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A b s t r a c t .  For a smooth function f on R n, we construct an extension F to 
C n w i t h / ) F  vanishing to a high order  on R n and give precise estimates o f  how the 
degree o f  smothness  is reflected in the degree o f  vanishing. This analysis is used 
to define the 0 operator on (n, n - 1) forms with singularities on R n. 

1 Introduct ion 

Let f be a function on the real line or the unit circle. One can analyze its 

regularity properties in terms of the existence of extensions F of  f to the complex 

plane such that OF tends to zero with a certain speed as we approach the line (or 

the circle). We shall refer to F as an almost holomorphic extension of  f .  A simple 

and useful result of  this type is that f is of class C ~ on IR if and only if there exists 

an extension F such that IOF(x + iy)l < CNlYl N for any N > 0. This idea is of 

importance in connection with problems of quasianalyticity, approximation theory 

and operator calculus; we refer the reader to [7] and [8], where as far as we know 

the method was first discussed systematically, as well as to the survey [9], where 

many results and applications are described. Even earlier results for Coo-functions 

were also used in [10], [13] and [12]. 

The purpose of  this article is to study similar constructions in several variables. 

In the basic cases, i.e., in the case of  rotationally symmetric growth conditions, this 

has already been done (see, e.g., [6], [5] and [11]), but here we shall pay particular 

attention to growth conditions that may be different in different directions. This 

complication is already present in one variable. If we measure the regularity of a 

function in terms of  the decay of its Fourier transform 

1/ 
](t) = ~ i  f(x)e-iXtdx' 
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it is not hard to see that decay o f f  on the positive and negative half axes corresponds 

to existence of almost holomorphic extensions to the lower and upper half planes, 

respectively. The problem, however, becomes much more delicate in several 

variables. This is perhaps most clearly seen in connection with the edge of the 

wedge theorem. This theorem says that if f has a holomorphic extension for 

y = tm z belonging to certain cones with vertices at the origin in iR n, then f also 

has an (in general different) extension to the convex hull of  the union of these cones. 

Similar phenomena occur even if we consider only almost holomorphic extensions, 

and one can therefore expect to get a one-to-one correspondence between rates of 

decay of ] and the size of 0F  only if the growth scales satisfy certain convexity 

conditions. Assuming such convexity conditions, in Section 4 we obtain quite 

precise results in that direction. The main work behind these results is done in 

Section 3, where we introduce a Legendre type transform that relates the decay 

of ] and 0F. We also use the corresponding results in one dimension, which we 

review and formulate as precisely as we have been able to in Section 2. 

A related, and more difficult, question is to find the optimal almost holomorphic 

extensions - -  if they exist. By this, we mean that, given an extension of  f that 

satisfies 

IDF(x + iy)l <_ e-g(u) 

for a certain function g, find the largest function .~ _> g for which there exists an 

extension whose 0 is controlled by e-g. The edge of the wedge theorem treats the 

case when g equals infinity in certain cones, and ~ is then the function that equals 

infinity in the convex hull of these cones. In general, we have not been able to 

determine .~, and we do not even know if an optimal choice exists; but we give a 

partial result in Theorem 4.3. 

Almost holomorphic extensions are also related to Beurling's generalized theory 

of distributions, the so-called ultradistributions, cf. [3] and [4]. Beurling's idea was 

to construct more general distributions by using a smaller class of test functions. He 

showed that one obtains such ultradistributions as limits of holomorphic functions 

in the upper or lower halfplanes and determined the optimal growth conditions on 

the holomorphic functions which ensure that the limits exist in the ultradistribution 

sense. Although the original discussion is phrased differently, one can define the 

limit ultradistribution of a holomorphic function h defined in the complement of R 

by 

h*.f = - / OF A hdz 

if f is a compactly supported test function and F an almost holomorphic extension. 

Alternately, we can think of the ultradistribution h" as O(hdz). The difference 
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between these two viewpoints of  an ultradistribution - -  boundary value o f  a holo- 

morphic function versus 0 of  an (n, n - 1)-form - -  is more  decisive in several 

variables. A secondary purpose of  this paper is to generalize two key results of  

Beurling [4] to the second interpretation. In particular, we determine which growth 

conditions 

f l~l e-g(u) < oo 
on an (n, n - 1)-form outside of  I~ n allow a definition o f  0w across ll~ n which is 

both local and continuous with respect to this weighted L l -no rm (cf. Theorems 

4.8 and 4.9). 

We thank the referee for many helpful comments  on the manuscript.  

2 F u n c t i o n s  o f  o n e  v a r i a b l e  

In this section, we review the one-variable theory; the results here are due 

principally to Dynkin.  [7] and [8]. and Beurling [3]. We consider  functions f 

defined on the entire real line and ask for conditions in terms o f  the regularity of  

f which imply that f has an extension F to C with OF(z + iy) tending rapidly to 

zero as y tends to zero. For an integrable function f on K we define its Fourier  

transform as 
I /__ ~ 

](t) = ~ oo e-i~tf(x)dx" 

The regularity o f  f will be measured in terms of  the decay o f  its Fourier  

transform. Let  h 6 C(I~) be nonnegative, concave and increasing on R +, and 

concave and decreasing on • - .  We also assume that limt• h(t) = oo. We let H 

denote the class o f  such weight functions. We are concerned with functions f on 

R such that ] is majorized in some way by e -h. Let 

Ah = {f  e C(~) :  f I]1 eh < oo}. 

From the concavity o f  h, it follows that h is subadditive, and this in turn implies 

that .Ah is closed under multiplication, since 

f ,~fg,ehdt< / f ,](t--s)llO(s),eh(t)dtds 

Along with Ah. we also consider the class o f  functions whose Fourier  transforms 

are uniformly bounded by e -h, 

]~ : {f ~ c(a): ~up 111~ ~ < oo}. 
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The size of  OF, where F is an extension of  f to C, is measured with another class 

o f  weight functions. Let g be a nonnegative function on I~ \ {0} which is convex, 

decreasing on I~ +, increasing on I~-, and satisfies limu+0 g(y) = oo. Let G denote 

the class of  such functions. Define 

Bg = { f  E C(II~) : 3 F  e C(C) such that F = f on I~ 

and sup l0 F (z  + iy)l eg(-u) < oo}. 

The two classes of  weight functions H and G are related via a variant of  the 

Legendre  transform introduced by Beurling [3]. 

D e f i n i t i o n  1. Let h be nonnegative and increasing on I~ ~ and decreasing on 

I~-. Then 

h~(y) = sup (h(t) - ty). 
{t: ~t>0} 

Let  g be nonnegative and decreasing on R + and increasing on 11~-. Then 

= inf .(g(Y) + ty). g~(t) {~: ~t>0~ 

Thus the values of  h~'(y) for y > 0 only depend on the values of  h(t) for t > 0. 

Note also that h~(y) > h(1/y)  - 1, so that limu~+0 h~(y) = oo if limt~• h(t) = oo. 

Similarly, one can verify that limt_.,• gb(t) = oo if limv--,+0 g(y) = oo. Note also 

that h ~ is always convex on each semi-axis, and g~ is always concave on each 

semi-axis. 

I f y  is fixed and g = h ~, the function t ~ g(y) + ty is the smallest affine function 

with slope y that majorizes h. Taking the infimum over  all y, we therefore get 

the smallest concave majorant of  h. We have therefore proved half  o f  the next 

protx)sition; the remaining part can be obtained in a similar way. 

Proposition 2.1.  On each semi-axis h ~ is the smallest  concave majorant  o f  

h, and gb~ is the largest convex minorant o f  g. In particular, i f  h E H, then h = h ~ 

and i f  g E G, then g = gb~. 

The next  result on almost holomorphic extensions is a somewhat  more precise 

version o f  a theorem of  Dynkin [8]. 

Theorem 2.2. Let h E H and f E C(R). Then f can be extended to a function 

F in C(C) such that 

1 F sup IOF(x + iy)/OSlegI-Uldy <_ ~ I](t)leh(t)dt, 
J - -  O 0  O 0  
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and, i f  h is o f  class C z, 

sup IOF(x + iy)/051 eg(-u) < 1 I]1 ea - sup - h "  ' 
c - 2  R 

where g = h ~. 

P r o o f . . W e  construct  the extension for Im z < 0, the case o f  Im z > 0 being 

similar. We also assume h to be smooth for t ~ 0 and strictly concave;  the general  

case then follows if we approximate h f rom below by such functions. Then r = h' 

is a decreasing map f rom IR + to (a subset of) 1R + . Let  r be the inverse o f  r Since 

g(y) = sup(h(t) - ty) 
t>0 

for  y > 0, and since the supremum is attained at a point where the derivative 

vanishes, we have 

g(r = h(t) - tr 

For  y > 0, let 

(2.1) F ( x  - iy) = L eit(~-iv)](t)dt;  
(t)>u 

the integration is thus performed f rom - o c  to the positive number  r  = r  

Since g > 0, the integrand satisfies, if t > 0, 

[eit(z-iv) ]( t )[  = et~-a(t)l](t  ) I ea(t) 

< e t~( t ) -a ( t ) l ] ( t ) l ea( t )  = e - g ( r  n < I]1 ea. 

The same conclusion clearly holds also for negative values o f  t, so by Lebesgue ' s  

theorem and the Fourier  inversion formula, F is indeed a cont inuous extension o f  

f .  Next, since the integrand in (2.1) is holomorphic in z = x - iy,  we have 

IOF(x - iy)/05l < (1/2)1r etu-a(t) If(t)[e h(t) t=r 

and hence 

lOF(x - iy)lO~le~(~) <_ (1/2)lr h(t) t=,#(y) 

(recall that h(t) - ty = g(y) if  t = r  Since 

1 1 
-' ' '~'~Y)- r  - h " ( t )  

if  t = r  it follows that 

sup IOF(x + iy)/OsI eg(-y) < (1/2) sup I]leallh"l . 
~<0 
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For the L 1-norms, we get 

f oo 1 f Ifleh t=r Ir <- fo~ If[ ehdt. 
Jo < 1o 

This proves the theorem. [] 

Theorem 2.2 has a simple partial converse stating that if a function has an 

extension with 0F small near the x-axis, then ] must decrease rapidly as t tends to 

infinity. 

T h e o r e m  2.3. Let f E C 1 (]l~) and suppose that there is a C 1 -extension F to C 
such that 

- -  [ IFldxdy + [ ]OF(x + iy)leg(-V)dxdy <_ C. 
Jlu [<1 dlyl<l 

Then  

(2.2) 
(7, 

_< (1 + o(1)) 2~ 

when It] --~ o0, where h = g~. 

P r o o f .  We prove (2.2) for t > 0. Let X(y) be a cutoff function such that 

X(Y) = 1 for -1 /2  < y < 0 and X(Y) = 0 fory < -1.  Then 

1 f 1 L , (x~F+FSx)e_ i tZAdz  ' ](t) = ~ f(x)e-itXdx = ~ <o 

by Stokes' theorem. Hence 

1 13f]eg(-V)e - (g(-v)+(-v)t) I](t)l _< ~e-t/2 + ~ /-1<~<o 

C 1 L i3Fleg(_V)dxdy" < e-t~2 + e-h(O 2--~ l<v<o 

This proves the theorem, since h(t) = o(It]). [] 

Theorem 2.3 is not a complete converse to Theorem 2.2 since we require 

integrability of 0F in the z-direction as well. However, if F satisfies only 

sup f 13Fleg(-V)dy < oo, 
x Jtvl<l 

we may replace f by fx(x) = e-XX2f(x) for A > 0. Then each fx satisfies the 

hypothesis of  Theorem 2.3; thus we get pointwise control of  ] �9 ex, where 

l___~_e-t2 / x ex = ~v~ 



ALMOST HOLOMORPHIC EXTENSIONS 343 

is an approximate identity as A ~ 0. 

Observe also that no condition o f  convexity o f  g is needed in Theorem 2.3. 

However,  

h = gb = (gb)l~t, = (g~,lt)~, 

since g~ is concave. Therefore,  the estimate obtained in Theorem 2.3 is the same 

as what would be obtained if g is replaced by its largest convex minorant g~, so 

we could just  as well have assumed from the start that g was convex (on each 

semi-axis). 

The situation is different in Theorem 2.2; there the assumption that h be con- 

cave is indispensable. In fact, if  the statement of  Theorem 2.2 holds for some 

(nonconcave) h, then we get from Theorem 2.3 that, in general terms, 

I]le h < C implies Ill eh~ < C', 

which can only hold if  h differs from its smallest concave majorant  h ~ by an 

additive constant. In other words, if the statement of  Theorem 2.2 holds, then h is 

uniformly close to a concave function. 

In the applications later on, we will have use for an extension F of  f with 

the desired decay of  10FI which, in addition, has compact  support  if f has. This 

is not automatic f rom our construction, but it does hold under a small additional 

assumption on g. To prove this we first need a technical result. 

Proposition 2.4.  Assume that g E G satisfies the extra condition that 9 is C 2 

outside the origin and  that 

(2.3) g" /g  -~ oc as y --~ O. 

Let I and J be intervals such that I CC J C ~, and suppose that f E C(J)  has a 

continuous extension F to J • [0, e] such that 

10Fle g(y) < 1. 

I f  furthermore f = 0 in some neighbourhood o f  I, then 

IF(x + iy)le g(u) <_ C, x E I,  y E [0,el. 

In fact, we even have that IFle a --~ 0 when y --> O. 

The proof  o f  Proposit ion 2.4 is based on the following max imum principle for 

almost holomorphic functior/s. 
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Proposition 2.5 .  Let F be a C 1 -function in a smoothly bounded domain f~ in 

C, and let ~o E C(-~) be subharmonic in f~] Then 

(2.4) sup [FI e~ <_ c(sup [FI e~ + sup I/)F[e~), 
Q 0f2 f~ 

where c depends only on the domain f~. Moreover, i f  K is a compact subset o f  Of~ 

such that F vanishes on a neighbourhood o f  K in Off, then [F(z)ie~(Z) tends to 0 

when z tends to K. 

P r o o f .  The  p roo f  (cf. [2]) is based on a ca lcula t ion o f  AIF[2e 2~. Le t  

0 e2 ~ 
0 = e - ~  b--;z 

be the negat ive  o f  the formal  adjoint  o f  0 in L2(e2~), so  that 

if  u or  v vanishes  on Off. A calculat ion,  shows that 

A[F[2e 2~ = 2Re 0 _fi'e 2v + + + 

:2_ 2Re (0~--~_)Pe 2~, 

s ince ~0 is subharmonic .  Le t  G _< 0 be the Green  func t ion  for  f~ with pole  at a �9 fL 

and let Pg denote  the Poisson integral o f  a funct ion  g on Off. Then  

[2e 2~(a) = P [IFl2e 2~] (a) + / GA]FI~e 2~ IF(a) 

--- sup IFI2e:  + eae  f o ,  

= suplFl2e2~ - 2Re + G  ) e  2~ 
of~ 

_< suplFl2e2~ + 2 s u p l F l e  ~ OG sup -~-  e 
Of 2 f2 f2 

+ 2 sup OF 2e2 ~ f_G 
9 05 J ,  

Since  fu  G and ff2 [OG/Ozl are un i formly  b o u n d e d  for  a �9 ~,  we m a y  take the 

s u p r e m u m  over  all a �9 ft. Let t ing  

OF Ie~" ' B = sup IFI e~ and C = sup [--~- 
f2 f2 
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we then get 

B 2 < sup [FI2J ~ + BC + C 2, 
ON 

f rom which we conclude that 

B 2 ~< sup IFl2e '~ 4- C 2. 
Of~ 

This concludes the p roof  o f  (2.4). To see the last statement, we use the inequality 

Since we now know that IFI2e 2'~ and IcSFl% 2~~ are uniformly bounded,  we get 

IF(a)1%2~(")< P[[F[2e2~](a)+A ~ IO--GGz t + IGI . 

Since f~ G and ff~ IOG/Ozl tend to 0 as a approaches  the boundary  o f f L  the theorem 

follows. [] 

With the aid o f  Proposit ion 2.5, we can now give the 

P r o o f  o f  P r o p o s i t i o n  2.4. Let X be a cutoff  function, 0 < ~ E C ~  (R), such 

that X = 1 on I and with support  in the neighbourhood of  I where  f vanishes. We 

may also assume that X is convex where X < 1/2. Let r + iy) = X(x)g(y). Since 

A r  = x"g + xg", it follows f rom the assumption (2.3) that r is subharmonic  for  

0 < y < e if e is sufficiently small. Let now R be a rectangle 

.n = ( ( I  - ,~) u ( z  + ,5)) • (o , ,~) ,  

where J > 0 is chosen so that f = 0 on ( I - ~ ) U ( I + ~ ) ,  and X = 0 on 

/1~\ ( (1 - J) t3 ( I  + ~)), and let f~ be a smoothly  bounded domain  obtained by rounding 

of f  the comers  slightly. We apply Proposit ion 2.5 with ~ = ~x = ~b(- + i,k) for  

small ,k. Since ~x < ~b < g, it follows that 

}~Fle ~ < 1 

in ft. Moreover,  

sup I fie ~x <_ C, 
00 

where C is a constant  depending on e and on supaf~ IFI. By  Proposit ion 2.5, 

[Fle~X < C; and letting ~k ~ 0, we get that tFleg <_ C in I x (0, e). [] 
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It follows easily that we can control the support o f  the function F that 

extends f .  

Theorem 2.6.  Assume that g E G satisfies the extra condition that g is C 2 

outside the oright and that (2.3) holds. Let U and V be open sets, U CC V C/R 

Suppose that f has compact support in U and that f has an extension F to C such 

that 

[OFleg < 1. 

Then there is an extension ~" o f f  with support in V x ( - e ,  e) such that 

I~1 e9 < C. 

Clearly the condition (2.3) is fulfilled in all reasonable cases. 

Proof ' .  Let P = x F ,  where X = X(X) is a cu tof f func t ion  with compact  support 

in V which equals 1 on U. Then 

so by Proposition 2.4 we have that [0Fie g < C as claimed. [] 

Beurling's  idea was to use the functions with rapidly decreasing Fourier  trans- 

forms as test functions for a generalized theory o f  distributions. It then becomes 

necessary to determine which growth conditions can be satisfied by functions with 

compact  support. The answer is contained in the following theorem, which is 

essentially taken from [3]; a proof  is given in [1]. 

T h e o r e m  2.7. Let h E H. There exists a nontrivial function with compact 

support satisfying Ifie h < C i f  and only if  

f_ ~ h(t)dt 
(2.5) l + t 2  < o e .  

l f  this condition is satisfied, then there are nonnegative compactly supported func-  

tions Xn with I~nfe h < Cn such that Xn ~ 6o in the sense o f  distributions. 

One can also express the integrability condition (2.5) in terms o f  g = h~; see 

[3] for  a proof. 

Proposition 2.8. Let h E H a ~  put  g = h ~. Then 

f t  ~ h(tldt  
l + t 2  < e c  

ffand on/y if 

(2.6) f_ l log g(y)dy < ~x~. 
1 
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Beurling expressed the generalized distributions, ultradistributions, dual to the 

class An as differences of boundary values of functions holomorphic in the upper 

and lower half planes. Equivalently, one may define the ultradistributions as 0 of 

holomorphic forms defined outside the real line. This point of  view fits better with 

the generalization to higher dimensions that we have in mind. 

Let 12 be a domain in C which intersects IR, and let w be a holomorphic (1, 0)- 

form in 12 \/1~ satisfying an estimate of the form 

(2.7) f~ Iwl e-a < c~. 

We want to define 0w as an ultradistribution on f~ N IR. This definition should have 

the property that 0w = 0 if and only if w extends holomorphically to 12; moreover, 

we require the c5 operator to be continuous in the sense that if 

Wne -9 --+ 0 

in L~o~(f~ ), then cSwn.f ---} 0 for each test function in the class. 

We shall see that this is possible precisely when the weight g satisfies (2.6). 

First we prove that c~ has no definition satisfying the above requirements if (2.6) 

is not fulfilled. This is a consequence of the next theorem, which is given (with a 

different proof) in [4] 

T h e o r e m  2.9. Suppose that g does not satisfy (2.6) (and that (2.3) holds). 

Then f o r  any holomorphic 1-form w in 12 \ IR such that [wle-Z E L]oc(12 ) and any 

K CC 12, we canf indpolynomia ls  pn(z)  such that 

K Iw - p ,  dzl e-g -+ O. 

Proof .  For a given compact set K C 12 we have to show that w is in the closure 

in L I ( K , e  -g) of the (restrictions to K of) polynomials. By the Hahn-Banach 

theorem, it is therefore enough to prove that if a is a (0, 1)-form on K such that 

[aleg is bounded and 

(2.8) fK a A pdz = 0 

for all polynomials p, then f a A w = 0. But (2.8) implies that a = 0F, where 

F is continuous in C and identically zero in the unbounded component of C \ K. 

Hence the restriction f of F to the real axis has compact support. Since [0F[eg 

is bounded, it follows from Theorem 2.3 that [f[e h is bounded if h = 9 ~. So f is 

actually a smooth function, which by Proposition 2.8 and Theorem 2.7 belongs to 
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a quasianalytic class. Therefore ,  f must vanish identically. It now follows f rom 

Proposit ion 2.4 that IF(x + iy)leg(~) - r  0 uniformly as y --r 0. Hence  Stokes '  

theorem gives 

l i m f l  I OtAW = f l  I F w ~ O ,  
~-~0 mzl>~ mzl=c 

s o f a A w = 0 .  [] 

Theorem 2.9 shows that forms satisfying cSw = 0 are dense in L~oc(eg ) i f  g 

does not satisfy (2.6), so 0w has no local definition which is continuous in the 

Ll(eg)- topology in that case. (One can, however, always give a sense to 0w as a 

hyperfunction; see [ 11] for this.) 

We next  assume that g satisfies condition (2.6) and let w be a holomorphic  

(1 ,0)-form in 12 satisfying (2.7). Let  s t be a test function with compac t  support  

which has an extension F such that IOF[e 9 < 1. We then define 

~ w . f = f w A 3 F ,  

where the extension F is chosen with support in 12, which is possible by Theorem 

2.6. Proposit ion 2.4 implies that the definition is independent  of  the choice o f  F ,  

and it is also clear from the definition that 0w is cont inuous in L~oc(eg ). The next  

proposit ion is a variant o f  the "Corol lary to Theorems  I and II"  in [4]. 

P r o p o s i t i o n  2.10.  Assume g satisfies (2.6) (and  (2.3)). Let w be a holomorphic  

f o rm  in 12 \ R satisfying (2.7), and assume that ~w is defined as above. Then Ow = 0 

i f  and only i f  w extends holomorphically across R 

P r o o f .  We only have to check that if  cqw = 0, then w extends holomorphically.  

Let  F be a function with compact  support in ft, and suppose IOFleg < C. Consider  

z - - a  

where a E F~ \ R. I f  we decompose  F as F = F1 + F2, where F2 is supported in a 

small neighbourhood o f  a and F1 vanishes near a, we see that 

= . . . .  1 [ O(F2w) = F(a)w(a) .  I 
7r J z - - a  

We can then fix x0 E 12 f3 R and choose F so that F - 1 near  x0. Then I depends 

holomorphical ly  on a i f a  is near x0, and we thus see that w extends holomorphical ly  

across x0. [] 
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3 Multivariable Legendre type transforms 

We are now going to consider  multidimensional analogues to the results in 

the previous section. Our first task is to find appropriate generalizations o f  the 

transforms h ~ h ~ and g ~ g~. As before,  h always denotes a nonnegative 

function defined in ~"  such that h(0) = 0, and g denotes a function in R" \ {0} such 

that g(y) --r. oo when y --r 0. I f  k is any function in ~"  \ {0} and a E S " -1 ,  i.e., 

a E R" and lal = 1, then set 

a~( , )  = k ( , a ) ,  , > 0, 

to be the restriction o f  k to the ray f rom 0 determined by a. Let  k a~ and k ~b denote 

the functions (k~) ~ and (k~) ~, respectively, i.e., 

kaY(r/) = sup(k~(s) - sO) and Fb(s) = in f (F ( r / )  + r/s), 
s>O ~>0 

and extend the definition to all o f  R by setting ha"(r/) = oo for  r/ < 0 and 

9a~(s) = - c o  for s < 0. 

R e m a r k  1. This just  means that 9~(s)  = - L g ~ ( - s )  i f  9~(r/) is defined as oo 

for r / <  0 and L is the usual Legendre  transform; similarly, ha~(r/) = -Lh~( -r / )  i f  

h a = --oo for  negative 7" [] 

Def ini t ion  2. I f  h and 9 are nonnegative functions in R" \ {0}, then 

gb ( t )=  sup 9 ~ ( a . t )  and hU(y)= inf h ~ ( a . y ) .  
a E S . - t  a E S  " - 1  

One readily verifies that this definition coincides with the previously given one 

in the case when n = 1. Note also that g b is always lower semicontinuous and h ~ 

is always upper  semicontinuous. 

We say that a function k in I~" \ {0} is convex (concave) on rays i f k  ~ is convex 

(concave) for  all a E S " - l .  We also say that k has convex sub- (super-) level sets 

if  all sets o f  the form KA = {y  : g (y )  <_ A} (VA = {y : 9(Y) > A}) are convex. We 

then have 

P r o p o s i t i o n  3.1.  Suppose that g is nonnegative in R" \ {0} and convex and 

decreasing on rays. Then g~ is the smallest majorant o f  9 which has convex 

superlevel sets. Similarly, i f  h is increasing and concave on rays, then h ~ is the 

largest minorant o f  h which has convex sublevel sets. 
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P r o o f .  We prove the first statement, the proof  o f  the second one being similar. 

Since h ~ ( s )  is decreasing, it follows tha t{s  �9 ~ hat(s)  > A} is an interval and 

hence {y �9 li  n : h ~ ( a  �9 y) > A} is a halfspace. Therefore ,  

{y �9 R" : h t (y )  > A}  = {y �9 lI~ n : i n fha t (a . y )  >_ A}  = N { y  �9 R,, : hat (a .y)  > A}  

is convex. Taking h = gb, we find that gb~ has convex superlevel sets as claimed. 

We next derive a convenient  formula for g~, assuming that g is convex on rays. 

Let  h = gV. If  a .  y > 0, then 

h~ �9 V) = su0  (h(~a)  - ~ .  V) 
~>0 

: s u p  s u p  (gb~'(71b" a )  - -  f l a .  y )  = s u p  s u p  ( g b l ' ( r l b "  a )  - -  r l a "  y )  
T/>O bE S r ' -  t bE S ~ -  t r/>O 

a �9 y gbbtl a �9 y _-su  
b E S  '~ - I  r/>0 b E S  n -  x 

However,  since gb is assumed to be convex, gbb~ = gb. Therefore ,  

bE S "  -1 

and hence 
a . y  

gb~.(y) = i n f s u p g ( b 7 - - - )  = inf sup g(~). 
a b k o . a /  a ~ . a = y . a  

Let us abbreviate the last expression 

inf sup g (~ )=  .~(y). 
a I?..a=y.a 

We have thus seen that if g is convex on rays, then g~ = .~; and since for any a we 

may choose  ~ = y, it is clear that for  any function 7, "Y _> 7. Now let 7 be a function 

with convex superlevel sets. Then for a given point y, let A = 7(Y) and let a be the 

normal vector o f  a supporting hyperplane to {x : 7(x) >_ A} through y. Thcn 

sup 7(~)  = "r(v), 
~. .a=y .a  

SO 

~ ( v )  = 7 (u) .  

Altogether  we see that if g is convex on rays, 7 has convex superlevel sets, and 

g < 7,  then 
g ~  = ~ < "~ = "r, 

so the proof  is complete. [] 
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In our later applications, it will be desirable to deal with functions g for which 

gb is concave on rays. This is not automatically fulfilled, since even though each 

function t ~ gab(a, t) has this property, in general the concavity will be destroyed 

when we take the supremum over all a E S n-1. We shall see, however, that i fg  has 

convex superlevel sets then gb will be concave on rays. To this end, we introduce 

yet another transform, gO, which always has this property, and prove that gb = go 

if g has convex level sets. 

D e f i n i t i o n  3. For a E S n-1 and 7/> 0, let 

and define 

g~ = sup g(y) ,  
y ' a = o  

g~ = s "-1,  > o. 

Since any function g~ is concave, it fol lows that g~ is concave on rays. 

Proposition 3.2. Assume g is upper semicontinuous and convex on rays. Then 

go >_ gb and equality holds i f  g has convex superlevel sets. In particular, g~ is 

concave on rays i f  g has convex level sets. 

In the proof of  Proposition 3.2, we use the following lemma, which is a variant 

of  von Neumann's  minmax theorem. 

[ , e m m a  3.3. Let G(r/, ~) > 0 be upper semicontinuous on IR + • RN. Assume 

that rl ~ G(O, ~) is convex for  each f ixed ~ and that, f o r  f ixed ~7 > O, any set 

{~; G(r/, ~) > A} is connected. Assume also that GO1, ~) tends to oo when ~1 tends 

to either 0 or oo; that fo r  each 7/> 0, sup t G(rl, t) > G(r/) =: limsuPltl~oo G(Th t); 

and that G(rl) is continuous. Then 

inf sup G(r/, ~) = sup inf G(r/, ~). 

A 

P r o o f .  Extend the domain of  definition of  G(r/, ~) to [0, oo] x R/V, where R Iv 

is the one-point compactification of  IR N, by putting it equal to G(r/) when ~ is the 

point at infinity and to infinity when 7/equals 0 or oo. Since for any 77, 

it follows that 

supG(0,~) > supinfG(r/,~), 

inf sup G(0, ~) > sup inf G(r/, ~). 
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To obtain the converse inequality, let 

A = inf sup G(r/, ~) 
o 

and let E = {G > A}. Let 

= {,7 E [o, oo1: E E} 
A 

and E . = { ~ E R  N : ( r / ,~)EE}.  

Then E satisfies the hypothesis in the geometric-topological Lemma 3.4 below. 

Thus E ~~ is the full hairline [0, oo] for some ~0 E R N, and hence inf n G(r/, ~c0) _> A, 

which proves the lemma provided that ~0 is not oo. However, supt a(0o , t) = A for 

some r/o # 0, oo, and from the last assumption on G it follows that Eno is compact 
in li N , and hence ~o E R N . [] 

A 

L e m m a  3.4. Suppose  that  E is a c losed  se t  in [0, o~] x ~N such that  each  Eo 
A A 

is connec ted ,  c o m p a c t  and  n o n e m p t y  in RN and  tha t  Eo = Eoo = l~ N �9 Moreover ,  

a s s u m e  that  each  E t cons i s t s  o f  a t  m o s t  two c o m p o n e n t s .  Then  there  ex is t s  t such  

that  E t is the  who le  in terval  [0, oo]. 

P r o o f .  Consider a fixed En0. Each point (r/0, t) in this set belongs either to 

the left component or the fight component of  E t. (If it belongs to both, we are 

done of  course.) We call such a point a left point or a right point, respectively. We 

claim that there is an r/o such that Eno contains both left points and fight points. In 

fact, if all points of E n are left points for r/ < r/l then E m contains left points as 

well by compactness. Hence if rio is the supremum of  all 7/such that E n only has 

left points, and r/t is the infimum of  all 7/such that E n only has right points, then 

r/o = r/~, since otherwise E n would be empty for r/0 < r /<  rh. 

Now consider Eno with left points as well as right points. It is easy to see 

that both the set of left points and the set of  right points are closed. Since E n is 

connected, they must have a common point. This concludes the proof. [] 

P r o o f  o f  P r o p o s i t i o n  3.2. We have to prove that 9o > g~ and that equality 

holds if 9 has convex level sets. We verify the statement at a fixed point, which 

with no loss of  generality we may take to be t = (s, 0 , . . . ,  0) with s > 0. Then 

g~ = inf sup (g(r/,~') + r/s) -- inf sup (g(r/,r/~') + r/s). 
r/>O ,~, rl>O ,~, 
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On the other hand, letting a = (al,  a'), we have 

gb(t) ---- sup gab(als) = sup in f  (g(~a) + ~?als) 
aES~-t; a ] > O  a 

= sup inf (g(Tla/a,) + Os) = sup inf (g(~/, Tla'/a,) + 71s) 
a 7/>0 a 0 > 0  

= sup inf (g(T/, T/~') + 7/s). 
~ , E R ~ - 1  r />0 

Since inf sup _> sup inf, it follows that g~ _> 9 ~. Now assume that g has convex level 

sets, and let 

G(,I, ~') = g(r/, r/~') + r/s. 

The set o f~ '  such that G(r/, ~') _> A is the intersection o f a  superlevel set o f g  with 

a hyperplane, and is therefore convex and hence connected. Since g is convex on 

rays, 7 / ~  G(r/,~') is convex. Lemma 3.3 therefore implies that gO = g~. I-1 

It is clear f rom the proof  that gO = g~ as soon as g has the property that all the 

sets KA = {g _> A} have connected intersections with all hyperplanes outside the 

origin. 

The definitions of  the transforms g ~-+ gb and g ~-r gO perhaps become clearer if 

we consider a more restricted c lass of  functions. Let g be a function in C ~ (R n \ {0}) 

which has the property that the gradient map 

is bijective from II n \ {0} to itself. We then define g*(t) as the critical value of  

y ~-~ g(y) + y .  t, 

i.e., as the value of  g(y) + y .  t at the unique point y where Vg(y) + t = 0. We then 

have 

P r o p o s i t i o n  3.5.  Assume that 9 E Coo(R n \ {0}) and that y ~-~ Vg(y) is 
bijective in R n \ {0}. 

(i) If g is strictly convex on rays, then g* = g ~. 

(ii) If g has convex level sets, then g* = g ~ 

This proposition has the amusing corollary that g* has convex level sets if g is 

strictly convex on rays (since any function h = g~ has convex level sets) and that 

g* is concave on rays if g has convex level sets. 

L e m m a  3.6.  Let G(~I, ~) be a smooth function in P~ x ~m. Assume that either 
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(i) for  each r I, the set 

M,~ = {( : G(0 , ( )  = sup G(r/, ()} 
( 

only consists o f  one single point, or 

(ii) n = 1 and for  each ~1, 3'1o is connected. 
Then, i f  the rain-max inf o sup~ G(rh ~) is attained at some point, it is also attained 

at some critical point. 

P r o o f .  Assume that inf0 supe G(r/, ~) = G(0, 0) and furthermore that (i) holds. 

We must prove that (OG/Orl)(O, 0) = 0. If  this is not the case, then (possibly after 

a linear change of  variables) we may assume that (OG/0711)(O, ~) > 0 for all ~ in a 

compact  neighbourhood E of  0. Then G ( - e ,  0 , . . . ,  ~) < G(0, ~) for all sufficiently 

small e and ~ E E. By assumption, there is ~(e) such that G(-e ,  0 , . . . ,  O, ~(e)) > 

G(0, 0). Since ~(e) lies outside o f  E,  when e --+ 0, we get a point ~0 r 0 with 

G(0,~0) _> G(0,0) = supG(0,~) .  

This contradicts our assumption that M0 consists o f  only one point. 

Next, assume that (ii) holds, so that M0 is connected.  Then if (OG/Orl)(O, ~) r 0 

for all ~ E M0, it must be either strictly negative or strictly positive on M0. The 

proof  is then concluded as in the case (i). [] 

R e m a r k  2. Probably the lemma holds if we assume that any Mo has a neigh- 

bourhood basis {U} such that IIk (U) are trivial for k < n - 1. That  this assumption 

is necessary can be seen from the example 

a ( ~ ,  ~) = f( l~l)  + ~ 71, 

where/(1~1) = I~l 2e-1~12. Then inf ,  sup~ G(r/, ~) is attained when 71 = 0 and I~1 # 0, 

but OG/Orl = ~, so no such point is critical. In this example,  M0 is a sphere S n-1 

and thus lln_x (M0) is not trivial. [] 

We can now prove Proposition 3.5. Let t ~ 0 be a point in R n, which without 

loss of  generality we can take to be t = (tl, 0 , . . . ,  0). By definition, 

9~ = infsup(g(r/, y') + r/t1). 

I f9  has convex superlevel sets the supu, is attained in a connected set; so Lem m a  3.6 

implies that g~ is a critical value of  9(y) + y - t. Therefore ,  9o = 9. ;  so we have 

proved the second part of  Proposition 3.5. The first part is proved in a similar way 

from the definition of  g~. 
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4 A l m o s t  h o l o m o r p h i c  e x t e n s i o n s  f r o m  R n 

We are now ready to give the analog of  Theorem 2.2 in higher dimensions. For 

z E C ~, l e tz  = x+iy .  

T h e o r e m  4.1. Let h be a weight function that is concave on rays, and let 
g = h ~. Suppose that f is a tempered distribution on I~ n such that 

fRn J](t)leh(t)dt < oo. 

Then f can be extended to a function F satisfying 

(4.1) sup f JOF(x + iy)le g(-~) < 1/2 ; j](t)Jeh(t)dt, 
z Jl~l<l d 

and, if h is of class C 2, 

hJktjtk 
(4.2) SUpz6f~ JOF(z)Jea(-~) < 1/2 sup Z J](t)Jeh(t) ItP 

Proof .  Write 

f(x) = f ](t)ei~'tdt = fill =1 fa(a .x)dS(a), 

f 
F(z) = I Fa(a" z)dS(a), 

I=l 
then 

,OFI < / IOFa dS(a). 

Since g = infa h ~ ,  we have for any x E R n that 

~yj<l J~F(x~iy),eg(-Y)dy ~_ fa,:idS(a) ~y,< 1 - -  ~ ( a .  OF'a �9 "-~ ia. y)Je ha'(-y'a) 

<_L,=ias(a)fl/ol h'=fl/l "(')al 
This proves (4.1), and (4.2) follows in the same way. 

I f  

[] 

where 

5 A(~) = ]("a)~rsrn-% "- 

Then ]a(r) is ](ra)r n-1 for r > 0 and 0 for r < 0. 

By Theorem 2.2, we can extend each function fa to a function F~(() in C such 

that (with ~ = ( + i~) 

sup f J OF" irt)Jeh~ < l/2 
e - '  --~-(~ + - f0 ILleh~ 
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Just as in one variable, Theorem 4.1 has a partial converse. 

T h e o r e m  4.2. Let g be a weight function and let h = g~. 
f E C(IR n ) can be continuously extended to a function F such that 

sup ; lY" OF(x + iy)[ eg(-u) + F(x + iy)dx < oo. 
y J R  n 

Then 

Assume that 

[](t)[ eh(t) < C. 

Again, this is reduced to the one-dimensional case. Let X(Yl) be a Proof .  

cut-offfunction which equals 1 for - 1 / 2  < yl < 0 and vanishes for yx < -1 .  Then 

f ( t ) =  / f(x)e-it'xdXF : fyl<0 O(xF)(~,I (Zl, x')e-it'z+tlYldxdyl 

f O , - i t . ,+t ,u ,  ff__~X21Fe-it.,+t~U, dxdyl. = X-~zl(Zl,X )e dxdyl + / 

[] 

Hence 

I](t)l ~ supe -g(-ul)+tlul + Ce -t/2 < Ce -g"~(a't) 
Yl 

if a = (1, 0 , . . . ,  0). Similarly, 

[](t)[ < Ce -g~b(a't) 

for any a E Sn-1; taking supremum over all a, we get 

If(t)l < Ce -h(t). 

Note that in Theorem 4.2 we need only a good bound on the "normal com- 

ponent" y �9 0F  of 0F  for some extension F in order to get a good decrease of 

the Fourier transform. On the other hand, Theorem 4.1 says that if ] is rapidly 

decreasing, one gets the existence of a (possibly different) extension F where all 

of OF is small. 

If g is both convex on rays and has convex superlevel sets, then by Proposition 

3.1, the weight functions g and h in Theorem 4.2 are dual in the sense that g = h~ and 

h = g~. Moreover, in this case it follows from Proposition 3.2 that h is concave on 

rays, so Theorem 4.1 applies; and then Theorems 4.1 and 4.2 are almost converses 

of each other. 

Now assume that f has an extension such that 10FI _< e-gt-~). It then follows 

that ] is controlled by e -h ,  where h = g~. However, in case we do not assume that 
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g has convex superlevel sets, h = #~ will not in general be concave on rays, so we 

cannot conclude that f has an extension F with 10F[ < e-g'(-Y). Such a statement 

would be an optimal smooth form of  the edge of  the wedge theorem, but we have 

been unable to decide whether it holds. We give a weaker substitute for such an 

extension which is sufficient to obtain a smooth form of  the edge of  the wedge 

theorem. 

Consider two truncated cones C1 and C2 i n / ~ ,  and let # be ~ in C1 tJ C2 and 

0 in the complement.  Since #b~ > g and g~ has convex superlevel sets, it follows 

that g~ = ~ in the convex hull C of  C1 t_J C2; and the fact that f has an extension 

with OF = 0 in I ~  x C follows from the edge of  the wedge theorem. 

T h e o r e m  4.3. Assume that f E C(R n) has extensions F1 and F2 satisfying 

f lOFj(x + iy)le gj(-y) + Fj(x + iy)dx < 1, 

where each gj is convex on rays and has convex superlevel sets. Then there is a 

function g, convex on rays and with convex superlevel sets, such that g > max gj, 

and such that f has an extension F with 

10F[ < e-�89 

P r o o f .  By Theorem 4.2, I](t)l < e -h~(t) if h3 = g~. Hence 

If(t)} < e -(hl( t )+hz(t)) /2.  

Since h = (hx + h2)/2 is concave on rays, Theorem 4.1 implies that f has an 

extension with Ic~FI < e -h~(-v). One easily verifies that 

1 2 = h~(y) = ~ g ( y )  i f g  = (2h) ~ (g~ + g2~) ~. 

Finally, it is clear that g > g~ = gj and that g has convex superlevel sets. [] 

Next we turn to the generalization of  Proposition 2.4. 

T h e o r e m  4.4.  Let g(y) be a weight function which is convex on rays and 

satisfies the regularity assumption 

02g 
(4.3) u--,olim ~ OyjOyk y~yk/ ly l  #(y) = cr 

Let U be a domain in R n and let F be a Cl-function in a neighbourhood V of  U in 

C a such that f = 0 in U. Assume that 

lY" 0FI/lYl < e -a(v) 

Then IF(x + iy)[e 9 tends to 0 as y tends to O for  x in any compact set K CC U. 
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P r o o f .  For x0 6 U and a 6 S n - l ,  let 

Fxo,~(~) = F(xo + ~a) 

for ff close to 0 in C. Then Fx0,~ (~) = 0 when ~ is real, and 

IOC Fxo,a(r < e-g'(Imr 

By Proposition 2.4, IFxo,a(~)le g~'(Imi) tends to 0 as Im~ tends to 0, and the result 

follows. [] 

We now discuss when there are functions with compact  support satisfying our 

assumption on rapid decay of  the Fourier transform. Our first result is essentially 

due to Beurling [3]; again it follows by a reduction to the one variable case. For a 

proof, see [4]. 

T h e o r e m  4.5. Let h be a nonnegative subadditive function on IR n. Then the 

following conditions are equivalent. 

(i) There is a nontrivial function with compact support such that 

(ii) For all a 6 S n-l ,  

f l](t)leh(t)dt < oo. 

f l  ~ ha(s) ds s------T--- < cx). 

(iii) There is a nontrivial function with compact support such that 

I](t)l eh(t) < C. 

(iv) There is a sequence o f  functions Xk satisfying 

12k(t)leh(t)dt < cC 

such that Xk tends to a Dirac measure at the origin in the sense o f  distributions. 

This theorem applies in particular in our setting because of  the following result. 

P r o p o s i t i o n  4.6. Suppose h is nonnegative, concave on rays and has convex 

sublevel sets. Then h is subadditive. 

Proof .  Since h has convex sublevel sets, we have for 0 < A < 1 

h(t + u) = h(AtlA + (1 - A)u/(1 - A)) _< max(h( t lA) ,  h(ul(1 - ~))). 
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Since h is concave on rays, it follows that h(st) < sh(t) for any s > 1, so 

h(t + u) < max((1/A)h(t),  1/(1 - ,~)h(u)). 

Taking ,~ = h(t) / (h( t )  + h(u)), we find that 

h(t + u) < h(t) + h(u). 

The proof is complete. [] 

Later on, we shall have use for the translation of  Theorem 4.5 to conditions in 

terms of extensions with small 0. 

T h e o r e m  4.7. Let g be a weight function which is convex on rays and has 

convex superlevel sets. Then there is a nontrivial function f in C~176 n) with 

compact support which can be extended to a function F in C ~ satisfying 

(4.4) I~F(x + iy)l < e-a(-u) 

i f  and only i f  

(4.5) 

for  all a E S n-1. 

o logga(s)ds < 

In this case, there is also a sequence o f  functions satisfying 

(4.4) whose restrictions to ~n tend to a Dirac measure at the origin in the sense o f  

distributions. 

Proof .  Suppose that f has compact support and can be extended to a function 

F which satisfies (4.4). By Theorem 4.4, we may assume that F has compact 

support. By Theorem 4.2, [fie h < C, so by Theorem 4.5, 

f ~ ha(s)ds 
1 s----T---<~176 

for all a E S n-x. By Proposition 3.2, h ~ = g~; the integrability of  logga then 

follows from Proposition 2.8. By Theorem 4.1, this argument is reversible. [] 

We henceforth refer to condition (4.5) as the nonquasianalyticity condition. I f  

it is fulfilled, then just as in Section 2, we can find functions with arbitrarily small 

support satisfying condition (4.5); and this class of  functions will be dense in D. 

Our final objective in this section is the generalization of  Theorems 2.9 and 

2.10. We consider c~-closed forms of  bidegree (n, n - 1) defined in fl \ IR n, where 

12 is a domain in C n. I f  such a form w has polynomial growth near R n, it defines 
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a current across Rn; and cOw is then a distribution on ft fq R n. We shall now see 

that cOw can be defined in a similar way, provided a more liberal growth condition 

Iwl < eg(-u), where g satisfies the nonquasianalyticity condition (4.5). First we 

state the generalization o f  Theorem 2.9, which says that a local and continuous 

definition o f  cSw is not possible if the growth condition is not nonquasianalytic. 

T h e o r e m  4.8.  Let f~ C C n be a convex domain intersecting ~n, and let w be 

a O-closed (n, n - 1)-form in f~ \ ~n. Let g be a weight funct ion which is convex on 

rays, has convex superlevel sets, and does not satisfy (4.5). Suppose that 

f lwl eg(-u) < cr 

(and that g satisfies the technical condition (4.3)). Let  K CC fL Then there are 

smooth forms  vk in f~ o f  bidegree (n, n - 2) such that 

f K I  w - covkle -g(-u) ~ 0. 

P r o o f .  Let  a be a (0, 1)-form with support in K such that 

(4.6) / a A Ov = 0 

for  all smooth (n, n - 2)-forms in f~ and 

lale g(-u) ___ C. 

We need to prove that f a ^ w  = o. However,  (4.6) implies that cSa = 0; therefore, we 

can solve 0 F  = a with a compact ly  supported F.  Then F is a continuous function, 

and Theorem 4.7 implies that F = 0 in R n. By Theorem 4.4, IFI ___ Ceg(-u) on K.  

Hence  

f a A w = l i m  / 6 5 F A w = l i m f l y  F A w = O .  0 
~ 0  Jlyl> ~ ~ 0  I=~ 

Let  us now consider weight functions # which satisfy the non quasianalytic 

growth condition (4.5). We shall see that i fw is a 0-closed (n, n - 1)-form in f~ \ R n 

such that 

(4.7) / Iwle -g(-u) < 
dfl 

then we can define cqw across R'~ in such a way that cqw = 0 if and only if  w is exact. 

To simplify, we shall no longer pay attention to the exact  growth o f  w, but instead 

consider  at the same time all forms w that satisfy (4.7) for  some g such that (4.5) 
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holds. We may then as well suppose that g(y) is radial, since if  g satisfies (4.5) 

then 

9(Y) = sup g(~) 
It~l_>lyl 

will also satisfy (4.5). (To see this, notice first that (4.5) holds for all a if it holds 

for a set of  a whose convex hull contains 0.) 

Now introduce the space 

/~g = { f  E Cc~(IR n)  : there exists F E Cc~(C n) with F = f o n  R n 

and IOFI e~ < C}. 

For w satisfying (4.7), define the action of  0w on a function f in Bg by 

o w f  = - f OF A w. 

Note that if 91 _> 9 and F E C ~ ( C  n) with 10FI <~ e-g(-u), we can approximate F 

by F~ = Xk * F,  where Xk is an approximate of  unity in Bg 1 (cf. Theorem 4.7). 

Then Fk E 13gl and 

f OFkAw--~ f OFAw, 
since 

J OF(. + x) A r 03 

is continuous by Lebesgue's  theorem. Hence 0w is uniquely defined by its action 

on any/3g I ; and, by Theorem 4.4, Ow.f does not depend on the extension F chosen. 

T h e o r e m  4.9. Let 12 be a convex domain ill C n which intersects l~ n ( n > 1). 

Let w be a O-closed (n ,n  - 1)-form in ~ \ R '~ such that 

f lwle a(-u) < oo 

f o r  some weight function 9 satisfying the nonquasianalyticity cotutition (4.5) (and 

condition (4.3)). Then the following are equivalent. 

(i) 0w = 0 across R n. 

(ii) For a t q  f~' CC f/, there is an (n, n - 2)-form u in ft' \ ~n such that Ou = w 

and 

f l le -9 < 
u (-u 

o o  

f o r  some weight funct ion g' that satisfies the nonquasianalyticity condition (4.5). 

(iii) Foranyf~'  c c f L  t h e r e i s a n ( n , n - 2 ) - f o r m u i n f ~ ' \ ~ n  s u c h t h a t O u = w .  
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P r o o f .  It is clear that (ii) implies (i), since 

f O F A w = l i m L  OFAu=O 

if  ]OFle-g is bounded for some weight function g which tends sufficiently rapidly 

to infinity. 

To prove that (i) implies (ii) we shall use Cauchy-Fantappie  kernels. Let  

S((, z) = ($1,..., Sn) be defined in f~z • f~; and satisfy 

and let 

Re ( S , ( - z )  > ~ ] ( - z l  2, 

s = - 

1 

Let  K be the Cauchy-Fantappie  kernel 

1 s A ((~(,zS) n-1  
K =  

( s , r  , 

and let Kq be the component  o f  K of  bidegree (n, q) in z and (0, n - 1 - q) in (.  

Then K satisfies 

0r + 0zKq-1 = 0 

for  z ~ (; and if u is a q-form with compact  support in fL Koppelman "s formula 

Kq_l(Z,~) 

holds. We shall define S so that S is holomorphic in ( for IIm(I < IImzl/2.  

In particular, this means that if z is outside of  1t~ n, all the coefficients of  K are 

holomorphic functions o f  ( near ~n and hence belong to Bg for any choice o f  g. 

Assume for the moment that S is chosen in this way, and assume that vSw = 0 across 

IR '~ . Let  F be a function with compact  support in Ct, such that 

IcSFleg(-Y) _< C, 

where ~ > g and satisfies the nonquasianalyticity condition. We claim that, for  z 

outside o f  I~ n , 

Kn-2(z,() 

= :  (M 1 + ~ / t .  
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Indeed, this follows from Koppelman's  formula if the support  o f  F does not 

intersect/I~ n, since w is closed there. On the other hand, if the support  o f  F does 

not contain z, the formula follows since by assumption c~w = 0 across IR n, so 

/ O(FK,_I) w = A O. 

Our claim then follows in general from a decomposit ion o f  F ,  just  as in the p roof  

o f  Proposition 2.10. 

Now choose F equal to 1 on f~' and have compact  support  in fL Observe 

that the kernel Kn-2 vanishes for IIm~[ < Ilmz]/2,  since S is holomorphic with 

respect to ( there. Taking g' (y) equal to g(y/2) plus a term of  logarithmic growth to 

compensate  for the growth of  the kernel near IR '~, we see that u satisfies the desired 

estimate 

On the other hand, Wl is a bounded form if  ~ is chosen properly and satisfies 

c5wl = 0 across I~'*. Since Wl is bounded, this just means that Wl is closed in the 

sense of  currents; and it is then well-known that we can solve 0v = w~ with v 

bounded. 

Thus all that remains is the construction o f  S. For this, let 

and let 

s o = ( r  - e ) ,  

S I = (( - z). 

Then if z = x + iy and ( = [ + i~/, 

Re <S O , ( - z > = ( ~ - x )  2 + y 2 - r J 2 _ > 6 1 ~ - z l  ~ 

if  }Ira z] > 2}Im (}, and S 1 satisfies the same inequality everywhere.  Let  

S = xS ~ + (i - x)S*, 

with X = X(IIm z I/tim (I) a suitable cut-off function. This completes the proof that 

(i) implies (ii). 

Finally, we show that (iii) implies (ii), for which we again use the Cauchy- 

Fantappi6 kernel. Choose our cut-off function F to be equal to I in aneighbourhood 

of ~' and to have compact support in fL This time we choose the function X in 

the definition of S so that S = So if z lies in i)', ( lies in the support of tgF 

and ~7 is small enough. One verifies that this can be done in such a way that 

Re (S, ~ - z) > 61z - ([2 . Now suppose that w = cSu in Ft \ /R n. We claim that i f  z 

is outside R", then 

Fu(z) = [ K n - 2 ( z , ( )  A O(Fu)(r + Oz [ Kn-3(z,() A Fu(r 
J J 
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(The last term should be interpreted as 0 if  n = 2.) Indeed, this follows f rom 

Koppelman's  formula applied to F1Fu, where F1 vanishes near li  n and equals 1 

for [Ira ~1 > IIm z[/2, if  we observe that Kn-2 vanishes where Ft is not equal to 1. 

Taking 0 o f  this equation and restricting to ~ ' ,  we find that w = 3u' ,  where u' is 

given by 

= J ^ u+ ] 
By construction, the first term involves only the values o f  u at a fixed distance to 

R n and so is bounded for z in fV. The second term is handled just as in the previous 

proof. [] 

C o r o l l a r y  4.10. Let 9(V) = 9(I//[) and let E be the space of  exact forms in 
f~ \ R n. Then 17, is closed in L~oc(e-9 ) if and only if  

f01og 9(t)dt < oo. 

P r o o f .  From Theorem 4.8, it follows that E is dense, and hence not  closed, in 

the space o f  all forms in L~oc(e-g ) that are closed in f~ \ Ii n i f  log9 is not integrable. 

On the other hand, if  log g is integrable, Theorem 4.9 says that w lies in E if  and 

only if  0w : 0 across li  n ; and this is clearly a closed condition. [] 
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