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ABSTRACT

Statistical models in which both fixed and random

effects enter nonlinearly are becoming increasingly

popular.  These models have a wide variety of

applications, two of the most common being

nonlinear growth curves and overdispersed binomial

data.  A new SAS/STAT® procedure, NLMIXED, fits

these models using likelihood-based methods. This

paper presents some of the primary features of

PROC NLMIXED and illustrates its use with two

examples.

INTRODUCTION

The NLMIXED procedure fits nonlinear mixed

models, that is, models in which both fixed and

random effects are permitted to have a nonlinear

relationship to the response variable.   These models

can take various forms, but the most common ones

involve a conditional distribution for the response

variable given the random effects.  PROC NLMIXED

enables you to specify such a distribution by using

either a keyword for a standard form (normal,

binomial, Poisson) or SAS programming statements

to specify a general distribution.

PROC NLMIXED fits the specified nonlinear mixed

model by maximizing an approximation to the

likelihood integrated over the random effects.

Different approximations to the integral are available,

and the two principal ones are adaptive Gaussian

quadrature and a first-order Taylor series

approximation.  You can use a variety of alternative

optimization techniques to carry out the

maximization; the default is a dual quasi-Newton

algorithm.

Successful convergence of the optimization problem

results in parameter estimates along with their

approximate standard errors computed from the

second derivative matrix of the likelihood function.

PROC NLMIXED enables you to use the estimated

model to construct predictions of arbitrary functions

by using the parameter estimates and the empirical

Bayes estimates of the random effects. PROC

NLMIXED approximates their standard errors using

the first derivatives of the function that you specify

(the delta method).

LITERATURE ON NONLINEAR MIXED MODELS

Davidian and Giltinan (1995) and Vonesh and

Chinchilli (1996) provide good overviews as well as

general theoretical developments and examples of

nonlinear mixed models.  Pinheiro and Bates (1995)

is a primary reference for the theory and

computational techniques of PROC NLMIXED.  They

describe and compare several different integrated

likelihood approximations and provide evidence that

adaptive Gaussian quadrature is one of the best

methods.  Davidian and Gallant (1993) also use

Gaussian quadrature for nonlinear mixed models,

although the smooth nonparametric density they

advocate for the random effects is currently not

available in PROC NLMIXED.

Traditional approaches to fitting nonlinear mixed

models involve Taylor series expansions, expanding

around either zero or the empirical best linear

unbiased predictions of the random effects.  The

former is the basis for the well-known first-order

method of Beal and Sheiner (1982, 1988) and

Sheiner and Beal (1985), and it is implemented in

PROC NLMIXED.  The latter is the basis for the



estimation method of Lindstrom and Bates (1990),

and it is not available in PROC NLMIXED.  However,

the closely related Laplacian approximation is

available; it is equivalent to adaptive Gaussian

quadrature with only one quadrature point.  The

Laplacian approximation and its relationship to the

Lindstrom-Bates method are discussed by Beal and

Sheiner (1992), Wolfinger (1993), Vonesh (1992,

1996), and Wolfinger and Lin (1997).

A parallel literature exists in the area of generalized

linear mixed models, in which random effects appear

as a part of the linear predictor inside of a link

function.  Taylor-series methods that are similar to

those just described are discussed in articles such

as Harville and Mee (1984), Stiratelli, Laird, and

Ware (1984), Gilmour, Anderson, and Rae (1985),

Goldstein (1991), Schall (1991), Engel and Keen

(1992), Breslow and Clayton (1993), Wolfinger and

O’Connell (1993), and McGilchrist (1994), but such

methods have not been implemented in PROC

NLMIXED because they can produce biased results

in certain binary data situations (Rodriguez and

Goldman 1995, Lin and Breslow 1996). Instead, a

numerical quadrature approach is available in PROC

NLMIXED, as discussed in Pierce and Sands (1975),

Anderson and Aitkin (1985), Crouch and Spiegelman

(1990), Hedeker and Gibbons (1994), Longford

(1994), McCulloch (1994), Liu and Pierce (1994),

and Diggle, Liang, and Zeger (1994).

PROC NLMIXED COMPARED WITH OTHER SAS
PROCEDURES AND MACROS

The models fit by PROC NLMIXED can be viewed as

generalizations of the random coefficient models fit

by the MIXED procedure.  This generalization allows

the random coefficients to enter the model

nonlinearly, whereas in PROC MIXED they enter

linearly.  Because of this general nonlinear

formulation, no direct analog to the REML method is

available in PROC NLMIXED; only standard

maximum likelihood is used.  Also, PROC MIXED

assumes the data to be normally distributed,

whereas PROC NLMIXED enables you to analyze

data that are normal, binomial, or Poisson or that

have any likelihood programmable with SAS

statements.

PROC NLMIXED does not implement the same

estimation techniques that are available with the

NLINMIX and GLIMMIX macros.  These macros are

based on the estimation methods of Lindstrom and

Bates (1990), Breslow and Clayton (1993), and

Wolfinger and O’Connell (1993), and they iteratively

fit a set of generalized estimating equations (refer to

Chapters 11 and 12 of Littell et al. 1996 and to

Wolfinger 1997).  In contrast, PROC NLMIXED

directly maximizes an approximate integrated

likelihood.

PROC NLMIXED has close ties with the NLP

procedure in SAS/OR® software. PROC NLMIXED

uses a subset of the optimization code underlying

PROC NLP and has many of the same optimization-

based options.  Also, the programming statement

functionality that is used by PROC NLMIXED is the

same as that used by PROC NLP and the MODEL

procedure in SAS/ETS® software.

NONLINEAR GROWTH CURVES WITH
GAUSSIAN DATA

As our first example, consider the orange tree data

of Draper and Smith (1981).  These data consist of

seven measurements of the trunk circumference (in

millimeters) on each of five orange trees. You can

input these data into a SAS data set as follows:

   data tree;
      input tree day y;
      datalines;



   1  118   30
   1  484   58
   1  664   87
   1 1004  115
   1 1231  120
   1 1372  142
   1 1582  145
   2  118   33
   2  484   69
   2  664  111
   2 1004  156
   2 1231  172
   2 1372  203
   2 1582  203
   3  118   30
   3  484   51
   3  664   75
   3 1004  108
   3 1231  115
   3 1372  139
   3 1582  140
   4  118   32
   4  484   62
   4  664  112
   4 1004  167
   4 1231  179
   4 1372  209
   4 1582  214
   5  118   30
   5  484   49
   5  664   81
   5 1004  125
   5 1231  142
   5 1372  174
   5 1582  177
   run;

The following is a plot of the profiles of the trees.

Each profile has a flattish S shape, and between-tree

variability increases with days.

Lindstrom and Bates (1990) and Pinheiro and Bates

(1995) propose the following logistic nonlinear mixed

model for these data:
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Here, yij  represents the jth measurement on the ith

tree (i=1,…,5; j=1,…,7); dij is the corresponding day;

b1, b2, b3 are the fixed-effects parameters; ui1 are the

random-effect parameters assumed to be iid

N(0,σ2
u), and eij are the residual errors assumed to

be iid N(0,σ2
e) and independent of the ui1.  This

model has a logistic form, and the random-effect

parameters ui1 enter the model linearly.

The PROC NLMIXED statements to fit this nonlinear

mixed model are as follows:

   proc nlmixed data=tree;
      parms b1=190 b2=700 b3=350 s2u=1000
         s2e=60;
      num = b1+u1;
      ex = exp(-(day-b2)/b3);
      den = 1 + ex;
      model y ~ normal(num/den,s2e);
      random u1 ~ normal(0,s2u) subject=tree;
   run;

The PROC NLMIXED statement invokes the

procedure and inputs the TREE data set.  The

PARMS statement identifies the unknown

parameters and their starting values.  Here, there

are three fixed-effects parameters (B1, B2, B3) and

two variance components (S2U, S2E).

The next three statements are SAS programming

statements specifying the logistic mixed model.  A

new variable U1 is included to identify the random

effect.  These statements are evaluated for every

observation in the data set when PROC NLMIXED

computes the integrated log likelihood function and

its derivatives.



The MODEL statement defines the dependent

variable and its conditional distribution given the

random effects.  Here a normal (Gaussian)

conditional distribution is specified with mean

NUM/DEN and variance S2E.

The RANDOM statement defines the single random

effect to be U1, and specifies that it follows a normal

distribution with mean 0 and variance S2U.  The

SUBJECT= argument defines a variable indicating

when the random effect obtains new realizations; in

this case, it changes according to the values of the

TREE variable.  PROC NLMIXED assumes that the

input data set is clustered according to the levels of

the TREE variable; that is, all observations from the

same tree occur sequentially in the input data set.

The output from this analysis is as follows.

             The NLMIXED Procedure

                 Specifications

Data Set                          WORK.TREE
Dependent Variable                y
Distribution for Dep Variable     Normal
Random Effects                    u1
Distribution for Random Effects   Normal
Subject Variable                  tree
Optimization Technique            Dual Quasi-
                                  Newton
Estimation Method                 Adaptive
                                  Gaussian
                                  Quadrature

The “Specifications” table lists some basic

information about the nonlinear mixed model that

you have specified.  Included are the input data set,

dependent and subject variables, random effects,

relevant distributions, and type of optimization.

                Dimensions

  Observations Used                     35
  Observations Not Used                  0
  Total Observations                    35
  Subjects                               5
  Max Obs Per Subject                    7
  Parameters                             5
  Quadrature Points                      1

The “Dimensions” table lists various counts related

to the model, including the number of observations,

subjects, and parameters.  These quantities are

useful for checking that you have specified your data

set and model correctly.  Also listed is the number of

quadrature points that PROC NLMIXED has selected

based on the evaluation of the log likelihood at the

starting values of the parameters.  Here, only one

quadrature point is necessary because the random-

effect parameters enter the model linearly.

                Parameters

  b1     b2     b3    s2u    s2e   NegLogLike

 190   700    350   1000     60   132.491787

The “Parameters” table lists the parameters to be

estimated, their starting values, and the negative log

likelihood evaluated at these starting values.

                 Iterations

Iter Calls NegLogLike    Diff  MaxGrad     Slope

  1     4 131.686742 0.805045 0.010269    -0.633
  2     6 131.6446   0.042082 0.014783   -0.0182
  3     8 131.614077 0.030583 0.009809  -0.02796
  4    10 131.57252  0.04155  0.001186  -0.01344
  5    11 131.571895 0.000627 0.0002    -0.00121
  6    13 131.571889 5.549E-6 0.00009   -7.68E-6
  7    15 131.57188  1.096E-6 6.097E-6  -1.29E-6

   NOTE: GCONV convergence criterion satisfied.         

The “Iterations” table records the history of the

minimization of the negative log likelihood.  For each

iteration of the quasi-Newton optimization, values are

listed for the number of function calls, the value of

the negative log likelihood, the difference from the

previous iteration, the absolute value of the largest

gradient, and the slope of the search direction.  The

note at the bottom of the table indicates that the

algorithm has converged successfully according to

the GCONV convergence criterion, a standard

criterion computed using a quadratic form in the

gradient and inverse Hessian.



              Fitting Information

   -2 Log Likelihood                  263.1
   AIC (smaller is better)            273.1
   BIC (smaller is better)            271.2
   Log Likelihood                    -131.6
   AIC (larger is better)            -136.6
   BIC (larger is better)            -135.6

The ”Fitting Information” table lists the final

maximized value of the log likelihood as well as the

information criteria of Akaike and Schwarz in two

different forms.  These statistics can be used to

compare different nonlinear mixed models.

              Parameter Estimates

                  Standard         t
Parameter Estimate   Error  DF Value Pr > |t|

b1          192.05 15.6473   4 12.27   0.0003
b2          727.90 35.2472   4 20.65   <.0001
b3          348.07 27.0790   4 12.85   0.0002
s2u         999.88  647.44   4  1.54   0.1974
s2e        61.5139 15.8831   4  3.87   0.0179

Parameter  Alpha    Lower    Upper  Gradient

b1          0.05   148.61   235.50   1.154E-6
b2          0.05   630.04   825.76   5.289E-6
b3          0.05   272.88   423.25    -6.1E-6
s2u         0.05  -797.70  2797.45   -3.84E-6
s2e         0.05  17.4153   105.61   2.892E-6

The “Parameter Estimates” table lists the maximum

likelihood estimates of the five parameters and their

approximate standard errors computed using the

final Hessian matrix.  Approximate t values and

Wald-type confidence limits are also provided, with

degrees of freedom equal to the number of subjects

minus the number of random effects. You should

interpret these statistics cautiously for variance

parameters like S2U and S2E because their

sampling distributions tend to be skewed.  The final

column in the output is the gradient vector at the

optimization solution.  Each element appears to be

sufficiently small to indicate a stationary point.

Since the random-effect parameters enter the model

linearly, you can obtain equivalent results by using

the first-order method (specify METHOD=FIRO in

the PROC NLMIXED statement).

LOGISTIC-NORMAL MODEL WITH BINOMIAL
DATA

Our second example concerns the data from Beitler

and Landis (1985), which represent results from a

multicenter clinical trial investigating the results of

two topical cream treatments (active drug, control) in

curing an infection.  For each of eight clinics, the

number of trials and favorable cures are recorded for

each treatment.  The SAS data set is as follows.

     data infection;
      input clinic t x n;
      datalines;
   1 1 11 36
   1 0 10 37
   2 1 16 20
   2 0 22 32
   3 1 14 19
   3 0  7 19
   4 1  2 16
   4 0  1 17
   5 1  6 17
   5 0  0 12
   6 1  1 11
   6 0  0 10
   7 1  1  5
   7 0  1  9
   8 1  4  6
   8 0  6  7
   run;

Suppose nij denotes the number of trials for the ith

clinic and the jth treatment (i=1,…,8; j=0,1), and xij

the corresponding number of favorable cures.  Then

a reasonable model for the preceding data is the

following logistic model with random effects:
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The notation tj indicates the jth treatment, and the ui

are assumed to be iid N(0, ,σ2
u).

The observed log odds profile for each clinic is

displayed in the following figure.   The log odds are



displayed as –5 for clinics 5 and 6 at the 0 treatment

level, although the actual log odds are −∞. The log

odds increase from the 0 to 1 level of the treatment

in all but one clinic (clinic 8), so we would expect the

estimate of β1 to be positive.

The PROC NLMIXED statements to fit the logistic-

normal model to these data are as follows:

   proc nlmixed data=infection;
      parms beta0=-1 beta1=1 s2u=2;
      eta = beta0 + beta1*t + u;
      expeta = exp(eta);
      p = expeta/(1+expeta);
      model x ~ binomial(n,p);
      random u ~ normal(0,s2u)
         subject=clinic;
      predict eta out=eta;
      estimate ’1/beta1’ 1/beta1;
   run;

The PROC NLMIXED statement invokes the

procedure, and the PARMS statement defines the

parameters and their starting values.  Reasonable

starting values such as these can often be obtained

by fitting a simpler model.

The next three statements construct the variable P to

correspond to the pij, and the MODEL statement

defines the conditional distribution of xi to be

binomial. The RANDOM statement defines U to be

the random effect with subjects defined by the

CLINIC variable.

The PREDICT statement constructs predictions for

each observation in the input data set.  For this

example, predictions of ni are output to a SAS data

set named ETA.  These predictions are linear

functions of the empirical Bayes estimates of the

random effects ui. The ESTIMATE statement

requests an estimate of the reciprocal of β1.

The output for this model is as follows.

             The NLMIXED Procedure

                Specifications

Data Set                             WORK.
                                     INFECTION
Dependent Variable                   x
Distribution for Dep Variable        Binomial
Random Effects                       u
Distribution for Random Effects      Normal
Subject Variable                     clinic
Optimization Technique               Dual Quasi-
                                     Newton
Estimation Method                    Adaptive
                                     Gaussian
                                     Quadrature

The “Specifications” table provides basic information

about the nonlinear mixed model.

                  Dimensions

   Observations Used                    16
   Observations Not Used                 0
   Total Observations                   16
   Subjects                              8
   Max Obs Per Subject                   2
   Parameters                            3
   Quadrature Points                     5

The “Dimensions” table provides counts of various

variables. You should check this table to make sure

the data set and model have been entered properly.

PROC NLMIXED selects five quadrature points to

achieve the default accuracy in the likelihood

calculations.



                  Parameters

 beta0       beta1         s2u    NegLogLike

    -1           1           2    37.5945925

The “Parameters” table lists the starting point of the

optimization.

                  Iterations

Iter Calls NegLogLike     Diff MaxGrad     Slope

  1     2  37.3622692 0.232323 2.882077 -19.3762
  2     3  37.1460375 0.216232 0.921926 -0.82852
  3     5  37.0300936 0.115944 0.315897 -0.59175
  4     6  37.0223017 0.007792  0.01906 -0.01615
  5     7  37.0222472 0.000054 0.001743 -0.00011
  6     9  37.0222466  6.57E-7 0.000091 -1.28E-6
  7    11  37.0222466 5.38E-10 2.078E-6  -1.1E-9

  NOTE: GCONV convergence criterion satisfied.          

The “Iterations” table indicates successful

convergence in seven iterations.

             Fitting Information

  -2 Log Likelihood                   74.0
  AIC (smaller is better)             80.0
  BIC (smaller is better)             80.3
  Log Likelihood                     -37.0
  AIC (larger is better)             -40.0
  BIC (larger is better)             -40.1

The “Fitting Information” table lists some useful

statistics based on the maximized value of the log

likelihood.

              Parameter Estimates

                   Standard         t
 Parameter Estimate   Error  DF Value Pr > |t|

 beta0      -1.1974  0.5561   7 -2.15   0.0683
 beta1       0.7385  0.3004   7  2.46   0.0436
 s2u         1.9591  1.1903   7  1.65   0.1438

 Parameter  Alpha     Lower   Upper   Gradient

 beta0       0.05   -2.5123  0.1175    -3.1E-7
 beta1       0.05   0.02806  1.4488   -2.08E-6
 s2u         0.05   -0.8554  4.7736   -2.48E-7

The “Parameter Estimates” table indicates marginal

significance of the two fixed-effects parameters.  The

positive value of the estimate of β1 indicates that the

treatment significantly increases the chance of a

favorable cure.

              Additional Estimates

                Standard          t
Label   Estimate   Error  DF  Value  Pr > |t|

1/beta1   1.3542  0.5509   7   2.46    0.0436

           Alpha     Lower     Upper

            0.05   0.05146    2.6569

The “Additional Estimates” table displays results

from the ESTIMATE statement.  The estimate of 1/β1

equals 1/0.7385 = 1.3542 and its standard error

equals 0.3004/0.73852= 0.5509 by the delta method

(Billingsley 1986).  Note this particular approximation

produces a t statistic that is identical to that for the

estimate of β1 itself.

Not shown is the ETA data set, which contains the

original 16 observations, predictions of the nij, and

associated statistics.

SYNTAX

This section provides an overview of the statements

that are available in PROC NLMIXED and some of

their key options.  More details and additional options

are provided in the complete documentation

referenced in the CONTACT INFORMATION section

at the end of this paper.

PROC NLMIXED options;

This statement invokes the procedure.  A large number of options
are available; the following are some of the most important ones:



ALPHA= specifies the alpha level used to compute t statistics
and intervals.

COV requests the approximate covariance matrix for the
parameter estimates.

CORR requests the approximate correlation matrix of the
parameter estimates.

DATA= specifies the input data set.

ECOV requests the approximate covariance matrix for all
quantities specified in ESTIMATE statements.

ECORR requests the approximate covariance matrix for all
quantities specified in ESTIMATE statements.

FD requests finite difference derivatives.

GCONV= specifies the relative gradient convergence criterion.

HESS requests the display of the final Hessian matrix.

ITDETAILS requests a more detailed iteration history.

MAXITER= specifies the maximum number of iterations.

METHOD= specifies the method for approximating the integral
over the random effects.  Valid values are FIRO, GAUSS (the
default), HARDY, and ISAMP.

QPOINTS= specifies the number of quadrature points for each
random effect.

START requests the printout of the starting gradient.

TECH= specifies the optimization technique.  Valid values are
CONGRA, DBLDOG, NMSIMP, NONE, NEWRAP, NRRIDG,
QUANEW (the default), and TRUREG.

ARRAY arrayname;

The ARRAY statement allows you to specify SAS arrays.

BOUNDS b_con [, b_con];

The BOUNDS statement enables you to specify boundary
constraints on the parameters.  Example statements are as
follows:

   bounds 0 <= a1-a9 X <= 1, -1 <= c2-c5;

   bounds b1-b10 y >= 0;

BY variables;

The BY statement invokes standard SAS BY processing.

ESTIMATE ‘label’ expression ;

The ESTIMATE statement enables you to compute an additional
estimate that is a function of the parameter values.  Multiple
ESTIMATE statements are allowed.

ID expressions ;

The ID statement identifies additional quantities to be included in
the OUT= data set of all PREDICT statements.

MODEL dependent-variable ~ distribution ;

The MODEL statement specifies the dependent variable and its
conditional distribution given the random effects.  Valid
distributional forms are NORMAL(m,v), BINARY(p),
BINOMIAL(n,p), POISSON(m), and GENERAL(ll).

PARMS <name_list[=numbers]>;

The PARMS statement specifies parameter names and their
starting values.

PREDICT expression OUT=SAS-data-set ;

The PREDICT statement enables you to construct predictions for
every observation in the input data set.  Multiple PREDICT
statements are allowed.

RANDOM random-effects ~ distribution SUBJECT=variable
options;

The RANDOM statement specifies the random effects and their
distribution.  The only currently available distribution is NORMAL.
The SUBJECT= argument specifies a variable indicating
subjects.  One option is OUT=, giving a SAS data set name to
contain empirical Bayes estimates of the random effects.
Example statements are as follows:

    random u ~ normal(0,s2u) subject=clinic;

   random b1 b2 ~ normal([0,0],[s2b1,cb12,s2b2])

        subject=person out=eb;

Program Statements

Standard SAS programming statements enable you to construct
a wide variety of nonlinear models.  Besides usual assignment
and mathematical function statements, you may also use CALL,
DO, GOTO, IF, PUT, and WHEN statements.

OUTPUT TABLE NAMES

PROC NLMIXED uses the Version 7 Output Delivery

System. To convert any table to a SAS data set, use

the ODS statement in the following form:

   ods output ‘table-name’=SAS-data-set;

Here, TABLE-NAME is one of the names from the

table below, and SAS-DATA-SET is a name you

select for the output SAS data set.



Table Name Statement / Option
AdditionalEstimates
ConvergenceStatus
CorrMatAddEst
CorrMatParmEst
CovMatAddEst
CovMatParmEst
Dimensions
Fitting
Hessian
Iterations
Parameters
ParameterEstimates
Specifications
StartingHessian
StartingValues

ESTIMATE
default
ECORR
CORR
ECOV
COV
default
default
HESS
default
default
default
default
START HESS
START

To suppress all displayed output, use

   ods exclude all;

and use

  ods select all;

to redisplay it.

LIMITATIONS

PROC NLMIXED is best suited for models with a

single random effect, although you can also

successfully compute integrals in two and three

dimensions as well.  In addition, you can use PROC

NLMIXED as a general optimization tool by omitting

random effects altogether.  Problems which are

badly scaled or sufficiently noisy will not perform well

with PROC NLMIXED.  Also, PROC NLMIXED

currently does not generally handle nested or

crossed random effects.

CONCLUSION

PROC NLMIXED offers a flexible and powerful

environment for fitting nonlinear mixed models.  Its

main computing components are a SAS engine for

processing programming statements, a numerical

integrator, and a library of optimization routines.

These tools enable you to fit many common

nonlinear and generalized linear mixed models using

likelihood-based methods.
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