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Summary 

Numerous biomolecular data are available, but they are scattered in many databases and 

only some of them are curated by experts. Most available data are computationally 

derived and include errors and inconsistencies. Effective use of available data in order to 

derive new knowledge hence requires data integration and quality improvement. Many 

approaches for data integration have been proposed. Data warehousing seams to be the 

most adequate when comprehensive analysis of integrated data is required. This makes it 

the most suitable also to implement comprehensive quality controls on integrated data. 

We previously developed GFINDer (http://www.bioinformatics.polimi.it/GFINDer/), a 

web system that supports scientists in effectively using available information. It allows 

comprehensive statistical analysis and mining of functional and phenotypic annotations of 

gene lists, such as those identified by high-throughput biomolecular experiments. 

GFINDer backend is composed of a multi-organism genomic and proteomic data 

warehouse (GPDW). Within the GPDW, several controlled terminologies and ontologies, 

which describe gene and gene product related biomolecular processes, functions and 

phenotypes, are imported and integrated, together with their associations with genes and 

proteins of several organisms. In order to ease maintaining updated the GPDW and to 

ensure the best possible quality of data integrated in subsequent updating of the data 

warehouse, we developed several automatic procedures. Within them, we implemented 

numerous data quality control techniques to test the integrated data for a variety of 

possible errors and inconsistencies. Among other features, the implemented controls 

check data structure and completeness, ontological data consistency, ID format and 

evolution, unexpected data quantification values, and consistency of data from single and 

multiple sources. We use the implemented controls to analyze the quality of data 

available from several different biological databases and integrated in the GFINDer data 

warehouse. By doing so, we identified in these data a variety of different types of errors 

and inconsistencies; this enables us to ensure good quality of the data in the GFINDer 

data warehouse. We reported all identified data errors and inconsistencies to the curators 

of the original databases from where the data were retrieved, who mainly corrected them 

in subsequent updating of the original database. This contributed to improve the quality of 

the data available, in the original databases, to the whole scientific community. 

1 Introduction 

Rapid progression of biomedical knowledge is being fostered by the explosion of available 

biomolecular data and the development of computational methods to extract reliable 

information from them. Molecular biology databases are continuously increasing in number 

(more than 1,150 in January 2009 [1]) and in coverage of the included biomolecular entities 

(e.g. genomic DNAs, genes, transcripts, proteins), as well as of their described structural and 
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functional biomedical features. They provide extremely valuable information, but scattered 

across numerous data sources, only partially curated and mostly computationally derived, 

which is known to include errors and inconsistencies. Effective use of available information 

to support the interpretation of experimental results and derive new biomedical knowledge 

hence requires their integration and quality improvement. These, or at least the selection of 

higher quality data among those available, are particularly required for the numerous 

computationally derived data. 

Several different approaches for data integration have been proposed, including data 

warehousing, multi databases, federated databases, information linkage and mediator based 

solutions. They have been implemented in systems such as Biowarehouse [2], TAMBIS [3], 

DiscoveryLink [4], SRS [5], or Biomediator [6], respectively. Data warehousing seams the 

most adequate when the data to be integrated are numerous and efficient and comprehensive 

analysis and mining of the integrated data is required [7]. This approach requires that 

information from the distributed databases to be integrated are automatically retrieved and 

processed in order to create and maintain updated an integrated and consistent collection of 

originally distributed data. This makes data warehousing one of the most suitable methods 

also to implement comprehensive quality controls on the integrated data. In particular, it 

makes possible to effectively and efficiently check data errors and inconsistencies, both 

within a single data source and among multiple data sources integrated in the data warehouse. 

2 GFINDer Data Warehouse 

To effectively take advantage of the numerous genomic and proteomic information sparsely 

available in many heterogeneous and distributed biomolecular databases accessible via the 

Internet, we previously developed the Genome Function INtegrated Discoverer (GFINDer) 

project (http://www.bioinformatics.polimi.it/GFINDer/) [8], [9]. GFINDer is a publicly 

available Web system used by several thousands worldwide scientists (we counted about 

110,000 accesses from more than 6,000 distinct IP addresses in the last 5 years). GFINDer 

supports comprehensive statistical enrichment analysis and data mining of functional and 

phenotypic annotations of large-scale lists of user-classified genes, such as those identified by 

high-throughput biomolecular experiments. It automatically retrieves annotations of several 

functional and phenotypic categories from different sources, identifies the categories enriched 

in each class of a user-classified gene list and calculates statistical significance values for each 

category. Moreover, GFINDer enables the functional classification of genes according to 

mined functional categories and the statistical analysis of the classifications obtained, aiding 

better interpretation of high-throughput experiment results. 

As other similar systems such as DAVID (http://david.abcc.ncifcrf.gov/) and FatiGO+ 

(http://www.fatigo.org/), GFINDer is based on a multi-organism genomic and proteomic data 

warehouse (GPDW). In the GPDW several controlled terminologies and ontologies, which 

describe gene and gene product related biomolecular processes, functions and phenotypes, are 

imported and stored together with their associations (annotations) with genes and proteins of 

several organisms. In the GPDW all such data from several different databases are integrated 

by interconnecting the imported annotations to the genes and proteins they refer to by means 

of their provided IDs and cross-references. 

To ease maintaining updated and extending the information integrated in the GFINDer data 

warehouse, which are retrieved from many databases frequently updated, we designed and 

implemented several automatic procedures in Java programming language. We also 

implemented a set of data quality control approaches to check the imported data for a variety 
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of possible errors and inconsistencies, and ensure the best possible quality of the data 

integrated in subsequent updating of the data warehouse. 

3 Quality Controls of Integrated Data 

A range of techniques, such as source trustworthiness, error localization and correction, 

record linkage, and others, exist in the literature to assess and improve the quality of data 

[10], [11]. Batini and colleagues [12] provide a neat systematic and comparative description 

of existing methodologies for different data quality improvement strategies. Following a data-

driven strategy, in this work we focus on the assessment and improvement of two 

fundamental data quality dimensions of integrated biomolecular data, namely accuracy and 

consistency. Other two important data quality dimensions, i.e. completeness and timeliness, 

which depend on the selected data sources that are being integrated and on the updating 

frequency of the integration process, are also considered.  

In order to detect the variety of possible errors and inconsistencies that no rarely exist in 

subsequent updating of data available from public biomolecular databases, we implemented a 

set of automatic procedures for data quality checking and applied them to improve quality of 

data integrated in the GFINDer data warehouse. Among other features, these procedures 

check data structure and completeness, ontological data consistency, ID format and evolution, 

unexpected data quantification values, and consistency of data from single and multiple 

sources. 

3.1 Data structure and completeness 

Most of biological databases provides the whole of their data, or part of them, within text files 

in different formats, including flat, tabular, XML and RDF formats. This allows 

reimplementing locally the entire database, or part of it, and integrating its data with those 

from other databases by automatically parsing the data file contents and importing them in a 

local data warehouse, such as our GPDW. In subsequent versions of such files, data vary 

according to the data updated in the database. Also changes in data file structure are not 

infrequent and can produce erroneous data import and integration. To check consistency of 

both data and their data file structure, we created automatic procedures in which strict 

checking of data parsed from source data files is enforced and assured by the created data 

parsers. This enables us to automatically verify absence of inappropriate missed data and 

inconsistent data structures, and monitor data structure modifications (e.g. variation of 

expected tags in XML data files, or data columns in tabular data files) in new versions of 

source data files. 

Furthermore, whenever syntactic or semantic information (e.g. tags in XML file format, or an 

explanatory header in tabular file format) are available for a source data file, we use them for 

semantic identification and control of imported data. When data structure modifications or 

incompatible new data are found, such data are not imported in the local data warehouse and 

warnings are shown for their supervised management. Adaptability to source data structure 

modifications requires supervision since not enough semantic information is generally 

available for such data to enable safe automatic implementations. 

3.2 Ontological data consistency  

Numerous data available in biological databases are ontological data describing different 

aspects of current biomolecular knowledge. Being part of an ontology, the relationships 
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among these data should form a hierarchical tree or a direct acyclic graph. Correct structure of 

these trees and graphs is paramount to support exact analysis and expansion of gene and 

protein direct annotations provided by many annotation databases.  

In order to check the internal consistency of ontological data, we developed automatic 

procedures which verify that the ontological data describe a topologically correct graph (i.e. a 

graph that contains a single root and no cycles, and, for hierarchical trees, in which no 

multiple parents exist for each graph node). When inconsistencies are detected, they are 

automatically pointed out to be managed in a supervised way.  

Furthermore, when data relationships are declared as symmetrical and contain enough 

redundancy to allow checking them, our developed procedures automatically check their 

internal consistency and completeness. When inconsistencies are detected, they are shown 

and, if the developed automatic procedures are set to do so, the missed relationship data are 

automatically filled in. For example, the Entrez Gene database [13] provides both Related 

pseudogene and Related functional gene relationships, which are defined as symmetrical, 

between genes. Thus, if the relationship about gene A being a related pseudogene of gene B 

exists, but the relationship about gene B being a related functional gene of gene A is not 

available, then the provided data are internally inconsistent or incomplete (either the first 

relationship is wrong, or the second one is missed). The same logical inspection is used to 

check for external consistency (i.e. among data provided by different data sources).  

3.3 ID format and evolution  

Several different types of IDs or accession numbers are used to identify data in biological 

databases. Usually, each database adopts its own IDs and provides their mapping or 

association with the IDs of other most recognized databases (e.g. Entrez Gene IDs or Ensembl 

IDs for genes, and Ensembl IDs, RefSeq IDs or UniProt IDs for proteins) [13], [14], [15], 

[16]. The different types of IDs have several different formats, but most of them has a well 

defined numerical or alphanumerical format, with a fixed or variable number of digits or 

characters. These formats can be described with regular expressions; some databases like 

RefSeq and UniProt provide regular expressions describing their ID formats (Table 1).  

 

ID source ID type Regular expression 

RefSeq DNA sequence ID AC_[0-9]{6}(\.[0-9]+)? 

RefSeq DNA sequence ID N[CGSTW]_[0-9]{6,9}(\.[0-9]+)? 

RefSeq DNA sequence ID NZ_[A-Z]{4}[0-9]{8}(\.[0-9]+)? 

RefSeq Transcript ID [NX][MR]_[0-9]{6,9}(\.[0-9]+)? 

RefSeq Protein ID [ANXYZ]P_[0-9]{6,9}(\.[0-9]+)? 

UniProt Protein ID [A-NR-Z][0-9][A-Z][A-Z0-9][A-Z0-9][0-9] (\.[0-9]+)? 

UniProt Protein ID [OPQ][0-9][A-Z0-9][A-Z0-9][A-Z0-9][0-9] (\.[0-9]+)? 

Table 1: Example of available regular expressions describing some biological ID formats 

Since many operations performed on biological database data regard ID matching and linking, 

correct ID format and exact identification of ID type is paramount. In order to automatically 

identify, syntactically check and manage the different ID types, we both used the available 

regular expressions and defined a set of other regular expressions (Table 2), which describe 

the different ID types and their acceptable formats. Furthermore, in order to discriminate 
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different ID types with same format, our developed automatic procedures also check the name 

of the source that provides the IDs whenever it is available associated with the IDs. This 

allows semantically identifying the different ID types and controlling their correct use. 

 

ID source ID type Regular expression 

Entrez Gene Gene ID [0-9]+ 

Ensembl Gene ID ENS[A-Z]{3}G[0-9]{11} 

Ensembl Gene ID ENSG[0-9]{11} 

IPI Protein ID IPI[0-9]{8} 

Gene 

Ontology 

Biological process, Molecular  function, 

or Cellular component ID 
GO:[0-9]{7} 

KEGG Pathway ID [0-9]{5} 

InterPro Protein family or domain ID IPR[0-9]{6} 

Expasy Enzyme ID EC:[0-9]+(\.[0-9]+|-){0,3} 

Table 2: Example of defined regular expressions describing some biological ID formats 

Besides checking ID format, whenever possible our developed procedures also control ID 

evolution. This is an important aspect since biological databases have different updating 

frequencies, and database IDs (or their associations) can vary among different updating 

versions. Thus, at a given point of time association data between different databases (e.g. 

annotation data) can refer to a version of the related database data different from the one 

directly available from the related database. This might be a significant issue when all these 

data are integrated together. In order to minimize such an issue, besides carefully selecting 

association data providers, whenever ID history data are available, we used them to 

automatically reconcile database IDs from different providers.  

3.4 Unexpected data quantification values 

Implemented data checking automatic procedures also perform data quantifications that can 

identify possible data errors, inconsistencies or redundancies. For example, they check for 

data duplicates within data both from a single database and also from different databases.  

Furthermore, implemented checking quantifications can also highlight unexpected 

information patterns. These not only may unveil inconsistencies among the data provided by 

different sources, or even the same data source, but might also foster the generation of data 

driven hypotheses, which might potentially lead to biological discoveries and new biomedical 

knowledge. For example, in the integrated data from multiple organisms and sources, 

quantifications of the number of genes that codify a single or more proteins, or the number of 

different proteins codified by one or more genes, can give insight on gene homolog and 

alternative splicing phenomena.  

3.5 Consistency of data from multiple sources  

Besides checking consistency within data imported from a single source, we also 

implemented automatic cross-controls among data imported from different sources. This 

enable us to identify redundant or mismatching data and ensure best possible quality of data 

integrated in the GFINDer data warehouse. When multiple independent sources provide 
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overlapping data, we use such overlaps to verify the information they provide and increase its 

likelihood. When inconsistencies are detected, they are automatically pointed out. 

Cross-comparison of data from different sources is also performed by checking and taking 

advantage of relationship loops among imported data. This can help in both verifying 

consistency and completeness of different data sources, and unveiling unexpected information 

patterns possibly leading to biological discoveries.  

4 Errors and Inconsistencies Detected in Available Data 

By using the above described implemented automatic procedure to analyze the quality of data 

available from several different biological databases integrated in the GFINDer data 

warehouse we identified a variety of different types of errors and inconsistencies, some of 

which are following reported.  

4.1 Data structure and completeness 

By checking completeness and structure of data files provided by several different biological 

databases, we identified both inappropriate missed data and inconsistent data structures. For 

example, we check the gi2ipi.xrefs file from the International Protein Index (IPI) database 

[17] (ftp://ftp.ebi.ac.uk/pub/databases/IPI/), which provides mapping between protein IPI IDs 

and the Entrez Gene ID of their codifying gene. In the version of this file downloaded from 

IPI on July 30
th

, 2009, we found 510 IPI IDs (on a total of 768,148, about 0.07%) lacking of 

the Entrez Gene ID of their codifying gene. This may indicate some erroneously missing data, 

or may also indicate that the encoding genes (and/or their Entrez Gene ID) of the proteins 

identified by those IPI IDs are not known yet. 

Among other data file formats, our developed automatic quality control procedures can also 

test conformity of data file structure in Open Biomedical Ontology (OBO) format [18], which 

is used by several data sources to provide ontology data. In the OBO format, data are 

structured in rooms: a room is a labelled part of the file in which an object of a particular type 

is described together with its attributes. The label of each room and of each object attribute in 

the room must have a defined structure and value, in order to correctly recognize the file 

content. Yet, sometimes these labels present a wrong unexpected value. For example, in the 

OBO pathology.obo file version 2.9 downloaded on July 30
th

, 2009 from the eVOC database 

[19] (http://www.evocontology.org/) we found an attribute label with a value 

(exact_synonymexact_synonym) that is not described in the eVOC ontology documentation 

(Figure 1).  

 

 

Figure 1: Excerpt of the July 30
th

, 2009 version of the eVOC 

pathology.obo file including the incorrect attribute label 

exact_synonymexact_synonym shown in the box 

Furthermore, our implemented data quality procedures automatically identified data file 

structure variations in subsequent versions of data files provided by some databases. These 

included an increasing number of data columns in some tabular data file provided by the 
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Entrez Gene database, or XML tag modifications in the XML file provided by the UniProt 

database.  

4.2 Ontological data consistency  

Our consistency checking of ontological data provided by the Gene Ontology [20], eVOC and 

KEGG [21] databases generally did not identify ontological inconsistencies. Only in the OBO 

anatomicalsystem.obo file version 2.9 downloaded on July 30
th

, 2009 from the eVOC 

database we found that the eVOC anatomical system ontology term ID EV:0100106 was 

hierarchically associated with two different parent terms of the ontology, i.e. term ID 

EV:0100101 and term ID EV:0100105 (Figure 2). This is not consistent with the hierarchical 

tree structure of the eVOC anatomical system ontology, which requires that each ontology 

term has no more than a single parent. 

 

 

Figure 2: Excerpt of the July 30
th

, 2009 version of the eVOC anatomicalsystem.obo file 

including the ontological term ID EV:0100105 incorrectly hierarchically associated with two 

parent terms (shown in the box) 

Also our checking of the symmetrical ontological data provided by some databases, such as 

the Related pseudogene and Related functional gene relationships in the Entrez Gene 

gene_group file (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/), did not find any internal 

symmetrical inconsistency or incompleteness. 

4.3 ID format and evolution  

By using specific regular expressions to automatically check the format of all IDs imported in 

the GFINDer data warehouse, we can both identify syntactical errors in ID formats and 

recognize ID type and provenance in order to control their correct semantic use. The 

performed controls identified several inconsistent ID semantic assignments and ID format 

errors. For example, in the version of the gene2accession tabular file downloaded Entrez 

Gene on July 30
th

, 2009 we found a great number of semantic inconsistencies, including: 

 A set of 312 RefSeq IDs of genomic nucleotide sequences that were incorrectly 

inserted in the RNA_nucleotide_accession column instead of in the 

genomic_nucleotide_accession column of the file, and hence provided as RefSeq IDs 

of RNA nucleotide sequences (Figure 3) 

 A set of 3 IDs in the protein_accession column of the file that were not recognized as 

protein IDs: one of them (NC_005847) is the RefSeq ID of a genomic nucleotide 

sequence; the other two IDs (AE009443_1.1 and AE009443_2.1) are probably 

GeneBank genomic nucleotide sequence IDs with wrong format (incorrectly including 

the additional _1 or _2 characters); all three IDs were incorrectly inserted in the 
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protein_accession column instead of in the genomic_nucleotide_accession column of 

the file. 

 

 

Figure 3: Excerpt of the July 30
th

, 2009 version of the Entrez Gene gene2accession file including the IDs 

with incorrect semantic assignment shown in the boxes 

Furthermore, in the version of the ec2go tabular file downloaded from GOA [22] on July 

30th, 2009 (ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/external2go/) we found an enzyme ID 

with wrong format (EC:3.6.1.52e); the regular expression we created for the Expasy enzyme 

IDs (Table 2) recognized the additional character e incorrectly included in the ID (Figure 4). 

 

 

Figure 4: Excerpt of the July 30
th

, 2009 version of the GOA ec2go file including the EC ID with wrong 

format shown in the box 

Regarding ID evolution, we considered the ID history data provided by the Entrez Gene and 

Gene Ontology databases in order to manage their ID evolution and update available 

annotation data including their obsolete IDs. On July 30
th

, 2009 existed 796,802 discontinued 

Entrez Gene IDs (14.99% of all Entrez Gene IDs, with 96,346 (12.09%) of them that had been 

replaced with a new successor ID), and 1,121 discontinued Gene Ontology IDs (3.83% of all 

Gene Ontology IDs; all of them had been replaced with a new successor ID).  

By checking the inclusion of Entrez Gene and Gene Ontology discontinued IDs in available 

annotation data and in case updating them to their current successor ID, on July 30
th

, 2009 we 

could update and make effectively usable numerous gene and protein annotations, including: 

 472 annotations of 187 Entrez Gene IDs to 104 KEGG biochemical pathways (0.71% 

of all such annotations provided by KEGG, and 90.78% of all the Entrez Gene IDs 

and 96.30% of all the KEGG biochemical pathways they included) 

 48,541 annotations of 982 Entrez Gene IDs with 330 eVOC ontology terms (49.71% 

of all such associations provided by eVOC in the version 2.9 of the annotation data 

with its four main ontologies that we considered (which describe the gene expression 

in human anatomical systems, cellular types, developmental stages, and pathologies 

[23]), and 42.57% of all the Entrez Gene IDs and 96.21% of all the eVOC terms they 

included) 
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 11,380 associations of 4,364 Entrez Gene IDs with 9,428 UniSTS IDs (1.57% of all 

such associations provided by Entrez Gene, and 30.28% of all the Entrez Gene IDs 

and 36.17% of all the UniSTS IDs they included) 

The multiple cases of discontinued IDs present in annotation data are due to the asynchronous 

updating of the different databases managing the IDs used in such annotations. Interestingly, 

discontinued IDs of a given data source may be present also in external annotation data 

provided by that same data source (such as the discontinued Entrez Gene IDs included in the 

mapping data between Entrez Gene IDs and UniSTS IDs provided by the Entrez Gene itself). 

4.4 Unexpected data quantification values 

By checking the presence of redundancies in data from a single database, our implemented 

automatic procedures found a few redundant data, including the two duplicated entries shown 

in Figure 5. Much more redundancies were found in data, especially annotation data, from 

different data sources. 

 

 

Figure 5: Excerpt of the July 30
th

, 2009 version of the KEGG map_title.tab file, which provides 

pathway IDs and the correspondent pathway name; two redundant entries are shown in the boxes 

In looking for redundancies, our implemented automatic procedures also check for the 

presence of similar entries that differ only for one or more secondary fields, which for 

example are included only in a data source. In this case, the different fields of the entries are 

merged together to produce a single non redundant entry.  

 

Gene count 

(Entrez Gene IDs) 

Number of proteins 

(UniProt IDs) 

1 19,728 

2 70 

3 14 

4 3 

5 3 

9 1 

14 1 

Table 3: Number of human proteins resulted to be 

encoded by one or more genes (Gene count) 

Among the several checking quantifications implemented in our automatic procedures to scan 

the multi-organism data integrated in the GFINDer data warehouse for unexpected 

information patterns, we point out those recording the number of proteins encoded by one or 
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more genes; in Table 3 are shown the results for the human organism. In the obtained results 

some single protein IDs have been interestingly found associated with IDs of several different 

genes, thus describing the same protein as codified by all such genes. Thorough investigations 

of such results can evaluate the membership of these multiple genes encoding the same 

protein to a single gene family, thus contributing in the classification of homolog genes. 

4.5 Consistency of data from multiple sources  

Our implemented quality control automatic procedures also checks relationship loops among 

data and execute cross-checking among data imported from different sources. This enables us 

to verify data consistency and completeness, and helps unveiling unexpected information 

patterns possibly leading to biological discoveries. For example, on the assumption that, if a 

protein is annotated to a Gene Ontology term, the gene that codifies that protein must be 

annotated to that Gene Ontology term as well, we test consistency of GO annotations of 

proteins and their codifying genes integrated in the GFINDer data warehouse. By checking 

cross-references existing between Gene Ontology, UniProt and Entrez Gene databases, we 

found that 6,342 (3.98%) GO annotations (regarding 2,012 different GO terms) of 1,811 

human proteins provided in the gene_association.goa_human file (downloaded on July 30
th

, 

2009 from the GOA database) were not comprised in the GO annotations of the protein 

codifying genes provided in the gene2go file (downloaded on July 30
th

, 2009 from the Entrez 

Gene database). These protein GO annotations included also 2,221 (35.02%) annotations with 

evidence stronger than that inferred from electronic annotation (IEA).  

5 Conclusions 

The data warehousing approach, implemented to construct and maintain updated our 

GFINDer data warehouse, integrates efficiently large quantities of various biomolecular 

information sparsely available in numerous databases. It provides support to both increasing 

coverage of information partially provided by single data sources, and better controlling their 

correctness and completeness. The implementation on top of such integrative approach of the 

techniques for data quality assessment and improvement that are available in the literature 

ensures best possible quality of the data integrated in subsequent updating of the data 

warehouse. It also allows detecting errors and inconsistencies in the data provided by 

biological databases that are integrated. Among these techniques, syntactic checking of IDs 

by using regular expressions can highlight errors both in ID format and in their semantic use. 

Taking advantage of ID history data allows reconciling a great number of association data that 

involve different types of IDs. Reported results demonstrate both the relevant number of data 

from different databases that are not aligned due to the asynchronous updating of such 

databases, and the importance of using ID history data to reconcile as much as possible these 

misaligned data. Focused quantifications of integrated data identify redundant data imported 

from different data sources and also highlight unexpected information; the 14 different human 

genes that were found encoding the same identical gene products 

(http://www.uniprot.org/uniprot/P62805) are just an example. Cross-validation of data from 

multiple sources and analysis of data relationship loops proved effective in assessing 

completeness and consistency of data from different sources. Among others, they identified 

the lack of annotations in the Gene Ontology annotations of human genes provided by the 

Entrez Gene database. The use of such human Gene Ontology annotations without cross-

checking their completeness would result in considering much less gene annotations than that 

known, with the consequent considerably less power of the analysis performed on them (e.g. 

the enrichment analysis of gene expression experiment results).  
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We reported all identified data errors and inconsistencies to the curators of the original 

databases from where the data were retrieved, who showed great collaboration and interest. In 

the majority of cases, the identified issues were corrected, or are in the process to be 

corrected, in subsequent updating of the original database. This demonstrates the relevance of 

our quality control effort in contributing to improve the quality of data available, in the 

original databases, to the whole scientific community.  

The work here presented regards quality assessment and improvement of data available in 

biological databases, focusing mainly on annotation data. Yet, the data quality techniques 

here discussed, or similar ones, could be also successfully applied to improve integrity of the 

numerous experimental data produced by high-throughput molecular biology experiments. 
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