
Decentralized Online Social Networks

Anwitaman Datta1, Sonja Buchegger2, Le Hung Vu3, Thorsten Strufe4, and
Krzysztof Rzadca1

1 NTU Singapore, anwitaman@ntu.edu.sg, krzadca@gmail.com
2 Royal Institute of Technology (KTH), Stockholm, Sweden. buc@kth.se

3 École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
lehung.vu@epfl.ch

4 TU Darmstadt, Germany. strufe@cs.tu-darmstadt.de

Abstract. Current Online social networks (OSN) are web services run
on logically centralized infrastructure. Large OSN sites use content dis-
tribution networks and thus distribute some of the load by caching for
performance reasons, nevertheless there is a central repository for user
and application data. This centralized nature of OSNs has several draw-
backs including scalability, privacy, dependence on a provider, need for
being online for every transaction, and a lack of locality. There have
thus been several efforts toward decentralizing OSNs while retaining the
functionalities offered by centralized OSNs. A decentralized online social
network (DOSN) is a distributed system for social networking with no
or limited dependency on any dedicated central infrastructure. In this
chapter we explore the various motivations of a decentralized approach
to online social networking, discuss several concrete proposals and types
of DOSN as well as challenges and opportunities associated with decen-
tralization.

1 Introduction

Adapted from the original definition in [BE07], we define an online social network
(OSN) as an online platform that (1) provides services for a user to build a public
profile and to explicitly declare the connection between his or her profile with
those of the other users; (2) enables a user to share information and content
with the chosen users or public; and (3) supports the development and usage of
social applications with which the user can interact and collaborate with both
friends and strangers.

Current online social networks are extended in two main directions towards
the capabilities of the provided services and the decentralization of the support-
ing infrastructures, as depicted in Fig. 1.

Along the first dimension, the features and services provided by online social
networks have been extended significantly. Early social networking sites, from
a simple online tool to manage personal and professional contacts, such as in



SixDegrees and Friendster, to an effective tool for sharing several kind of infor-
mation and contents with a viral spread. Popular OSNs such as Facebook offer
users even more services and applications, as third-parties are allowed to develop
and plug their applications into the site. The OSN has come closer to being a full-
fledged development platform for social applications. If a Web browser becomes
an operating system for the next-generation computing devices as predicted by
various technological experts, it is very likely that online social network service
would be the user interface of that operating system, i.e., it provides users a
portal to manage their Web-wide personal and social information sources.

  










































Fig. 1. Classification and development trend of online social network services

Another trend of extending current online social network services is towards
the decentralization of the backend infrastructure. Centralized social networking
services are prone to some problems, some of which have even led to the demise of
many early-generation OSN sites such as SixDegrees and Friendster [BE07]. The
problems include both technical and social issues that emerge as a consequence of
a centralized management of the services. On the technical side, the centralized
management of a social network with rapid growth in user popularity has led to
various performance scalability issues, most notably the frequent down-time of
the micro-blogging service Twitter and similar slowness and unresponsiveness of
Facebook to many users 5. Along with the increasing popularity of the service
comes the increasing cost of management and maintaining the infrastructures
to ensure a smooth continuation and reasonable performance of the provided

5 http://www.watchmouse.com/en/SPI/2008/performance_social_networking_
sites.php



services. On the social side, the unlimited sharing capability of information has
also led the social collisions in the sense that the fast growth of the networking
sites, without proper privacy preserving schemes, leads to a collapse in social
contexts, for instance, users had to face their bosses and acquaintances alongside
their close friends and so information is shared to many unwanted contacts. The
ruptures of trust between the users and the site providers were also among the
key problems leading to the collapse of such early social networking services.

A decentralized online social network is an online social network implemented
on a distributed information management platform, such as a network of trusted
servers or a peer-to-peer systems. In contrast to centralized OSNs where the
vendor bears all the cost in providing the services, a distributed or peer-to-
peer OSN offers a cost-eefective alternative. In fact, a P2P approach helps lower
the cost of the provider drastically, e.g., the case of Skype [LPG+07]. Other
benefits of a DOSN include better control of user privacy and the enhancement
of innovative development [BD09a,SW09]. By decentralizing OSNs, the concept
of a service provider is changed, as there is no single provider but a set of peers
that take on a share of the tasks needed to run the system. This has several
consequences: in terms of privacy (no central data collection, reduced economic
incentive for advertisement) and operation, nor any central entity that decides or
changes the terms of service whimsically. Moving from a centralized web service
to a decentralized system also means that different modes of operations become
possible: using one’s own storage or cloud storage, delay-tolerant social networks,
and local treatment of local content, to name some of them.

DOSNs combine social and decentralized elements. The path to a system
with these properties vary: a DOSN can be achieved by adding one of these
two properties to an existing system and thus transforming it, as by taking
centralized OSNs and decentralizing them or by adding a social component to
current decentralized applications that do not have a social component yet. It
can also be achieved by adding both properties at the same time: decentralizing
and adding a social component to current centralized applications. We discuss
the first of these transformations, i.e., going from a generic OSN to a DOSN in
Section 4 and decentralizing application specific OSNs in Section 5, and adding
social functionalities to distributed systems in Section 6 on social distributed
systems.

1.1 Scope of the Chapter

In this chapter, we provide an overview of current (mostly, ongoing) approaches
to realize DOSNs. We summarize what each of these projects plan to achieve and
what their current status is, as well as what key innovations have been achieved
in these mostly nascent initiatives. We discuss several design choices and
challenges first in general and then in the context of particular projects.



In addition to entire self-contained DOSN systems, there is a range of indi-
vidual functionalities that can be combined and integrated in a DOSN. Generic
mechanisms for distributed systems, such as cryptography for privacy, key man-
agement, storage distribution, numbers and location of replicas, incentives for
cooperation and resource-sharing, topology, p2p substrate and administration
tasks, trust needed for the program, etc. may be developed either within the
context of DOSNs from the start or be adapted from other contexts. We touch
upon several of these generic mechanisms in the following sections when needed,
but an exhaustive treatment of these enabling techniques is out of the scope of
this chapter.

2 Challenges for DOSN

In this section, we list some challenges for decentralized social networks. While
many of them are technical in nature, some are trade-offs that depend on pref-
erence, such as whether privacy should be prioritized or search. Such trade-offs
are closely connected to technical questions and are thus included.

Decentralizing the existing functionality of online social networks requires
finding ways for distributed storage of data, updates propagation and versioning,
a topology and protocol that enables search and addressing, i.e. a mechanism to
find friends in the topology, robustness against churn, openness for third-party
applications, and means for content revocation (by encryption and/or time),
dealing with heterogeneity of user resources, demands, online behavior, etc. We
discuss these challenges in more detail below.

Storage. Where should content be stored? Should they be stored exclusively
at nodes run by friends, or be encrypted and stored at random nodes, or should
the nodes be chosen using some other heuristics such as in a DHT or based on
uptime history? As in file-sharing, there will be several answers to this question.
The requirement for redundancy to provide availability of data depends to a large
extent on the duration and distribution of time peers are online. These activity
patterns are also influenced by the geographic distribution of the peers and
shifted by time zones. The distribution of interested and authorized peers and the
desired probability of availability are to be traded off with storage requirements,
especially if the system should allow for storing of media files and not only links
to websites where such media files can be found.

Updates. How can we deal with updates, e.g. status updates of friends? In
peer collaboration systems, updates, e.g. of a workplace, are sent to a small group
of peers via a decentralized synchronization mechanism. In P2P social networks,
with distributed storage and replication - and a potential need for scalability, the
requirements change. P2P publish/subscribe mechanisms are a possibility, but
their security in terms of access control will have to be developed further. Unlike
a traditional peer-to-peer environment, where many peers are involved, each of



the sub-networks will be much smaller (though larger than typical collaborative
groups), making it relatively simpler to realize quorum systems and deal with
updates.

Topology. Should nodes be connected according to their social connection?
This would cluster friends in the overlay network, which would facilitate updates.
As a downside, given the possibility of a relatively small set of friends, this
would limit the availability and robustness of data access. How can we build
a decentralized, p2p topology suitable for social networks? In pure file-sharing
networks, the topology does not depend on whether the peers know each other
and nodes exchange content with any other nodes in the network. At the other
end of the spectrum, existing examples of decentralized social networks (in the
widest sense) are mostly platforms for collaboration or media sharing and they
tend to consist of collaborative groups that are relatively closed circles, e.g. using
a “ring of trust” or darknets. In contrast, online social networking services have
overlapping circles.

Search, Addressing. Related to the topic of updates above, how can users
find their friends from the real social network in the P2P virtualization thereof,
and conversely, how can they discover new friends by virtue of common interests.
Over multiple sessions, peers may change their physical address. In a typical file
sharing network, this is not an issue. One just needs to find some peer with
the content it is looking for. However friends and trust links of a social network
are essential, and so it is crucial to both be able to find back friends even if
they have changed their physical address, and also authenticate the identity.
Traditionally, peer identity is tied with an IP address [PGW+08a] which clearly
is not sufficient. However, handling peer identity in a self-contained manner in a
P2P system is also feasible [ADH04] (also partially in Skype [Sky04]). It may also
be difficult to maintain a complete ring like in traditional structured overlays as
an index structure, if the network is based on only social links. Recent advances
in realizing distributed indexing with a ringless overlay [GGD+08] potentially
holds the key to this issue. These mechanisms composed together potentially
can help maintain social network links under churn. Another search issue is -
how can users find out about information available concerning their interests?
In social networks, tagging or folksonomies is the basic mechanism to annotate
content. Recently, there have also been advances made in enabling decentralized
tagging [GSS08], which paves another step towards realizing social networks
on top of a P2P infrastructure. Note that there is a trade-off between privacy
protection and search capabilities.

Openness to New Applications. One of the most alluring features of
current online social networks is that they are open to third-party applications,
which enables a constant change of what a social networking service provides to
the users. There is a core functionality for maintaining social ties, such as profile
information, connection to friends, status updates, internal messaging, posting
on each other’s sites, events notification. In addition, third-party applications
provide more and unpredictable ways of contacting users, finding out about
other users’ interests, forming groups and group identities, etc. This openness



to extensions potentially provides great benefits for the users. The price for
these benefits is the risk that comes with opening the service to untrusted third
parties, extending the privacy problem from the single service provider to all
application providers. In a decentralized environment, if some users choose to
enable a third-party application, their choice should not affect other users or
even users connected directly to them. How to draw this boundary is an open
and challenging question.

Security. Keeping control over their data with the user implies the need
for security support, so the classical requirements for security (confidentiality,
access control, integrity, authentication, non-repudiation) apply, albeit modi-
fied for the context of decentralized social networks. The main questions for
user control are in the domain of access control, e.g. how can we ensure that
only authorized friends can access content. For distributed storage with other
peers that the user not necessarily wants to access data, the content has to be
encrypted, as done for example for file backup [ABC+02] or anonymous peer-
to-peer file-sharing [DFM00, CSWH00]. To manage access to encrypted data,
key distribution and maintenance have to be handled such that the social net-
work group can access data but be flexible enough to handle churn in terms of
going offline and coming back, additions and removal to the user’s social net-
work. Group membership research has dealt with questions of key management
and renewal and how to give access to new members of a group by issuing new
keys in rounds [STW00]. Likewise darknets [Fra03] also share a key within the
group. Such existing mechanisms are however grossly inadequate to meet the
finer granularity of access control needs for social network features.

Even in the most simple scenario, where all members are allowed full access,
if one wishes to realize control on membership itself, then sharing a secret key is
not enough. Any member who already has the shared key can pass it on to new
members. Therefore, keys and identities need to be combined for access control,
but without access to a file system, mechanisms like access control lists are
not feasible. In many online networks (for example Yahoo! Groups6), a smaller
subset of members own and moderate the membership of a group. Thus even a
minor variation of the basic groups like darknets, to realize a group where all
members still have equal access to content, but only a subset of members control
the membership itself, is non-trivial in a decentralized setting.

There is on top of that the need for a finer granularity of access control, de-
termining who can read, write or modify and delete each shared object, and how
to enforce such access control in a decentralized setting, while still guarantee-
ing non-repudiation as well as preventing impersonation and replay. Achieving
such finer granularity of access control in a decentralized manner is, we believe
one of the hardest security challenges, and the biggest hurdle in realizing a P2P
infrastructure for social networking applications.

Other security issues like prevention of DDoS and Sybil attacks, enforcing
cooperation and preventing free-riding or content pollution, and establishing
trust are also of course long-standing issues in the community, but since they

6 http://groups.yahoo.com/



have been in the spotlight for years now, we do not highlight these here. That of
course does not mean that these are trivial, or even practically solved. However,
in the social network context, some of these issues may actually get simpler to
deal with [YKGF06].

For peer identities, one can take advantage of opportunistic networks and
peer authentication by in-person contact, when friends meet in real life and
exchange keys over their phones. For bootstrapping authentication, a central
authority (trusted third party) seems hard to avoid.

Robustness. Against misbehavior: In a centralized system, one can turn to
the provider in case of user misbehavior, there is usually a process defined for
dealing with such complaints. In a decentralized system, there is no authority
that can ban users for misbehavior or remove content. Robustness against free-
riding: Without the monetary incentive offered by advertising, other incentives
have to come in to make users shoulder the responsibilities for keeping up the
infrastructure, providing storage and ensuring availability by staying online. Ro-
bustness and Trust: Once access to content is granted, it is difficult to revoke
that right. When a user allows a friend to see a message, the friend can store
the message and keep access to it even after a change of key. Trust has to be at
least equal to assigned access rights, due to this difficulty.

Limited Peers. To take advantage of the decentralized nature of social net-
works, a mapping of physical social network to virtual and vice versa enables
extensions to offering access via web browsers by phone applications and direct
exchange of data in physical proximity. A major impedance to widespread adop-
tion of a decentralized system for OSNs will be users’ reluctance to install yet
another software. Consequently, it will be essential to allow for two classes of
users, a core network of users who run the decentralized infrastructure software
as well as a web service front-end, and the other, who are essentially clients
accessing this service. This of course throws open Pandora’s box with lots of
questions, including technological feasibility as well as game theoretic issues like
incentives and fairness in such a two tier system. Another immediate benefit
however of allowing such two-tier system is that users can then participate in
the social network with resource constrained (e.g. mobile) devices, which they
may use as an auxiliary, even when they contribute resources to the core of the
system with their primary device.

Locality. Using direct exchange between devices, real-life social networks can
be used to support the decentralized social networking application. In addition
to such opportunistic networks between users, a distributed architecture also
enables us to take advantage of geographic proximity and its correlation with
local interests. For example, most access routers for home Internet access now
come with USB slots where storage can be added or they already have unused
storage on the device itself. These routers are typically always on and thus would
provide some stability for availability of data of local interest. This local interest
can arise from the locality of events but also from the locality of typical real-
life social networks of friends and neighbors. How to best harness this locality
remains to be seen.



2.1 Differences to other decentralized or P2P applications

While there are properties common to peer-to-peer approaches that we can take
advantage of for decentalized social networks, in this section we focus on what
makes the requirements for social networks different from other peer-to-peer
services in order to point out where new solutions are needed.

Peer-to-peer storage has been done successfully for file-sharing. These results
can, however not be directly applied to social networks: In P2P file-sharing, any
copy of a music, video, media file, potentially present in high numbers, will do.
These copies are usually not updated, although new versions or different content
get added to the system. In social networks, information, such as the current
status of a person, is updated often and it makes a difference which version gets
downloaded, the value of outdated information is much less than that of timely
information that enables users to react to content changes.

In most file-sharing systems, files are not encrypted. When they are [DFM00,
CSWH00], mostly for reasons of plausible deniability, the keys to the files can
be obtained. For peer-to-peer social networks privacy is even more important as
it concerns personal information, so storing content unencrypted at other peers
whom the user does not want to access personal information is not an option.
Files should only be readable by peers that are specifically allowed to access
them.

This access control has been also required for peer-to-peer collaborative work
support (CSCW), albeit for smaller groups than the typical user base of online
social networks. Work colleagues are added or removed from a working group at
a lower rate than expected churn for social networks. For DOSN we need a way
of dealing with dynamic relations, that is churn both in terms of online/offline
behavior and of adding/removing friends and corresponding access rights.

This dynamic behavior coupled with a different distribution of interest add
requirements to availability. In file-sharing, a file is potentially of interest to
a large population of users, a Zipf-law distribution of file popularity and thus
download availability has been observed. For social networks, this distribution
is expected to be different and often limited to a number of friends that is not
directly correlated with the network size. The information about a person is
of interest to their social network, not typically the general public, there are
different economies of scale and scope at play.

Who is interested and authorized to access in social networks also differs
from peer-to-peer backup/storage systems, where there is typically one owner
of data, so granting access rights and key management is much simplified. Peer-
to-peer storage for file backup has been addressed by numerous systems such
as Farsite [ABC+02] for individuals but these do not address the issues arising
from social networks, nor utilize the opportunities of ingrained mutual trust.

For social networks, we need a large-scale peer-to-peer network with fine-
grained access control for reading and writing, with changing files (versions),
small number of interested peers compared to overall population, and enable a
list of features including file-sharing, chat, news-feeds, public and private asyn-
chronous messaging, search, notifications. This means that there are components



we can take from other peer-to-peer services, but need to modify and extend
them as described above.

3 The Case for Decentralizing OSNs

Keeping user data centralized or even just distributed but connected allows
the service providers of online social networks, third-party application providers
and, in cases where there is no deliberate protection, indeed anyone to crawl the
network and find out about content or at least about connectivity and access
patterns. The information gathered can then be used for data mining, direct
advertising, censorship, or other purposes. Moreover, a centralized depository or
fully connected network is more susceptible to virus or malware spreading than
mostly local social networks that can be partitioned.

An immediate advantage of a DOSN is rather straightforward: it is not cen-
tralized, not owned by a single entity. The central storage of user information and
ownership by a company, along with commercial exploitation of this information
e.g. for ad revenue, raises privacy concerns that could be better addressed by a
decentralized approach, with encryption and appropriate key management.

Of course at this juncture it is legitimate to ask, why use a decentralized
infrastructure for supporting social networks, when the good old client-server
architecture works fine. One can give the traditional arguments that P2P scales
well, since a growing user base naturally brings in more infrastructural resources.
This definitely can be a good incentive for people with good ideas but little
money to support and expand overnight if their popularity increases. Also, if
popularity declines over time, there is less exposure. However, given the suc-
cess of numerous upstart companies, which have managed to scale well to not
just millions but even hundreds of millions of users, the traditional scalability
argument alone does not justify the hassles of a decentralized infrastructure.

Privacy has become a major concern. Particularly privacy and protection
from massive data-mining and “big-brotherly” treatment of the users by the
social networking service providers. This is expected eventually to lead to a
significant population of users, who while they would like to enjoy the benefits
and fun of social networks, may also want to restrict access to their personal
data not only from fellow users who happen to be strangers, but also from any
provider or indeed the general public. This disaffected population is expected to
be the early adopters of decentralized social networks with encryption.

Besides privacy and other related security concerns, a decentralized approach
also enables content creators to execute greater control over their content, as well
as avoid censorship either by the website owner, or censorship of the hosting
website by a third party.

While some sites follow up with corrective measures because of users’ outcry,
e.g. [Asp08], and one may also argue about legislative solutions to protect users’
privacy, there is no guarantee that in the future the users’ data will not be
misused. The objective decentralized privacy-preserving OSNs is thus to aim for
a system which makes it technologically harder (ideally, impossible) to violate



the users’ privacy and large scale data mining, even while the users continue to
enjoy the advantages of social networking.

Given the reality of privacy breaches by centralized online social network
providers, as exemplified by Facebook’s beacon application [Per07] among others
[Gol07], there is a motivation for giving the control over data back to the users
and not have one entity access to all personal data of the participants in the
social network. With a peer-to-peer approach, decentralization is a given, and
combined with appropriate encryption users can determine whom they allow
access to their data.

Essentially, a decentralized approach seems promising to be the right technol-
ogy to achieve both privacy and freedom of speech. For this reason, user-provided
content and participatory media creation suit themselves better to a peer-to-peer
rather than a client-server model. Another incentive for users to embrace such a
model is to evade any constraints put by the service provider in the present or
future (e.g. for the amount of storage space, or subscription fees, or service shut
down).

Realizing an application layer Internet on top of diverse networking infras-
tructure, including the Internet, but also mobile - cellular as well as ad-hoc, and
supporting Web 2.0 applications on top of such an application layer Internet,
can also help making them ubiquitous.

By supporting the direct exchange of information between devices, be it
between users that meet or between adjacent nodes of a city mesh network,
a peer-to-peer infrastructure can take advantage of real social networks and
geographic proximity. In contrast to a centralized web server, local connectivity
already facilitates social networking without Internet access.

While access control by encryption for user data privacy would be possible in
a centralized system, it does not go as far as a peer-to-peer approach in ensuring
user control. First, whoever would be willing to provide the centralized service
and infrastructure would also be able to cease to provide the service or change
its terms. Second, due to the lack of data mining and advertising possibilities,
there would be fewer incentives and means to provide a good service and all the
servers necessary for a centralized solution. Third, a centralized service requires
more trust by the users than a distributed system that limits the risk of privacy
breaches by not providing a central repository of user data, so that only a small
fraction of protected data may be exposed at any time, should the encryption
be broken.

In addition to addressing the privacy aspects in general, there is an opportu-
nity to support a non-commercialized self-organized service. Web-based central-
ized online social networks today bring together the social sphere of family and
friends with the commercial sphere. This combination enables targeted advertis-
ing thanks to profile information and data mining and thus based on a person’s
revealed preferences and extends it to a more precise targeting by taking into
account social information. We envision a peer-to-peer social network that sep-
arates these spheres and enables users to maintain their social network without
commercial prompting by advertisement.



User control of data, as provided by a peer-to-peer and secured social net-
work, has consequences beyond privacy and freedom from advertisement. One
such consequence is that users can also exercise control over the content they
create in terms of intellectual property. User control in this sense means control
over who can access their content and what they are allowed to do with that con-
tent, e.g. access control can be combined by licensing models of the user’s choice
(e.g. creative commons licenses) allowing for flexible content rights, as opposed
to the current practice of copyright for the online social network providers. Like-
wise, users also can enjoy freedom of speech, without fearing censorship or other
obstacles (like a subscription fee), which a central service provider can impose
at its whim.

Another aspect of control is how the social network can be accessed. Moving
down the layers from application to network to physical access, there is another
instance of peer-to-peer paradigm suitability that has been overlooked: decen-
tralized access via various means (such as direct exchange, as in opportunistic
networks) for ubiquitous social networks as opposed to those limited to the web.

Centralized web-based social networks do not match the inherent peer-to-
peer nature of both social networks themselves and of participatory media cre-
ation. User-provided content and participatory media creation suit themselves
better to a community-driven peer-to-peer rather than a client-server model. By
mapping a peer-to-peer application to a peer-to-peer infrastructure, direct con-
nections can be exploited such that locality can be taken into account. Peers can
carry information for each other in a delay-tolerant fashion and use local access
points for local information. We thus have a matching of the distributed nature
of human social networks with a distributed service, and we can also match the
service to a local environment and make it a ubiquitous service. By supporting
the direct exchange of information between devices, be it between users that
meet or between adjacent nodes of a city mesh network, a peer-to-peer infras-
tructure can take advantage of real social networks and geographic proximity. In
contrast to a centralized web server, local connectivity already facilitates social
networking without Internet access.

4 General purpose DOSNs

To give the readers a better overview of existing approaches towards the decen-
tralization of online social network services, we propose a reference architecture
of a general-purpose DOSN platform is given in Fig. 2. The other works will be
reviewed based on the relation with this proposed architecture approach.

The reference architecture consists of six layers and provides an architec-
tural abstraction of variety of current related approaches to decentralized social
networking in the research literature. The lower layer of this architecture is the



physical communication network, which can be the Internet or a (mobile) ad hoc
network (in case we consider a mobile online social network). The distributed
or P2P overlay management provides core functionalities to manage resources
in the supporting infrastructure of the system, which can be a distributed net-
work of trusted servers or a P2P overlay. Specifically, this layer provides higher
layers the capabilities of looking up resources, routing messages, and retrieving
information reliably and effectively among nodes in the overlay.

On top of this overlay is the decentralized data management layer, which
implements functionalities of a distributed or peer-to-peer information system
to query, insert, and update various persistent objects to the systems.

The social networking layer implements all basic functionalities and features
that are provided by contemporary centralized social networking services. Among
these functionalities the most important ones are given in Fig. 2, namely the ca-
pability to search the system (Distributed search) for relevant information, the
management of users and shared space (User account and share space manage-
ment), the management of security and access control issues (Trust management,
Access control and security), the coordination and management of social appli-
cations developed by third parties (Application management).

It is expected that the social networking layer exposes and implements an
application programming interface (API) to support the development of new
applications by freelance developers and other third-parties, as well as to enable
the customization of the social network service to suit various preferences of the
user. To enable better interoperability with available social network services,
e.g., better portability of applications across OSN providers, this API should
conform to existing API standards, e.g., OpenSocial 7.

The top layer of the architecture includes the user interface to the system
and various applications built on top of the development platform provided by
the DOSN. The DOSN user is expected to provide the user the necessary trans-
parency to use the DOSN as any other centralized OSN. Applications can be
either implemented by the DOSN provider or developed by third-parties, and
can be installed or removed from the system according to user’s preferences.

4.1 Proposed DOSN approaches

This section introduces and explains several existing approaches to implement
general-purpose decentralized online social networks. They range from academic
proposals without any implementation to first systems that exist as demonstra-
tors or are even in the course of public testing, as of the time of this writing.

Safebook Safebook [CMS09], an approach to provide a decentralized general
purpose OSN, follows the main objective of protecting its users’ privacy. It con-

7 www.opensocial.org











 















 














Fig. 2. The general architecture of a distributed online social network

siders adverse or erroneous behavior of a centralized service provider, possible
adversaries which are misusing the functions of the social networking service, as
well as external adversaries that could eavesdrop or modify data on the network-
ing layer.

The main goals of offering the full set of services that centralized general
purpose SNS usually implement, and of assuring the three security objectives of
privacy, integrity, and availability, it is based on two simple assumptions: that de-
centralization and cooperation between friends will facilitate the implementation
of a secure, and privacy preserving OSN. Considering the centralized storage to
be a potential risk, safebook chooses a distributed implementation architecture.
The social links between friends, family members, and acquaintances, which are
represented as the core intrinsic knowledge of an OSN, are leveraged for multiple
purposes. Requests from a user and for a user’s profile are anonymized hop-by-
hop on recursive routing paths traversing links of the OSN. Additionally, since
friends are assumed to cooperate, they are leveraged to increase the availability
of profiles.

Safebook consists of three major different components, the TIS, matryoshkas,
and a peer-to-peer location substrate (see Fig. 3).

All users have to acquire certificates from a Trusted Identity Service (TIS)
upon joining the OSN, which they are able to do by invitation, only. The TIS is a
stateless, offline service. It does not store any information, but simply implements
a cryptographic function to issue keys, identifiers, and certificates based on the
identity of the requesting user. It currently is run at the institutions participating
in the Safebook development (Institut Eurécom and TU Darmstadt), but may be
further distributed to other trusted third parties. The TIS represents a powerful



Fig. 3. Main design components of safebook

entity in safebook, yet, it does not cause any threats, since it is only involved in
the identification and certification of users, but does neither store nor retrieves
or accesses any data of the users.

Safebook discerns between identified participation in the OSN, and anony-
mous participation to provide services to other users. In order to protect the
identified participation, safebook introduces matryoshkas, which are specialized
overlays encompassing each user. All contacts of a user represent the innermost
shell of a user’s matryoshka. Each user selected for a matryoshka in turn selects
one of his contacts to be part of the next matryoshka shell, unless a predefined
number of shells is reached. Current evaluation indicates that three to four shells
represent a good trade-off between the resilience towards statistical identification
attacks against the core, vs. the efficiency and performance of the system. The
matryoshkas are used to anonymize requests, to hide the existence of the user in
the center, and to increase the availability of the user’s profile, by replicating it
among the devices the matryoshka consists of.

For the purpose of locating other users’ matryoshkas, safebook implements
a peer-to-peer substrate. Considering response times of requests to be a main
requirement, the developers have adapted Kademlia [MM02], an existing peer-
to-peer system known to achieve fast lookup. Safebook implements the original
routing structure and distance metric as Kademlia, simply switching for iterative
to recursive routing and stochastically including access through contacts to pro-
tect the identity of the requesting user. The identifier used for the peer-to-peer
substrate additionally is derived from the certificates, and hence determined by
the TIS, which prevents denial of service attacks on the peer-to-peer overlay.

Safebook initially has been analyzed in formal models and large scale simu-
lations. A first functional prototype to date is tested by the developers, which
predict a first version for the public to be available by the end of 2010.



FOAF Yeung et al [mAYLL+09] presents another practical approach to decen-
tralize management of current social networks. The framework enables users to
export their FOAF8 profiles, store them on dedicated trusted servers. Users query
and manage these profiles through open Web-based protocols such as WebDAV9

or SPARQL/Update10. A clear advantage of this approach is its compatibility to
current social networking platforms and its entirely Web-based nature. The use
of a set of trusted servers for storing user’s data, however, raises some other secu-
rity issues that necessitates further considerations. We believe this approach has
a high potential of being adopted, as it is supported by the W3C consortiums.

Another related work is Social VPNs [FBSJW08]. Users may query different
social networks to discover friends to build a Virtual Private Network (VPN)
with them. The prototype integrates with Facebook, use the IP2IP virtual net-
works and IPsec security infrastructure to build a VPN platform for a number
of interactive applications such as instant messaging, file sharing, etc.

NEPOMUK11 is an on-going EU project with close relation to DOSN. The
goal of NEPOMUK is to develop a middleware for sharing users’ desktops with
friends for online collaborations and sharing of knowledge by exploiting Semantic
Web technologies.

LifeSocial Considering the immense increase of users that online social net-
works have experienced in the recent past, and which are expected for the future,
too, LifeSocial [GPM+08] primarily aims at keeping social networking services
scalable by distributing the load to their users’ resources.

The main functional components of OSNs are data storage and interaction.
Both are classic domains of peer-to-peer systems, and have very successfully
been implemented as file sharing 12 and instant messaging (jabber), or tele-
phony (skype) applications. With current social network providers being central
entities, who have to provide the entire resources for storing the data uploaded
to the OSN and for making it accessible, they are soon to become a bottle neck
when the number of users increases further. LifeSocial hence proposes to dis-
tribute the service provision in a peer-to-peer fashion in order to mitigate the
resource problem and to balance the service load to the resources at the users’
devices.

LifeSocial is designed with the main premise to leverage on existing and
proven components and to create a modular plugin-architecture to assure ex-
tensibility. It consequently is assembled using FreePastry13, a structured peer-

8 http://www.foaf-project.org/
9 http://www.webdav.org/

10 http://jena.hpl.hp.com/~afs/SPARQL-Update.html
11 http://www.nepomuk.org
12 Gnutella [cli02], Kazaa [LCP+05], and Bittorrent [Coh03] are only some of the more

prominent examples.
13 http://www.freepastry.org/



Fig. 4. LifeSocial Plugin Architecture

to-peer overlay for data storage, and PAST14 to achieve reliable replication of
the data. LifeSocial implements its own access control scheme on top of these
components. Some plugins are mandatory to implement a general purpose OSN:
The whole system demands plugins for profile management, friend management,
group management and photo albums as a minimum set. Additional plugins, such
as a whiteboard and a chat system have been proposed.

The different components of LifeSocial, and the overall system, have been
evaluated in simulation studies. It additionally is one of the few systems of which
a prototype exists at the time of this writing (see Fig.: 4). The prototype consists
of all mandatory plugins, as well as basic white-board and chat functions. It has
been presented in different conferences and exhibitions and the system currently
is tested between the group of its developers.

14 http://www.freepastry.org/PAST/default.htm



PeerSoN PeerSoN15 [BD09a, BSVD09] aims at keeping the features of OSNs
but overcoming two limitations: privacy issues and the requirement of Inter-
net connectivity for all transactions. To address the privacy problem, it uses
encryption and access control coupled with a peer-to-peer approach to replace
the centralized authority of classical OSNs. These two measures prevent privacy
violation attempts by users, providers, or advertisers. Extending the decentral-
ized approach, PeerSoN also enables direct exchange of data between devices to
allow for opportunistic, delay-tolerant networking. This includes making use of
ubiquitous storage to enable local services.

The main properties of PeerSoN are encryption, decentralization, and direct
data exchange. In a nutshell, encryption provides privacy for the users, and
decentralization based on the use of a P2P infrastructure provides independence
from OSN providers. Decentralization makes it easier to integrate direct data
exchange between users’ devices into the system. Direct exchange allows users
to use the system without constant Internet connectivity, leveraging real-life
social networking and locality.

The current PeerSoN implementation replicates the following features of
OSNs. In the category of social links, users (peers) can become friends and thus
establish a social link between each other. Digital personal spaces are provided
in that users can maintain their own profile and a wall, a space for items posted
by themselves or their friends. Communications between users are directly peer-
to-peer when both are online, and the implementation supports asynchronous
messaging when this is not the case. PeerSoN uses a DHT as a lookup system
and then lets peers connect directly; all data is encrypted and keys for accessing
an object are encrypted for the exclusive use of authorized users and stored in
a separate file associated with a particular object, such as a user’s profile. The
prototype implementation has been tested on PlanetLab and uses OpenDHT
for the lookup service. Using OpenDHT facilitated the PeerSoN deployment on
PlanetLab but will be replaced for the next iteration of the implementation.

Likir Likir [AMRS08] is a Kademlia-based DHT that is aimed to protect the
overlay against attacks common to these systems, by embedding a strong iden-
tity notion at overlay level. This increases the reliability of the overlay and offers
many identity-based services that well suit social applications [AR10]. Likir tar-
gets at the main goals of avoiding a centralized storage of personal information,
offering reliability, and integrating the identities of users deep into the system.

The main motivation of Likir is to avoid a central data repository, for both
the reason to avoid a single point of failure and aggregation of user data. The
rationale is to use a reliable, identity-based DHT layer, to provide the main ser-
vices. The applications built on top of this substrate consequently are relieved
from identity management, as it is already provided by the underlying DHT
(see Fig. 5). Likir is designed to achieve full confidentiality of data as well as
anonymity of the users. It additionally provides access control in a granularity

15 http://www.peerson.net



Likir node

Reputation
System

Tag Search
Engine

Certified User ID

}
Graphical User Interface

BLACKLIST(USERID) PUT / GET

Wid1 Wid2 Wid3 WidN

PUT(KEY,OBJ,TYPE) GET(KEY,TYPE,OWNER,RECENT,GRANT)

Discretionary
Access Control

Module
...

Widgets suite

SEARCH(TAG) /
TAG(OBJ, TAG)FEEDBACK(USERID,SCORE)

GRANT(USERID,PERMISSIONS)

Friendship request
handling

}

Id
en

tity
m

a
n

a
g

em
en

t
A

p
p

lica
tio

n
lo

g
ic

Fig. 5. Likir Architecture

to applications: “authorized disclosure” ensures that malicious applications in-
stalled at some individual’s device is unable to access data disclosed to other
applications.

Likir builds its core properties on introducing cryptography in a plain DHT-
based approach. All nodes are furnished with an identifier in the form of an
OpenId by a certification service. Subsequent communication events consequently
are encrypted and authenticated by both communicating parties. A supplemen-
tal access control scheme is integrated that requires all service providing nodes
to check grants that are appended to each request before returning any data.

In addition to an analytical study on the bandwidth and computational over-
head consumed by Likir, the authors have run large scale emulations on Planet-
Lab. A prototype of the Likir middleware has been published and is available for
download, including a simple chat application for the purpose of demonstrations.

5 Specialized Application Centric DOSNs

Besides decentralized counterparts of general purpose online social networking
applications as described above, there are also initiatives to realize decentralized
counterparts of niche applications such as video sharing, social bookmarks and
libraries, and micro-blogging to name a few.

5.1 Social-based P2P File Sharing

Among works in this category, the most well-developed initiative is Tribler [PGW+08b],
which is basically a P2P content sharing system that leverages the existing so-
cial relationships and taste similarities among its users for fast discovery and
recommendation of digital contents.



Initiated from the EU project P2P-Next16 whose goal is to provide end-
to-end professional streaming content based on P2P technologies and low-cost
commodity hardware devices, i.e., user computers, Tribler has been extensively
developed and provides a rich set of functionalities for its users, e.g., discovery
and recommendation of friends with similar preferences, as well as providing
fast and low overhead delivering video-on-demand such as television programs.
The system, implemented as an social-based extension of the BitTorrent engine,
is freely available17 and has been evaluated at small and medium scales. The
most recently public trial of Tribler, reported in [MBP+09] in mid July 2008,
which lasted in 9 days, consists a global deployment of nearly 5000 unique peers
for live streaming a free video. The system has shown to yield a relative good
performance, e.g., the pre-buffering time before playing back the video is from
3 to 10 times shorter than that of the two existing deployed P2P live stream
systems reported in [XKL07,ZLLsPY05].

To facilitate the social group formation between users, Tribler uses a de-
anonymized approach to manage the peer identities. During the registration
phase, each participating user is given by email a secure, unique, permanent
identifier (PermID). PermIDs are obtained via a public key generation scheme
with challenge-response mechanism to prevent spoofing. Existing contacts of a
user (a peer with a PermID) can also be imported from other social networks
such as MSN and GMail. For boostrapping the networks, any newly joined peer
can contact one in a list of pre-known superpeers, from which to obtain a list of
other peers already available in the systems. The boostrapping of the networks
is done via an epidemic protocol [WJF+08].

A peer in Tribler uses many types of caches to store locally any contextual
information relevant to its interests and tasted. These so-called Megacaches (each
less than 10MB) of a peer may store various information related to its friend
lists, the altruism levels, the preferences of its friends, and meta-data of the
files and contents posted in the network. With existing BitTorrent networks,
the number of files injected per day is sufficiently small such that the caches of
file meta-data can be fully replicated among all peers. Thus there is no need to
perform network-wide searching for interested content, but only the browsing of
the local meta-data cache.

Peers in Tribler are clustered into many groups, each of which contains those
peers with similar preferences and interests, or taste buddies group. The interest
commonality between two peers are given by the similarity in their preferences
of in the same or related content. Fore example, each peer’s preference can be
defined as its zapping behavior profile, which is the percentage of length the
online television program actually watched by the peer, compared to the length
of the complete program on air. The formation of such taste buddies group is
done via the epidemic protocol BuddyCast [WJF+08]. The BuddyCast protocol
requires a peer to periodical connect to either an existing friend (the exploitation
phase) or a randomly peer (the exploration) and exchange a BuddyCast message

16 http://www.p2p-next.org
17 http://tribler.org/



with the selected peer. The BuddyCast message usually consists of the number
of taste buddies with top-10 preference lists, e.g., the type of TV programs the
peer is interested in, a number of random peers, and the top-50 preference of the
sending peer. The exploration-to-exploitation ratio can be adapated to limit the
randomness of the exploration. To ensure that a BuddyCast message has a high
probability to be replied, the random peer in an exploration phase is selected
based on its freshness to increase the chance it is still online, i.e., newly joined
peers are more likely to be selected.

The exchange of a BuddyCast message enables the two contacting peers to
discovery whether they have similar preferences. Overtime the social network of
peers would also be clustered into different groups of users with related interests.
Thus the BuddyCast protocol in fact implements a decentralized collaborative
filtering technique to recommend programs and potential friends of interests
to a user. This will also facilitate the content delivery to end-users, since the
downloading of contents relies on the collaboration among users in such social
groups.

The download of contents from the system is according to a collaborative
downloading protocol 2Fast [GIEvS06], in which a peer asking its friends to
help it in downloading. The assumption is that peers would behave altruistically
in favor of their friends, thus a peer will be willing to help uploading the con-
tent which it is not interested int. Peers that are not in a social group would
follow an uncooperative downloading scheme, which is the default Tit-for-Tat
strategy in BitTorrent. The 2Fast protocol has been deployed for testing in a
real environment and gives promising results for small-scale experiments. With
around 1900 peers, 6% seeds to download a 1.2GB file, the download time de-
creased by a factor from 2 to almost 6 for different types of connections from
the downloading peers. Larger scale experiments have not been carried out with
more realistic workloads from existing BitTorrent networks or available video
streaming systems, however to evaluate the overall system performance more
thoroughly.

Recently, a light weight message exchange protocol using a reputation metric,
BarterCast [MPES09], has also been proposed to prevent the free-riding problem
in the system. Consider the social networks of peers as a graph and define the
capacity of an edge from a peer u to a peer v as the total number of bytes (of
data content) u has uploaded to v in the past. The subject reputation Ri(j) of
a peer j, as evaluated by a peer j is proportional to the difference in the max-
flow of bytes from i to j with the max-flow of bytes in the opposite direction.
Therefore, this Ri(j) represents the service that j has provided to other peers
in the system from the viewpoint of i. A peer is classified by another peer as a
sharer, neutral, or free-rider peer depending on whether its subjective reputation
falls below a certain threshold. Given the reputation, a peer may rank or ban
another peer from downloading certain pieces of content from it, and thus free-
riding incentives are reduced or eliminated.



5.2 Shared bookmarks and collaborative search

Diki18 is a social bookmarking service that allows users to encrypt and share
their bookmarks with trusted friends via the Extensible Messaging and Presence
Protocol (XMPP), a real-time Web-based communication protocol for Internet
services19. User privacy is preserved via three design principles: to enable data
exchange only between trusted friends, not storing any data centrally, and any
stored data is encrypted.

User data is encrypted using the PGP private key encryption scheme, stored
locally, and exchanged to trusted friends using the XMPP protocol. A user may
establish his own XMPP server or use existing ones to communicate with the
others.

Since the XMPP servers only handle the exchange of encrypted data between
users, without knowing the content of the exchanges, the system ensures that
the information, e.g., URLs a user shares with his or her friends is kept secret.
In short, Diki provides a decentralized, privacy-preserving version of the highly
popular social bookmarking service Delicious20.

Using such an XMPP protocol, it is completely possible to implement the
decentralized, privacy-preserving, and secured versions of other existing social
applications such as Twitter.

Shared bookmarks and other meta-information can in turn be used for im-
plicit or explicit collaborative online search. Some recent initiatives such as Goss-
ple21 and COBS22 pursue such an approach of leveraging peer-to-peer/hybrid
infrastructure based social networks and interest communities to facilitate col-
laborative search.

5.3 Micro-blogging

FETHR [SW09] is a light-weight protocol enabling users to use any existing mi-
croblogging service to communicate with other users on top of HTTP with near
real-time guarantee. Users who follow the FETHR protocol can subscribe to
each other’s updates (tweaks) and receive these tweaks in real-time. Published
entries are signed digitally by the publisher and linked together in a chain in
reverse chronological order. Each entry in the list contains the hash of the pre-
vious entry for detecting any tampering in the content of the tweak. A FETHR
publisher also includes the hashes of prior tweaks from his o her friends, thus
integrating the timelines of many participants into a directed acyclic graph of
tweaks spanning the whole network. This provides a provable order of events
happening, as well as enabling the reconstruction of conversation threads.

According to the FETHR protocol, the publishers (the micro-blogger) push
the entire (assumedly small) contents of the messages (tweaks) to the subscribers.

18 http://www.pace-project.org/
19 http://xmpp.org
20 http://delicious.com/
21 www.gossple.fr/
22 http://code.google.com/p/socialcobs/



This is different from Twitter: in Twitter the followers are simply notified of the
new tweaks, whose contents are still stored on the servers.

The current implemented prototype, BirdFeeder23, can be considered as a
distributed alternative to the existing so-called microblogging platform Twit-
ter24. It aims to target the weaknesses of Twitter, whose centralized architecture
is shown to be the main cause to its performance bottleneck and single point of
failure.

FETHR is designed as an entirely new protocol to be applied on existing
microblogging services, thus its success much dependent on the widely adoption
of the service provider communities. Also, the implemented prototype is still in
early phase, and there is little study and analysis on the security and effciency
of FETHR.

6 Social distributed systems

Besides the initiatives to emulate specifically online social networks, as described
in the previous section, there is also a growing trend to develop social dis-
tributed systems (SocDS) which provide equivalent functionalities to non-social
(and sometimes, also centralized) systems. Such initiatives try to leverage and
translate the social trust into properties leading to system reliability. This trend
of coupling real life social networks with distributed systems is gaining traction
in recent times. For example, distributed hash tables realized using exclusively
social links can provide robustness against Sybil attack. Likewise, P2P stor-
age systems relying on social trust to do data backup provide resilience against
free-riding address limitations of computational trust models and stand-alone
algorithmic solutions. Such social distributed systems can be used for carrying
out any task the non-social counterparts are typically used for, but additionally,
and naturally, SocDS are ideal to be used as substrates and building blocks for
distributed/decentralized online social networks.

Essentially, one can argue that with the use of SocDS, we have a two way
symbiotic design. Distributed/peer-to-peer infrastructure for OSNs provide de-
sirable properties and addressing the shortcomings and constraints of traditional
OSNs which use centralized resources provided by OSN service providers. On the
other hand leveraging on social networks to design robust distributed systems
provide new systems design opportunities which are beyond the scope of tradi-
tional algorithmic solutions. Such distributed systems can be used for different
applications, but are of-course naturally suitable to form the underlying sub-
strates for decentralized online social networks.

We next discuss social distributed systems design for some basic building
blocks such as indexing and routing using distributed hash tables (DHTs) and
p2p storage & back-up systems. For each of these building blocks, there are
non-social counterparts which have been studied in traditional systems research,

23 http://brdfdr.com/
24 http://twitter.com/



which we will point out whenever necessary. The benefits (as well as possible
drawbacks) of the “social” counterparts will also be briefly explained.

6.1 Social DHT: SocialCircle

Structured overlays, e.g., Distributed Hash Tables (DHTs) provide essential in-
dexing and resource discovering in distributed information systems. Typically,
structured overlays are based on enhanced rings, meshes, hypercubes, etc., lever-
aging on the topological properties of such geometric structures. The ring topol-
ogy is arguably the simplest and most popular structure used in various overlays.
In a ring based overlay network like Chord [SMLN+03] nodes are assigned to
distinct points over a circular key-space, and the ring invariant is said to hold if
each node correctly knows the currently online node which succeeds it (and the
one which precedes it) in the ring. The ring is both a blessing and a curse.

On the one hand, an intact ring is sufficient to guarantee correct routing.
Hence, historically, all existing structured overlays over circular key space have
considered it necessary de facto. Previous attempts have used social network
links to bolster DHTs, e.g., Sprout [MGGM04], preferring social links whenever
possible, but nevertheless requiring links to random/unknown nodes also. Such
an approach still relies on using the untrusted links most of the time, but was
arguably as good as it could get under the older paradigm of DHT designs, where
a completely connected underlying graph and ring invariance were considered
necessary.

In the recent years several radical DHT designs have been proposed, for exam-
ple VRR [CCN+06] proposed for ad-hoc environments and Fuzzynet [GGD+08]
designed specifically to avoid ring maintenance. Neither of these two rely on sanc-
tity of a ring or fully connected underlying graph. SocialCircle [ZD09] adapts
and hybridizes ideas from these two DHTs. In the description of SocialCircle
below we also point out which of the features are derived from which of VRR or
Fuzzynet respectively.

Virtual ring routing (VRR) is a DHT style overlay layer approach used to
define the underlying network’s routing mechanism. It is implemented directly
on top of the link layer and provides both traditional point-to-point network
routing and DHT routing to the node responsible for a hashed key, without
either flooding the network or using location dependent addresses. While tra-
ditional DHTs take for granted point-to-point communication between any pair
of participating nodes, VRR extends the idea, using only link layer connectiv-
ity. Essentially this means that the VRR scheme relaxes the traditional DHT
assumption of a completely connected underlying graph. Each node in VRR has
an unique address and location independent fixed identifier, organized in a vir-
tual ring, emulating Chord style network. Each node keeps a list of r/2 closest
clockwise and counter-clockwise neighbors for the node on the virtual ring. Such
a set of neighbors is called the node’s virtual neighbor set (vset).

Typically, members in a node’s vset won’t be directly accessible to it through
the link layer. Thus each node also maintains a second set called the physical
neighbor set (pset), comprising nodes physically reachable to it through the link



Fig. 6. Sybil attack resistant SocialCircle DHT exploiting social connections. This
example of DHT over Tom & Jerry’s social graph is adapted from the virtual ring
figure in [CCN+06] for routing in ad-hoc networks.

layer. In SocialCircle, this idea in exploited by replacing VRR’s pset with the
set of friends a node has - its social set sset.

Thus, instead of exploiting the physical layer connectivity as VRR does,
SocialCircle builds the overlay over the social plane exploiting people’s social
connections. In figure 6 the lower plane shows the social graph, while the upper
plane shows the SocialCircle DHT. Adaption of VRR to exploit social links rather
than physical neighbors provides a good abstraction, enabling SocialCircle to
realize a Sybil attack [Dou02] resistant DHT, where end-to-end routing can be
achieved following a web or trust of friends-of-friends.

Finally, each peer maintains a routing table, which comprises of routes to its
vset neighbors using its sset. These routes can be established and maintained
using different strategies typically inspired by mobile ad-hoc routing protocols.
Like in VRR, nodes in SocialCircle also keep track of the routes that pass through
them. The advantage of using the DHT abstraction to do the routing over social
graph is same as the use of DHTs instead of using flooding based search in a typ-
ical peer-to-peer system. The DHT abstraction ensures efficiency and certainty
of routing to the appropriate target.

Thus, in the example from figure 6, Tom with logical identifier 8F6 on the
SocialCircle has 8F0, 8E2, 90E and 910 in its vset. Spike has Jerry, Nibbles
and Butch in its sset since they are his direct social connections.

Tom needs to maintain routes to all its vset nodes, and thus, for 8E2, he
will have a route through his sset entry Butch, who will route through his sset
entry Spike.



So when Tom needs to route a message to 7C0, then it will try to forward
the message closest to the target on the SocialCircle, which happens to be 8E2.
While the message is being routed to 8E2 following the sset nodes at each peer,
Spike will observe that the ultimate destination is 7C0, for which it may already
have a route passing through it, and will thus forward the message to Jerry,
instead of sending it to the intermediate destination Nibbles. Jerry processes the
routing request, and forwards it to the final destination Quacker, who happens
to have the identifier 7C0 on SocialCircle.

VRR works in an opportunistic manner where the route is forwarded along
the virtual ring, but discovers shortcuts, so that the search is still efficient.
SocialCircle preserves the same benefits by routing over the social links. Each
hop on the social link involves IP level routing, which may need several hops,
just like any logical overlay hop of traditional DHTs.

While the routing in SocialCircle follows the ideas from VRR, it use Fuzzynet’s
data-management ideas [GGD+08] for storing and retrieving key-value pairs
in SocialCircle. The details of SocialCircle’s data-management are not relevant
here.

Given the exclusive use of social links to realize a DHT, SocialCircle is nat-
urally resilient against Sybil attacks and also provides a means to more effec-
tively use trust mechanisms to deal with free-riding and other anti-social/non-
cooperative behaviors. It is also a natural primitive to be used in DOSNs, and
specifically has been used to realize a directory service facilitating search for
friends which is a common functionality required in online social networks.

Robustness against churn, scalability of the SocialCircle overlay with respect
to the number of peers, and performance under partial knowledge of social net-
works (i.e., when an individual is yet to add all its friends) are unaddressed
issues which will need further investigation to determine SocialCircle’s usability
in large-scale real life deployments.

6.2 Storage/back-up

A p2p storage (or back-up) system uses the storage space of its participants to
increase the availability or the survivability of the data. Coupled with mecha-
nisms for content sharing and privacy, a distributed storage system is a building
block for a DOSN. For instance, it can ensure that, when a user is off-line, her
profile is available through the replicas. At the same time, real-world relations
between people can be used as a basis for replication agreements. As in any other
p2p system, one of the key issues in a p2p storage system is to provide incentives
for peers to act fairly: not to consume disproportional amount of other peers’
bandwidth or storage and to provide stored data on a request. Basing replication
agreements on real friendships can mitigate the need for more explicit incentives:
in general, a friend is less likely to free-ride on our resources than a stranger (or,
even if a friend free-rides, we are more likely to forgive her and the system).

Many distributed storage systems have the option of sharing stored objects
among a group of users. OceanStore [KBC+00] is one of the first distributed stor-
age infrastructures, focusing on storing objects. As all the objects are encrypted,



read sharing (i.e., many agents accessing an object) is accomplished through
sharing of the encryption key. OceanStore also permits multiple agents to mod-
ify the same object through Access Control Lists (ACL), which are OceanStore
object themselves (a write on an object is authenticated by a trusted server
against an ACL associated with the object).

Wuala25 is an on-line storage system that combines distributed and central-
ized elements. Data is stored both on users’ machines and on Wuala’s servers;
the algorithm associating data with particular machines is most probably cen-
tralized. Wuala can act as a crude DOSN as it enables its users to share files
in a group of “friends”; however other OSN features, such as profile information,
are missing.

BlockParty [LD06] and FriendStore [TCL08] are p2p backup system in which
data is stored only on designated peers corresponding to real-world “friendships”
between users. In fact, the “friendship” relation acts as a proxy for a simple
reputation system: it verifies user identities and provides off-system discourage-
ment for free-riding. Moreover, [LD06] argues that friendship-based system will
have less permanent node departure; and thus the data survivability will depend
on (rare) hardware failures rather than permanent departures frequent in usual
p2p systems. Friendship-based systems can be thus more forgiving to transient
errors [TCL08] instead of assuming a permanent departure and, consequently,
large-scale data transmissions, longer delays can be used.

The main disadvantage of friendship-based p2p backup systems is that, in
general, systems that constrain choice of replicating nodes have lower surviv-
ability (see e.g., [GMP09] for analysis with locality constraints). In a friendship-
based system, achieved data survivability strongly depends on survivability of
machines of friends—and friendships are fostered rather based on the person’s
character, and not her computer’s up-time, which is the important factor for the
system’s reliability.

Approaches mixing traditional algorithmic solutions, for example, uptime
history based choice of peers in a storage system with real life social trust to
build a robust system are still in their nascence, and with great potentials and
research opportunities.

7 Delay-Tolerant DOSN

Once the functionality is distributed, social networks are no longer dependent
on Internet connectivity for every transaction – in contrast to current web-based
services. We therefore have the opportunity to take into account locality, both in
terms of connectivity by direct exchange between devices, and in terms of con-
tent, such as local community interests and events. This way, social networking
applications can benefit from local storage, connectivity, and delay-tolerant data
transfer via social encounters. The local communities, in turn, can benefit from
the social networking applications enabled by such a system, e.g., by finding
neighbors with similar interests.

25 http://www.wuala.com



Current online social networking services require the user to be connected to
the Internet for every interaction, not only for real-time information but also for
older information such as data posted by the user or her friends in the past. Since
online social networks are part of the so-called Web 2.0, they run on dedicated
web servers.

All information in the online social network is thus stored on logically central
servers, even though they may be replicated or cached in different geographic
regions using content distribution services. Due to such centralization, there is
no distinction between information of global or exclusively local relevance.

We propose to implement online social network functionality in a distributed,
delay-tolerant way. Intermittent Internet connectivity can be used to connect
with the wider user community, while users can exchange data among each
other in direct physical proximity during offline times. The need for constant
Internet connectivity, which can be costly, is thus eliminated. When information
is of local relevance only, it need not be transferred to a central server that is
potentially far away. These needless long-distance transfers can be replaced by
local storage. In addition, it becomes easier to take locality into account logically
when keeping local information also local physically.

While portable user devices, such as phones, laptops, an personal digital as-
sistants (PDAs) can be used to exchange data directly, also fixed devices can con-
tribute resources. Schioeberg [Sch08] proposed to use storage on home routers,
such as ADSL modems with WLAN capabilities to support peer-to-peer social
networks. Many home routers now have unused storage or can at least be ex-
tended by USB sticks or external hard drives. Fixed devices that typically are
switched on irrespective of user activity not only contribute resources but also
increase availability and robustness of a system for delay-tolerant social net-
works.

Such delay-tolerant, local social networks allow us to build on other propos-
als and new opportunities. For example, Antoniadis et al. [ALGS+08] proposed
to use local wireless networks to enhance communities such as neighborhoods in
towns. Collectively, users would build wireless neighborhood networks by pooling
their resources to support the creation and operation of the underlying commu-
nication network. They envision user participation and cooperation at several
layers, physic, access, network, and application layers. They argue that the design
of communities suitable for this environment will encourage users to participate,
enable trustworthy network creation, and provide a social layer, which can be
exploited in order to design cross-layer incentive mechanisms that will further
encourage users to share their resources and cooperate at lower layers. The goal
is to bridge the gap between online and offline communities.

The way we envision delay-tolerant social networks can be a vehicle to such
fostering of communities. Beyond the features of current social networks that
allow users to keep in touch and up-to-date with the friends they already have
and, increasingly, the new ones they found thanks to the service itself, delay-
tolerant social networks would allow users to benefit from locality. They could
find others who live nearby and have similar interests, find or start events in



the neighborhood, organize or collaborate for creative of political collective ac-
tion, found local marketplaces of ideas, goods, or services, edit local information
repositories or wikis, to name just a few possibilities.

Local social networks could also be established to never connect to a wider
collection of networks but form islands of social networks, effectively making
censorship or data mining prohibitively difficult.

The possibilities of use of delay-tolerant social networks are of course not
limited to the examples given above, once the technology is available, users may
come up with novel and original applications, as has been the case with online
social networks or indeed the advent of the Internet and the World-Wide Web
itself. Delay-tolerant social networks can thus be seen as enablers for applications
or uses not yet foreseen.

Taking a wider perspective, we contend that there is a feedback loop between
society and technology, and there are interesting dynamics in both directions,
raising questions such as the following. How can we develop and use technology
to enhance people’s lives and society as a whole and how can we take societal
phenomena and changes into account to improve technology? Delay-tolerant
social networks can serve as an example to allow us to explore these questions
directly. First, by experimenting how local user communities can benefit from
social networks that do not require Internet connectivity. Second, by analysing
how user behavior, such as mobility and use of ubiquitous computing resources,
can support distributed social networks.

8 Conclusion

Most of the early commercial initiatives for DOSN do not have a large user base
due to the dominance of their existing centralized social application counterparts
that offer equivalent functionalities. The major obstacles to the wide adoption of
these decentralized social applications are their immaturity in features and the
acceptance of existing users. Data portability issues also hinder the popularity
of the new systems, even if these new ones offer much more security and privacy-
preserving features. Another reason is the network effect problem: users of an
existing social networking service do not want to switch to another one without
their friends doing so, since maintaining these connections is important for them.
Therein a chick-and-egg problem emerges: a newly developed decentralized so-
cial system is less appealing to new users due to its lack of benefits, while the
system itself relies on a certain critical mass of participants before it can offer
its users any significant values. While this is true also for centralized OSNs, the
problem is excacerbated when involving a change away from web-based services.
Additionally, various performance issues, mostly related to the availability, la-
tency, and throughput in data access due to data encryption and replication, of
these decentralized social applications have still yet to be investigated carefully
to compare with their existing centralized approaches.

Despite the above challenges, we believe that development and research on
DOSNs still are very important and have significant impact. Due to scalability



issues, major social networking providers may want to switch to use a decentral-
ized infrastructure for their services. Furthermore, such decentralized alterna-
tives are also less costly compared to centralized architectures. In this chapter,
we made a case for using a decentralized infrastructure for social networks to
address problems other than purely technical ones stemming from a centralized
service-provider owned approach, such as privacy and access limitations. We
listed a variety of research challenges and opportunities that result from decen-
tralization, e.g. security issues to enable user control of data, storage, topology,
search, and update management. Research into the area of DOSN has become
very active, and we discussed several recent approaches in this paper, in terms
of general-purpose DOSN, DOSNs with a focus on a specialized application, and
the emerging trend of social applications. Once decentralized, the functionality
of OSNs can be expanded by allowing for direct data exchange between devices,
enabling ad-hoc social communities, data locality, and delay-tolerant social net-
works.

References

[ABC+02] A. Adya, W. Bolosky, M. Castro, R. Chaiken, G. Cermak, J. Douceur,
J. Howell, J. Lorch, M. Theimer, and R. Wattenhofer. Farsite: Federated,
available, and reliable storage for an incompletely trusted environment,
2002.

[ADH04] Karl Aberer, Anwitaman Datta, and Manfred Hauswirth. Efficient, self-
contained handling of identity in peer-to-peer systems. IEEE Transac-
tions on Knowledge and Data Engineering, 16(7), 2004.

[ALGS+08] P. Antoniadis, B. Le Grand, L. Satsiou, A.and Tassiulas, R.L. Aguiar,
J.P. Barraca, and S. Sargento. Community building over neighborhood
wireless mesh networks. IEEE Technology and Society Magazine, 27:48–
56, March 2008.

[AMRS08] Luca Maria Aiello, Marco Milanesio, Giancarlo Ruffo, and Rossano Schi-
fanella. Tempering Kademlia with a robust identity based system. In
P2P ’08: Proceedings of the 2008 Eighth International Conference on
Peer-to-Peer Computing, pages 30–39, 2008.

[AR10] Luca Maria Aiello and Giancarlo Ruffo. Secure and Flexible Framework
for Decentralized Social Network Services. In SESOC 2010: IEEE Inter-
national Workshop on SECurity and SOCial Networking, 2010.

[Asp08] Maria Aspan. Quitting Facebook Gets Easier, Feb. 2008. http://www.
nytimes.com/2008/02/13/technology/13face.html.

[BD09a] Sonja Buchegger and Anwitaman Datta. A case for P2P infrastructure for
social networks - opportunities and challenges. In Proceedings of WONS
2009, The Sixth International Conference on Wireless On-demand Net-
work Systems and Services, Snowbird, Utah, USA, February 2-4, 2009.

[BD09b] Sonja Buchegger and Anwitaman Datta. A case for P2P infrastructure
for social networks - opportunities and challenges. In WONS 2009, 6th
International Conference on Wireless On-demand Network Systems and
Services, Snowbird, Utah, USA, February 2009.

[BE07] Danah Boyd and Nicole B. Ellison. Social network sites: Definition, his-
tory, and scholarship. Journal of Computer-Mediated Communication,
13(1-2), November 2007.



[BSVD09] Sonja Buchegger, Doris Schiöberg, Le Hung Vu, and Anwitaman Datta.
PeerSoN: P2P social networking - early experiences and insights. In
Proceedings of the Second ACM Workshop on Social Network Systems
Social Network Systems 2009, co-located with Eurosys 2009, Nürnberg,
Germany, March 31, 2009.

[CCN+06] M. Caesar, M. Castro, E.B. Nightingale, G. O’Shea, and A. Rowstron.
Virtual ring routing: network routing inspired by dhts. In SIGCOMM,
Proceedings, 2006.

[cli02] clip2. The gnutella protocol specification v0.4.
http://rfc-gnutella.sourceforge.net/, letzter Abruf: 19.04.2007,
2002.

[CMS09] Leucio-Antonio Cutillo, Refik Molva, and Thorsten Strufe. Safebook: a
Privacy Preserving Online Social Network Leveraging on Real-Life Trust.
IEEE Communications Magazine, 47(12):94 – 101, December 2009.

[Coh03] Bram Cohen. Incentives build robustness in bitorrent. In Proceedings of
the 1st Workshop on Economics of Peer-to-Peer Systems, 2003.

[CSWH00] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong.
Freenet: A distributed anonymous information storage and retrieval sys-
tem. In Proceedings of Designing Privacy Enhancing Technologies: Work-
shop on Design Issues in Anonymity and Unobservability, pages 46–66,
July 2000.

[DFM00] Roger Dingledine, Michael J. Freedman, and David Molnar. The free
haven project: Distributed anonymous storage service. In H. Feder-
rath, editor, Proceedings of Designing Privacy Enhancing Technologies:
Workshop on Design Issues in Anonymity and Unobservability. Springer-
Verlag, LNCS 2009, July 2000.

[Dou02] J.R. Douceur. The sybil attack. In Peer-To-Peer Systems: First Inter-
national Workshop, IPTPS, Revised Papers. Springer, 2002.

[FBSJW08] Renato J. Figueiredo, Oscar P. Boykin, Pierre St. Juste, and David Wolin-
sky. Social VPNs: Integrating overlay and social networks for seamless
P2P networking. In 17th IEEE International Workshop on Enabling
Technologies: Infrastructures for Collaborative Enterprises, June 2008.

[Fra03] Justin Frankel. Waste P2P Darknet, 2003. http://waste.sourceforge.net/.
[GGD+08] Sarunas Girdzijauskas, Wojciech Galuba, Vasilios Darlagiannis, Anwita-

man Datta, and Karl Aberer. Fuzzynet: Zero-maintenance Ringless Over-
lay. Technical report, 2008.

[GIEvS06] P. Garbacki, A. Iosup, D.H.J. Epema, and M. van Steen. 2fast: Col-
laborative downloads in p2p networks (best paper award). In 6-th IEEE
International Conference on Peer-to-Peer Computing, pages 23–30. IEEE
Computer Society, sep 2006.

[GMP09] F. Giroire, J. Monteiro, and S. Pérennes. P2p storage systems: How much
locality can they tolerate? Technical Report 7006, INRIA, 2009.

[Gol07] Jennifer Golbeck. Quechup: Another Social Network Enemy!, Sept. 2007.
Oreillynet.com.

[GPM+08] Kalman Graffi, Sergey Podrajanski, Patrick Mukherjee, Aleksandra Ko-
vacevic, and Ralf Steinmetz. A distributed platform for multimedia com-
munities. In IEEE International Symposium on Multimedia (ISM’08),
page 6, Berkley, USA, Dec 2008. IEEE, IEEE Computer Society Press.

[GSS08] Olaf Gorlitz, Sergej Sizov, and Steffen Staab. Pints: Peer-to-peer infras-
tructure for tagging systems. IPTPS, 2008.



[KBC+00] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, C. Wells, et al. Oceanstore: An
architecture for global-scale persistent storage. ACM SIGARCH Com-
puter Architecture News, 28(5):190–201, 2000.

[LCP+05] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, and Steven
Lim. A survey and comparison of peer-to-peer overlay network schemes.
IEEE Communications Surveys & Tutorials, 7(2):72 – 93, 2005.

[LD06] J. Li and F. Dabek. F2F: Reliable storage in open networks. In IPTPS,
Proceedings, 2006.

[LPG+07] Nicolas Liebau, Konstantin Pussep, Kalman Graffi, Sebastian Kaune,
Eric Jahn, André Beyer, and Ralf Steinmetz. The impact of the p2p
paradigm. In Proceedings of Americas Conference on Information Sys-
tems 2007, Aug 2007.

[mAYLL+09] Ching man Au Yeung, Ilaria Liccardi, Kanghao Lu, Oshani Seneviratne,
and Tim Berners-Lee. Decentralization: The future of online social net-
working. In W3C Workshop on the Future of Social Networking Position
Papers, 2009.

[MBP+09] J.J.D. Mol, A. Bakker, J. Pouwelse, D.H.J. Epema, and H.J. Sips. The
design and deployment of a bittorrent live video streaming solution. In
ISM 2009. IEEE Computer Society, December 2009.

[MGGM04] S. Marti, P. Ganesan, and H. Garcia-Molina. Dht routing using so-
cial links. In The 3rd International Workshop on Peer-to-Peer Systems.
Springer, 2004.

[MM02] Petar Maymounkov and David Mazieres. Kademlia: A Peer-to-Peer In-
formation System Based on the XOR Metric. In LNCS: International
Workshop on P2P-Systems, volume 2429, pages 53 – 65, 2002.

[MPES09] M. Meulpolder, J.A. Pouwelse, D.H.J. Epema, and H.J. Sips. Barter-
cast: A practical approach to prevent lazy freeriding in p2p networks. In
State University of New York Yuanyuan Yang, editor, Proceedings of the
23rd IEEE International Parallel and Distributed Processing Symposium,
pages 1–8, Los Alamitos, USA, May 2009. IEEE Computer Society.

[Per07] Juan Carlos Perez. Facebook’s Beacon More Intrusive Than Previ-
ously Thought, Nov 2007. http://www.pcworld.com/article/id,140182-c,
onlineprivacy/article.html.

[PGW+08a] J.A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup,
D.H.J. Epema, M. Reinders, M. van Steen, and H.J. Sips. Tribler: A
social-based peer-to-peer system. Concurrency and Computation: Prac-
tice and Experience, 20, February 2008.

[PGW+08b] J.A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup,
D.H.J. Epema, M. Reinders, M. van Steen, and H.J. Sips. Tribler: A
social-based peer-to-peer system. Concurrency and Computation: Prac-
tice and Experience, 20:127–138, February 2008.

[Sch08] Doris Schiöberg. A peer-to-peer infrastructure for social networks.
Diplom thesis, TU Berlin, Berlin, Germany, December 17, 2008.

[Sky04] Skype.com. Skype P2P telephony explained, 2004. http://www.skype.
com/intl/en/download/explained.html.

[SMLN+03] I. Stoica, R. Morris, D. Liben-Nowell, DR Karger, MF Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: a scalable peer-to-peer lookup
protocol for internet applications. Networking, IEEE/ACM Transactions
on, 11(1):17–32, 2003.



[STW00] M. Steiner, G. Tsudik, and M. Waidner. Key agreement in dynamic peer
groups. IEEE Transactions on Parallel and Distributed Systems, 11(8),
2000.

[SW09] Daniel R. Sandler and Dan S. Wallach. Birds of a fethr: Open, decen-
tralized micropublishing. In 8th International Workshop on Peer-to-Peer
Systems (IPTPS ’09) April 21, 2009, Boston, MA, 2009.

[TCL08] D.N. Tran, F. Chiang, and J. Li. Friendstore: cooperative online backup
using trusted nodes. In SocialNets ’08: Proceedings of the 1st Workshop
on Social Network Systems, pages 37–42. ACM, 2008.

[WJF+08] J. Wang, J.A.Pouwelse, J.E. Fokker, A.P. de Vries, and M.J.T. Reinders.
Personalization on a peer-to-peer television system. Multimedia Tools
and Applications, 36:89–113, 2008.

[XKL07] Susu Xie, Gabriel Y. Keung, and Bo Li. A measurement of a large-scale
peer-to-peer live video streaming system. Parallel Processing Workshops,
International Conference on, 0:57, 2007.

[YKGF06] Haifeng Yu, Michael Kaminsky, Phillip B. Gibbons, and Abraham Flax-
man. Sybilguard: defending against sybil attacks via social networks. In
SIGCOMM, 2006.

[ZD09] Lukasz Zaczek and Anwitaman Datta. Mapping social networks into
p2p directory service. In SocInfo, International Conference on Social
Informatics, 2009.

[ZLLsPY05] Xinyan Zhang, Jiangchuan Liu, Bo Li, and Tak shing Peter Yum. Cool-
streaming/donet: A data-driven overlay network for peer-to-peer live me-
dia streaming. In in IEEE Infocom, 2005.


