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ABSTRACT

The study of inflammatory disease hinges upon the
behavior and movement of leukocytes and their interaction
with the endothelium. We put forth a method for tracking
leukocytes in vivo, whereas tracking has been demonstrated
previously only for in vitro experiments. The tracker is
based on the enhancing capability of morphological
anisotropic diffusion, a partial differential equation model
for adaptively filtering imagery that retains structures of
interest. Morphological anisotropic diffusion excels over
standard diffusion in the ability to preserve objects of a
certain shape and scale, and it improves upon standard
morphological filters in terms of edge preservation and
adaptive smoothing. We use the video frames enhanced by
morphological diffusion for edge-based registration and
background removal in the tracking process.

1. INTRODUCTION

The analysis of leukocyte rolling is a fundamental part of
the investigation of inflammatory diseases such as
arthritis and multiple sclerosis. Rolling denotes the
downstream movement of a leukocyte (white blood cell)
in a shear flow field while the cell is in continuous or
intermittent contact with the vessel wall. Several salient
features of leukocyte rolling are relevant to inflammation
including rolling leukocyte flux, leukocyte rolling
velocity, leukocyte rolling acceleration and rolling
leukocyte volume fraction. In this paper, a method for
automated tracking for data collection within the study of
rolling leukocytes in vivo (within a living subject) is
demonstrated. Previously, limited success has been
achieved with automated cell tracking only for in vitro
experiments in a controlled flow chamber. A major
advance in tracking is pursued here to track rolling
leukocytes in vivo, which has not been possible with
existing video processing techniques. Current in vitro
studies utilize tedious manual (frame-by-frame) recording
of cell position for tracking.

The leukocyte tracking system utilizes shape-sensitive
morphological anisotropic diffusion for enhancement, for
background registration and background removal, and for
leukocyte detection. Combined with adaptive template
matching and cell position prediction, successful tracking
of leukocytes in vivo is demonstrated for the first time.
We are exploring the viability of the approach using video
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recordings of rolling leukocytes observed by intravital
microscopy in the mouse cremaster muscle, the rat
mesentery, and the mouse carotid artery with and without
fluorescent labeling. We are investigating the diffusion-
based approach in comparison with existing trackers used
with in vitro studies (viz., the centroid and correlation
trackers). For the study of rolling leukocytes in vivo, the
diffusion-based tracking system allows the computation
of the velocity and acceleration of many leukocytes at
many points in time and space, which is likely to result in
new discoveries regarding the molecular mechanism of
inflammation. Automated tracking will improve the study
of leukocyte rolling dramatically, allowing an increase in
experimental throughput and removing possible
investigator bias. Cell tracking will not only accelerate
and enhance analysis, but will also enable the generation
of new biomedical knowledge not available through
existing technology.

2. TRACKER OVERVIEW

Compared to in vitro leukocyte tracking in a flow
chamber, tracking of leukocytes in vivo is a significantly
more challenging problem. The first challenge
encountered with in vivo video microscopy is the
movement of the entire vessel. For example, in our mouse
cremaster studies, abrupt movements are encountered
with mouse respiration. The movements cause loss of
track, erroneous feature computation (e.g., velocity
measurement) and motion blur. We propose a diffusion-
based registration system that extracts the vessel
boundaries using an edge detection algorithm and then
registers the boundaries to counteract the movement. The
proposed edge detection method is based on a
morphological anisotropic diffusion technique.

A unique challenge associated with the in vivo video
microscopy (in contrast to in vitro microscopy) is the
extreme level of noise and clutter. Because we know the
approximate scale and shape of the objects of interest (the
rolling leukocytes), we can apply morphological diffusion
methods of video enhancement. Morphological
anisotropic diffusion permits the extraction of the rolling
leukocytes and the removal of off-scale clutter and noise
from the video sequence without the boundary
degradation encountered with standard morphology. As a
result, a robust tracking procedure can be implemented



that outperforms standard centroid-based and correlation-
based tracking algorithms.

Although effective tracking of leukocytes in vivo requires
several video processing problems to be solved, this paper
focuses on the use of morphological anisotropic diffusion
for enhancement of the imagery used in leukocyte
tracking.

3. ALGORITHMIC DETAILS
3.1 Morphological Anisotropic Diffusion

The backbone of the leukocyte tracking system is formed
by morphological anisotropic diffusion [2]. The diffusion
process is utilized in the background registration and
removal process, the video enhancement process and the
deformable template matching process.

With anisotropic diffusion, a partial differential equation
(PDE) model is used to smooth the imagery and to
enhance certain features such as edges. The innovation of
anisotropic diffusion is the introduction of an adaptive
diffusion coefficient c¢(x) that encourages intra-region
smoothing over inter-region smoothing. If c(x) is constant
at all locations x (where X is a vector representation of 2-
D position), then smoothing progresses isotropically. If
c(x) is allowed to vary according to the local image

gradient, we have anisotropic diffusion. A basic
anisotropic diffusion PDE is given by
i%—i—’f)- = div{e(x)V1, (x)}. )
For discrete-domain diffusion, we use [1]
r
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where ¢ is an integer-valued iteration number, I" is the
number of directions in which diffusion is computed
(typically I' = 4), V[ (x) is the simple difference in
direction 4 at location x and AT
(AT < L for stability).

is the time step

The difference between the typical implementation of
anisotropic diffusion and the morphological approach lies
in the computation of c(x). Morphological anisotropic
diffusion allows the preservation of certain shapes at
certain scales. For example, we can use a circular
structuring element B with a given diameter to preserve
nearly circular objects above a certain scale. In the
process, the morphological filter eliminates noise and
objects of irrelevant shape that degrade the tracking
performance. Because the scale and shape of the
leukocytes are known a priori, morphological diffusion is
successful in processing images containing leukocytes as
the features of interest. In morphological anisotropic
diffusion, the diffusion coefficient is computed using
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c(X) =exp
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where IoB is the morphological opening of I by
structuring element B and I e B is the closing. In (3), k is
an edge strength parameter that is set according to the
minimum difference in intensity between the vessel wall
and the rolling leukocyte.

Fig. 1: A video microscopy frame showing rolling leukocytes in
a mouse cremaster venule.

The advantage of morphological anisotropic diffusion
over traditional anisotropic diffusion is that the smoothing
process is truly scalable — the structuring element B



determines the minimum connected component size
within the image level sets. A combination of morphology
and diffusion has already been successfully utilized in the
design of sampling conditions for diffused images [3].
Here, this potent combination is used to effectively
extract objects of interest (leukocytes) for tracking.
Compared to traditional morphology, the advantage of
morphological anisotropic diffusion is found in the
boundary preservation that is inherent to the PDE
approach. Where standard open and close filters enforce
the geometry of the structuring element on the boundaries
of the image objects (e.g., comer rounding), the
morphological diffusion operation allows the detail in the
boundaries to be retained. Consider the difference
between the morphological diffusion result in Fig. 2 and
the open-close result (using the same structuring element)
in Fig. 3. The diffusion method eliminates the background
noise/clutter while enhancing the leukocyte profiles.

The edge detection process associated with morphological
anisotropic diffusion uses the morphological Laplacian
operator. Here, Laplace’s equation, V> f (x) = 0, is
replaced by

V2 Ix)=8Sx)-1(x)=0,

morph
where S is defined as the mean between the dilation and
erosion with respect to structuring element B:
I®B+16B . G)
2

By locating zero crossings (solutions of eq. (4)), we detect
thin, closed contours of the minimum scale dictated by B.
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3.2 Background Registration and Removal

In the leukocyte tracking process, we first use the edges to
perform image-to-irnage registration for the video
microscopy. Once edges (e.g., venule boundaries) are
detected, we can register the background to a fixed
position by correlating the edge template of the current
frame with the edge template of the initial frame in the
video sequence. The edge correlation (matching the vessel
boundaries) enables background registration and removal.

A major challenge in tracking cells in vivo is prompted by
the movement and clutter involved with the imaging
background. For exarnple, in mouse cremaster studies, the
background moves with each respiration (nearly twice per
second). In terms of image processing, the background is
shifting by more than ten pixels in such frames, which
precludes tracking and accurate data collection.

We have implemented edge-based automated registration
using morphological anisotropic diffusion and the
morphological Laplacian. The registration software fixes
the position of background features over time by
maximizing the correlation of coarse-scale edges between
the images (given that the vessels do not move). By using
edges, we minimize the registration error due to subtle
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variations in intensity. Intensity-based registration
systems are unsuccessful within in vivo microscopy due to
the lack of reliable intensity patterns and the shifts in
contrast over time. Given a registered video sequence, we
can time-average the video frames to obtain an estimate
of the background. Then, we subtract the background
from the video frames, leaving only the moving objects in
the foreground. Background subtraction improves the
robustness of the tracker, as items in the background are
avoided.

Background removal also facilitates enhancement of the
potential target leukocytes for tracking. Fig. 4 provides an
example of enhancement after background removal. The
image in Fig. 4(b) contains the features of interest (the
leukocytes) and does not contain the background. Further
improvement is obtained by enhancing the foreground
image of Fig. 4(b) using morphological anisotropic
diffusion, as shown in Fig. 4(c). If we utilize standard
morphology, we lose objects of interest (consider the dark
leukocyte on the right of Fig. 4(a)) and we distort the
leukocyte boundaries (notice the diamond-like appearance
of the leukocytes in Fig. 4(d)).

©)
Fig. 4: (a) A subimage from Fig. 1; (b) The difference image
computed after edge-based registration showing 6 leukocytes;
(c) the enhanced image using morphological anisotropic
diffusion with a 5x5 circular structuring element; (d) the
enhanced image using the open-close filter with a 5x5 circular
structuring element.
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3.3 Adaptive Template Matching and Position
Prediction

To accommodate changes in cell shape and appearance
encountered with rolling leukocytes, we use adaptive
template matching techniques. The adaptive templates
utilize the enhanced imagery computed via morphological
anisotropic diffusion and are robust despite shape changes
and contrast changes. We assume that the initial target
cell location is given (selected by the operator), and we
build a template over time for each leukocyte according to
its intensity profile. In this technique, future target
profiles are estimated by a weighted average of previous
target observations. Given a template 7, and an
observation O;, we can form a new template by allowing



Tir1 = i + (1-PO. An example of adaptive template
matching is shown in Fig. 5. At the bottom of Fig. 5, a 1-
D graph showing the profile of the adaptive template and
the profile of the observed cell is given.

For the case of cell occlusion (by muscle tissue, for
example), we include an estimator/predictor (based on the
Kalman filter) to "coast" the track position through the
occlusion [4]. The powerful predictive process not only
allows coasting, but also allows a reduction in the search
area for reacquiring the cell in subsequent frames.

Fig. 5: An example frame from the leukocyte tracking process.
The lower curve in the graph is the adaptive template profile and
the upper curve is the observed target profile.

Automnated tracking of rolling leukocytes enables
improvement in the repeatability and throughput of
intravital experiments, as compared to manual (frame-by-
frame) analysis. The automated tracker also decreases the
influence of potential investigator bias. We are in the
process of validating the automated tracker by comparing
the results to that of manual tracking. An example
comparison of displacement curves is given in Fig. 6 for a
rolling leukocyte tracked using transillumination of a
venule in the mouse cremaster muscle. Early results
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indicate that automated tracking can replace the tedious
manual analysis.
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Fig. 6: A comparison of leukocyte displacement for the
automated tracker (top solid line) and the manual tracking
method (bottom dashed line). Typical deviation is less than one
micron.
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