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Abstract
Providing near-term prognostic insight to clinicians helps
them to better assess the near-term impact of their de-
cisions and potential impending events affecting the pa-
tient. In this work, we present a novel system, which lever-
ages inter-patient similarity for retrieving patients who
display similar trends in their physiological time-series
data. Data from the retrieved patient cohort is then used
to project patient data into the future to provide insights
for the query patient. The proposed approach and system
were tested using the MIMIC II database, which consists
of physiological waveforms, and accompanying clinical
data obtained for ICU patients. In the experiments we re-
port the effectiveness of the inter-patient similarity mea-
sure and the accuracy of the projection of patients’ data.
We also discuss the visual interface that conveys the near-
term prognostic decision support to the user.

1 Introduction
The task of prognosis is an important component of the
process of clinical care. It is about predicting the future
health status of the patient and the probable course of her
health indicators [6, 8]. Oftentimes clinicians are con-
cerned about the near term potential trajectory of a num-
ber of Key Patient Indicators (KPIs). In this work we are
primarily interested in providing insights to the clinicians
into the near-term prognosis and projections of those KPIs
by leveraging inter-patient similarities. We present a pro-
totype of our system MITHRA, which stands for MIning
Temporal Health Records for Advanced prognostic deci-

sion support, in the context of ICU patient care.

Figure 1 illustrates the concept behind our approach for
making such predictions. Clinically similar patients are
retrieved for a query patient whose trajectory of KPIs are
available up to the present time. Using the temporal char-
acteristics of a cohort of retrieved patients, the KPIs of the
query patient are projected into the future. A user of the
system can also select the subset of patient KPIs that are
most relevant to the context of the task in the care process
to have the system perform the above steps based on the
selected subset. The two main challenges for accomplish-
ing this task are: (1) Devising similarity measures that
can reflect the clinical proximity among patients by tak-
ing into account the domain knowledge; and (2) Project-
ing patients’ data into future based on the characteristics
of the data in the similar patient cohort.

In this paper, we report the implementation of this con-
cept in the context of monitoring patients in the Intensive
Care Unit (ICU). ICUs are data rich environments where
patients are continuously being monitored for several as-
pects of their health. Alerts that can indicate the incidence
of an imminent adverse condition based on the behavior
of patients temporal data are important support mecha-
nism for physicians in this environment. Accompanying
those alerts with insight regarding the likely behavior of
patient KPIs can further qualify and clarify them. In this
setting, our goal is to retrieve patients who display similar
evolution patterns in their ICU data to the patient being
monitored and use the future trend of the cohort of similar
patients to predict if the patient being monitored is going
to experience a medical event within a specific time hori-
zon. The insight provided to the clinician through the pro-
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Figure 1: Retrieving patients based on their clinical simi-
larity to a query patient and using the retrieved patients to
project the evolution of patient’s clinical characteristics.

jections of the patient’s physiological data into the future
could further clarify and qualify the generated alerts.

The proposed approach and system were tested using
the MIMIC II database, which consists of physiological
waveforms, and accompanying clinical data obtained for
ICU patients [1].

The most similar and relevant work to ours is the one
reported by Saeed and Mark [7]. They employed a multi-
resolution description scheme for physiological temporal
ICU data and used unsupervised similarity metrics and a
K-Nearest Neighbor algorithm to predict the occurrence
of the event. Our approach is not only capable of produc-
ing such kinds of classifications, but also can go one step
further and provide the trajectory of the patient physiolog-
ical data in the future time intervals.

2 Methodology
The key components of MITHRA for ICU setting are:
physiological data stream processing for efficient data
preprocessing and feature detection, patient similarity
metric design incorporating medical domain knowledge,
prognosis prediction based on similar patients, and fi-

nally, a visualization environment for point-of-care deci-
sion support.

2.1 Physiological Stream Processing and
Feature Extraction

To cope with the large amount of patient physiological
data generated by ICU monitoring devices, we leverage
a state of the art stream computing platform [2] to per-
form missing value imputation, clinical event detection,
and feature extraction.

Taking advantage of the efficient window operators
provided by the stream processing system, sliding win-
dows are used to detect the occurrence of clinically sig-
nificant events. For example, we follow the rule defined
by PhysioNet [5] to detect Acute Hypotensive Episode
(AHE) events. This rule checks if 90% of the mean Arte-
rial Blood Pressure (ABP) data stream has values below
60 in a 30-minute window. All events are then persisted
for the training of similarity metrics performed by the su-
pervised metric learning module.

Features are also computed using the sliding window
operator, in which every sliding window generates a fea-
ture vector. In the current system, we use the top-F
wavelet coefficients as the features.

2.2 Similarity Metric Design
When a physician looks for similar patients in a database,
the similarity is often based not only on quantitative mea-
surements such as the ones obtained from patient mon-
itoring devices and through Electronic Health Records
(EHR), but also the physician’s judgment of clinically rel-
evant factors and what she deems to be clinically similar.
To capture this clinically relevant notion of similarity, we
need to learn a distance metric that can automatically ad-
just the importance of each numeric feature by leveraging
the domain knowledge. We have incorporated a method
called Locally Supervised Metric Learning (LSML) to ad-
dress this requirement.

Formally, quantitative measurements of a patient are
represented by aN -dimensional feature vector x. The do-
main knowledge could be captured as labels on some of
the patients. With this formulation, our goal is to learn a
generalized Mahalanobis distance between patient xi and
patient xj defined as:
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dm(xi,xj) =
√

(xi − xj)TP(xi − xj) (1)

where P ∈ RN×N is called the precision matrix. The key
is to learn the optimal P such that the resulting distance
metric has the following properties: 1) Within-class com-
pactness: patients of the same label are close together;
2) Between-class scatterness: patients of different labels
are far away from each other. Note that the same label
reflects characteristics that are believed to lead to clinical
similarity. In the evaluation, we use the event AHE as the
label.

To formally measure these properties, we use two kinds
of neighborhoods defined for each patient xi: The Homo-
geneous neighborhood of xi, denoted as N o

i , is the k-
nearest patients of xi with the same label. The Heteroge-
neous neighborhood of xi, denoted asN e

i , is the k-nearest
patients of xi with different labels. We define the local
compactness and scatterness around point xi as the sum of
squared distances within its homogeneous neighborhood
and heterogeneous neighborhood, respectively. We then
formulate an objective function to find a P that minimizes
the local compactness and maximizes the local scatterness
over all patients [9].

2.3 Prognosis Based on Similar Patients

When a query patient with available observations up to a
decision point is presented to MITHRA, the stream pro-
cessing components are first applied to extract features
from an assessment window. The features are then used
to retrieve theK most similar patients using the similarity
metric learned during off-line data analysis.

During the retrieval process, temporal alignment is per-
formed between the query patient and each candidate pa-
tient to identify the window in the candidate patient’s
history that best matches the query patient’s assessment
window. The alignment is currently carried out by ”slid-
ing” the query patient’s assessment window against the
candidate patient. The position along the candidate pa-
tient’s temporal sequence that yields the smallest distance
between the two windows (computed using the metric
learned during offline analysis phase) is then identified as
the anchor point.

Once the n reference patients are retrieved and properly
aligned, the observations on these patients after the anchor

point can be used to predict the prognosis (future measure-
ments) of the query patient. Let xi = {xi1, xi2, ..., xiw}
represent measurements from one sensor for the reference
patient i in the window preceding the anchor point, and
y = {y1, y2, ..., yw} represent the measurements from the
same sensor for the query patient in the window preceding
the decision point. The linear regression model takes the
form:

y = β0 + β1xi + β2x2 + ...+ βnxn, (2)

where parameters βi, i = 0, 1, ...n are solved by the least
squares estimator. Under the assumption that relationship
between the reference patients and the query patient re-
mains the same before and after the decision/anchor point,
the predicted measurements for the query patient in the
window succeeding decision point, ȳ, can be computed
by plugging in on the right hand side the observed mea-
surements from the reference patients in the window suc-
ceeding anchor point, x̄i, i = 1, ..., n. In other words:

ȳ = β0 + β1x̄i + β2x̄2 + ...+ βnx̄n. (3)

2.4 Visualization

Prognostic data for a query patient is conveyed to clini-
cians through a modified ICU monitor. The monitor dis-
play includes both (1) predicted signal measurements and
(2) alerts for imminent adverse conditions that are ex-
pected based on our analysis of the similar patient cohort.
For each physiological signal, a time-series of predicted
measurements is visualized to the right of the correspond-
ing historical plot. For predicted values, accuracy is con-
veyed via a confidence interval rendered both above and
below the predicted measurements as shown in Figure 2.
Predicted events are integrated into the visual display as
well. Textual alerts are displayed in the top left corner of
the monitor and highlighted in red. Signals that led to the
alert condition are also highlighted.

The monitor also provides clinicians with the ability
to modify the set of KPIs used to select the similar pa-
tient cohort. By default, the system uses all physiolog-
ical signals. However, the interface allows clinicians to
customize the set of signals used to calculate the near-
term prognosis based on the context. This setting can be
changed at any time by the clinician.
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Figure 2: An ICU monitor visualizing near-term prognos-
tic information along side historical physiological data.

3 Experiments
Experiments were carried out using physiological data for
1500 patients downloaded from the MIMIC II database
[1]. The physiological streams for each patient include
mean ABP measure, systolic ABP, diastolic ABP, Sp02
and heart rate measurements. Every sensor is sampled at
1 minute intervals.

3.1 Similar patient retrieval
To evaluate the supervised metric learning scheme, we
partitioned 1500 patients into two groups H or C. Those in
group H (590 patients) experienced AHE events, whereas
those in group C (910 patients) did not experience any
AHE.

For each patient in group C, we extracted a 2-hour win-
dow centered around a random timestamp T0. For each
patient in group H, we extracted a 2-hour window cen-
tered around T0, such that in the hour after T0, the pa-
tient experienced AHE. We used 80% of those patients
for training and 20% for testing.

Methods of comparison With the existing rule-based
streaming event detection [5], AHE can not be detected
until at least 30 minutes after T0, because the sliding win-
dow operator needs to have enough samples in order to

detect the event. We treat T0 as the decision point and
evaluate the effectiveness of our similarity measure by its
ability to predict the onset of AHE in the one hour window
after T0 based on the data before T0.

As the baseline, we compare our method against
the winning method used in the 10th Annual Phys-
ioNet/Computers in Cardiology Challenge, as presented
in [3], referred to as Challenge09 below. Since in that
method only the mean ABP stream was used, we also used
only that stream in the similarity measure evaluation to
ensure fair comparison.

More specifically, in our method LSML, the wavelet
coefficients of the 1-hour window from mean ABP were
computed. We used Daubechies-4 Wavelet [4] and kept
the top-10 coefficients as a feature vector. We thus ob-
tained 1500 m-dimensional feature vectors where m =
10.

Classification and Retrieval Performance The perfor-
mance metrics we used include k-NN classification er-
ror rate and precision@10 retrieval results. The preci-
sion@10 of a query point is computed by retrieving 10-
nearest points with a specific distance metric and then
computing the percentage of those retrieved points hav-
ing the same label as the query patient.

Table 1 shows both classification results in accuracy
and retrieval results in precision@10 using 5-NN classi-
fier. We observe that our LSML method consistently out-
performs the baseline method.

Table 1: Classification and Retrieval Accuracy
Challenge09 LSML

Classification (accuracy) 0.4982 0.8551
Retrieval (precision@10) 0.5230 0.7998

3.2 Prognosis Accuracy
To evaluate the accuracy of our prognosis analysis mod-
ule we used the same data as in the previous evaluation
for similarity measure. Again, we used 80% patients for
training, and 20% for testing. The objective was to predict
the mean ABP value on a per minute basis for the hour af-
ter T0 for a query patient. For each AHE patient, we set
T0 as the timestamp when AHE occurs, and we use the 1-
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hour window before T0 as the query window, and evaluate
prognisis accuracy over the 1-hour window after T0.

Traditional approaches for prognosis only use current
patient condition without systematic ways of leveraging
other similar patients. To simulate traditional decision
making, we used the following baseline methods:

• Mean value uses simply the mean of the measure-
ments in the query window.
• AR builds an autoregression model to forecast the

values after T0. We used AR(5) in our experiment.

For evaluation we use the relative error rate defined as:

e =

∑
(xi − x̂i)2∑

i x
2
i

.

Figure 3 shows the prediction relative error rate increases
as the prediction horizon increases. Our similarity-based
method significantly outperforms both baselines, which
confirms the benefit of retrieving similar patients to help
assess the query patient’s prognosis.

Figure 3: Patient Prognosis Accuracy vs. prediction hori-
zon.

4 Conclusion
We have presented a prototype of MITHRA, which is our
system for near-term prognostics, for the ICU patient care.

This system provides important insights to clinicians in
an ICU setting. The system leverages stream process-
ing techniques for efficient data pre-processing and fea-
ture extraction, a supervised patient similarity metric ca-
pable of incorporating domain knowledge, and visualiza-
tion techniques for providing decision support at the point
of care. Given a query patient, the similarity metric is
used to retrieve a cohort of similar patients. The data of
the patients in this cohort is then used to project the query
patient’s data into the future using correlation-based tech-
niques. The projections are then visualized along with
alerts and other patient indicators for providing insights
to the clinicians. The methodology has been tested us-
ing physiological data from 1500 patients with promis-
ing results. While the experiments were carried out using
AHE events, because of the existence of publicly avail-
able data, our methodology is completely event agnostic
by design and is expected to be applicable to other events.
The limitations of this work are: 1) we assume that ac-
curate and sufficient label information is provided by the
physician, where such label might not be available in gen-
eral; 2) we only allow a single label per patient, while in
practice there are cases of multiple labels per patient due
to comorbidity. Future work includes investigating ways
to address the above limitations and also providing com-
prehensive results on evaluation of the user interface.
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