
User’s Guide to the GME Publications Database Paradigm: PubDB
Version 5.7.20

http://www.eecs.berkeley.edu/~sprinkle/useful/pubdb/

Jonathan Sprinkle, Ph.D.
sprinkle@acm.org

11 July 2005

1

http://www.eecs.berkeley.edu/~sprinkle/useful/pubdb/
http://www.eecs.berkeley.edu/~sprinkle/useful/pubdb/
http://www.eecs.berkeley.edu/~sprinkle/useful/pubdb/
mailto:sprinkle@acm.org

License and Lawyertalk

Copyright c© 2005 The Regents of the University of California. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee,
andwithoutwritten agreement is hereby granted, provided that the above copyright notice, the following two para-
graphs and the author appear in all copies of this software.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, ORCONSEQUENTIAL DAMAGES ARISINGOUTOF THEUSEOF THIS SOFTWARE AND
ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCHDAMAGE.

THEUNIVERSITYOFCALIFORNIA SPECIFICALLYDISCLAIMS ANYWARRANTIES, INCLUDING, BUTNOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE SOFTWARE PROVIDEDHEREUNDER IS ONAN “AS IS” BASIS, ANDTHEUNIVERSITYOFCALIFORNIAHAS
NOOBLIGATIONTOPROVIDEMAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, ORMODIFICATIONS.

2

Contents

1 Introduction 5
1.1 Overview . 5
1.2 Domain-SpecificModeling . 5

1.2.1 The Generic Modeling Environment (GME) . 5
1.3 Importingmodels . 6

2 Getting Started 7
2.1 Installing GME . 7
2.2 Installing PubDB . 7
2.3 Registering your paradigm and components . 7

3 UnderstandingPubDBKinds 10
3.1 Domain-specific philosophy . 10
3.2 Choosing domain concepts . 10
3.3 Drawing on experience: BibTEX . 10
3.4 Kinds of objects in PubDB . 11

3.4.1 Abbreviation . 11
3.4.2 Academics . 14
3.4.3 AcademicPub . 14
3.4.4 AcademicPubPtr . 15
3.4.5 Artifact (Abstract) . 15
3.4.6 Author . 16
3.4.7 Books . 16
3.4.8 BookPub . 16
3.4.9 BookPubPtr . 17
3.4.10 Conferences . 17
3.4.11 ConferencePub . 17
3.4.12 ConferencePubPtr . 18
3.4.13 ContributedWorks . 19
3.4.14 ContributionPub . 19
3.4.15 ContributionPubPtr . 19
3.4.16 Database . 20
3.4.17 Document . 20
3.4.18 Editor . 21
3.4.19 Folders . 21
3.4.20 Journals . 21
3.4.21 JournalPub . 21
3.4.22 JournalPubPtr . 22
3.4.23 ManualPub . 22
3.4.24 ManualPubPtr . 23
3.4.25 Presentation . 23
3.4.26 PeopleContainer . 23
3.4.27 Person . 24
3.4.28 Presentations . 24
3.4.29 PresentationPub . 24
3.4.30 PresentationPubPtr . 25
3.4.31 Proceedings . 25
3.4.32 ProceedingsPub . 25
3.4.33 ProceedingsPubPtr . 26

3

3.4.34 ProceedingsType (Abstract) . 26
3.4.35 Publication (Abstract) . 27
3.4.36 PublicationsSet (Abstract) . 28
3.4.37 Whitepapers . 28
3.4.38 WhitepaperPub . 28
3.4.39 WhitepaperPubPtr . 29
3.4.40 Workshops . 29
3.4.41 WorkshopPub . 29
3.4.42 WorkshopPubPtr . 30

4 Creating aDatabase 31

5 Managing Persons 32

6 CreatingNewPublications 33

7 Best Practices 34

8 Troubleshooting 35

9 Quick Start 36
9.1 Downloading the binaries . 36
9.2 Registering your paradigm and components . 36
9.3 Examplemodels . 38

9.3.1 Importing the .xme file . 38
9.3.2 Browsing themodel . 40

9.4 Generating Output . 40
9.4.1 Generating a BibTEX database . 40
9.4.2 Generating HTML . 41
9.4.3 Generating LATEX Summaries . 43

4

1 Introduction

One of the most depressing things to see on a researchers webpage is that his or her last publication was about 3
years before today’s date. Most of us realize that this is seldom a representative list of publications, but at the same
time, we ask “how is it that this list can go so out of date?”
The answers vary, butmostly can be traced back to the issue of time constraints. That is, writing papers ismuch

more important than keeping an updated webpage—especially for more advanced professors and researchers who
have made their impact prior to web-based reporting, and view webpage updates as a occasional nuisance rather
than a forum for announcing activities. Thus, these banal tasks are either occasionally done, or continuously put off.
The papers themselves (hopefully) do not fall victim to this classic blunder of disorganization and chaos. Most

good researcherswrite goodpapers, and the standardpaper-writing tool is definitively theLATEXtoolbox and itsmany
free distributions and implementations. The astute readerwill have, by now, realized that it would bewonderful to
immediately harvest the technical information regarding recent publications into both a formal publishable form
(technical journals/conferences, annual reports, curriculum vitae) as well as an informal one (webpages). That is ex-
actly what the PubDB tool aims to do.

1.1 Overview

It’s a bore to have to keep reworking your webpage and C.V. each time you publish a new paper. Furthermore, if
you’re a LATEX user, you are already tired of maintaining your BibTEX database in such an unwieldy way, and have
either given up on maintaining individual databases, or are frustrated with looking through your one huge one to
get key names, and hesitant to give it out to other people.
The PubDB GME Paradigm is designed to alleviate some of these problems. It is a domain-specific modeling

environment—based on the publications ontology of BibTEX—which provides a graphical interface to your publi-
cations collections. It allows you to build a publication database for each paper you write, and provides the ability
to enter publication data once, and “point” to that publication arbitrarily many times for future papers. You can
organize publications by area/author/etc., and keep “pointers” to publications anywhere. In the spirit of BibTEX, it
has a special attribute listing for each kind of publication, relieving you of the need to remember which fields each
kind of publication has, and visually reminding you that some publication parameters are optional, while others are
required.
Themost important piece ofPubDB is its ability to generate artifactswhich are useful to the publishing domain.

You can create from your GME database the following kinds of artifacts:

• A BibTEX *.bib file

• ALATEX source file that cites each entry in your *.bib (useful for generating text to insert into a LATEX-basedC.V.
or annual report).

• AnHTML file, configurable by a CSS class file

The trick to the PubDB tool is that it uses the philosophy of domain-specificmodeling to restrict the input space of
your database towhat is useful for the domain of publications. The tool utilizes the GMEmeta-programmablemod-
eling environment, and C++ output generators which produce the output artifacts useful for you. In the remainder
of this section, we describe some of the basic concepts of domain-specificmodeling and the GME tool itself.

1.2 Domain-SpecificModeling

1.2.1 TheGenericModeling Environment (GME)

The Generic Modeling Environment1 is a configurable toolkit for creating domain-specific modeling and program
synthesis environments. The configuration is accomplished throughmetamodels specifying themodelingparadigm
(modeling language) of the application domain. The modeling paradigm contains all the syntactic, semantic, and

1This section taken largely from the GMEwebsite: http://www.isis.vanderbit.edu/projects/gme/

5

http://www.isis.vanderbit.edu/projects/gme/
http://www.isis.vanderbit.edu/projects/gme/
http://www.isis.vanderbit.edu/projects/gme/

presentation information regarding the domain; which concepts will be used to construct models, what relation-
ships may exist among those concepts, how the concepts may be organized and viewed by the modeler, and rules
governing the construction of models. The modeling paradigm defines the family of models that can be created us-
ing the resultantmodeling environment.
Themetamodeling language is based on theUML class diagramnotation andOCL constraints. Themetamodels

specifying the modeling paradigm are used to automatically generate the target domain-specific environment. The
generated domain-specific environment is then used to build domainmodels that are stored in a model database or
in XML format. Thesemodels are used to automatically generate the applications or to synthesize input to different
COTS analysis tools.
GME has a modular, extensible architecture that uses MS COM for integration. GME is easily extensible; ex-

ternal components can be written in any language that supports COM (C++, Visual Basic, C#, Python etc.). GME
hasmany advanced features. A built-in constraintmanager enforces all domain constraints duringmodel building.
GME supports multiple aspect modeling. It provides metamodel composition for reusing and combining existing
modeling languages and language concepts. It supportsmodel libraries for reuse at themodel level. All GMEmodel-
ing languages provide type inheritance. Model visualization is customizable through decorator interfaces.
Since GME is a meta-configurable environment, downloading and opening GME provides you only with the in-

terface anunconfiguredmodeling environment. In order to take advantage of a domain-specificmodeling environment
youmust create ametamodel; it defines the abstract syntax of themodeling language, and generates a configuration
file for GME.

1.3 Importingmodels

Once you have registered your paradigm and the two components for generating BibTEX andHTML, you are ready to
do one of two things: build your ownmodels, or look to see how someone else has done so by importing examples.

6

2 Getting Started

In order to use the PubDB paradigm, youwill need to have

1. Microsoft Windows XP, or newer/equivalent,

2. A working copy of GME, GME5, v.5.6.8, or take a chance that the files will work with your version (possible, if
themajor version is the same, butminor version is newer), and

3. The latest release of PubDB (5.7.20 for this manual) and its associated binary files or source code.

If you are wondering whether or not this works under an operating system other than Micrsoft Windows, it does
not. At this time, GME is based heavily onMicrosoft COM, and as such is not portable to other operating systems. If
you have access to a Windows Terminal Server 2003 or equivalent, PubDB has been tested on that environment, and
can be accessed via rdesktop under Linux to create a terminal session, and take advantage of the GME modeling
tool and PubDB paradigm.

2.1 InstallingGME

Please refer to the GME installation instructions. Please uninstall your version of GME if you are upgrading to the
GME5/v.5.6.8 version for purposes of this paradigm. Once GME is installed, proceed to Sect. 2.2.

2.2 InstallingPubDB

If youhavenot yetdownloaded thebinaries, they are available fromhttp://www.eecs.berkeley.edu/~sprinkle/
useful/pubdb/, available as a .zip file. Please extract the contents of this file somewhere on your computer, where
theywill be placed in their owndirectory. I recommend that youplace them in the$GME_ROOT/Contribdirectory,
where they will appear as $GME_ROOT/Contrib/PubDB_v5.7.20 . 2

2.3 Registering your paradigm and components

In order to utilize the PubDB modeling environment, we must register the PubDB paradigm with GME so it will
know the kinds of objects you can create.

1. OpenGME, as shown in Fig. 1.

2. Choose File→Register Paradigms..., to reveal the dialog shown in Fig. 2.

3. Select Register: For both in the lower right corner. If you wish for the paradigm to be registered only
to you as the user, then leave the selection as Register: For user only. However, it is recommended
that you register the paradigm and components systemwide, in the event that other users later want to use
the PubDB environment.

4. Choose Add from File..., select the paradigm, in file
$GME_ROOT/Contrib/PubDB_v5.7.20/meta/PublicationsDatabase.xmp, and select Open.

5. While you have the PublicationsDatabase paradigm selected, choose Components....

6. Select the Register: Systemwide radio button.

7. Choose Install New..., select the component, in file
$GME_ROOT/Contrib/PubDB_v5.7.20/bin/GenerateBibTeXDB.dll

2Downloading the source: The source for the projects is not easily available for download at this time. However, the author is pleased to send
it to you if youwould like to look at his terribly hacked code. The source is not really necessary to run, only to recompile.

7

http://www.eecs.berkeley.edu/~sprinkle/useful/pubdb/
http://www.eecs.berkeley.edu/~sprinkle/useful/pubdb/
http://www.eecs.berkeley.edu/~sprinkle/useful/pubdb/

Figure 1: The Generic Modeling Environment, unconfigured.

8. Choose Install New..., select the component, in file
$GME_ROOT/Contrib/PubDB_v5.7.20/bin/GenerateHTML.dll

9. Choose Close

10. Choose Close

You should now see the blank GMEwindow again (as in Fig. 1). Now, if you have used the paradigm before, are
extremely anxious, or simply want to live on the edge, you are ready to start creating publications databases, which
is explained in Sect. 4. However, if you would like to understand some background on the kinds of objects which are
available for the PubDB paradigm, the next section explains themany types available in themodeling environment.

8

Figure 2: Adding the PublicationsDatabase paradigm.

9

3 UnderstandingPubDBKinds

The GME environment is an extremely versatile tool for domain-specific modeling. It is configured through ameta-
model, which defines all of the possible constructs which can be created for a particular model (i.e., the abstract syn-
tax). The nodes of the abstract syntax tree aremade up of kinds, which are the types of objects that can be used in the
model.

3.1 Domain-specific philosophy

In the domain-specific modeling philosophy, a particular modeling environment is considered domain-specific if it
carries special relevance for an expert in a particular domain. In the engineering world, examples of domain-specific
modeling environments are MATLAB Simulink (for the domain of systems simulation), SPICE (for the domain of
circuit analysis), AutoCAD (for the domain of technical drawing), and—believe it or not—Microsoft PowerPoint
(for audio/visual presentations). Each of these tools is made so that it is easier to use the tool/application for a
particular purpose, and the way that this is made simple is through kinds.
For example, the MATLAB Simulink tool provides domain-specific concepts such as function generators, gain

multipliers, and connections between them, to allow a user to visually create a model of a system for simulation.
For an engineer who understands the concepts of a function generator and the other kinds of signal sources, the
blocks make immediate sense, and almost require no explanation—the user simply modifies the attributes of the
object and creates an electronic representation of what s/he expects to see in “real life.” The goal of domain-specific
modeling is to create such an environment for the necessary domains—in our case, the domain of publications.

3.2 Choosing domain concepts

Usually domain concepts are apparent based on the nomenclature, physical existence, and/or body of research for a
particular domain. Once the optimal3 set of domain concepts has been enumerated it is the job of the metamodeler
to encode those domain concepts into a language.
The choice of the appropriate modeling concept for each domain concept is key to successfully encoding the

domain concepts. Domain concepts that showproperties of tree-like containment should utilize hierarchical struc-
tures. Domain concepts that show properties of graph-like interconnectedness should utilize (typed) associations
between concepts. The method of entry for the domain user should be efficient, as well. For example, rather than
have hundreds of types of similar objects from which to choose, it is more efficient to have one type with an enu-
merated list of attributes to choose the specifics for this type. This reduces the set fromwhich a domain expert may
choose domain concepts, providing a less cluttered beginning point (recall thatwewant a domain expert to use this
environmentwithout amanual).
These examples of canonical abstraction methods are important, but are not so different from normal software

abstraction when creating a class hierarchy and deciding whether to associate objects by containment, or by refer-
ence. What makes encoding domain concepts into a modeling language more interesting—and more useful when
done correctly—is the ability to reflect the common notations and representations in the domain. This means that
while abstraction using somemodeling conceptmay actually be less efficient than a clever abstraction, the one that
“looks”more like the notation of the domain expert is preferred.
Finally, metamodelers (like software architects) should keep in mind the possible future evolution of the do-

mainwhen creating the design. Using inheritance concepts, it is possible to create abstractions of types in themeta-
model which can be extended in future generations of the language (e.g., a generic type “network adapter” which
can be specialized in future generations of the language by adding new types) while relying on common interfaces
as defined by the generic type.

3.3 Drawing on experience: BibTEX

The purpose of this domain is to allow researchers/authors to create database artifacts for use with publishing and
biographical tools. The main way in which the tool will be used is to generate a BibTEX database of selected pub-

3Here, optimal means that the domain-expert is satisfiedwith the level of abstraction of the domain concepts.

10

PubPtr
<<ReferenceProxy>>

People
<<Folder>>

PublicationDatabases
<<Folder>>

Abbreviation
<<Atom>>

Abbreviation : field
LongForm : field

Database
<<Model>>

RootURL : field
StylesheetClassOptional : field
StylesheetHREFOptional : field
GeneratedTitle : field

ProceedingsPub
<<Model>>

ManualPub
<<Model>>

AddressOptional : field
EditionOptional : field
Month : enum
OrganizationOptional : field

BookPub
<<Model>>

Editor
<<Reference>>

LastName : field
MiddleName : field
FirstName : field

ContributionPub
<<Model>>

BookTitleOptional : field
ChapterOptional : field
PagesOptional : field
TypeOptional : field

ConferencePub
<<Model>>

Location : field
Days : field

AcademicPub
<<Model>>

AddressOptional : field
Month : enum
PubType : enum
Institution : field

PresentationPub
<<Model>>

Month : enum

WhitepaperPub
<<Model>>

AddressOptional : field
Month : enum
NumberOptional : field
TypeOptional : field
Institution : field

WorkshopPub
<<Model>>

WorkshopName : field

ProceedingsType
<<Model>>

AddressOptional : field
Month : enum
NumberOptional : field
OrganizationOptional : field
PublicationName : field
PublisherOptional : field
SeriesOptional : field
VolumeOptional : field
PagesOptional : field

JournalPub
<<Model>>

Month : enum
NumberOptional : field
PagesOptional : field
VolumeOptional : field
PublicationName : field

BookType
<<Model>>

AddressOptional : field
EditionOptional : field
Month : enum
NumberOptional : field
SeriesOptional : field
VolumeOptional : field
Publisher : field

PrecedencePlayer
<<FCO>>

Presentation
<<Atom>>

Document
<<Atom>>

Artifact
<<Atom>>

URL : field

Precedence
<<Connection>>

Author
<<Reference>>

LastName : field
MiddleName : field
FirstName : field

PublicationsSet
<<Model>>

PeopleContainer
<<Model>>

Person
<<Atom>>

LastName : field
MiddleName : field
FirstName : field

Publication
<<Model>>

NoteOptional : field
Year : field
Title : field

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..* 0..* 0..*0..*0..* 0..*

0..*

0..*

0..*

src
0..*
dst
0..*

0..*

0..*

0..*

Figure 3: Structure of the kinds of objects in PubDB.

lications (i.e., a portion of—not the entire—database). Also, generation of HTML formatted text would enable a
modeler to generate listings of items published by themselves (or another person). This means that the language
should not be amodel ofBibTEX, but instead should be amodel of publications; however, it is true that theBibTEX spec-
ification is an authoritative (and accepted) categorization ofmany kinds of publication classifications. Therefore, it
is possible to take advantage of thework that hundreds of researchers have put in to the BibTEXdomain to define the
full set of classifications, while at the same time defining thePubDB language to be somewhat independent ofBibTEX
as an input format.

3.4 Kinds of objects inPubDB

The rest of this section describes textually the relationships and attributes available for the PubDB paradigm. This
is explained visually in Figures 3, 4 and 5.

3.4.1 Abbreviation

TheAbbreviation type is somewhat experimental—check yourworkwhen using it.

11

ContributionPubBase
<<FCOProxy>>

PubPtr
<<Reference>>

WhitepaperPubBase
<<FCOProxy>>

WorkshopPubBase
<<FCOProxy>>

ProceedingsPubBase
<<FCOProxy>>

PublicationRef
<<ModelProxy>>

NoteOptional : field
Year : field
Title : field

ConferencePubPtr
<<ReferenceProxy>>

ConferencePubBase
<<FCOProxy>>

JournalPubBase
<<FCOProxy>>

BookPubBase
<<FCOProxy>>

ManualPubBase
<<FCOProxy>>

PresentationPubBase
<<FCOProxy>>

AcademicPubBase
<<FCOProxy>>

WorkshopPubPtr
<<ReferenceProxy>>

WhitepaperPubPtr
<<ReferenceProxy>>

ProceedingsPubPtr
<<ReferenceProxy>>

PresentationPubPtr
<<ReferenceProxy>>

ManualPubPtr
<<ReferenceProxy>>

JournalPubPtr
<<ReferenceProxy>>

ContributionPubPtr
<<ReferenceProxy>>

BookPubPtr
<<ReferenceProxy>>

AcademicPubPtr
<<ReferenceProxy>>

ContributedWorksRef
<<ModelProxy>>

ProceedingsRef
<<ModelProxy>>

Books
<<ModelProxy>>

Conferences
<<ModelProxy>>

Whitepapers
<<ModelProxy>>

Academics
<<ModelProxy>>

Presentations
<<ModelProxy>>

WorkshopsRef
<<ModelProxy>>

JournalsRef
<<ModelProxy>>

Publication
<<ModelProxy>>

NoteOptional : field
Year : field
Title : field

PrecedencePlayerRef
<<FCOProxy>>

ProceedingsPubRef
<<ModelProxy>>

ManualPubRef
<<ModelProxy>>

AddressOptional : field
EditionOptional : field
Month : enum
OrganizationOptional : field

BookPubRef
<<ModelProxy>>

ContributionPubRef
<<ModelProxy>>

BookTitleOptional : field
ChapterOptional : field
PagesOptional : field
TypeOptional : fieldConferencePubRef

<<ModelProxy>>

Location : field
Days : field

PublicationsSet
<<ModelProxy>>

AcademicPubRef
<<ModelProxy>>

AddressOptional : field
Month : enum
PubType : enum
Institution : field

WhitepaperPubRef
<<ModelProxy>>

AddressOptional : field
Month : enum
NumberOptional : field
TypeOptional : field
Institution : field

ProceedingsTypeRef
<<ModelProxy>>

AddressOptional : field
Month : enum
NumberOptional : field
OrganizationOptional : field
PublicationName : field
PublisherOptional : field
SeriesOptional : field
VolumeOptional : field
PagesOptional : field

BookTypeRef
<<ModelProxy>>

AddressOptional : field
EditionOptional : field
Month : enum
NumberOptional : field
SeriesOptional : field
VolumeOptional : field
Publisher : field

PresentationPubRef
<<ModelProxy>>

Month : enum

WorkshopPubRef
<<ModelProxy>>

WorkshopName : field

JournalPubRef
<<ModelProxy>>

Month : enum
NumberOptional : field
PagesOptional : field
VolumeOptional : field
PublicationName : field

PublicationRef
<<ModelProxy>>

NoteOptional : field
Year : field
Title : field

Figure 4: The definition of objects in PubDB draws heavily upon the object-oriented philosophy of inheritance, in
order to reduce the complexity of the paradigm, and also to reduce the possibility of error duringmetamodel design.

12

ProceedingsPubRef
<<ModelProxy>>

ContributionPubRef
<<ModelProxy>>

BookTitleOptional : field
ChapterOptional : field
PagesOptional : field
TypeOptional : field

BookPubRef
<<ModelProxy>>

JournalPubRef
<<ModelProxy>>

Month : enum
NumberOptional : field
PagesOptional : field
VolumeOptional : field
PublicationName : field

AcademicPubRef
<<ModelProxy>>

AddressOptional : field
Month : enum
PubType : enum
Institution : field

ManualPubRef
<<ModelProxy>>

AddressOptional : field
EditionOptional : field
Month : enum
OrganizationOptional : field

WhitepaperPubRef
<<ModelProxy>>

AddressOptional : field
Month : enum
NumberOptional : field
TypeOptional : field
Institution : field

PresentationPubRef
<<ModelProxy>>

Month : enum

ConferencePubRef
<<ModelProxy>>

Location : field
Days : field

WorkshopPubRef
<<ModelProxy>>

WorkshopName : field

ConferencePubPtr
<<Reference>>

ConferencePubBase
<<FCO>>

Conferences
<<Model>>

ManualPubBase
<<FCO>>

WorkshopPubBase
<<FCO>>

Whitepapers
<<Model>>

WhitepaperPubBase
<<FCO>>

Workshops
<<Model>>

ContributionPubBase
<<FCO>>

ContributedWorks
<<Model>>

ProceedingsPubBase
<<FCO>>

Proceedings
<<Model>>

PresentationPubBase
<<FCO>>

Presentations
<<Model>>

JournalPubBase
<<FCO>>

BookPubBase
<<FCO>>

Journals
<<Model>>

AcademicPubBase
<<FCO>>

Books
<<Model>>

WorkshopPubPtr
<<Reference>>

Academics
<<Model>>

WhitepaperPubPtr
<<Reference>>

ProceedingsPubPtr
<<Reference>>

PresentationPubPtr
<<Reference>>

ManualPubPtr
<<Reference>>

JournalPubPtr
<<Reference>>

ContributionPubPtr
<<Reference>>

BookPubPtr
<<Reference>>

AcademicPubPtr
<<Reference>>

0..*
0..*

0..*
0..*

0..*0..*

0..*

0..*
0..*

0..*

Figure 5: Objects in PubDB can refer to one another, to ease the difficulty of maintaining updated copies of multiply
referred papers, or to create containerDatabaseswhich can hold record of certain kinds of publication (i.e., a year’s
worth of publications, useful for an annual report).

13

Abbreviation is an Atomwhich is created in the Abbreviations aspect of a Database. When viewing the
TotalView aspect, Abbreviationswill not be visible.
If anAbbreviation exists for aDatabase, then anyuse of the abbreviated form inanattributewill be inserted

as a string abbreviation in the BibTEX database. In HTML generation, the string is simply replaced by the long form
attribute value.

Attributes:

Long form: field
Abbreviation: field

3.4.2 Academics

Academics is a Model which can be created in a Database. It may contain objects of kind AcademicPub, and
AcademicPubPtr.

3.4.3 AcademicPub

figures/metamodel/icons/Publications AcademicPub is a Model which can be created inside a model of kind
Academics. It’s prefix during BibTEX generation is a:.

Supertype:

Publication

Attributes:

Title: field, inherited from Publication

Type of publication: enum

Area Paper (default)
Thesis
Dissertation
Report

Institution: field
Address: optional field

14

Month (if applicable): enum

(optional) (default)
January
Febrary
March
April
May
June
July
August
September
October
November
December

Year: field, inherited from Publication

Additional Information: optional field, inherited from Publication

3.4.4 AcademicPubPtr

figures/metamodel/icons/PublicationRef AcademicPubPtr is a Reference to an AcademicPub object. I can be
created inside an object of kind Academics, and can be sequenced to predict its order in generated artifacts.
Like all objects of kind PubPtr, it can be created in a Database for convenient reuse of a bibliographic entry

across multiple databases, without needing to create the appropriate container model. It depends solely on its re-
ferred object for attribute values, and thus is useless unless it is pointing to an existing object. It uses only its GME
name during generation. The GME name serves as the key name, following the prefix.

Supertype:

PubPtr

3.4.5 Artifact (Abstract)

Artifact is an abstract type (meaning that it may not be created on its own—only its subtypesmay be created).

Subtypes:

Document, Presentation

Attributes:

URL: field

15

3.4.6 Author

figures/metamodel/icons/author Author is a Reference to a Person. It can be created inside objects of kind
Publication. Also, an Author need not point to a Person to be valid; in fact, null-pointers are useful for spec-
ifying authors who may not be frequently used, thus reducing the need to create a Person to which to refer. If an
Author exists as a null-pointer, then it must have values for the attributes in order to retrieve the names. If an
Author is given values for any of its attributes, then the code generator will not check to see whether or not it refers
to a Person, and therefore will not use any attribute values from a Person, should there be a link.
When Authors are created inside amodel, they are sequenced via connections to specify their order in the pub-

lication. Omitting these connectionsmay result in unexpected behavior.

Attributes:

First name: field
Middle name(s)/initials: field
Last name: field

Aswith the Person, when editing the name of an Author, the use of standard LATEX accents and diacriticalmarks is
permitted. To create a personwho stands for the common bibliographic abbreviation et al. (short for the Latin et alli,
“and others”), add as one of the fields the value others, and leave the other fields blank.

3.4.7 Books

Books is aModelwhich can be created in aDatabase. Itmay contain objects of kindBookPub, andBookPubPtr.

3.4.8 BookPub

figures/metamodel/icons/Publications BookPub is aModelwhich can be created inside amodel of kindBooks. It’s
prefix during BibTEX generation is b:.

Supertype:

Publication, BookType

Attributes:

Title: field, inherited from Publication

Edition: optional field, inherited from BookType

Series: optional field, inherited from BookType

Volume: optional field, inherited from BookType

Number: optional field, inherited from BookType

Publisher: field, inherited from BookType

Address: optional field, inherited from BookType

16

Month (if applicable): enum

(optional) (default)
January
Febrary
March
April
May
June
July
August
September
October
November
December

Year: field, inherited from Publication

Additional Information: optional field, inherited from Publication

3.4.9 BookPubPtr

figures/metamodel/icons/PublicationRef BookPubPtr is a Reference to an BookPub object. I can be created
inside an object of kind Books, and can be sequenced to predict its order in generated artifacts.
Like all objects of kind PubPtr, it can be created in a Database for convenient reuse of a bibliographic entry

across multiple databases, without needing to create the appropriate container model. It depends solely on its re-
ferred object for attribute values, and thus is useless unless it is pointing to an existing object. It uses only its GME
name during generation. The GME name serves as the key name, following the prefix.

Supertype:

PubPtr

3.4.10 Conferences

Conferences is a Modelwhich can be created in a Database. It may contain objects of kind ConferencePub,
ConferencePubPtr, and WorkshopPub (though this is not encouraged, since workshop papers are generally
grouped under a separate heading).

3.4.11 ConferencePub

figures/metamodel/icons/Publications ConferencePub is a Model which can be created inside a model of kind
Conferences. It’s prefix during BibTEX generation is c:.

Supertype:

Publication, ProceedingsType

Subtypes:

17

WorkshopPub

Attributes:

Title: field, inherited from Publication

Publication name: optional field, inherited from ProceedingsType

Organization: optional field, inherited from ProceedingsType

Series: optional field, inherited from ProceedingsType

Volume: optional field, inherited from ProceedingsType

Number: optional field, inherited from ProceedingsType

Publisher: field, inherited from ProceedingsType

Address: optional field, inherited from ProceedingsType

Page(s) [p1--pn]: optional field, inherited from ProceedingsType

Location: optional field
Days: optional field

Month (if applicable): enum

(optional) (default)
January
Febrary
March
April
May
June
July
August
September
October
November
December

Year: field, inherited from Publication

Additional Information: optional field, inherited from Publication

3.4.12 ConferencePubPtr

figures/metamodel/icons/PublicationRef ConferencePubPtr is a Reference to an ConferencePub object. I
can be created inside an object of kind Conferences, and can be sequenced to predict its order in generated arti-
facts.
Like all objects of kind PubPtr, it can be created in a Database for convenient reuse of a bibliographic entry

across multiple databases, without needing to create the appropriate container model. It depends solely on its re-
ferred object for attribute values, and thus is useless unless it is pointing to an existing object. It uses only its GME
name during generation. The GME name serves as the key name, following the prefix.

Supertype:

PubPtr

18

3.4.13 ContributedWorks

ContributedWorks is aModelwhich canbe created in aDatabase. Itmay containobjects of kindContributionPub,
and ContributionPubPtr.

3.4.14 ContributionPub

figures/metamodel/icons/Publications ContributionPub is a Modelwhich can be created inside amodel of kind
ContributedWorks. It’s prefix during BibTEX generation is cont:.

Supertype:

Publication, BookType

Attributes:

Title: field, inherited from Publication

Edition: optional field, inherited from BookType

Book title: optional field
Series: optional field, inherited from BookType

Chapter(s) [c1--cn]: optional field
Volume: optional field, inherited from BookType

Number: optional field, inherited from BookType

Publisher: field, inherited from BookType

Address: optional field, inherited from BookType

Type: optional field
Page(s) [p1--pn]: optional field

Month (if applicable): enum

(optional) (default)
January
Febrary
March
April
May
June
July
August
September
October
November
December

Year: field, inherited from Publication

Additional Information: optional field, inherited from Publication

3.4.15 ContributionPubPtr

figures/metamodel/icons/PublicationRef ContributionPubPtr is a Reference to an ContributionPub ob-
ject. I can be created inside an object of kind ContributedWorks, and can be sequenced to predict its order in
generated artifacts.

19

Like all objects of kind PubPtr, it can be created in a Database for convenient reuse of a bibliographic entry
across multiple databases, without needing to create the appropriate container model. It depends solely on its re-
ferred object for attribute values, and thus is useless unless it is pointing to an existing object. It uses only its GME
name during generation. The GME name serves as the key name, following the prefix.

Supertype:

PubPtr

3.4.16 Database

Database is a Modelwhich collects publication-related items for organizational purposes. The Database is the
fundamental unit which is generated during the interpretation phase. Its name forms the beginning of the gener-
atedfilename (e.g., aDatabaseobjectwithGMEnameMyPublicationswouldproduceMyPublications.bib
after running the GenerateBibTeXDB component, and MyPublications.html after running the GenerateHTML
component.
Objects of kind Database can contain objects of kind PublicationsSet4, PubPtr5, and Abbreviation.
A Databasemay be created inside a PublicationsDatabase folder, or inside a Publicationmodel or its

subtype. The former is useful when grouping together publicationswhich belong to a person/organization, etc. The
latter is more useful when creating a database for a publication which is currently being edited, which will then
store the bibliographic database inside the bibliographic information for that paper. This is extremely convenient
when you remember that you cited a paper in a document you created, or someone else created, and you can locate
that original bibliographic database easily.

Attributes:

Title for HTML page: field
Stylsheet location: optional field
Output location: field
Name of style: optional field

3.4.17 Document

figures/metamodel/icons/artifact Document is an Atom, which inherits from Artifact. Documents can be cre-
ated in Models of kind JournalPub, AcademicPub, WhitepaperPub, ManualPub, ProceedingsType6, and
BookType7.

Documents are used during HTML generation to produce links to where the document file may be found on
the web. The document is then placed over to the left of the bibliographic entry of the HTML page. During this
execution, the file type is analyzed to see if an appropriate icon can be used in place of the standard HTML icon
(represented by a Microsoft Internet Explorer thumbnail). The file types that are currently analyzed and used are:
.doc,.htm,.html,.pdf,.pps,.ppt, and.zip. If noDocument exists in the publication, the space is left blank.

Supertype:

Artifact

4Notably its subtypes Whitepapers, Conferences, Workshops, Academics, Journals, Books, Presentations, Proceedings,
and ContributedWorks
5Notably its subtypes WhitepaperPubPtr, ConferencePubPtr, WorkshopPubPtr, AcademicPubPtr, JournalPubPtr,

BookPubPtr, PresentationPubPtr, ProceedingsPubPtr, and ContributionPubPtr
6Notably its subtypes ProceedingsPub, ConferencePub, and WorkshopPub
7Notably its subtypes BookPub, and ContributionPub

20

Attributes:

URL: field, inherited from Artifact

3.4.18 Editor

figures/metamodel/icons/editor Editor is a Reference to a Person. It can be created inside objects of kind
BookType and ProceedingsType. As with the kind Author, an Editor need not point to a Person to be valid;
in fact, null-pointers are useful for specifying authors who may not be frequently used, thus reducing the need to
create a Person to which to refer. If an Editor exists as a null-pointer, then it must have values for the attributes
in order to retrieve the names. If an Editor is given values for any of its attributes, then the code generator will not
check to see whether or not it refers to a Person, and therefore will not use any attribute values from a Person,
should there be a link.
When Editors are created inside amodel, they are sequenced via connections to specify their order in the pub-

lication. Omitting these connectionsmay result in unexpected behavior.

Attributes:

First name: field
Middle name(s)/initials: field
Last name: field

Aswith the Person, when editing the name of an Editor, the use of standard LATEX accents and diacriticalmarks is
permitted. To create a personwho stands for the common bibliographic abbreviation et al. (short for the Latin et alli,
“and others”), add as one of the fields the value others, and leave the other fields blank.

3.4.19 Folders

Folder are containers used to organize models. There are two kinds of folders in the PubDB paradigm: People
and PublicationsDatabase. The People folder can only hold other People folders, and objects of kind
PeopleContainer. The PublicationsDatabase folder can only hold objects of kind Database.

3.4.20 Journals

Journals is a Model which can be created in a Database. It may contain objects of kind JournalPub, and
JournalPubPtr.

3.4.21 JournalPub

figures/metamodel/icons/Publications JournalPub is a Model which can be created inside a model of kind
Journals. It’s prefix during BibTEX generation is j:.

Supertype:

Publication

Attributes:

Title: field, inherited from Publication

21

Publication name: field
Volume: optional field
Number: optional field
Page(s) [p1--pn]: optional field

Month (if applicable): enum

(optional) (default)
January
Febrary
March
April
May
June
July
August
September
October
November
December

Year: field, inherited from Publication

Additional Information: optional field, inherited from Publication

3.4.22 JournalPubPtr

figures/metamodel/icons/PublicationRef JournalPubPtr is a Reference to an JournalPub object. I can be
created inside an object of kind Journals, and can be sequenced to predict its order in generated artifacts.
Like all objects of kind PubPtr, it can be created in a Database for convenient reuse of a bibliographic entry

across multiple databases, without needing to create the appropriate container model. It depends solely on its re-
ferred object for attribute values, and thus is useless unless it is pointing to an existing object. It uses only its GME
name during generation. The GME name serves as the key name, following the prefix.

Supertype:

PubPtr

3.4.23 ManualPub

figures/metamodel/icons/Publications ManualPub is a Model which can be created inside a model of kind
Whitepapers. It’s prefix during BibTEX generation is m:.

Supertype:

Publication

Attributes:

Title: field, inherited from Publication

Organization: optional field

22

Edition: optional field
Address: optional field

Month (if applicable): enum

(optional) (default)
January
Febrary
March
April
May
June
July
August
September
October
November
December

Year: field, inherited from Publication

Additional Information: optional field, inherited from Publication

3.4.24 ManualPubPtr

figures/metamodel/icons/PublicationRef ManualPubPtr is a Reference to an ManualPub object. I can be cre-
ated inside an object of kind Whitepapers, and can be sequenced to predict its order in generated artifacts.
Like all objects of kind PubPtr, it can be created in a Database for convenient reuse of a bibliographic entry

across multiple databases, without needing to create the appropriate container model. It depends solely on its re-
ferred object for attribute values, and thus is useless unless it is pointing to an existing object. It uses only its GME
name during generation. The GME name serves as the key name, following the prefix.

Supertype:

PubPtr

3.4.25 Presentation

figures/metamodel/icons/artifact

3.4.26 PeopleContainer

PeopleContainer is a Model. It can contain zero or more Persons, and zero or more PeopleContainers. It
can also be created inside a Folder of kind People.

23

3.4.27 Person

figures/metamodel/icons/person Person is an Atom. It cannot contain any objects. It may be created in a
PeopleContainermodel. It may be created as a reference, through kinds Author and Editor.

Attributes:

First name: field
Middle name(s)/initials: field
Last name: field

When editing the name of a Person, the use of standard LATEX accents and diacriticalmarks is permitted. To cre-
ate a Personwho stands for the common bibliographic abbreviation et al. (short for the Latin et alli, “and others”),
add as one of the fields the value others, and leave the other fields blank8.

Presentation is an Atom, which inherits from Artifact. Objects of kind Presentation can be created in
Models of kind PresentationPub, AcademicPub, and ConferencePub9.
Objects of kind Presentation are used during HTML generation to produce links to where a presentation of

the bibliographic entry may be found on the web. The link to the online presentation is then placed to the right of
the bibliographic entry of the HTML page. During this execution, the file type is analyzed to see if an appropriate
icon can be used in place of the standard HTML icon (represented by a Microsoft Internet Explorer thumbnail).
The file types that are currently analyzed and used are: .doc, .htm, .html, .pdf, .pps, .ppt, and .zip. If no
Presentation exists in the publication, the space is left blank.

Supertype:

Artifact

Attributes:

URL: field, inherited from Artifact

3.4.28 Presentations

Presentations is aModelwhich canbe created in aDatabase. Itmay containobjects of kindPresentationPub,
and PresentationPubPtr.

3.4.29 PresentationPub

figures/metamodel/icons/Publications PresentationPub is a Modelwhich can be created inside amodel of kind
Presentations. It’s prefix during BibTEX generation is p:.

Supertype:

Publication

Attributes:

Title: field, inherited from Publication

8Note that in order for this to function properly with BibTEX, theremust be at least one additional author, listed before others.
9Aswell as its subtype WorkshopPub

24

Month (if applicable): enum

(optional) (default)
January
Febrary
March
April
May
June
July
August
September
October
November
December

Year: field, inherited from Publication

Additional Information: optional field, inherited from Publication

3.4.30 PresentationPubPtr

figures/metamodel/icons/PublicationRef PresentationPubPtr is a Reference to an PresentationPub ob-
ject. I can be created inside an object of kind Presentations, and can be sequenced to predict its order in gener-
ated artifacts.
Like all objects of kind PubPtr, it can be created in a Database for convenient reuse of a bibliographic entry

across multiple databases, without needing to create the appropriate container model. It depends solely on its re-
ferred object for attribute values, and thus is useless unless it is pointing to an existing object. It uses only its GME
name during generation. The GME name serves as the key name, following the prefix.

Supertype:

PubPtr

3.4.31 Proceedings

Proceedings is a Modelwhich can be created in a Database. It may contain objects of kind ProceedingsPub,
and ProceedingsPubPtr.

3.4.32 ProceedingsPub

figures/metamodel/icons/Publications ProceedingsPub is a Modelwhich can be created inside a model of kind
Proceedings. It’s prefix during BibTEX generation is p:.

Supertype:

Publication,ProceedingsType

Attributes:

25

Title: field, inherited from Publication

Publication name: optional field, inherited from ProceedingsType

Organization: optional field, inherited from ProceedingsType

Series: optional field, inherited from ProceedingsType

Volume: optional field, inherited from ProceedingsType

Number: optional field, inherited from ProceedingsType

Publisher: field, inherited from ProceedingsType

Address: optional field, inherited from ProceedingsType

Page(s) [p1--pn]: optional field, inherited from ProceedingsType

Month (if applicable): enum

(optional) (default)
January
Febrary
March
April
May
June
July
August
September
October
November
December

Year: field, inherited from Publication

Additional Information: optional field, inherited from Publication

3.4.33 ProceedingsPubPtr

figures/metamodel/icons/PublicationRef ProceedingsPubPtr is a Reference to an ProceedingsPub object.
I can be created inside an object of kind Proceedings, and can be sequenced to predict its order in generated arti-
facts.
Like all objects of kind PubPtr, it can be created in a Database for convenient reuse of a bibliographic entry

across multiple databases, without needing to create the appropriate container model. It depends solely on its re-
ferred object for attribute values, and thus is useless unless it is pointing to an existing object. It uses only its GME
name during generation. The GME name serves as the key name, following the prefix.

Supertype:

PubPtr

3.4.34 ProceedingsType (Abstract)

ProceedingsType is an abstract type (meaning that it may not be created on its own—only its subtypes may be
created).

Supertype:

26

Publication

Subtypes:

ConferencePub, ProceedingsPub, WorkshopPub

Attributes:

Title: field, inherited from Publication

Publication name: optional field
Organization: optional field
Series: optional field
Volume: optional field
Number: optional field
Publisher: optional field
Address: optional field
Page(s) [p1--pn]: optional field

Month (if applicable): enum

(optional) (default)
January
Febrary
March
April
May
June
July
August
September
October
November
December

Year: field, inherited from Publication

Additional Information: optional field, inherited from Publication

3.4.35 Publication (Abstract)

Publication is an abstract type, which is the supertype of all kinds of publications which may be created. It has
as its attributes the values common to all kinds of publications considered in this bibliographic domain. It can
contain objects of kind Database, and Author, and it can sort objects of kind Author through the Precedence
connection.

Subtypes:

AcademicPub, BookPub, ConferencePub, ContributionPub, JournalPub,
ManualPub, PresentationPub, ProceedingsPub, WhitepaperPub, and
WorkshopPub

Attributes:

27

Title: field
Year: field
Additional Information: optional field

3.4.36 PublicationsSet (Abstract)

PublicationsSet is the supertype of several kinds of objects, used to speak generally about containment and
connection relationships. Thus, it cannot be created explicitly (only its subtypes can).

Subtypes:

Whitepapers, Conferences, Workshops, Academics, Journals, Books,
Presentations, Proceedings, and ContributedWorks

3.4.37 Whitepapers

Whitepapers is a Modelwhich can be created in a Database. It may contain objects of kind WhitepaperPub,
WhitepaperPubPtr,ManualPub, andManualPubPtr. TheGMEname of the object determines the heading title
when generating HTML.

3.4.38 WhitepaperPub

figures/metamodel/icons/Publications WhitepaperPub is a Model which can be created inside a model of kind
Whitepapers. It’s prefix during BibTEX generation is tr: (for techreport).

Supertype:

Publication

Attributes:

Title: field, inherited from Publication

Institution: field
Number: optional field
Address: optional field
Type: optional field

28

Month (if applicable): enum

(optional) (default)
January
Febrary
March
April
May
June
July
August
September
October
November
December

Year: field, inherited from Publication

Additional Information: optional field, inherited from Publication

3.4.39 WhitepaperPubPtr

figures/metamodel/icons/PublicationRef WhitepaperPubPtr is a Reference to an WhitepaperPub object. I
can be created inside an object of kind Whitepapers, and can be sequenced to predict its order in generated arti-
facts.
Like all objects of kind PubPtr, it can be created in a Database for convenient reuse of a bibliographic entry

across multiple databases, without needing to create the appropriate container model. It depends solely on its re-
ferred object for attribute values, and thus is useless unless it is pointing to an existing object. It uses only its GME
name during generation. The GME name serves as the key name, following the prefix.

Supertype:

PubPtr

3.4.40 Workshops

Workshops is a Model which can be created in a Database. It may contain objects of kind WorkshopPub, and
WorkshopPubPtr.

3.4.41 WorkshopPub

figures/metamodel/icons/Publications WorkshopPub is a Model which can be created inside a model of kind
Workshops. It’s prefix during BibTEX generation is w:.

Supertype:

Publication, ConferencePub, ProceedingsType

Attributes:

29

Title: field, inherited from Publication

Publication name: optional field, inherited from ProceedingsType

Organization: optional field, inherited from ProceedingsType

Series: optional field, inherited from ProceedingsType

Volume: optional field, inherited from ProceedingsType

Number: optional field, inherited from ProceedingsType

Publisher: field, inherited from ProceedingsType

Address: optional field, inherited from ProceedingsType

Page(s) [p1--pn]: optional field, inherited from ProceedingsType

Location: optional field, inherited from ConferencePub

Days: optional field, inherited from ConferencePub

Month (if applicable): enum

(optional) (default)
January
Febrary
March
April
May
June
July
August
September
October
November
December

Year: field, inherited from Publication

Additional Information: optional field, inherited from Publication

3.4.42 WorkshopPubPtr

figures/metamodel/icons/PublicationRef WorkshopPubPtr is a Reference to an WorkshopPub object. I can be
created inside an object of kind Workshops, and can be sequenced to predict its order in generated artifacts.
Like all objects of kind PubPtr, it can be created in a Database for convenient reuse of a bibliographic entry

across multiple databases, without needing to create the appropriate container model. It depends solely on its re-
ferred object for attribute values, and thus is useless unless it is pointing to an existing object. It uses only its GME
name during generation. The GME name serves as the key name, following the prefix.

Supertype:

PubPtr

30

4 Creating aDatabase

31

5 Managing Persons

32

6 CreatingNewPublications

33

7 Best Practices

34

8 Troubleshooting

35

9 Quick Start

This section is useful for users already familiar with the GME tool [1]. Please refer to the GME Manual for specific
instructions which are not the purpose of this document. Please install GME on your system prior to reading this
section. The version of GME for which this User’s Manual was testedwas GME5, v.5.6.8.

9.1 Downloading the binaries

If youhavenot yetdownloaded thebinaries, they are available fromhttp://www.eecs.berkeley.edu/~sprinkle/
useful/pubdb/, available as a .zip file. Please extract the contents of this file somewhere on your computer, where
theywill be placed in their owndirectory. I recommend that youplace them in the$GME_ROOT/Contribdirectory,
where they will appear as $GME_ROOT/Contrib/PubDB_v5.7.20 . 10

9.2 Registering your paradigm and components

In order to utilize the PubDB modeling environment, we must register the PubDB paradigm with GME so it will
know the kinds of objects you can create.

1. OpenGME, as shown in Fig. 6.

Figure 6: The Generic Modeling Environment, unconfigured.

2. Choose File→Register Paradigms..., to reveal the dialog shown in Fig. 7.

10Downloading the source: The source for the projects is not easily available for download at this time. However, the author is pleased to send
it to you if youwould like to look at his terribly hacked code. The source is not really necessary to run, only to recompile.

36

http://www.eecs.berkeley.edu/~sprinkle/useful/pubdb/
http://www.eecs.berkeley.edu/~sprinkle/useful/pubdb/
http://www.eecs.berkeley.edu/~sprinkle/useful/pubdb/

Figure 7: Adding the PublicationsDatabase paradigm.

37

3. Select Register: For both in the lower right corner. If you wish for the paradigm to be registered only
to you as the user, then leave the selection as Register: For user only. However, it is recommended
that you register the paradigm and components systemwide, in the event that other users later want to use
the PubDB environment.

4. Choose Add from File..., select the paradigm, in file
$GME_ROOT/Contrib/PubDB_v5.7.20/meta/PublicationsDatabase.xmp, and select Open.

5. While you have the PublicationsDatabase paradigm selected, choose Components....

6. Select the Register: Systemwide radio button.

7. Choose Install New..., select the component, in file
$GME_ROOT/Contrib/PubDB_v5.7.20/bin/GenerateBibTeXDB.dll

8. Choose Install New..., select the component, in file
$GME_ROOT/Contrib/PubDB_v5.7.20/bin/GenerateHTML.dll

9. Choose Install New..., select the component, in file
$GME_ROOT/Contrib/PubDB_v5.7.20/bin/GenerateLaTeXSummaries.dll

10. Choose Close

11. Choose Close

You should now see the blank GMEwindow again (as in Fig. 6).

9.3 Examplemodels

Several examples are includedwith the release. In this subsection, the details of importing and viewing the database
whichwas used to create this document are given.

9.3.1 Importing the .xmefile

The textual version of GME models is called the .xme file, and it is in XML format. This format is preferred to the
.mga format, since this format is binary storage, and not guaranteed to load between versions of the GME tool (i.e.,
although the paradigm does not change, and is still valid for newer versions of GME, the models created may not
open).

1. OpenGME, as shown in Fig. 6.

2. Choose File→Import XML...

3. Choose the exportedmodel, in file
$GME_ROOT/Contrib/PubDB_v5.7.20/examples/doc/UsingPublicationsDatabase-exported.xme

4. Choose Open

5. Select Create project file (the default)

6. Choose Next

7. Choose a name for themodel, such as UsingPublicationsDatabase.mga, and place it in the folder
$GME_ROOT/Contrib/PubDB_v5.7.20/examples/doc/

8. You should get a dialog which says “The XML file was successfully imported.”

You should now see the blankGMEwindows, except that there should be two component buttons, and the browser
should be populated by an item called Root Folder. This is shown in Fig. 8.

38

Figure 8: The Generic Modeling Environment, configured for PubDB, having recently imported a model via the XML
format, .xme

39

Figure 9: An example publication entry in the publications database. Note the ordering of the authors, aswell as the
presence of where you can find the presentation and document online.

9.3.2 Browsing themodel

Use the tree browser on the right hand side of the screen to look through the database of publications which were
used during the production of this manual. Double-click on models to view them in the main window (see Fig. 9).
Please use thesemodel examples to gain expertise on how to

9.4 GeneratingOutput

Output is created by a phase called interpretation in GME. There are two kinds of output to generate: BibTEX .bib
files, and HTML files. A default location of ./ is chosen upon creation of a new model file for the output of these
generators. You can modify this to be a more useful directory, and/or choose to select the output directory at inter-
pretation time.
Databases are generated from the context of the current selected object, regardless of how the interpreter is evoked.

9.4.1 Generating a BibTEXdatabase

?? Select the database “UsingPubDB”, found in the following path of the GME project imported in Sect. 9.3. There
are four ways to invoke the interpreter—once it is invoked, the process is identical to complete.

1. Choose the BibTEX icon from the component bar in GME (see Fig. 10(b)).

2. Choose the i button from the component navigation bar. Then, select GenerateBibTeXDB, and choose
Interpret (as shown in Fig. 10(a)).

3. Choose File→Run Interpreter→GenerateBibTeXDB Interpreter

40

4. Right click in the correct model context11, and select Interpret, which invokes the dialog shown in
Fig. 10(a).

Once you have invoked the interpreter, the steps are:

1. Answer Yes to the question “Use default folder (from “OutputLocation” in Databasemodel)?”

2. Answer appropriately to the question “Would you like to generate a CiteFile (in the same directory) to cite
each entry in the generated BibTeX database?”

(a) Yes, if youwant to create a filewhichwill automatically cite all of these entries, and produce an output
document which will list all of the items. Use this example when producing output that you will copy
into another document whichmay not be using BibTEX, but you want to create BibTEX-like entries (e.g.,
a resume).

(b) No, if you are using the.bib output as part of an existing project, and youwill decidewhen/where they
are cited. Formost applications, this is the best option.

3. You should now see a dialog displaying the output location and name of your .bib file. For this example, the
output location should read as follows:
./\UsingPubDB.bib

9.4.2 GeneratingHTML

Select the database “UsingPubDB”, found in the following path of the GME project imported in Sect. 9.3. There are
four ways to invoke the interpreter—once it is invoked, the process is identical to complete.

1. Choose the HTML icon from the component bar in GME (see Fig. 10(c)).

2. Choose the ibutton fromthe componentnavigationbar. Then, selectGenerateHTML, and chooseInterpret
(as shown in Fig. 10(a)).

3. Choose File→Run Interpreter→GenerateHTML Interpreter

4. Right click in the correct model context12, and select Interpret, which invokes the dialog shown in
Fig. 10(a).

Once you have invoked the interpreter, the steps are:

1. Answer Yes to the question “Use default folder (from “OutputLocation” in Databasemodel)?”

2. You should now see a dialog displaying the output location and name of your .html file. For this example,
the output location should read as follows:
./\UsingPubDB.html

3. In order to see the icons correctly, youmust use the files which are found in
$GME_ROOT/Contrib/PubDB_v5.7.20/web

in the same directory as the output .html file. If you copy the output file to the /web directory, or the icons
to the /examples/doc directory, you should see the icons correctly.

11The right click is used toprovide a singlemodel as thepoint of execution for the interpreter. Youmust click on themodel itselfwhile viewing
the interior of a container. The generative interpreters for the PubDB paradigm operate only on objects of kind Database. If another object is
selected, the interpreter traces back in the ownership hierarchy to find the nearest—i.e., lowest—database container.
12The right click is used toprovide a singlemodel as thepoint of execution for the interpreter. Youmust click on themodel itselfwhile viewing

the interior of a container. The generative interpreters for the PubDB paradigm operate only on objects of kind Database. If another object is
selected, the interpreter traces back in the ownership hierarchy to find the nearest—i.e., lowest—database container.

41

(a) GME Interpreter Choice Dialog. This dialog is invoked, since there is more than one possible interpreter for this paradigm.

(b) The GenerateBibTEXDB interpreter icon. (c) The GenerateHTML interpreter icon.

Figure 10: Methods for interpreter invocation

42

If you specify a stylesheet and title, these are appropriately inserted into the HTML code such that you can take
advantage of the color/link/font schemes you desire. For example, see the
$GME_ROOT/Contrib/PubDB_v5.7.20/examples/html/index.html

for a version which uses frames and stylesheets alongside generated BibTEX and HTML files for a comprehensive
HTML display that also yields BibTEX entries for other researchers to use when citing your work.

9.4.3 Generating LATEX Summaries

Select the database “SampleSummaryCollection”, found in the following path of the GME project imported in
Sect. 9.3. There are four ways to invoke the interpreter—once it is invoked, the process is identical to complete.

1. Choose the Summaries icon from the component bar in GME (see Fig. ??).

2. Choose the i button from the component navigation bar. Then, select GenerateLaTeXSummaries, and
choose Interpret (as shown in Fig. 10(a)).

3. Choose File→Run Interpreter→GenerateLaTeXSummaries Interpreter

4. Right click in the correct model context13, and select Interpret, which invokes the dialog shown in
Fig. 10(a).

Once you have invoked the interpreter, the steps are:

1. Answer Yes to the question “Use default folder (from “OutputLocation” in Databasemodel)?”

2. You should now see a dialog displaying the output location and name of your .tex file. For this example, the
output location should read as follows:
./\SampleSummaryCollection.tex

3. Generate the BibTEX database for this GMEmodel, as discussed in Sect. ?? (this is necessary to compile the file
correctly).

4. In order to see the output PDF file, compile the main .tex file and run BibTEX appropriately, and you should
see a full document.

If you want to customize the headers and footers of the summary document, then follow the directions in the
output files.

13The right click is used toprovide a singlemodel as thepoint of execution for the interpreter. Youmust click on themodel itselfwhile viewing
the interior of a container. The generative interpreters for the PubDB paradigm operate only on objects of kind Database. If another object is
selected, the interpreter traces back in the ownership hierarchy to find the nearest—i.e., lowest—database container.

43

References

[1] A. Lédeczi et al., The Generic Modeling Environment, Vanderbilt University, http://www.isis.vanderbilt.edu/, 2005,
GME5.

44

http://www.isis.vanderbilt.edu/

	Introduction
	Overview
	Domain-Specific Modeling
	The Generic Modeling Environment (GME)

	Importing models

	Getting Started
	Installing GME
	Installing PubDB
	Registering your paradigm and components

	Understanding PubDB Kinds
	Domain-specific philosophy
	Choosing domain concepts
	Drawing on experience: BibTeX
	Kinds of objects in PubDB
	 Abbreviation
	 Academics
	 AcademicPub
	 AcademicPubPtr
	 Artifact (Abstract)
	 Author
	 Books
	 BookPub
	 BookPubPtr
	 Conferences
	 ConferencePub
	 ConferencePubPtr
	 ContributedWorks
	 ContributionPub
	 ContributionPubPtr
	 Database
	 Document
	 Editor
	 Folders
	 Journals
	 JournalPub
	 JournalPubPtr
	 ManualPub
	 ManualPubPtr
	 Presentation
	 PeopleContainer
	 Person
	 Presentations
	 PresentationPub
	 PresentationPubPtr
	 Proceedings
	 ProceedingsPub
	 ProceedingsPubPtr
	 ProceedingsType (Abstract)
	 Publication (Abstract)
	 PublicationsSet (Abstract)
	 Whitepapers
	 WhitepaperPub
	 WhitepaperPubPtr
	 Workshops
	 WorkshopPub
	 WorkshopPubPtr

	Creating a Database
	Managing Persons
	Creating New Publications
	Best Practices
	Troubleshooting
	Quick Start
	Downloading the binaries
	Registering your paradigm and components
	Example models
	Importing the .xme file
	Browsing the model

	Generating Output
	Generating a BibTeXdatabase
	Generating HTML
	Generating LaTeXSummaries

