-off sources with identical parameters, i.e. (g, s)
on-off sources.

We will focus on a subnetwork S C E. 3 Let the number of edges in the subnetwork be m. In
our formalization, instead of sets of elements we have m events, &1,...,&, where the event &; is

“edge i € E overflows”. An event is a collection of states, where a state is defined as follows.

Definition 3.2.1 (state of the network) Assume a network where all communications are fed by

on-off sources. A state of the network is an on-off setting for all sources.

For example a network fed by three on-off sources can be in state s = (1,0,1), meaning that the
first and third sources are in the “on” state, while the second state is in an “off” state. Given a state
s, we denote its probability as Pr[s], which is simply the probability that the network will be in state
s. Further, because we have assumed independence of sources, the above probability is the product
of the probabilities of the individual sources being in their respective states. In the example above,
Pr[s] = ¢?(1 — q), assuming that all sources are identical and independent (g, s) on-off sources.

Thus the event &; contains all the states (which we can think of as atomic events) that overflow
edge i in S. Instead of estimating the cardinality of the union of sets we need to estimate the
probability of the union of m events, where different states have different probabilities. That is
we are interested in estimating (), the subnetwork overflow probability which can be viewed as the
probability that in a randomly chosen subnetwork state (according to the probability distribution
of the connections) some edge in the subnetwork will overflow. We would like to calculate an (e, d)
approximation of @@ which we will denote by Q. (Henceforth, a tilde on top of a value denotes an

estimate of that value in the (e, d) sense.)

30f course S can be E itself, but to emphasize the full generality of the algorithm we describe the algorithm in
terms of an arbitrary subnetwork. This also makes clear the fact that the algorithm does not depend on any way
on the topology of the network or subnetwork, but only on the number of edges in it.
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The static algorithm is given in figure 3.2. As is common in Monte-Carlo algorithms, the main
idea is to set up a random variable (in our case Y;) whose expectation is equal to the desired
parameter (here ()) and then estimating the expectation by sampling from this random variable.
For polynomial running time we have to show that we need only a polynomial number of samples
to get an accurate estimate with high probability.

We now describe the algorithm informally and show how we set up the random variable Y;. In
theorem 3.2.2, we show formally that this random variable correctly estimates the required parameter
Q. Let p; be the probability that edge i overflows. This probability can be calculated exactly as
we have assumed identical (g, s) on-off sources and the overflow probability in a single edge can be
computed by the binomial distribution. Let P = > " p;. The algorithm consists of many trial
steps which is iterated repeatedly till we get an (e, d) estimate of Q). One trial in the static algorithm
(which is step 4 in figure 3.2) is choosing a pair (i, s), where i € E and s € &; (i.e. s is a state in
which edge i overflows) with probability Pr[s]/P, and estimating the fraction of number of edges
that overflow in state s (this is similar to the “overlap” between sets mentioned in paragraph 2) In
step 4.3 (consisting of 5 sub-steps), we compute the number of overflow edges in a fixed state s.
If we do this step in a straightforward way, that is checking for overflow in each edge one by one,
one trial itself will take O(m) steps, as in the worst case we have to check every edge in S. Instead
we resort to a Monte-Carlo sampling to estimate the number of overflow edges. This can be done
simply by sampling edges uniformly at random and checking for overflow (step 4.3.4).

We will now mention how we choose a pair (i, s) at the beginning of the trial step. This is done
in two steps. In step 4.1 we first choose an edge ¢ € E with probability p;/P and then choose an
overflow state s € &; with probability Pr[s]/p; in step 4.2. We use the choose algorithm in selecting a
random overflow state s € &; with the appropriate probability i.e. Pr[s]/p;. Let C; = {c1,... ,¢c;|}
be the set of connections going through edge i. Given an edge i we choose a state that overflows

that edge using the algorithm choose given below.

(Let &€ denote the complement of the event &)
Pr[s]
Pi

Algorithm choose: choosing a state s with probability

1 Set all connections not belonging to edge C; to “on” with probability g.
and “off” with probability 1 — ¢
2 Let Fy be the event “edge i overflows”
3 for k=1 to |C;| do
3.1 Let & be the event “cg is on”
3.2 Set ¢, to “on” with probability by, = Pr{&|Fr_1}
and to “off” with probability 1 — by.
3.3 if ¢}, is set to “off” then Fj, = &, N Fr_1
34 else Fp, =&, N Fr_1

Lemma 3.2.1 The choose algorithm chooses an overflow state s with the probability Pr[s]/p;.
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Proof: Connections outside C; are clearly independent of the event “edge ¢ overflows”. Hence these
connections can be set to “on” with probability ¢ and to “off” with probability 1 — ¢. Connections
belonging to C; are set to “on” or “off” with probabilities as calculated in the choose algorithm.
Suppose s is a state in which edge i overflows. Let s(¢;) be the status (“on” or “off”) of connection
c; in state s and let Pr[&,(.,)] denote the probability of the event that c; is in state s(c;). Then the
probability that a connection ¢; is set to s(c;) is Pr[€sc,)|Fo N Eser) N -+ N Ee;_y)]- By the rule of

conditional probability we have,

Pr[Fo] X Pr[€s(cp)|Fo] X Pr[€4(ea)|Fo N E(er)] X -+ X
Pr[Eseie, )1 Fo N Es(er) N+ N Es(en_n)] =
Pr[Fo NEs(e,y N+ N gS(C\ci\)] = Pr[s]
since in state s the edge overflows. Thus probability that state s is chosen is Pris] gince Pr[Fo] = pi-

pi
O

The conditional probabilities in the choose algorithm can be calculated using the Bayes’ rule as
follows. For example the probability that a connection ¢ is “on” in a randomly chosen overflow state
of a particular edge i is given by Bayes’ rule as:

Pr{i over flows|c is “on"} « Pr{cis “on"}
Pr{i over flows}

Pr{cis on|i over flows} =

The choose algorithm can be implemented in O(n) time by pre-computing the conditional prob-
abilities and using a look up table.

In the following theorem we show that E[Y;] is Q. Also the running time is upper bounded by
N which is polynomial in m, 1/e and log(1/4).

Theorem 3.2.2 The run-time of the static algorithm given in Figure 1 is O(nme 2logd 1) and it

produces an (€,0) approzimation of the overflow probability in the subnetwork S.

Proof: We show that E[Y;] = @ for any index t. Let s be an overflow state in S. Let C(s) = {(s,1) :
edgeioverflows in states}. Let R, = {s: |C(s)| = k},k = 1,...,m. That is Ry is the set of all
ser, Pr(s). Then, P = 37" kxry
and @ = > ;- ri. This is because P = Y., p; is the sum of the probabilities of all overflow
states s with s being counted k times if s € Ry, (once for each edge). On the other hand @ is

overflow states in which exactly %k edges overflow. Let ry = >

simply the sum of probabilities of all overflow states s. Now, E[Y;] = E[t(s)] * P/m. Since the
random variable t(s) depends only on k, t(s) is geometrically distributed with mean m/k. Hence,
E[Y;] = 3%, Pr(s € Ry)* P/k. Steps 4.1 and 4.2 choose a state s with probability Pr[s]/P. Hence,
the probability that in a trial a state s € Ry is chosen is k % ry /P, and we have E[Y;] = Q. The
random variables Y7,... ,Y; are independent and identically distributed with mean Q. We obtain
an estimate of the mean by simply averaging over these ¢ random variables. The number of steps

needed to get an (€, d) approximation follows due to theorem 3.2.1 proved in [46]. o
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The Static Algorithm
(m is the size of the subnetwork)

1 gtime = 0 /* gtime counts the global number of steps executed */
2t =0 /* counts the number of trials */
3N =8x(14+¢) *mlIn(3/5))/(1—€*/8)e>
4 trial:
4.1 randomly choose i € {1,... ,m} such that i is chosen with probability p;/P
4.2 choose a state s with probability Pr[s]/p; using the choose algorithm
4.3 t(s) =0 /* t(s) is the step number, counts the number of steps in this trial */
step:
43.1t(s) =t(s) + 1
4.3.2 gtime = gtime + 1
4.3.3 if gtime > N then go to 5
4.3.4 randomly choose j € {1,... ,m} with probability 1/m
4.3.5 if 5 does not overflow in s then go to step
45t=t+1
46Y; = Pxt(s)/m
4.7 go to trial

Figure 3.2: Static Algorithm for estimating overflow probability in a subnetwork

We can use the static algorithm even when connections are arbitrary on-off random variables by
using Hui’s theorem (theorem 3.1.1) as an upper bound on the overflow probability. For example,
we can choose b in the above theorem to be the bandwidth capacity of the edge and a to be 2b.
Then Hui’s theorem gives an upper bound on the probability that twice the bandwidth capacity will
be exceeded. Then our Monte-Carlo algorithm will find an overall estimate of this upper bound.
To choose a state s with the appropriate probability in the choose algorithm we again use Hui’s

theorem when calculating the conditional probabilities.

3.3 The Dynamic Algorithm

We consider now the dynamic problem in which the network protocol needs to react to a sequence
of add and delete requests. For each add request, the protocol needs to decide if adding that request
violates the system’s QoS requirement. The goal is to use past estimates in order to minimize the
work of each evaluation. Assume that the change in the network (add or delete) involves a subset
F C FE of edges, where E is the total number of edges in the network. In this section for simplicity,
we focus on estimating the overflow probability of the entire network. The same analysis carries
over if we focus on the overflow probability of any subnetwork. Since the static algorithm requires

O(nmlogm) steps * to check for QoS guarantee without prior information, we are looking for an

4From now on, we assume that § is 1/m¢ for some ¢ > 1 to guarantee estimation with high probability. ¢ is a fixed
constant. Also |E|, the size of the network is assumed to be m.
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incremental algorithm that can check the same in |F'|/m of that complexity or O(n|F|logm) steps.
Since error probabilities accumulate, we will need to compute a new estimate for the whole network
after a long sequence of changes, however, the amortized complexity will remain O(n|F|log m) work
per addition or deletion.

Let @ and Q' denote the overflow probability of the network before and after the connection
was added. Let Q and Q' denote their respective estimates. Let Qp and Q' denote the probability
that an edge in F' overflows in a randomly chosen state before and after the change. We also define
QE_r to be probability that only an edge in E — F overflows in a randomly chosen network state.

Clearly

Q=Qr+Qrr (3.2)

And since the change involves only edges in F

Q' =QF +Qp-F (3.3)

Let W be the probability that a random state s that overflows before the change, overflows only edges
in E— F, then Qg_r = WQ. Thus, instead of estimating Q" directly (which requires O(nm logm)
time) we can estimate Q% and W, focusing only on |F| edges. The incremental algorithm for
estimating the overflow probability after a change that involves the set of edges F' is given in Figure
3.3.

The main result of this section is the following theorem.

Theorem 3.3.1 The incremental algorithm of Figure 2 satisfies definition 3.1.3 and takes O(n|F|logm)

steps, where n is the total number of connections in the network.

Proof: We will show that the algorithm gives an e approximation of @)'. The idea used is as
follows. Since we use the formula Q' = Q' r+ W %@, we lose some accuracy because the second term
is in the form of a product and we have assumed that we have an € estimate of (). To compensate
for this loss, we estimate Q' with a greater accuracy, which can be done if Q' is not “too small”.
On the other hand, if Q' is “very small” we can directly bound @’.

More precisely, we have an e approximation of @) and €' approximations for Q% and W. This
gives rise to eight different cases. We will analyze the most interesting among them. We will show
that

1-6Q <Q =1+Qr+(1+6)Q(L+e)W < (146)Q' (3.4)

The left side of the inequality is obvious. We will show the right side. That is we have to show
that,

€*xQr+QxW(e+eé +ee)<exQ' (3.5)

Simplifying we have,

;o exQ —exQxW Q'
UL TA+oWQ  Qrt+(1+eWQ




22

Incremental Algorithm y y
(Qo is a parameter fixed by QoS. @ is the current € estimate of the network overflow probability. @
is the new eQStimate after a connection is added or deleted.

Fix ' = 57— and 0’ = 1/(3m3). FLAG is a global logical variable)

1 Estimate the overflow probability Q~’F for the set F' (after the new connection was added)
using the algorithm of Figure 1, with the parameters (€', 0").

Q' Q
If 1;‘:, §~2(§—+6) then

Q=Q
set FLAG = “true”
exit
else set FLAG = “false” and go to step 2.
2 Let W be the probability that a randomly chosen network state overflows
(before the new connection was added or deleted) only in E — F and not in F.
The following steps compute an (¢',8") approximation W for W'
2.1 for k=1to N = 2£¢ « (4In(2/8")/(¢')?) do
2.1.1 randomly choose i € {1,...,m} such that ¢ is chosen with probability pl/Q
2.1.2 choose a state s with probability Pr[s]/p;
(The above two steps choose an “overflow” state s with probability Pr[s]/Q)
2.1.3 if any edge in F' overflows then set Z, =0
2.14 elseset 7, =1
2.2 endfor
2.3 W =3, Z/N
3Q'=Q'r+W=xQ
4If Q' < Qo then
“QoS is not violated: admit connection request”
else
“QoS is violated: reject connection request”

Figure 3.3: Incremental Algorithm for determining QoS guarantee after a connection is added or
deleted

Now, by our condition in step 1, whp we have Q/Q > €/2. Using the fact that W =1 - Qr/Q,

we can show that the above inequality holds.

Now we can show that this gives an incremental € approximation for determining QoS guarantee.
This is clear if we proceed to step 2, since we compute Q' with € accuracy. On the other hand, if we
finish at step 1, then because of the condition stated, Q% < % whp. Since Q' < Q + Q, we still
don’t violate the QoS guarantee whp.

Finally, we show that running time of the algorithm is O(n|F|logm). Step 1 takes O(n|F|logm)
time. Step 2 takes O(n|F|logm) time because we have to check for overflow only in edges belonging
to F (in step 2.1.3). The upper bound we choose for the number of trials needed to estimate W
needs some explanation. Step 2 is simply an application of the zero-one estimator theorem of [46].
To bound the number of trials needed, we calculate a lower bound on W needed for an e estimation

of Q'. We do this as follows. We again have eight different cases, but the inequality in 3.4 gives the
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lower bound on W. Strengthening inequality 3.5 we require,
€xQ +Q xW(e+e +e)<exQ' (3.7)

because Q% < Q' and @ < Q'. So we have,

e—¢
W < 3.8
T 2+4e€ (38)
Hence it’s enough if we perform N = 2£5 « (41n(2/6")/(¢')?) trials. |

We notice that in the incremental algorithm we “lose” a small constant factor in the confidence
probability in each call to the algorithm. This is because our estimate in the incremental algorithm
(step 3) is an addition of two terms, one of which is in the form of a product. Hence if the error in
each estimate is §, the error of the total estimate adds up to 3%4. So, to maintain an € approximation
whp, we run the first and all calls of the incremental algorithm with § = 1/(3m?). Every m? calls we
re-evaluate () using the static algorithm for the entire network (with § = 1/(3m?)). Since a call to
the static algorithm takes O(mn logm) time the amortized work done for every addition or deletion
is still O(n|F|logm).

We use the logical variable FLAG to check whether we proceeded to step 2 or not in the
incremental algorithm. In other words, if FLAG = “true”, then we have Q=/Q < €/2 with high
probability, and we didn’t proceed to step 2. Although this means, that we are still within the “safe”
range as far as QoS guarantee is concerned, we have to keep track of additions or deletions, where
this occurs. Otherwise, errors can accumulate. However, note that once we proceed to step 2 of the
incremental algorithm (FLAG will then be “false”) we will have e accurate estimate of Q'. Hence
till this happens, F' will be union of edges of all new connections added/deleted since the last time
FLAG was “false”. Again, this does not change the amortized complexity of O(n|F|logm) work

done per addition or deletion.
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Chapter 4

Peer-to-Peer Networks

In this chapter we design a practical and scalable distributed protocol for building connected low-
diameter Peer-to-Peer networks. We analyze the protocol under a realistic dynamic setting where
the arrival of peers is according to a Poisson process and the duration of time a peer stays connected
to the network is independently and exponentially distributed. Our stochastic analysis shows that
our protocol results in constant degree networks that are very likely to stay connected with diameter
logarithmic in the size of the network. The technical contribution of our analysis is a non-trivial

stochastic analysis of an evolving graph with nodes and edges arriving and leaving the network.

4.1 Introduction

Peer-to-peer (or “P2P”) networks are emerging as a significant vehicle for providing distributed
services (e.g., search, content integration and administration) both on the Internet [20, 21, 22, 40]
and in enterprises. The idea is simple: rather than have a centralized service (say, for search), each
node in a distributed network maintains its own index and search service. Queries no longer go to
a central server; instead they fan out over the network, and results are collected and propagated
back to the originating node. This allows for search results that are fresh (in the extreme, admitting
dynamic content assembled from a transaction database, reflecting — say in a marketplace — real-time
pricing and inventory information). Such freshness is not possible with traditional static indices,
where the indexed content is as old as the last crawl (in many enterprises, this can be several weeks).
The downside, of course, is dramatically increased network traffic. In some implementations [21] this
problem can be mitigated by adaptive distributed caching for replicating content; it seems inevitable
that such caching will become more widespread.

How should the topology of P2P networks be constructed? Unlike static networks, P2P systems
are very dynamic with a high peer turnover rate [71]. For example in both Gnutella [39] and
Napster [57], about half of the peers participating in the system are replaced within one hour. Thus
maintaining even basic property such as network connectivity is a non-trivial task.

Each node participating in a P2P network runs so-called servent software (for server+client, since
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every node is both a server and a client). This software embeds local heuristics by which the node
decides, on joining the network, which neighbors to connect to. Note that an incoming node (or for
that matter, any node in the network) does not have global knowledge of the current topology, or
even the identities (IP addresses) of other nodes in the current network. Thus one cannot require
an incoming node to connect (say) to “four random network nodes” (in the hope of creating an
expander-like network). What local heuristics will lead to the formation of networks that perform
well? Indeed, what properties should the network have in order for performance to be good? In the
Gnutella world [40] there is little consensus on this topic, as the variety of servent implementations
(each with its own peculiar connection heuristics) grows — along with little understanding of the
evolution of the network. Indeed, some services on the Internet [19] attempt to bring order to this
chaotic evolution of P2P networks, but without necessarily using rigorous approaches (or tangible
success).

A number of attempts are under way to create P2P networks within enterprises (e.g., Verity is
creating a P2P enterprise infrastructure for search). The principal advantage here is that servents
can be implemented to a standard, so that their local behavior results in good global properties
for the P2P network they create. In this work we begin with some desiderata for such good global
properties, principally the diameter of the resulting network (the motivation for this becomes clear
below). Our main contribution is a stochastic analysis of a simple local heuristic which, if followed
by every servent, results in provably strong guarantees on network diameter and other properties.

Our heuristic is intuitive and practical enough that it could be used in enterprise P2P products.

4.1.1 Case study: Gnutella

To better understand the setting, modeling and objectives for the stochastic analysis to follow, we
now give an overview of the Gnutella network. This is a public P2P network on the Internet, by
which anyone can share, search for and retrieve files and content. A participant first downloads
one of the available (free) implementations of the search servent. The participant may choose to
make some documents available for public sharing, and indexes the contents of these documents and
runs a search server on the index. His servent joins the network by connecting to a small number
(typically 3-5) of neighbors currently connected to the network. When any servent s wishes to
search the network with some query ¢, it sends ¢ to its neighbors. These neighbors return any of
their own documents that match the query; they also propagate ¢ to their neighbors, and so on.
To control network traffic this fanning-out typically continues to some fixed radius (in Gnutella,
typically 7); matching results are fanned back into s along the paths on which ¢ flowed outwards.
Thus every node can initiate, propagate and serve query results; clearly it is important that the
content being searched for be within the search radius of s. A servent typically stays connected for
some time, then drops out of the network — many participating machines are personal computers
on dialup connections. The importance of maintaining connectivity and small network diameter has
been demonstrated in a recent performance study of the public Gnutella network [19].

Note that the above discussion lacks any mention of which 3-5 neighbors a servent joining the
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network should connect to; and indeed, this is the current free-for-all situation in which each servent
implementation uses its own heuristic. Most begin by connecting to a generic set of neighbors that
come with the download, then switch (in subsequent sessions) to a subset of the nodes whose names
the servent encountered on a previous session (in the course of remaining connected and propagating

“watch” the names of other hosts that may be connected and initiating

queries, a servent gets to
or servicing queries). Note also that there is no standard on what a node should do if its neighbors
drop out of the network (many nodes join through dialup connections, and typically dial out after
a few minutes — so the set of participants keeps changing). This free-for-all situation leads to the

fragmentation of the network into disconnected pieces documented in [19].

4.1.2 Main Contributions and Organization of the Chapter

Our main contribution is a new protocol by which newly arriving servents decide which network
nodes to connect to, and existing servents decide when and how to replace lost connections. We
show that our protocol results in a constant degree network that is likely to stay connected and have
small diameter. A nice feature of our protocol is that it operates without any global knowledge (such
as the topology of the network or even the identities of all other nodes) and can be implemented by
a simple distributed local message passing scheme. Also our protocol is easily scalable both in terms
of degree (which remains bounded irrespective of size) and diameter (grows slowly as a function of

network size).

Our protocol for building a P2P network is described in Section 4.2. Sections 4.3 presents a
stochastic analysis of our protocol. Our protocol involves one somewhat non-intuitive notion, by
which nodes maintain “preferred connections” to other nodes; in Section 4.4 we show that this
feature is essential. Our analysis assumes a stochastic setting in which nodes arrive and leave the
network according to a probabilistic model. Our goal is to show that even as the network changes
with these arrivals/departures, it remains connected with small diameter. Our main result is that
at any time (after a short initial period), with large probability, the network is connected and its
diameter is logarithmic in the size of the network at that time. Furthermore, our analysis proves that
the protocol has strong fault tolerance properties, if the network is fragmented into disconnected
pieces it rapidly recovers its connectivity. The technical core of our analysis is an analysis of an
evolving graph as nodes arrive and leave, with edges being dictated by the protocol; the analysis
of evolving graphs is relatively new, with virtually no prior analysis in which both nodes and edges

arrive and leave the network.

We mention related work in Section 4.5 and discuss open issues in Section 4.6.
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4.2 The P2P Protocol

The central element of our protocol is a host server ' which, at all times, maintains a cache of K
nodes, where K is a constant. The host server is reachable by all nodes at all times; however, it need
not know of the topology of the network at any time, or even the identities of all nodes currently
on the network. We only require that (1) when the host server is contacted on its IP address it
responds, and (2) any node on the P2P network can send messages to its neighbors. In this sense,
our protocol demands far less from the network than do (for instance) current P2P proposals (e.g.,
the reflectors of dss.clip2.com, which maintain knowledge of the global topology).

When a node is in the cache we refer to it as a cache node. A node is new when it joins the
network, otherwise is is old. Our protocol will ensure that the degree (number of neighbors) of all
nodes will be in the interval [D, C' + 1], for two constants D and C.

A new node first contacts the host server, which gives it D random nodes from the current cache
to connect to. The new node connects to these, and becomes a d-node; it remains a d-node until
it subsequently either enters the cache or leaves the network. The degree of a d-node is always
D. At some point the protocol may put a d-node into the cache. It stays in the cache until it
acquires a total of C' connections, at which point it leaves the cache, as a c-node. A c-node might
lose connections after it leaves the cache, but its degree is always at least D. A c-node has always
one preferred connection, made precise below. Our protocol is summarized below as a set of rules

applicable to various situations that a node may find itself in.
Peer-to-Peer Protocol for Node v:

1. On joining the network: Connect to D cache nodes, chosen uniformly at random from the

current cache.

2. Reconnect rule: If a neighbor of v leaves the network, and that connection was not a
preferred connection, connect to a random node in cache with probability D /d(v), where d(v)

is the degree of v before losing the neighbor.

3. Cache Replacement rule: When a cache node v reaches degree C' while in the cache (or
if v drops out of the network), it is replaced in the cache by a d-node from the network. Let
ro(v) = v, and let ri(v) be the node replaced by ri—_; (v) in the cache. The replacement d-node

is found by the following rule:

k=0;

while (a d-node is not found) do
search neighbors of ri(v) for a d-node;
k=Fk+1;

endwhile

1 The host server is similar to (or models) websites that maintain list of host IP addresses which clients visit to get
entry points into the P2P network; for example, hitp://www.gnufrog.com/ is a website which maintains a list of
active Gnutella servents. New client can join the network by connecting to a one or more of these servents.
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4. Preferred Node rule: When v leaves the cache as a c-node it maintains a preferred connection

5.

to the d-node that replaced it in the cache. (If v is not already connected to that node this

adds another connection to v.)

Preferred Reconnect rule: If v is a ¢-node and its preferred connection is lost, then v

reconnects to a random node in the cache and this becomes its new preferred connection.

We end this section with brief remarks on the protocol and its implementation.

1.

It is clear from our protocol that it is essential for a node to know whether it is in the cache

or not; thus each node maintains a flag for this purpose.

The cache replacement rule can be implemented in a distributed fashion by a local message
passing scheme with constant storage per node. Each c-node v stores the address of the node
that replaced it in the cache, i.e., r(v). Node v sends a message to r(v) when v itself doesn’t

have any d-node neighbors.

Note that the overhead in implementing each rule of the protocol is constant (or expected
constant). This is very important in practice, because even if a protocol is local, it is desirable
that neither too much (local) computation nor too many local messages be sent per node.
Rules 1, 2, 4 and 5 can be easily implemented with constant overhead. It follows from our
analysis that the overhead incurred in replacing a full cache node (rule 3) is constant on the
average, and with high probability is at most logarithmic in the size of the network (see Section
4.3.2).

We note that the host server is contacted whenever a node needs to reconnect (rules 2 and 5),
and when a new node joins the network. We show that the expected number of contacts the
host server receives per unit time interval is constant in our model and with high probability
only logarithmic in the size of the network; this implies that the network also scales well in

terms of the number of “hits” the central server receives.

In the stochastic analysis that follows, the protocol does have a minuscule probability of catas-
trophic failure: for instance, in the cache replacement step, there is a very small probability
that no replacement d-node is found. A practical implementation of this step would either
cause some nodes to exceed the maximum capacity of C'+ 1 connections, or to reject new
connections. In either case, the system would rapidly “self-correct” itself out of this situation
(failing to do so with an even more minuscule probability). For either such implementation

choice, our analysis can be extended.

4.3 Analysis

In evaluating the performance of our protocol we focus on the long term behavior of the system

in a fully decentralized environment in which nodes arrive and depart in an uncoordinated, and
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unpredictable fashion. This setting is best modeled by a stochastic, memoryless, continuous-time
setting. The arrival of new nodes is modeled by Poisson distribution with rate A, and the duration
of time a node stays connected to the network is independently and exponentially distributed with
parameter y. We are inspired by models in queuing theory which have been used to model similar
scenarios, e.g., the classical telephone trunking model [45]. A recent measurement study of real P2P
systems [71] (— Gnutella and Napster) provides evidence that our model approximates real-life data
fairly well.

Let G be the network at time ¢ (G has no vertices). We analyze the evolution in time of the
stochastic process G = (G¢)¢>o.

Since the evolution of G depends only on the ratio A/u we can assume w.l.o.g. that A = 1. To
demonstrate the relation between these parameters and the network size, we use N = A/p throughout
the analysis. We justify this notation in the next section by showing that the number of nodes in
the network rapidly converges to N. Furthermore, if the ratio between arrival and departure rates
is changed later to N’ = X' /', the network size will then rapidly converge to the new value N'.
Next we show that the protocol can w.h.p.? maintain a bounded number of neighbors for all nodes
in the network, i.e., w.h.p. there is a d-node in the network to replace a cache node that reaches
full capacity. In Section 4.3.3 we analyze the connectivity of the network, and in Section 4.3.4 we

bound the network diameter.

4.3.1 Network Size

Let G¢ = (V4, E;) be the network at time ¢.

Theorem 4.3.1 1. For any t = Q(N), w.h.p. |Vi| = O(N).
2. If £ — oo then w.h.p. |Vi| = N + o(N).

Proof: Consider a node that arrived at time 7 < ¢. The probability that the node is still in the
network at time ¢ is e~ ¢=7)/N | Let p(t) be the probability that a random node that arrives during
the interval [0, ¢] is still in the network at time ¢, then (since in a Poisson process the arrival time of

a random element is uniform in [0, t]),

1t 1
p(t) = ?/ e~ t=/Nr = ;N(l — et/
0

Our process is similar to an infinite server Poisson queue. Thus, the number of nodes in the
graph at time ¢ has a Poisson distribution with expectation tp(t) (see [69],pages 18-19).

For t = Q(N), E[|V|]] = ©(N). When t/N — oo, E[|V¢]] = N + o(N).

We can now use a tail bound for the Poisson distribution (2.8) to show that for ¢t = Q(N),

Pr (il = EIVilll < VBN Tog N) > 1—1/N°

2Throughout this extended abstract w.h.p. denotes probability 1 — N1,
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for some ¢ > 1. a
The above theorem assumed that the ratio N = A/u was fixed during the interval [0,¢]. We can

derive similar result for the case in which the ratio changes to N’ = X' /u' at time 7.

Theorem 4.3.2 Suppose that the ratio between arrival and departure rates in the network changed

at time T from N to N'. Suppose that there were M nodes in the network at time 7, then if tz\_]

w.h.p. Gt has N' + o(N') nodes.

I =5 0

Proof: The expected number of nodes in the network at time ¢ is

¢ t— t—7

Me= +N'(1—e5)=N+(M-Ne v .

Applying the tail bound for the Poisson distribution we prove that w.h.p. the number of nodes
in Gt is N' +o(M — N'). a

4.3.2 Available Node Capacity

To show that the network can maintain a bounded number of connections at each node we will show
that w.h.p there is always a d-node in the network to replace a cache node that reaches capacity C,
and that the replacement node can be found efficiently. We first show that at any given time the

network has w.h.p. a large number of d-nodes.

Lemma 4.3.1 Let C > 3D; then at any time t > alog N, (for some fized constant a > 0), w.h.p.

there are
2D

U_C—D

) min[t, N]

d-nodes in the network.

Proof: Assume that t > N (the proof for ¢ < N is similar). Consider the interval [t — N, t]; we bound
the number of new d-nodes arriving during this interval and the number of nodes that become
c-nodes.

The arrival of new nodes to the network is Poisson-distributed with rate 1; using the tail bound
for the Poisson distribution we show that w.h.p the number of new d-nodes arriving during this
interval is N(1 + o(1)), and that the number of connections to cache nodes from the new arrivals is
DN(1+ o(1)).

By Theorem 4.3.1 w.h.p. there were never more than N (1 + o(1)) nodes in the network at any
time in this interval. Thus, the number of nodes leaving the network in this interval is Poisson-
distributed with expectation < N(1 + o(1)) and w.h.p. no more than N(1 + o(1)) nodes left the
network in the interval. The expected number of connections to the cache from old nodes is bounded
by

Nﬂ+oﬂ»§:7de):NDﬂ+oG»
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Let ui,...,ug be the set of nodes that left the network in that interval, and let X, ,, = 1 if v makes

connection to the cache when u; left the network, else X, ,;, = 0. Then

¢
E Y Y Xyu | =ND1+o0(1))
j=1 v
and each variable in the sum is independent of all but C' other variables. By partitioning the sum
into C' sums such that in each sum all variables are independent, and applying the Chernoff bound
(2.6) to each sum individually, we show that w.h.p. the total number of connections to the cache

from old nodes during this interval is bounded w.h.p by ND(1 + o(1)).

Since a node receives C'— D connections while in the cache, w.h.p. no more than C?PDN d-nodes

convert to new c-nodes in the interval; thus w.h.p we are left with (1 — CZ_DD)N d-nodes that joined

the network in this interval. a

Lemma 4.3.2 Suppose that the cache is occupied at time t by node v. Let Z(v) be the set of nodes
that occupied the cache during the interval [t — clog N,t]. For any 6 > 0 and sufficiently large
constant ¢, w.h.p. |Z(v)| is in the range (0277%‘3)}( log N(1 £ 9)

Proof: As in the proof of Lemma 4.3.1, the expected number of connections to a given cache node in
an interval [t —clog N, t] is %ﬂ. Applying the Chernoff bound we show that w.h.p. the number
of connection is in the range 2—26 log N(1£0). Since a cache node receives C' — D connections while
in the cache the result follows. g

The following lemma shows with that in most cases the algorithm finds a replacement node for

the cache by searching only a few O(log N) nodes.

Lemma 4.3.3 Assume that C > 3D. At any time t > clog N, with probability 1 — O(lﬁg]\zf—N) the

algorithm finds a replacement d-node by examining only O(log N) nodes.

Proof: Let vy, ...,vg be the K nodes in the cache at time t. With probability

clog? N lOg2 N

Ke ™% >1-0(=5—)

no node in Z(v;), i =1, .., K leaves the network in the interval [t — clog N, t].

Suppose that node v leaves the cache at time ¢, then the protocol tries to replace v by a d-node
neighbor of a node in Z(v). As in the proof of Lemma 4.3.1 w.h.p. Z(v) received at least 22clog N
connections from new d-nodes in the interval [t —clog N, ¢]. Among these new d-nodes no more than
|Z(v)| nodes enter the cache and became c-nodes during this interval. Using the bound on |Z(v)]

from Lemma 4.3.2, w.h.p. there is a d-node attached to a node of Z(v) at time t. O

4.3.3 Connectivity

The proof that at any given time the network is connected w.h.p. is based on two properties of

the protocol: (1) Steps 3-4 of the protocol guarantee (deterministically) that at any given time a
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node is connected through “preferred connections” to a cache node; (2) The random choices of new
connections guarantee that w.h.p. the O(log N) neighborhoods of any two cache nodes are connected
to each other. In Section 4.4 we show that the first component is essential for connectivity. Without

it, there is a constant probability that the graph has a number of small disconnected components.

Lemma 4.3.4 At all times, each node in the network is connected to some cache node directly or

through a path in the network.

Proof: It suffices to prove the claim for c-nodes since a d-node is always connected to some c-node.
A c-node v is either in the cache, or it is connected through its preferred connection to a node that
was in the cache after v left the cache. By induction, the path of preferred connections must lead

to a node that is currently in the cache. O

Lemma 4.3.5 Consider two cache nodes v and u at time t > clog N, for some fixed constant ¢ > 0.
With probability 1 — O(lﬁg:,—N) there is a path in the network at time t connecting v and w.

Proof: Let Z(v) be the set of nodes that occupied the cache during the interval [t — clog N, t]. By
Lemma 4.3.2, w.h.p. |Z(v)| = dlog N, for some constant d.
The probability that no node in Z(v) leaves the network during the interval [t — clog NV, t] is

2
eicdloﬁ2N > 1—O(10g N

).

Note that if no node in Z(v) leaves the network during this interval then all nodes in Z(v) are
connected to v by their chain of preferred connections.

The probability that no new node that arrives during the interval [t — clog N, ¢] connects to both
¢(v) and ¢(u) is bounded by (1 — D2/K?)¢l8N = O(1/N<'). ]

Since there are K’ = O(1) cache locations we have the following theorem.

Theorem 4.3.3 There is a constant ¢ such that at any given time t > clog N,

logzN)
N )

The above theorem does not depend on the state of the network at time ¢t — clog V. It therefore

Pr(Gy is connected) > 1 — O(

shows that the network rapidly recovers from fragmentation.

Corollary 4.3.1 There is a constant ¢ such that if the network is disconnected at time t,
log> N
N )
Theorem 4.3.4 At any given time t such that t/N — oo, if the graph is not connected then it has

Pr(Gitciog N is connected) > 1 — O(

a connected component of size N(1 —o(1)).

log? N
OgN )

failure probability in Theorem 4.3.3 is the probability that some cache node is left with fewer than

Proof: By Lemma 3.4 all nodes in the network are connected to some cache node. The O(

dlog N nodes connected to it. Excluding such cache nodes all other cache nodes are connected to
each either with probability 1 — K?(1 — D?/K?)¢'8N =1 —1/N¢, for some ¢ > 0. ]
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4.3.4 Diameter

We state our main theorem which gives a bound on the diameter of the network. We note that this

is the best bound possible (upto constant factors) for a constant degree network.

Theorem 4.3.5 For any t, such that t/N — oo, w.h.p. the largest connected component of Gy has
diameter O(log N). In particular, if the network is connected (which has probability 1 — O(lﬁg:,—N))

then w.h.p. its diameter is O(log N).

Proof: Since a d-node is always connected to a c-node it is sufficient to discuss the distance between
c-nodes. Thus, in the following discussion all nodes are c-nodes. For the purpose of the proof we
define a constant f, and call a cache node good if during its time in cache it receives a set of r > f

connections such that
e The r connections are “reconnect” connections.
e The r connections are not preferred connections .
e The r connections resulted from r different nodes leaving the network.

We color the edges of the graph using three colors: A, Bl and B2. All edges are colored A
except a random f edges of the the set of r “reconnect” edges that satisfied the three requirements
of a good node. A random half of these are colored B1, the rest are colored B2.

Since the proof of Theorem 4.3.3 use only preferred connection edges, and edges of new d-nodes,
it is easy to verify that at any time ¢, the network is connected with probability 1 — O(%) using
only A edges, and that if the network is not connected then w.h.p. the A edges define a connected
component of size N(1 — o(1)).

We rely on the “random” structure of the B edges to reduce the diameter of the network.
However, we need to overcome two technical difficulties. First, although the B edges are “random”,
the occurrences of edges between pairs of nodes are not independent as in the standard G, , random
graph model ([13]). Second, the total number of B edges is relatively small; thus the proof needs to
use both the A and the B edges.

Lemma 4.3.6 Assume that node v enters the cache at time t, where t/N — oco. Then for a
sufficiently large choice of the constant C, the probability that v leaves the cache as a good node is at
least v > 1/2. Further, the f re-colored edges of a good cache node are distributed almost uniformly
at random among the nodes currently in the network. More precisely, the probability that an old
node in the network is an endpoint of any of these f connections is % + 0(%) Furthermore, the

probability that a c-node is good is independent of other c-nodes.

Proof: Consider the interval of time in which v was a cache node.

1. New nodes join the network according to a Poisson process with rate 1. Also the expected

number of connections to v from a new node is D/K.
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2. Since w.h.p. there are N(1+ o(1)) nodes in the network at that time, nodes leave the network
according to a Poisson process with rate 1 — o(1) (this can be shown using definition 2.2.3).

Also the expected number of connections to v as a result of a old node leaving the network is

diu) —en(u) D 1 D
Z ()|V| ()d(u)?:?(l—o(l))<l.
ueV

where cn(u) is either 1 or 0 depending on whether u is a c-node or not. (If u is a c-node then

we don’t count the preferred node.)

3. When an old node u leaves the network, the expected number of reconnect edges to v from u

is %% = O(D/N), where cn(u) is defined as above.

From 1 and 2 above, it follows from (near-)symmetry that each connection to v , while it is in the
cache, has a constant probability each of being from a new or a old node. Also from 2, we have the
expected number of connections to v as a result of one old node leaving the network is < 1; thus
each connection has a constant probability of being triggered by a unique node leaving the network.
Thus, for a sufficiently large C, the C'— D connections to v include, with probability v > 1/2, r > f
re-connect edges from different nodes leaving the network.

Further, from 3 and using the fact that each node leaves the network independently and iden-
tically via the same exponential distribution it follows that each node in the network - irrespective
of its degree - has an almost equal probability of being connected to v i.e., % + 0(%). Finally, it
is easy to see the independence of the events for different c-nodes, since a cache node stays in the
cache till it accepts C connections irrespective of other cache nodes. O

For the proof of the next lemma we need the following definitions. Given a node v in Gy, let
[Co(v) be an arbitrary cluster of dlog N c-nodes, such that v € I'g(v), and this cluster has diameter
O(log N) using only A edges. For i > 1, i odd (resp., even) let I';(v) be all the c-nodes in G; that
are connected to I';_1 (v) and are not in Uj;})l“j(v) using B1 (resp., B2) edges.

We first show the following “expansion” lemma which states that each neighborhood of v starting

from ' (v) is at least twice the size of the previous neighborhood.
Lemma 4.3.7 If |T';_1(v)| = o(N),
Pr{|Li(v)] = 20 (v)[} = 1 - 1/N°.

Proof: Let W =T;_1(v), w = |W]|, and let z ¢ W U (U;;BF]' (v)). W.lo.g. assume that ¢ — 1 is even.
Partition W into Wy, consisting of nodes in W that are older than z, and W7, consisting of nodes in
W that arrived after z. The probability that z is connected to Wy using B1 edges is %%(1 —o(1))
using lemma 4.3.6. Similarly, each node in W; has probability % (1 —10(1)) of being connected to z
by B1 edges. Thus, the probability that z is connected to W is at least %ow(l —o(1)).

Let Y = |I';(v)| be the number of c-nodes outside W that are connected to W by B1 edges.
E[Y] = {w(l —o(1)). Let wy,ws,.... be an enumeration of the nodes in W, and let N(w;) be the

set of neighbors of w; outside W using Bl edges. Define an exposure martingale Zy, Z1, ...., such
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that Zy = E[Y], Z; = E[Y | N(w1), ...., N(w;)], Z, = Y. Since the degree of all nodes is bounded
by C, a node w; can connect to no more than C' nodes outside W. Thus, |Z; — Z;_;| < C.

Using Azuma’s inequality [8] it follows that that for sufficiently large constant d,

2
Pr{]Y — E[Y]| > g@c\/a} < 9~ TacT Y < 1/N°5.
O

Now we complete the proof of Theorem 4.3.5. Our goal is to show that w.h.p the distance
between any two c-nodes is O(log N). Consider any two c-nodes v and u. By applying lemma
4.3.7 repeatedly O(log N) times we have with probability 1 — O(l%i‘,s—N), for some k,, k, = O(log N),
IT%, (v)] > V/Nlog N and |T'y, (u)| > VN log N. The probability that I'y, (v) and 'y, (u) are disjoint
and not connected by an edge is bounded by (1 — f/2N)N10&* N thus with probability 1 — O(%&%)
an arbitrary pair of nodes u and v are connected by a path of length O(log N) in G¢. Summing the

failure probability over all (g) pairs it follows that w.h.p. any pair of nodes in G; is connected by a
path of length O(log N). a

4.4 Why Preferred Connections?

In this section we show that the preferred connection component in our protocol is essential: running
the protocol without it leads to the formation of many small disconnected components. A similar
argument would work for other fully decentralized protocols that maintain a minimum and maximum
node degree and treat all edges equally, i.e., do not have preferred connections. Observe that a
protocol cannot replace all the lost connections of nodes with degree higher than the minimum
degree. Indeed, if all lost connections are replaced and new nodes add new connections, then the
total number of connections in the network is monotonically increasing while the number of nodes
is stable, thus the network cannot maintain a maximum degree bound.

To analyze our protocol without preferred nodes define a type H subgraph as a complete bipartite

network between D d-nodes and D c-nodes, as shown in Figure 4.1.

Lemma 4.4.1 At any time t > ¢, where ¢ is a sufficiently large fized constant, there is a constant

probability (i.e. independent of N ) that there exists a subgraph of type H in Gy.

Proof: A subgraph of type H arises when D incoming d-nodes choose the same set of D nodes in
cache. A type H subgraph is present in the network at time ¢ when all the following four events

happen:

1. There is a set S of D nodes in the cache each having degree D (i.e., these are the new nodes

in the cache and are yet to accept connections) at time ¢t — D.
2. There are no deletions in the network during the interval [t — D, t].

3. A set T of D new nodes arrive in the network during the interval [t — D, ¢].
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d-nodes

MR TN

Figure 4.1: Subgraph H used in proof of lemma 4.4.2. Note that D = 4 in this example. All the
four d-nodes are connected to the same set of four c-nodes (shown in black).

c-nodes

4. All the incoming nodes of set T' choose to connect to the D cache nodes in set S.
Since each of the above events can happen with constant probability, the lemma follows. O

Lemma 4.4.2 Consider the network Gy, for t > N. There is a constant probability that there exists

a small (i.e., constant size) isolated component.

Proof: By Lemma 4.4.1 with constant probability there is a subgraph (call it F) of type H in the
network at time ¢t — N. We calculate the probability that the above subgraph F' becomes an isolated
component in G;. This will happen if all 2D nodes in F survive till ¢ and all the neighbors of the
nodes in F' (at most C(C' — D) of them connected to the D c-nodes) leave the network and there
are no re-connections. The probability that the 2D subgraph nodes survived the interval [t — N, t] is
e~ 2P, The probability that all neighbors of the subgraph leave the network with no new connections
is at least (1 —e)~C(@=D)(1 — DLH)C(C*D). Thus, the probability that F' becomes isolated is at
least

D

—2D —c(c-D)
1- 1- 2
e (1 —e) =57

) = o(1)
O

Theorem 4.4.1 The expected number of small isolated components in the network at any time

t > N is Q(N), when there are no preferred connections.

Proof: Let S be the set of nodes which arrived during the interval [t — N,¢t — §]. Let v € S be a
node which arrived at at ¢'. From the proof of Lemma 4.4.2 it is easy to show that v has a constant
probability of belonging to a subgraph of type H at t'. Also, by the same lemma, H has a constant
probability of being isolated at ¢. Let the indicator variable X,, v € S denote the probability that
v belongs to a isolated subgraph at time ¢. Then, E[} ¢ X,] > Q(N), by linearity of expectation.

Since the isolated subgraph is of constant size, the theorem follows. a
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4.5 Related Work

We briefly discuss related work in P2P systems most relevant to our work. Two important systems
proposed recently are Chord [74] and CAN [66]. These are content-addressable protocols i.e., they
solve the problem of efficiently locating a node storing a given data item. There are two components
for the above protocols: the first specifies how and where a particular data item should be stored in
the network, and the second specifies a routing protocol to retrieve a given data item efficiently.

The focus of our work is building P2P networks with good topological properties and not the
problem of searching or routing — which is an orthogonal issue for us; for example a Gnutella-like [39]
or a Freenet-like [22] search/routing mechanism can be easily incorporated in our protocol. Thus,
although we cannot directly compare our protocol with content-addressable networks such as Chord
or CAN, we can compare them with respect to their topological properties and guarantees. CAN
uses a d-dimensional Cartesian coordinate space (for some fixed d) to implement a distributed hash
table that maps keys onto values. Chord on the other hand, uses a scheme called consistent hashing
to map keys to nodes. Although the degree (the number of entries in the routing table of a node) of
CAN is a fixed constant d (the number of entries in its routing table), the diameter (the maximum
distance between any two nodes in the virtual network) can be as large as O(dn'/?). In the case
of Chord, the diameter is O(log N) while the degree of every node is O(log N). (If d = logN),
CAN matches the bounds of Chord.) This is in comparison to the constant degree and logarithmic
diameter of our protocol. However, the most important contrast is that their protocols provide no
provable guarantees in a realistic dynamic setting, unlike ours. Chord gives guarantees only under
a simplistic assumption that every node can fail (or drop out) with probability 1/2.

Another interesting P2P system is the dynamically fault-tolerant network of [70]. This is again a
content-addressable network based on a butterfly topology. The diameter of the network is O(log V)
and the degree is O(log® N). Peer insertion takes O(log N) time. The system is robust to fault
tolerance in the sense that at any time, an arbitrarily large fraction of the peers can reach an
arbitrarily large fraction of the data items. They show the above property under a somewhat
artificial assumption that in any time interval during which an adversary deletes some number of
peers, some larger number of peers join the network. Also they assume that each of the new peers
joining the network knows one random peer currently in the network. To compare with our work,
we show that our protocol is naturally fault-tolerant (in the sense it recovers fairly rapidly from
fragmentation and high diameter with high probability) under a natural dynamic model where each

node operates with no global knowledge.

4.6 Discussion and further work

We give a simple distributed local P2P protocol to construct networks with good topological prop-
erties - namely constant degree, connectivity and low-diameter. We analyze our protocol under

a realistic dynamic setting and prove rigorously that it results in the above properties with large
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probability. We also proved that our protocol is naturally robust to failures is that it has nice self-
correcting properties such as rapid recovery from network fragmentation. We now discuss possible
extensions and future work.

It is important to point out our protocol is concerned with building a good wvirtual network
topology which may not match the underlying Internet topology (of course, this may not be a big
issue for enterprise P2P). In fact, evidence [67] suggests that these two topologies do not match
well. It will be of practical interest [67] to construct topologies that respects the underlying physical
topology (e.g., locality) - this an area for further research.

In our protocol we implicitly assume that all nodes have equal capabilities (i.e., storage and num-
ber of connections supported) and all links have equal bandwidth. In enterprises with homogeneous
systems this is closer to reality, however this is not the case in the Internet. It will be nice to extend

our protocol to incorporate heterogeneous nodes and links.
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Chapter 5

Online Computation

In this chapter, we study performance of online algorithms under a very general stochastic input
model. This focuses on an important aspect of online computation that is not addressed by the
standard competitive analysis. Namely, identifying request sequences for which non-trivial online
algorithms are useful versus request sequences for which all algorithms perform equally bad.

Our approach in this work is based on the relation between entropy, compression and gambling,
extensively studied in information theory. It has been shown that in some settings entropy can
either fully or at least partially characterize the expected outcome of an iterative gambling game.
Viewing online problem with stochastic input as an iterative gambling game, our goal is to study
the extent to which the entropy of the input characterizes the expected performance of online
algorithms for problems that arise in computer applications. We study bounds based on entropy for
three important online problems — list accessing, prefetching and caching. We show that entropy is
a good performance characterizer for prefetching, but not so good characterizer for online caching.

Our work raises several open questions in using entropy as a predictor in online computation.

5.1 Introduction

Advanced system and architecture design allows dynamic allocations of resources to online tasks
such as prefetching and caching. To fully utilize this feature the system needs an efficient mecha-
nism for estimating the expected gain from using these resources. Prefetching, for example, is an
expensive operation since it “burns instruction bandwidth”[42]. However, successful prefetching can
significantly speedup computation. Thus, one needs to compare the gain from prefetching on a given
data stream to the cost in instruction bandwidth. The tradeoff between resource allocation and gain
is even more transparent in the case of malleable cache [55, 75, 25]. In this architecture the cache
can be dynamically partitioned between different data streams. A data stream that can make better
use of a larger cache is assigned more space, while a stream with very little structure or repeats is
allocated a smaller cache space. Again, efficient utilization of this technology requires a mechanism

for predicting caching gain for a given data stream.

41
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Online algorithms have been studied in the theory community mainly in the context of competitive
analysis (see [16] for a comprehensive survey). Competitive analysis compares the performance of
different algorithms, but it gives no information about the actual gain from using them. In particular,
even the best algorithm under the competitive analysis measure might fail on almost all requests of
some sequence. Thus, an entirely new approach is needed in order to quantify the amount of resources
the system should allocate to a given online process. In this work we explore the relation between
the entropy of the stream of requests and the gain expected from online algorithm performing on
this request sequence. Entropy measures the randomness or uncertainty of a random process. We
expect online algorithms to perform well on highly predictive request sequences, generated by a
source with low entropy, and to perform poorly on sequences with little pattern, generated by a
high entropy source. Our work is motivated by the extensive work in information theory relating
data compression, entropy and gambling. It has been shown that for some special cases of gambling
games the entropy of the stochastic process fully characterizes the maximum expected profit for
any strategy for that game (see section 5.1.1). Our goal is to explore similar relations between
entropy and online problems in computer applications. We discuss here three online problems: list
accessing, prefetching and caching. We show that in the case of prefetching entropy gives a good
characterization of the best online performance that is possible, while in the case of caching entropy

does not fully characterize the best online performance.

5.1.1 Related Work

The three online problems considered here were extensively studied in the competitive analysis
model. It has been shown in [72] that the competitive ratio ! of the move to front (MTF) algorithm
for the list accessing problem is two [72]. In the case where the input sequence is drawn from a
discrete memoryless source the MTF algorithm has been compared to the performance of a static
offline algorithm SOPT that initially arranges the list in decreasing order of request probabilities
and never reorders them thereafter. It was shown in [36] that MTF(D) < ZSOPT(D), where D
is the distribution of the source. Albers et.al [5] analyze the performance of the TIMESTAMP
algorithm on a discrete memoryless source with distribution D and proved that for any distribution
D, TIMESTAMP(D) < 1.34 x SOPT(D) and with high probability, TIMESTAMP(D) < 1.5 x
OPT(D). The actual work done by the MTF algorithm was studied when the request sequence is
generated by a discrete memoryless source with probability distribution D[5, 12, 36].

For online caching (or demand paging) the well known LRU (Least Recently Used) has a compet-
itive ratio of k [72], where k is the cache size, while the randomized MARKER algorithm is 2logk
competitive [29]. Franaszek and Wagner [33] studied a model in which every request is drawn from
a discrete memoryless source. Karlin et.al [44] study Markov paging where the sequence of page
requests is generated by a Markov chain. Their main result is an efficient algorithm which for any

Markov chain will achieve a fault-rate at most a constant times optimal.

L An online algorithm ALG has a competitive ratio of ¢ if there is a constant a such that for all finite input sequences
I, ALG(I) < ¢ X OPT(I) + o, where OPT is the optimal offline algorithm.
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For the problem of prefetching, competitive analysis is meaningless as the optimal offline al-
gorithm will always prefetch the correct item and hence incurs no cost. Vitter and Krishnan [78§]
consider a model where the sequence of page requests is assumed to be generated by a Markov source
(defined in section 5.5), a model which is closest in spirit to (but less general than) our model of
a stationary ergodic process. They show that the fault rate of a Ziv-Lempel [81] based prefetching
algorithm approaches the fault rate of the best prefetcher (which has full knowledge of the Markov
source) for the given Markov source as the page request sequence length n — oo.

Kelly [47] was the first to study the relation between data compression, entropy and gambling,
showing that the outcome of a horse race gambling with fair odds is fully characterized by the
entropy of the stochastic process. It was shown [47, 6] that the growth rate of investment in the
horse race is equal to logm — H, where m is the number of horses and H is the entropy of the source.
Similar results have been shown for portfolio selection strategies in equity market investments [7, 23].
Our results on list accessing are based on the work of Bentley et.al [12] who showed that any list
update algorithm can be used to develop a data compression scheme. They also showed that for a
discrete memoryless source the expected number of bits needed to encode an alphabet using MTF
is linear in the entropy of the source. Similar results have been shown by Albers et.al [5] for the
TIMESTAMP algorithm. Our results on prefetching are motivated by the work of Feder and Merhav
[30] relating entropy of a discrete random variable to the minimal attainable probability of error in
guessing its value. In the context of prefetching their results can be viewed as giving a tight bound
on the fault rate when the size of cache is 1. A tight lower bound on this error probability is given
by Fano’s inequality [23, theorem 2.11.1]. Their main result is a tight upper bound for the fault
rate when k& = 1. Feder and Merhav also showed that the same lower and upper bounds (for k£ = 1)
hold for a stationary ergodic source. However, their upper bound does not seem to generalize to
higher values of k. Note that there is more work in the information theory on predicting binary
sequences (corresponding to prefetching in a universe of two pages with cache of size 1) [31], however
these results cannot be generalized to our prefetching scenario. Our approach to deriving the upper
bound on the fault rate for an arbitrary ergodic source and arbitrary cache size k is different and
is based on the well-known Liv Zempel universal algorithm for data compression [81]. Our proof
uses Rissanen’s interpretation of the Liv Zempel Algorithm [68]. See Algoet [6] for further results

on universal schemes for prediction, gambling and portfolio selection.

5.1.2 New Results

We focus on three online problems: list accessing, prefetching, and caching. Our goal is to study
the relation between the entropy of the sequence of requests and the best performance of an online
algorithm for these problems.

We assume that the sequence of requests is generated by a discrete stationary ergodic process [34,
definition 3.5.13] which is the most general stochastic source considered in information theory.
For the list accessing problem we show that any deterministic online algorithm requires an average

work of Q(2) steps per item access, where H is the entropy of the input source.
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For the prefetching problem we give an upper and lower bound showing that the average number
of faults of the best algorithm is linear in H, the entropy of the input source. Our lower bound
on the fault rate can be seen as a generalization of Fano’s inequality for £ > 1. Our upper bound
generalizes the well known upper bound of %H on the minimal error probability for guessing the
value of a discrete random variable (i.e. k& = 1) shown by completely different techniques [34, pages
520-521], [30, 41].

In contrast, we consider the caching problem for two stationary ergodic sources with equal
entropy. We show that the best caching fault rate for the two sources fall in two disjoint intervals
as a function of H, the entropy of the source. Thus, in the case of caching, entropy alone is not a

sufficient predictor for online performance.

5.2 A General Stochastic Model

We model a request sequence for an online process as a stochastic process, denoted by {X;}. The
range of {X;}, for all 4 is the finite alphabet set #. Let | = |H|. In this work, we restrict ourselves to
stochastic sources which are both stationary and ergodic. This is a very general model and includes
powerful models such as memoryless and (stationary) Markov sources [34, 78, 24]. This type of
source also has many nice properties which make them amenable to analysis.

We would like to characterize the performance of the best online algorithm based on the entropy
of the request sequence, which is the entropy rate of the stochastic process (or the source) generating
the sequence.

A stochastic process is stationary if its probabilistic description is time invariant. Stationarity
property guarantees the existence of a well-defined entropy rate, denoted by H (or H,, for a sequence
of length n). Ergodicity is a technical condition, which implies that a source cannot be separated
into persistent modes of behavior. Formally, it means that the law of large numbers holds for such
a source. See chapter 2 for formal definitions of the above terms and other basic concepts from
information theory. Throughout this chapter, we use the notation lg to denote logarithm to the base
2.

5.3 List Accessing

We start with a simple example relating the cost of online list accessing to the entropy of the request
sequence. As in Borodin & El-Yaniv [16] we consider the static list accessing model in which a fixed
set of [ items, is stored in linked list. The algorithm has to access sequentially a sequence of n
requests for items in the list. The access cost a(X;) of an item is the number of links traversed
by the algorithm to locate the item, starting at the head of the list. Before each access operation
the algorithm can rearrange the order of items in the list by means of transposing an element with
an adjacent one. The cost is 1 for a single exchange. Let ¢(X;) be the total cost associated with

servicing element X;. ¢(X;) includes both the access cost a(X;) and any transposition cost incurred
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before servicing Xj.

Following Bentley et al. [12] we explore the relation between list accessing and data compression
by using the linked list as a data structure of a data compression algorithm. Assume that a sender and
a receiver start with the same linked list, and use the same rules for rearranging the list throughout
the execution. Instead of sending item X, the sender needs only to send the distance i of X from the
head of the linked list, i.e. the work involved in retrieving item X. We encode the integer distance
by using a variable length prefix code. The lower bound depends on the particular encoding used
for the distance. Consider an encoding scheme that encodes an integer ¢ using f(i) bits. To get a
lower bound on the work done, we need f to be a concave nondecreasing function (when defined on

the non-negative real).

Theorem 5.3.1 Let & be the average cost of accessing an item by any deterministic algorithm A on
a stationary ergodic sequence of requests < X >= X1, Xo,...,X,,. Then ¢ > f~Y(H), where H is
the entropy of the sequence, and f is a concave nondecreasing invertible function such that there is

an encoding scheme for the integers that encodes integer i with up to f(i) bits.

Proof: @ > L3 ¢(X;), and ¢(X;) > a(X;), where a(X;) is the distance of X; from the head of
the linked list at time ¢, which is the value sent by the sender at time ¢. If the sender encodes
a(X;) using f(a(X;)) bits, then by variable-length source coding theorem [34, theorem 3.5.2] and by
equations 2.16 to 2.19,

n

> Sa(X0) > Ho > H (5.1

i=1

Since f is concave, by Jensen’s inequality and using 5.1,

£@) 2 FG Y alx) 2 2 Y falX) > H

i=1
Hence, ¢ > f~'(H). a

We can now get concrete lower bounds by plugging in appropriate coding functions. A simple
prefix coding scheme encodes an integer 7 using 1 + 2|lgi] bits 2 [27]. The encoding of i consists of
|lgi] 0’s followed by the binary representation of ¢ which takes 1 + |lgi] bits, the first of which is a

1. This encoding function gives the following corollary to theorem 5.3.1.

Corollary 5.3.1 Any deterministic online algorithm for list accessing has to incur an average cost

of 2H=1/2 per jtem, where H is the entropy rate of the sequence.

We get a better lower bound by replacing the |lgi| 0’s followed by a 1 in the above scheme by
lg| 1+ 1gl| bits giving an encoding for 7 with |lgi| + lg|1 + lgl] bits. Using this scheme we prove:

2This function can be made invertible in the obvious way to obtain the lower bound specified in corollary 5.3.1.
Similar comment holds for the encoding function used to derive corollary 5.3.2.
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Corollary 5.3.2 The average cost of accessing an item for a deterministic online algorithm is at

least %, where | is the size of the alphabet.

We note that theorem 5.3.1 actually applies for any list accessing algorithm even if it is a ran-
domized algorithm. That is, for a randomized list accessing algorithm the expected cost of accessing
an item is lower bounded as specified by theorem 5.3.1. This follows from Yao’s Minimax Principle
[56]. Thus the lower bounds derived in the corollaries hold for randomized algorithms also.

We conclude our discussion on list accessing by showing a lower bound on the performance of
the well-studied static offline algorithm (SOPT) on a discrete memoryless source with probability
distribution D = {p1,...,p;} where p; is the probability of accessing item z;. SOPT initially
arranges the list in decreasing order of request probabilities and never reorders them thereafter.
Although SOPT is not an online algorithm, because of its simplicity has been used as a benchmark
for comparison to other (online) algorithms [16]. The expected access cost per item is given by
SOPT(D) = 22:1 ip;. The following theorem gives a lower bound on the expected cost of accessing
an item by SOPT based on the entropy of the input distribution D.

Theorem 5.3.2 The expected cost of accessing an item by SOPT on a discrete memoryless source

2H71

with distribution D s at least where H is the entropy of D.

Proof: Suppose let w (an integer for now) be the average cost of accessing an item by SOPT. Note

that w < (I +1)/2. Then the probability distribution which maximizes the entropy is given by

(

2w—1""""2w—-1’

~ l—(2w—1)) t
2w—1 terms (I=(2w=1)) terms

can be shown by a straightforward verification of the Kuhn-Tucker conditions for optimality of the

0,...,0 ) and the corresponding entropy is given by lg(2w — 1). This
————

following non-linear program:
Maximize — 22:1 pilgp;
subject to the following constraints:

Zi:lipi:w
Ei:lpi:l
pi>0,i=1,...,1
Pi—pPiy1>0,0=1,...,01—1

Thus, if H is the entropy of any distribution D then, H < lg([2w —1]), which yields the result. O

5.4 Prefetching

As in [78] we consider the following formalization of the prefetching problem: we have a collection H
of pages in memory and a cache of size k, and typically k¥ < |H|. The system can prefetch k items
to the cache prior to each page request. The fault rate is the average number of steps in which the

requested item was not in the cache.
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Let [ = [H]|. Given a request sequence < X >= X, X»,... X, we are interested in the minimal
expected page fault rate of a request sequence i.e., the minimum long term frequency of page faults
that is possible for the sequence. We show the existence of this quantity when the request sequence

is generated by a stationary ergodic process.

5.4.1 Lower Bound

We first prove the lower bound for a discrete memoryless source, generalizing the result in Feder
and Merhav [30].
We observe that the optimal prefetching strategy in a discrete memoryless source is obvious (a

consequence of Bayes’ decision rule, for example see [41]):

Lemma 5.4.1 Let p(.) be a probability distribution on H. Suppose each page in the sequence is
drawn i.1.d with probability distribution p(.). Then the minimal expected page fault rate can be
obtained by picking the pages (in the cache) with the top k probabilities. Hence the minimal expected
fault rate is given by 1 — EmET(p(.)) p(z), where T'(p(.)) is the set of pages with the top k probabilities
in the distribution p(.).

Our goal is to relate the fault rate of the above strategy to the entropy of the source. Consider
a discrete random variable X, and let p(i) = Pr{X = i} for i € H. Assume without loss of
generality that p(1) > p(2) > --- > p(l). Let P = [p(1),...,p(l)] be the probability vector and
let P, = {P|p@) >0, Vi, Y., pi) =1and F p@i) = 1 -7} Let H(P) (or H(X))
be the entropy of the random variable having the distribution given by P. Given the minimal
expected fault rate m(X) (or 7 for simplicity) we would like to find a upper bound on the entropy
as H(X) < maxpep, H(P).

Lemma 5.4.2 Let the minimal expected page fault rate be w. Then the mazimum entropy H (Pp,q. (7))

is given by (1 — ) lg(£=) + wlg(i=h).

Proof: Given the minimal expected page fault rate 7, the maximum entropy distribution P,q. ()
-7 l—-7 =« s
T h ’l—k""’l—k)

k t;;ms (l—k)‘;erms

assuming © < 1 — k/l (which is always true). This distribution maximizes the entropy because of

is given by (

~

the following argument. Let p(z) be any probability distribution on H. Then the relative entropy
(or Kullback Leibler distance) between p(x) and Py,q. () is given by [23, definition 2.26]

Z p(x)lg(p(z)/ Pmaz (7)) =

TEH

—H(X)+ Y p(@)1g1/Praa(r))
TEH
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Since the relative entropy is always positive[23, Theorem 2.6.3] we have

O
Corollary 5.4.1 7w > Hol-lgh
lg(x—1)
Proof: From lemma 5.4.2,
H<
—(1-mlgl—7m)—7mlgr+ (1 —m) gk +rlg(l — k)
=h(r)+ (1 —m)lgk+nlg(l — k)
where, h(m) = —mlgm — (1 — ) 1g(1 — =) is the binary entropy function which takes values between
0 and 1. Hence, H < 1+ 1g(k'=™(I — k)™) which gives the result. ]

We now show that the same lower bound holds for any stationary ergodic process generalizing the
argument of [30, Theorem 1]. First we need to define the following. Let (X Y") be a pair of discrete
random variables (each with range ) with joint distribution p(z,y). For the following let T'(.) be
defined as in 5.4.1. Then by lemma 5.4.1 the minimal expected fault rate that can be obtained

(using a cache of size k) given that a page y of Y was observed is

r(X[Y) = Y- Y payply) =

y €T (p(-y))
> w(X|Y =y)p(y) (5.2)

Let {X;}3, be a stationary ergodic process. Similar to (see equation 2.16) the entropy of a

stationary process we define the fault rate of a stationary ergodic sequence as
H(H) = lim W(Xn|Xn—177X1) (53)
n—>oo

To show that the above limit exists, we need the following lemma which shows that conditioning

cannot increase expected minimal fault rate.

Lemma 5.4.3 Let (X,Y) be a pair of discrete random variables as defined above. Then, II(X]Y) <
II(Xx).

Proof:

=

=

=
I

Sa- > ply)ey) (5.5)

y €T (p(-|y))
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where p(.]y) is the conditional probability distribution of X given y. Hence,

(X)) -MIx\|y) =
S>> palyp@) - > pla)
¥y xeT(p(.|y)) z€T(p(.))
=> > pay) - D, p)
y €T (p(-ly)) z€T(p(.))
> Y Doy - D pla)=
z€T(p(.) ¥ z€T(p(.))
O
Lemma 5.4.4 The limit defined in 5.3 exists for a discrete stationary ergodic process.
Proof:
M Xpt1|Xny -, X1) < I(Xpt1]| Xy - -, X2)
= II(X,|Xn-1,...,X1) (5.6)

where the inequality follows from the fact that conditioning cannot increase the minimal expected
fault rate and the equality follows from the stationarity of the process. Since II(X,|X,—1,...,X1)
is a non-increasing sequence of non-negative numbers, it has a limit. a

An immediate corollary of the following lemma (in conjunction with equations 2.16 and 5.3) is
that the same lower bound as in corollary 5.4.1 holds for stationary ergodic processes too.

Lemma 5.4.5 7(X|Y) > H(X|V)-1-lgk
lg(x—1)

Proof: H(X|Y = y) and 7(X|Y = y) are the entropy and the minimal expected fault rate of a
discrete random variable that takes values in H. Thus the lower bound of corollary 5.4.1 holds for
every y, i.e.,
TX|Y =y) > AEEE
IXY)= >, XY =y)p(y) =
3y (T ()
_ H(X|Y)—1—Igk
B )
O

Thus we can state the following theorem where we have used 7(H, k) to emphasize the dependence
of m on H and k.

Theorem 5.4.1 The minimal expected page fault rate w(H, k) on a request sequence generated by a

stationary ergodic process with entropy H is lower bounded by L(H, k) = %f)—k.
k
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5.4.2 Upper bound

Our upper bound will use Rissanen’s universal data compression system [68] which is a variant of
the Ziv-Lempel’s universal compression algorithm [81].

The Ziv-Lempel algorithm parses individual sequences < X" >= X, X5,..., X,, into phrases.
Each phrase starts with a comma, and consists of a maximal length sequence that has occurred as
an earlier phrase, followed by the next symbol. We denote by v,, the number of complete phrases
when parsing the finite sequence < X™ >. For example, the binary string < X™ >= 0101000100
with length n = 10 is parsed as ,0,1,01,00,010,0 and contains v, = 5 complete phrases and an
incomplete phrase at the end. The Ziv-Lempel parsing is obtained by maintaining a dynamically
growing tree data structure. Initially this tree consists of a single node, the root. Edges of the
tree are labeled with symbols of the alphabet . Processing of a new phrase starts at the root and
proceeds down the tree through edges that match the symbols of the input sequence. When the
process reaches a leaf it adds a new branch labeled with the next symbol of the input sequence,
which is the last symbol of this phrase. Let T,, denote the tree after processing n symbols of the
input.

Rissanen [68] has studied a variant of this algorithm which generates a tree T,,. The nodes of
T,, are the internal nodes of T,,. An internal node of T}, has all its | = || possible descendents.
Thus, nodes in T, are either leaves or have [ descendents. Thus, a processing of a phrase in T,
ends when the process reaches a leaf. The leaf is then converted to an internal node, and its [
descendents are added to the tree. Note that Rissanen’s variant generates exactly the same phrases
as the Liv-Zempel parsing. Let v, be the number of phrases in the parsing of the input string. It is
easy to verify that T}, contains v,, + 1 nodes, while T}, contains 1 + [(v, + 1) nodes, namely v,, + 1
interior nodes and 1 + (I — 1)(v,, + 1) leaves. The advantage of Rissanen’s version is that all leaves
in the the tree T), have equal probability of being reached while searching for a new phrase [68, 6].

Consider the following prefetching algorithm using T),: Assume that at step n the algorithm is
at node z of the tree T},. If z is a leaf we prefetch & symbols randomly and go to the root (after
making the leaf an interior node and adding [ children). If z is an interior node then we prefetch the
k items that correspond to the k subtrees, rooted at z, with the maximum number of leaves. When
the (n + 1)th request is revealed the process proceeds through the corresponding branch.

To analyze the above prefetching algorithm we need the following basic results proven by Ziv
and Lempel [54, 81].

Theorem 5.4.2 [54] The number of phrases v, in a distinct parsing of a sequence (from an alphabet
of size l) X1, Xo,..., X, satisfies

nlgl
(1—€n)lgn

v < where limy,_ o€, =0

Theorem 5.4.3 [81] Let {X,,} be a stationary ergodic process with entropy rate H(H) and let vy,

be the number of phrases in a distinct parsing of a sample of length n from this process. Then

v lg v,

< H(H)

limsup,_ oo
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We first show a simple upper bound which shows that 7 is bounded above by a linear function
of H.

Theorem 5.4.4 The minimal expected fault rate w(H, k) of the prefetching algorithm on a request

sequence generated by a stationary ergodic process with entropy H is upper bounded by U(H, k) =
(I—k)H
Tlg(k+1) "

Proof: We assume that [ > k + 1, otherwise the fault rate is 0. Since we prefetch the £ items
corresponding to the k largest subtrees, whenever we incur a fault the symbol corresponds to a
branch with at most 1/(k + 1) leaves of the current subtree. Since the total number of leaves in the
completed tree is at most v, (I — 1) + 1 the number of faults incurred while traversing from the root
to a leaf is at most 1g; | (v, (I — 1) + 1). Since all leaves have equal probability, the probability of
a fault at a given branch is at most 1 — k/I. Thus, the expected number of faults while processing
a phrase is at most (5£)1g, ., (v,(I — 1) + 1), and the expected number of faults incurred while

processing a sequence of length n is at most

O B gy (ot 1)+ 1)

< l—k v_n(
“llg(k+1) n
(l—k)H

~ llg(k+1)

lg(vy, +1) +1gl)

as n — oo

using theorems 5.4.2 and 5.4.3. a

The above bound shows that the fault rate is bounded above by a linear function of H, although
it is weak when H > lgk. We can get tighter upper bounds on the fault rate by a more careful
analysis. For simplicity we first show the bound for a discrete memoryless source and then we can
show that the same upper bound holds for any stationary ergodic source using arguments similar to

lemma 5.4.5.

Theorem 5.4.5 Consider a discrete memoryless source of entropy H and minimal expected fault

rate w. Then we have the following bound: m < . Further, if H > lgk then, 7 <1 — ZLH

_H
lgk+lge

Proof: Using the same approach as in the proof of theorem 5.4.4 we have the expected number of
faults incurred while processing a phrase is at most 7lg_x_ (vp(I — 1) + 1) for the following reasons.
At each node the probability of not taking any of the k largest subtrees is at most 7 by using
Rissanen’s interpretation. Also whenever we incur a page fault the branch we choose has at most

(1—m)/Ek fraction of leaves of the parent subtree. Thus the minimal expected fault rate 7 is bounded
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above by
r< %nlg%(vn(l —1)+1) (5.7)
< o
= 1/mlghk — f/rnlg(l —m) (5.9)
< ﬁ (5.10)

Further since 7 > 0 we have from equation 5.8, 1gk —1g(1—7) < H which gives 7 < 1— 2%, provided
k< 2H, O

5.5 Caching

In this section we study online caching or demand paging, where a page is fetched into cache only
when a page fault occurs. By comparing the fault rates of two request sequences with equal entropy
we will show that entropy of the request sequence alone does not fully capture the performance of
online caching algorithms. Our construction uses the following two facts:

A prefetching algorithm can “simulate” a caching algorithm by prefetching at each step the k
elements that are in the cache of the caching algorithm at that step. Thus, a lower bound on the
fault rate of any prefetching algorithm for a given request sequence is also a lower bound on the
fault rate of any caching algorithm on that sequence.

Consider a request sequence generated by a discrete memoryless source. It can be shown that the
optimal online algorithm for caching in this case always keeps the k —1 pages with the highest proba-
bility in the cache, and leaves one slot for cache miss [33]. Thus, we can state the following theorem
which follows from theorems 5.4.1 and 5.4.4. (Note that L(H,k) and U(H,k) are monotonically

decreasing functions of k, assuming H and [ are fixed.)

Theorem 5.5.1 The best expected fault rate for any caching algorithm with cache size k on a request

sequence generated by a discrete memoryless source with entropy H, is
L(H,k) <w(k) <U(H,k-1).
Our construction uses request sequences generated by a Markov source.

Definition 5.5.1 [34/] A probabilistic finite state automaton (probabilistic FSA) as a quintuple
(S, H,qg,p,20) where S is a finite set of states with |S| = s, H is a finite alphabet of size l, g is
a deterministic “next state” function that maps SXH into S, p, is a “probability assignment func-
tion” for each z € S that maps H into [0, 1] with the restriction that ), , p.(i) = 1 and 2z € S
is the start state. A probabilistic FSA when used to generate strings is called a Markov source. A
Markov source is ergodic if it is irreducible and aperiodic, meaning that each state can reach every

other state, and the gcd of the possible recurrence times for each state is 1. A Markov source is
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stationary when the start state is chosen randomly according to the steady state probabilities of the

states.

A Markov source is a very general model and is not to be confused with a Markov chain on the
page request sequence which is of first order. A Markov source can have infinite order. A stationary
ergodic process can be approximated by a kth order Markov process, for large k [23]. We can define

the entropy of a stationary Markov source as follows.

Definition 5.5.2 [34] The entropy of a Markov source M denoted by (S,H,g,p, z0) s given by
Hy = ZQ(Z)H(Z)
z=1

where q(z) is the stationary (steady state) probability corresponding to state z and H(z) is the entropy
of the state z defined as — ) 4 p=(x)1gp=(2).

Consider a two state Markov source with the same probability assignment function p(.) for both
states. Let H be the entropy of p(.). Then the entropy of the Markov source is also H. We consider

two cases:

Case 1 The pages corresponding to the top £ — 1 probabilities are the same in both states. In this
case the best caching strategy is similar to the discrete memoryless case, that is keep the &k —1

pages always in the cache. Hence, the fault rate 7 (k) has the same bounds as in theorem 5.5.1.

Case 2 The set of £ — 1 pages with the highest probabilities in state 1 is disjoint from the set of
k — 1 pages with the highest probabilities in state 2. Suppose the stationary probabilities of
the two states are 1/2 each and the transition probability from each state to the other is also
1/2. Then it can be shown that the best caching algorithm is to keep the top (k —1)/2 pages
of each state (assuming k is odd) in the cache. Hence the minimal expected fault rate is (by
theorems 5.4.1 and 5.4.4) in the range:

L(H,k/2) < n(k) < U(H, (k - 1)/2)

It can be shown that the intervals corresponding in the above two cases are disjoint if & is sufficiently

large. Thus, although the entropy in the two scenarios are equal, the fault rates are different.

5.6 Discussion

We briefly discuss how our approach may be used in certain situations to allocate resources more
effectively. Consider the situation where we need to partition a (malleable) cache (for prefetching)
for different data sources. One plausible way is to allocate more space in the cache for a data stream
with lower entropy (assuming a common source alphabet). The motivation for this comes from our

bounds on the fault rate for prefetching based on entropy of the source. Our bounds show that
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the fault rate grows linear in H. From our lower bound (theorem 5.4.1) we get k > 2 I

we fix 7 our bound tells us that we need a larger cache for a data stream with higher entropy to
achieve the same fault rate as opposed to a stream with lower entropy. Thus our bounds can be
used in practice to partition a malleable cache in a better way according to the desired fault rates
for different streams.

A very interesting open question which arises from our work is how accurately can entropy
characterize performance of caching or list accessing algorithms in our model where requests are
generated by a stationary ergodic source. Can we give an upper bound on the average work done
by any list accessing algorithm as a function of entropy alone? We feel that entropy alone does not
characterize the performance of any (or the best) online list accessing algorithm. We know that
prefetching gives a (weak) lower bound on the minimal expected fault rate for caching (demand
paging). Here also it seems that entropy alone does not tightly capture the minimal expected fault
rate. It would be interesting to come up with a parameter which along with entropy will determine
or (at least tightly upper bound) the performance of a caching algorithm. Another interesting area
of research is to explore whether entropy gives good performance bounds for other online problems

known in literature.



Chapter 6

Web Models

In this chapter, we develop and analyze new stochastic models for the Web graph which capture
a global property of the Web: the PageRank distribution. We study the distribution of PageRank
values (used in the Google search engine) on the Web. We show that PageRank values on the Web
follow a power law. We then develop detailed models for the Web graph that explain this observation,
and moreover remain faithful to previously studied degree distributions (a “local” property of the
Web). We analyze these models, and compare the analysis to both snapshots from the Web and
to graphs generated by simulations on the new models. To our knowledge this represents the first

modeling of the Web that goes beyond fitting degree distributions on the Web.

6.1 Introduction

There has been considerable recent work on developing increasingly sophisticated models of the
structure of the Web [1, 9, 10, 11, 18, 51, 52]. The primary drivers for such modeling include
developing an understanding of the evolution of the Web, better tools for optimizing Web-scale
algorithms, mining communities and other structures on the Web, and studying the behavior of
content creators on the Web. Prior modeling has dwelt on fitting models to the observed degree
distribution of the Web. While this represents a significant step (both empirically and analytically),
a troubling aspect of this approach is the heavy reliance on a single set of parameters — the degree
distribution. Moreover, the degree distribution is a very “local” property of graphs, something that
is well recognized from at least two distinct viewpoints: (1) as a ranking mechanism, ordering the
Web pages in search results by in-degree (popularity of linkage) is very easy to spam and thus not
reliable; (2) from a graph-theoretic standpoint, it is easy to exhibit “very different” graphs that
conform to the same degree distribution. Indeed, the first of these reasons led to the PageRank
function [17] used in the Google engine.

In this chapter we present a more detailed approach to modeling, to explain the distributions of
PageRank values on the Web. Our model augments the degree distribution approach, so that as a

by-product we achieve previous models’ success in explaining degree distributions.

95
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There is a second, independently interesting set of reasons for our study of PageRank distribu-
tions. For search engines employing PageRank and associated ranking schemes, it is important to
understand whether, for instance, 99% of the total PageRank is concentrated in (say) 10% of the
pages. This (especially in conjunction with query distribution logs) has implications for compressing
inverted indices and optimizing the available storage. A related question that arises: is PageRank
strongly correlated with in-degree? (Most commonly, non-technical explanations of PageRank take
the form “like the in-degree, except it matters where the pointers come from”.) Beyond the issue of
folklore versus reality, there is a substantial technical question here: could it be that PageRank is
highly correlated to (say) in-degree, and thus the computational overhead (and ranking magic) of
PageRank boils down to a simple popularity count by in-degree? Clearly one can concoct graphs for
which the PageRank and degree distributions are highly correlated, just as one can concoct graphs
for which they are not — but what happens on the true Web?

We develop a series of experiments to resolve these questions. In the process we develop more
detailed models of Web graph evolution than in prior work, and demonstrate on simulations as well

as on extracts of the Web that our new model better fits the empirical evidence.

6.2 Background and Main Contributions

We begin by reviewing related background in Section 6.2.1; the reader familiar with this material

may wish to skip ahead to Section 6.2.2.

6.2.1 Preliminaries

We now set the stage for discussing graph models of the Web, beginning with the standard view
of the Web as a graph (Section 6.2.1). We next review the basics of the PageRank function [17]
reportedly used in the Google search engine (Section 6.2.1).

The Web as a Graph

View the Web as a directed graph whose nodes are html pages. Each hyperlink is a directed edge in
the natural manner. The in-degree of a node is the number of edges (hyperlinks) into it; a simplistic
interpretation of the in-degree of a page is as a popularity count. The out-degree of a node is the
number of links out of it; this is simply the number of href tags on the page. The degree distribution
of a graph is the function of the non-negative integers that specifies, for each k& > 0, what fraction
of the pages have degree k; there are naturally two degree distributions for a directed graph, the
in-degree distribution and the out-degree distribution.

These distributions have been the objective of considerable prior study [1, 9, 10, 11, 18, 51, 52],
on various snapshots of the Web ranging from the Web pages at a particular university to various
commercial crawls of the Web. Despite the varying natures of these studies, the in-degree distribution

appears to be very well approximated by the function ¢/k*! where c is the appropriate normalization
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constant (so that the fractions add to one). Likewise, the out-degree distributions seem to be very
well approximated by the function c,/k*7. Such distributions are known as power law distributions.

Recent work of Dill et al. [26] provides some explanation for this “self-similar” behavior: that
many properties of the Web graph are reflected in sub-domains and other smaller snapshots of
the Web. Indeed, this will provide the basis for some of our experiments, in which we derive an
understanding of certain properties of the Web by studying a crawl of the brown.edu domain. (This
methodology was pioneered by Barabasi et al. [9, 10, 11], who extrapolated from the nd.edu domain
of Notre Dame University. They made a prediction on the diameter of the undirected version of the
Web graph, in which one ignores link directions.)

Other properties of the Web graph that have been studied (analytically or empirically) include
connectivity [18], clique distributions [51] and diameter [15].

PageRank Primer

The PageRank function was presented in [17, 59] and is reportedly used as a ranking mechanism in
the commercial search engine Google [37]. It assigns to each Web page a positive real value called
its PageRank. In the simplest use of the PageRank values, the documents matching a search query
are presented in decreasing order of PageRank. We now briefly discuss the notion of PageRank and
its practical implementation via the decay parameter.

The original intuition underlying PageRank was to visualize a random surfer who browsed the
Web from page to page. Given the current location (page) ¢ of the surfer, the successor location is
a page reached by following a hyperlink out of page ¢ uniformly at random. Thus each hyperlink
is followed with probability proportional to the out-degree of ¢. In this setting, the PageRank of
each page is the frequency with which, in the steady state, the page ¢ is visited by such a surfer.
Intuitively, the surfer frequently visits “important” pages such as yahoo.com because many pages
hyperlink to it. Moreover, by calculations from elementary probability theory, the PageRank of a
page ¢ is increased if those pages that hyperlink to ¢ have high PageRank themselves.

An immediate difficulty with this notion: some pages, or an (internally) connected cluster of pages

1. so that the random surfer may get stuck. To address this,

may have no hyperlinks out of them
Brin and Page [17] introduced the following device: at each step, with some probability, the surfer
“teleports” to a completely random Web page, independent of the hyperlinks out of the current
page. At least in consideration of the surfing behavior of early users of the Web (from the mid
1990’s), such serendipitous teleporting followed by some depth-first exploration (before teleporting
again) was reasonable. More important to the notion of PageRank, it removes the technical difficulty
created by (connected clusters of) pages having no hyperlinks out of them.

Let the pages on the Web be denoted by 1,2...,m. Let dyy:(i) denote the number of outgoing
links from page i, i.e., the out-degree of 7. Let In(i) denote the set of pages that point to 7. Let

p(0 < p < 1) be the decay factor that represents the probability with which the surfer proceeds with

LContent from certain disciplines — such as the humanities — tends to be “less hyperlinked” and more in the form
of monologues and discourse without links than disciplines close to computing and the Web [35].
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the random walk, while 1 — p is the probability of teleporting to a random page amongst all m Web
pages. Then the PageRank (i) of page i is given by ([17]):

1-— r
()= —L +ps (]().)
jern(s) “out\J
This represents a system of linear equations (one for each ¢ € {1,2,...,m}). We may rewrite

this in matrix form, and the unique solution vector r(i) can be expressed as the eigenvector of a
matrix [17, 59] or as the stationary probability of a random walk [56] (thus >, 7(¢) = 1). Details
are beyond the scope of this brief exposition.

While we will not get deeper into the mathematical underpinnings of PageRank here, it should
be intuitively clear that the PageRank values of pages are global properties (in contrast to the more
local nature of in-degree). One could in principle concoct examples in which the PageRanks of a few
nodes could be “engineered”, but fitting the entire distribution is much harder. This observation is
one reason why we propose that the PageRank distribution is a far more reliable characteristic to
model, than the degree distribution. Moreover, as we show below, our model captures the PageRank

distribution while remaining faithful to the degree distribution.

6.2.2 Main contributions and Organization of the Chapter

We review graph models in Section 6.3. We augment the current set of models by proposing a
new model — which we call PageRank-based selection — in which attachment probabilities for new
hyperlinks are based on the PageRanks of existing nodes. The intent in proposing this model is
to explain our empirical observations on PageRank distributions, described below. We suggest a
behavioral explanation of content creation that might underlie this model. We also present a hybrid
selection model that is a natural combination of previous models with our PageRank-based selection
model.

In Section 6.4 we describe experiments on snapshots from the Brown University Web, as well
as from the publicly available WT10g Web snapshot. Our first finding is that the PageRank dis-
tribution follows a power law with exponent 2.1. This is extremely interesting for several reasons:
(1) PageRank is distributed as a power law; (2) it has the same exponent (namely, 2.1) as that
observed for in-degree on many independent snapshots of the Web; (3) the distribution is (as al-
ready known for in- and out-degree distributions) relatively insensitive to the particular snapshot of
the Web on which the measurement is made. The fact that in-degree and PageRank follow similar
power law distribution on the Web graph might lead to the conclusion that the two properties are
highly correlated. This, however, is not the case for the Web graph. Our experiments show very
little correlation between the two properties on the Web graph. A high in-degree of a node does not
imply high PageRank and vice versa.

Section 6.5 adopts analytical as well as simulation-based approaches to validating our models and
fitting model parameters. We first present analysis based on the “mean-field” approach [9, 10, 11]

that the classical degree-based selection model as well as our new PageRank-based selection yield
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power laws for the PageRank distribution. The question then is whether the exponents predicted
by the analysis match the observations. Given that these are parameterized models, we are able
to find combinations of models and parameters that do indeed fit both the PageRank and degree
distributions. We verify that these models do generate graphs with the correct distributions through
simulations in which we generate multiple random graphs and measure their distributional properties
(Section 6.5.3).

To our knowledge, these are the first results that capture global distributional properties in a
model, validating empirical observations through analysis and simulation. Our new models simul-
taneously capture degree distributions — local properties studied in previous models. We suggest
behavioral explanations for our models, allowing the prediction of what would happen to PageRank
and degree distributions if more content creators were to link to pages ranked highly by PageRank-

based search engines such as Google.

6.3 Web Graph Models

In the Erdos-Renyi model of random graphs [13], each edge is directed from a node to another node
that is chosen uniformly at random from all the other nodes in the graph. There is a wealth of
research on such graphs, and many properties of such random graphs are well understood. For
instance, an Erdos-Renyi random graph in which the average out-degree of each node is roughly 7
(as is the observed average out-degree of Web pages), the degree distributions are Poisson, and it
is extremely unlikely that there are any clique-like structures with more than a handful of nodes.
Given the many consistent observations of power law degrees on the Web graph, as well as the
superabundance of clique-like structures [52], it is clear that the Web graph does not conform to the
Erdds-Renyi model. Nevertheless, as we will see below, elements of random selection do play a role
in models that are more faithful to the Web graph.

A number of research projects proceeded to develop models that better explained the power law
behavior of degree distributions on the Web; see [60] for a survey of these. In all of these, the view
is that of nodes and edges being added to the graph one at a time. As noted above, it does not
suffice for such newly arriving edges to choose to point to a node (page) chosen uniformly at random,
since this does not yield a power law distribution for degrees. The simplest model to overcome this
problem uses the following device: each edge chooses the node to point to at random, but with
non-uniform probabilities for choosing the various nodes. In particular, the edge points to a node
q in proportion to the current in-degree of ¢g. This yields Web graphs whose in-degree distributions
have been shown to converge to the distribution ~ 1/k? [9, 10, 11].

However, as noted earlier, empirical studies have shown that in-degrees are in fact distributed as
~ 1/k*?1 (rather than 1/k?). To help explain the exponent of 2.1, Kumar et al. [53] introduced the
following more detailed process by which each edge chooses the node to point to. Some fraction of
the time (a parameter they call a € [0,1]) the edge points to a node chosen uniformly at random.

The rest of the time (a fraction 1 — «), the edge picks an intermediate node v at random, and copies
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the destination of a random edge out of v. In other words, the new edge points to the destination
of an edge e, chosen at random from the outgoing edges of a random node v. Kumar et al. offer
the following behavioral explanation for this process: some fraction of the time a content creator
creating a page refers to a random new topic and thus creates a link (edge) to a random destination.
The remainder of the time, the content creator copies a hyperlink off an existing page (in this
case v), having decided that this is an interesting link. They then explain a number of empirical
observations on the Web graph including the in-degree exponent of 2.1 and the large number of
clique-like structures observed by [52]. In fact, they prove theorems that derive the exponent as a
function of the parameter . There is another way of viewing this model: a fraction a of the edges
go to random nodes, while the remainder choose destination nodes in proportion to their current
degrees. Thus, their model may be viewed as a generalization of the models of Barabasi and others,
parameterized by a. We will henceforth refer to this model as the degree-based selection model.

Could it be that this model would also explain the PageRank distributions we observe on the Web?

Before we address this question, we next introduce a new model inspired by the a model above.
Suppose that each edge chose its destination at random a fraction 3 € [0, 1] of the time, and the rest
of the time chose a destination in proportion to its PageRank. Following the behavioral motivation
of Kumar et al., this can be thought of as a content-creator who chooses to link to random pages
some fraction of the time, and to pages highly rated by a PageRank-based engine such as Google the
remainder of the time. In other words, content creators are more likely to link to pages that score
high on PageRank-based search results, because these pages are easy to discover and link to. This is
not implausible from the behavioral standpoint, and could help capture the PageRank distributions
we observe (just as in-degree based linking helped explain in-degree distributions in prior work). We

will call this the PageRank-based selection model.

However, this now raises the question: if we could develop a model that explained observed
PageRank distributions, could it be that we lose the ability to capture observed degree distributions?
To address this, we now present the most general model we will study. There are two parameters
a,b € [0,1] such that a + b < 1. With probability a an edge points to a page in proportion to its
in-degree. With probability b it points to a page in proportion to its PageRank. With the remaining
probability 1 — a — b, it points to a page chosen uniformly at random from all pages. We thus
have a family of models; using these 2-parameter models we can hope to simultaneously capture the
two distributions we investigate — the PageRank distribution (representing global properties of the
graph), and the in-degree distribution (representing local properties of the graph). We will call this
the hybrid selection model.

6.4 Experiments

To set the context for exploring the models in Section 6.3, we study the distribution of PageRanks

(as well as of the in- and out-degrees) on several snapshots of the Web.
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6.4.1 Experiments on the Brown University Domain

Our first set of experiments was on the Web graph underlying the Brown University domain
(*.brown.edu). Our approach is motivated by recent results on the “self-similar” nature of the
Web (e.g., [26]): a thematically unified region (like a large subdomain) displays the same charac-
teristics as the Web at large. The Brown Web consisted of a little over 100,000 pages (and nearly
700,000 hyperlinks) with an average in-degree (and thus out-degree) of around 7. This is very close
to the average in-degree reported in large crawls of the Web [52]. Our crawl started at the Brown
University homepage (www.brown.edu — “root” page) and proceeded in breadth-first fashion; any
URL outside the *.brown.edu domain was ignored. We did prune our crawl — for example, URL’s

with /cgi-bin/ were not explored.

The graphs shown in Figures 6.1, 6.2 and 6.3 summarize our results on the in-degree, out-degree
and the PageRank distributions in the Brown Web graph?. Our experiments show that the in-
degree and out-degree distribution follows a power law with exponent 2.1 and 2.7 respectively. This
is strikingly similar to the results reported on far larger crawls of the Web [18, 52]. For example [18]
report exactly the same power law exponents on a crawl of over 200 million pages and 1.5 billion
hyperlinks.

However, the most interesting result of our study was that of the PageRank distribution. We
first describe our PageRank computation. As in [59], we first pre-process pages which do not have
any hyperlinks out of them (i.e., pages with out-degree 0): we assume that these have links back
to the pages that point to them [2]. This is intuitively more justifiable than just dropping these
pages: we expect surfers to trace back their trail when they reach a dead end. In our PageRank
computation we set the decay parameter to 0.9; this is a typical value reportedly used in practice
(e.g., [17] uses 0.85), and the convergence is fast (under 20 iterations). Similar fast convergence is
reported in [59, 17]. However, varying the decay parameter does not significantly change our results,
as long as the parameter is fairly close to 1. In particular, we get essentially the same results for

decay parameter values down to 0.8.

The main result of our PageRank distribution plot is that a large majority of pages (except those
with very small PageRank) follow power law with an exponent close to 2.1. That is, the fraction of

2.1 This appears to be the same as the in-degree

nodes having PageRank r is proportional to 1/r
exponent; more on this later. In section 6.5 we will give an analysis suggesting this PageRank

distribution, based on various models from Section 6.3.

We also note that the distribution is almost flat for pages with very low PageRank. To check
whether this is an anomaly, we repeated the experiments for the Brown Computer Science de-
partment subdomain (*.cs.brown.edu) and we got almost identical results (i.e., in-degree, out-
degree and PageRank distributions follow power laws with almost identical exponents) even though

*.cs.brown.edu is a much smaller graph (around 25,000 nodes); and a similar flattening at the top

2To avoid excessively “dark” plots resulting in large amounts of redundant data, all plots in this chapter have been
sub-sampled.
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Figure 6.1: Log-log plot of the in-degree distribution of the Brown domain (*.brown.edu). The
in-degree distribution follows a power law with exponent close to 2.1.

(corresponding to pages with very low PageRank) in the PageRank distribution. When compar-
ing this pattern to the experiments on the WT10g corpus (next subsection) that captures a more
generic subset of the Web, we conclude that relatively structured domains, such as brown.edu and
cs.brown.edu, have a smaller fraction of very "unimportant” pages than predicted by the power
law distribution and observed in less structured corpora.

To understand the correlation between in-degree (and out-degree) and PageRank we scatter-
plotted the PageRank verses the in-degree and out-degree. These are shown in Figures 6.4 and 6.5
respectively. It clearly shows that there is very little correlation between PageRank and in-degree,
except possibly when the in-degree is very high. Thus PageRank is indeed a characteristic of pages
that is not predicted by the in-degree. In particular, when ranking search results, “highly relevant
pages” (those with high PageRank) could have low in-degree. The correlation coefficient between the
PageRank and in-degree is 0.35 and between the PageRank and out-degree is 0.34. This is indeed

surprising given the similarity of the slopes of the two distributions. We will return to this later.

6.4.2 Experiments on WT10g Data

We repeated our experiments on the WT10g corpus [80], a recently released, 1.69 million document
testbed for conducting Web experiments. The results are almost identical to those on the Brown
Web; the in-degree, out-degree, and PageRank distributions follow power laws with exponent close
to 2.1, 2.7 and 2.1 respectively. Figure 6.6 shows the plot of PageRank distribution of the wt10g
corpus (we are not showing the in-degree and out-degree distribution plots as they are very similar
to those of the Brown Web). The power law here appears much sharper than in the Brown Web.
Also, unlike the Brown Web, the plot has slope 2.1 almost the entire spectrum of PageRank values,
except for those with very low PageRank values. As noted above, a possible explanation is that
unlike the Brown domain, the WT10g corpus is constructed by a careful selection of Web pages so
as to characterize the whole Web [80].
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Figure 6.2: Log-log plot of the out-degree distribution of the Brown domain (*.brown.edu). The
out-degree distribution follows a power law with exponent close to 2.7.
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Figure 6.3: Log-log plot of the PageRank distribution of the Brown domain (*.brown.edu). A vast
majority of the pages (except those with very low PageRank) follow a power law with exponent close
to 2.1. The plot almost flattens out for pages with very low PageRank.

We also repeated our correlation experiments on this corpus: there is almost no correlation
between the PageRank and in-degree (out-degree) distributions. The correlation coefficient is 0.15
(0.07). This is even less than the correlation observed on the Brown domain: again, this may be
due to the fact that unlike the Brown domain, the corpus is more representative of the Web (and

also much larger).

6.5 Fitting the Models: Analysis and Simulations

In this section we address some of the modeling questions raised in section 6.3. Having obtained
the empirical distributions in Section 6.4, we first give analytical predictions of the shape of the

PageRank distributions for the degree-based and PageRank-based selection models of Section 6.3.
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Figure 6.4: Log-log scatter plot of the PageRank verses the in-degree of the Brown domain, showing
very little correlation. The corresponding graph for the WT10g corpus is very similar.
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Figure 6.5: Log-log scatter plot of the PageRank verses the out-degree of the Brown domain, showing
very little correlation. The corresponding graph for the WT10g corpus is very similar.

The intent is to infer what choices of these model parameters would give rise to the distributions
observed in our experiments. Finally, in Section 6.5.3 we generate random graphs according to these
fitted models, to see if in fact they give rise to graphs that match the distributions observed on the
Web.

6.5.1 Degree-based Selection

Consider a graph evolving in a sequence of time steps — as noted in Section 6.3 such evolution is not
only realistic in the context of the Web, it is also a feature of all Web graph models. A single node
with 7 outgoing edges is added at every time step. (We assume that we start with a single node with
a self-loop at time 0 [14]).) Each edge chooses its destination node independently with probability

proportional to 1+in-degree? of each possible destination node. This model is essentially the one

3We assume that each incoming node has “weight” 1, otherwise there won’t be any non-trivial growth.
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Figure 6.6: Log-log plot of the PageRank distribution of the WT10g corpus. The slope is close to
2.1. Note that the plot looks much sharper than the corresponding plot for the Brown Web. Also,
the tapering at the top is much less pronounced.

analyzed by Barabasi et al. and is a special case of the a model of Kumar et al.

Let 7f(v) represent the PageRank of v at time step t. We can interpret the PageRank as
the stationary probability of a random walk on the underlying graph, with the teleport operation
(Section 6.2.1) being modeled by a “central” node c. At each step, the surfer either decides to
continue his random walk with probability p or chooses to return to the central node with probability
1 — p; from the central node he jumps to a random node in the graph. To write an expression for
7t (v) it is useful to define ff(v), the “span” of v at time ¢: the sum of the in-degrees of all nodes in
the network (including v itself) that have a path to v that does not use the central node (we also
refer to the nodes contributing to the span as “span nodes”). Since each edge contributes a 1/r
fraction of the stationary probability of its source node (using the standard stationary equations

(see [56])), we can bound 7!(v) for the above random walk as follows:

(6.1)

where 7(c) is the stationary probability of the central node and D is the diameter of the network
(ignoring link directions). We note two facts here. First, a simple observation shows that 7(c) is a
constant, independent of ¢; second, it can be shown that when ¢ is sufficiently large, the diameter of
the graph at time ¢ is logarithmic in the size of the graph (which is ¢) [15]. Thus if the decay factor

p is sufficiently close to 1, we can approximate 7 (v) as

7t (v) ~ % (6.2)

We now proceed to estimate f(v). Following the “mean-field” approach of Barabasi et al. [11], and
treating ft(v) as continuous, we can write the differential equation for the rate of change of ft(v)

with time:

d(f'(v)) _ f'(v)
a (63)
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where the right hand side denotes the probability that an incoming edge connects to one of the span

nodes of v. The solution to (Equation 6.3) with the initial condition that node v was added at time

t, 18
‘ t
e = (). (6.4)
Combining Equations (6.2) and (6.4), we have
t m(c)
R~ 6.5
")~ T (65)
Using the above equation,
t Te
Pr(n*(v) < ¢) = Pr(t, > —).
o
Since nodes are added at equal time intervals, the probability density of ¢, is 1/t. Thus we obtain
e e e
Pr(t, > —)=1-Pr(t, < —)=1-
(to > 7‘(;5) (b < rqﬁ) rto

which yields that the probability density function F for 7t(v) is:

F(o) = é)(Pr(?ra(:;) <9) . :t(gg

implying that the PageRank follows a power law with exponent 2, independent of r and ¢. Simula-

(6.6)

tions of this model (described below and shown in Figure 6.7) agree well with this prediction.

As already mentioned in Section 6.3 the in-degree distribution of this model follows a power law
with exponent 2, the same as the PageRank distribution derived above. This is striking given that
in our empirical studies too, the in-degree and PageRank distributions had identical power laws.
However, the empirically observed power laws have exponents of 2.1; thus the degree-based selection
model does not quite match the in-degree and PageRank exponents observed in practice. Now a
natural question is whether we can make it match both the distributions by changing «, i.e., by
incorporating a random selection component in choosing nodes. The answer is surprisingly* yes;

more on this in Section 6.5.3 below. But first we analyze PageRank-based selection.

6.5.2 PageRank-based Selection

We show that power law emerges for the PageRank and degree distributions in this model, but the
exponents are different from the degree-based model.
Using the same argument as before, we can show that Equation (6.2) holds. However, ff(v)

follows a different differential equation from Equation (6.3). Instead we have

d(f*(v)) _ fr(v)r
=2t (6.7)

4Surprising because, it is not the case that PageRank and in-degree distributions are related, as our analysis might
lead us to believe. Consider the uniform selection model. It can be shown by similar analysis that a power

law (with a small exponent) emerges for the PageRank even here; but as mentioned in section 6.3 the degree
distribution follows a Poisson distribution.
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Figure 6.7: Log-log plot of degree-based selection with @ = 0. The number of nodes shown is
300,000 (+), 200,000 (*) and 100,000 (x). It clearly shows that the slope is 2, confirming the power
law predicted by analysis.

The reasoning is as follows. The probability that ft(v) increases by one is the probability that the
incoming node chooses any one of the nodes in the span to connect to, which is proportional to the
sum of the PageRanks of all the span nodes of v. To calculate this probability, we see that each
directed edge contributes nearly twice to the sum (if p is sufficiently large) and the total PageRank
is thus proportional to the sum of the degrees which is 2rt.

Plugging the solution of the above differential equation in Equation (6.2), we can show that the

probability density function F for 7t(v) in this model is:

(m())?

F(¢) ~ peropey (6.8)

i.e., predicting that the PageRank follows a power law with exponent 3. Analogously, we can show
that the degree also a follows a power law with exponent 3. Simulations also agree quite well with
this prediction.

Thus, the PageRank-based selection model with 3 = 0 does not match the empirically observed
in-degree and PageRank exponents. Can we hope to match the observations by varying 3?7 Unlike
the degree-based selection model, the answer is no; increasing [ will only increase the power law
exponent (above 3) for the in-degree distribution. This can be verified by experiments, as well as
by a direct extension to the analysis above; details are omitted in this abstract. We are thus left
with the degree-based selection model and the hybrid selection model of Section 6.3 as candidates

for explaining the observations.

6.5.3 Simulations of the Generative Models

An accurate model of the Web graph must conform with the experimentally observed in-degree, out-
degree, and PageRank distributions. We simulated the degree-based and hybrid selection models

defined in section 6.3 under various parameters to find settings that generate the observed empirical
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distributions. We simulated graphs of size up to 300,000 nodes, and we varied the average number
of new edges generated per new node generation (time step). In particular, to be “close” to the real
Web’s average out-degree (and in-degree), we focused on the range in which the average number of
edges added per new node is around 7. We obtained essentially the same results for the power laws,
irrespective of the size (from 10,000 nodes onwards) or the number of outgoing edges.

Our first step was fitting the out-degree distribution. Following Kumar et al., we use the degree-
based copying model with a suitable value of 3 to fit the out-degree distribution to a power law
with exponent 2.7. At each time step, the incoming node receives edges from existing nodes. With
probability 3 a node is chosen uniformly at random, with probability 1 — # the node is chosen
proportional to the current out-degree distribution. Note that the out-degree distribution is fixed
independently of the in-degree distribution. We use g = 0.45 to get a power law exponent equal to
2.7.

We turn now to the problem of fitting the in-degree distribution. We first simulated the degree-
based selection model. Setting a = 0, both the in-degree and PageRank distributions followed a
power law with exponent 2. We observed that increasing « increases the exponents in the in-degree
and PageRank distributions. In particular, setting o & 0.2 brings both exponents to the empirical
value of 2.1. This value is unique; by increasing or decreasing a we lose the fit. Thus, we found
a setting of the parameters for which the degree-based selection model simultaneously fits all the
three distributions.

Since degree-based selection model fits the empirical data, a natural question is whether PageRank-
based selection is irrelevant in modeling the Web graph. To answer this, we experimented with the
2-parameter hybrid selection model proposed in Section 6.3. Surprisingly when a = b =~ 0.33, we
could again simultaneously fit all three distributions. Thus we have an alternative model, with a
substantial PageRank-based selection component, that fits the Web empirical data. As mentioned
in Section 6.3, this model is plausible from the behavioral standpoint.

To further understand these models we scatter-plotted the PageRank and in-degree distributions
for the above two models: we found a very high correlation (close to 0.99) between PageRank and
in-degree in both models, unlike the empirical Web data. We outline a possible explanation in the

concluding section.

6.6 Conclusion and Further work

We present experimental and analytical study of PageRank distribution on the Web graph, and use
it to develop more accurate generative models for the evolution of the Web graph. Our first finding is
that PageRank distribution on snapshots of the Web graph follows a power law distribution with the
same exponent as the in-degree distribution. Despite this similarity in distributions, our experiments
show that there is very little correlation on the Web graph between a node’s in-degree and PageRank.
Thus, PageRank distribution is an independent feature of the Web graph. Furthermore, unlike in-

degree, PageRank is a global property of the graph, thus one expects to obtain more accurate
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modeling of the Web graph by fitting the models to the PageRank distribution.

We consider three possible models for the Web graph: degree-based selection model, PageRank-
based selection model, and a hybrid model. Our analysis shows that the PageRank-based selection
model cannot fit the empirical data. For the two other models we found settings of parameters under
which the model fits simultaneously the in-degree and out-degree distributions and the PageRank
distribution. A natural question for further study is whether one of these models describes the Web
better than the other.

A second challenging question is extending these simple models to capture the important notion
of communities and sub-communities on the Web. All models proposed and analyzed so far grow by
making “global” choices: connections are chosen by various distributions, but from all the existing
nodes. In practice, links between nodes cannot be fully explained just by the relative popularity of
the nodes. While nodes are likely to link to important or popular nodes, these nodes are also likely
to be in the same sub-community. We are exploring generative models that capture this feature,
and expect these models to explain, among other things, the discrepancy between PageRank and

in-degree correlations in the empirical data and the simulated models.
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Epilogue

In this thesis we presented results in four different settings in which stochastic models proved useful
in modeling dynamic computer phenomena. They were useful in two ways: providing mathematical
insight into the essential nature of the phenomena as it occurs in real-life and in giving a reasonably
realistic framework for designing and analyzing algorithms/protocols for associated problems. Thus
one of the main goals of this thesis is to illustrate the usefulness of stochastic modeling and analysis
in a variety of application areas.

Stochastic analysis does not fall under the category of worst-case analysis. In many scenarios
worst-case analysis is meaningless or uninteresting or does not capture typical real-life situations. We
can illustrate with a couple of examples. Competitive analysis is meaningless to analyze prefetching
since the optimal offline algorithm will always prefetch correctly (Chapter 5). Worst-case analysis
of our P2P protocol (Chapter 4) is both uninteresting and unrealistic: for instance, a malicious
adversary can make sure that the network is disconnected at any point of time irrespective of what
the protocol does. It also doesn’t reflect what typically happens in real-life. On the other hand,
our stochastic model is a more realistic approximation of real-life P2P systems as supported by
experimental data.

Our preceding discussion leads to an important question: how to find a good mathematical model
for the phenomenon? This is beyond the scope of this thesis, but we state two guiding principles
which we used: a good model is one which reasonably approximates real-life data and/or captures
an important feature of the phenomenon, and is mathematically tractable.

We hope our thesis will inspire further work in similar spirit: understanding dynamic computer
phenomena that arise in modern applications and in designing and analyzing algorithms for associ-

ated problems using stochastic modeling and analysis.
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