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Summary

Structural genomics projects are leading to the discoverglationships between proteins
that would not have been anticipated from consideratioreqgtisnce alone. However the
assignment of function via structure remains difficult amscstructures are compatible
with a variety of functions. In this study we explore the telaships between structural

diversity and functional diversity within distantly re¢at members of SCOP superfamilies.
We use the Gene Ontology functional classification schendeGneens path entropy to

measure functional diversity. We observe a negative aiiosl between the functional

entropy of a superfamily and the size of the conserved core.

1 Introduction

A major obstacle to the exploitation of the huge amount ofoges data now available is the
lack of any functional annotation for many of the proteingpi€ally some 30-40% of open
reading frames cannot be assigned function on the basiesd sequence similarity to a protein
of known function [L5]. Such open reading frames are usually designated as ‘hgpoal
protein’ or ‘protein of unknown function’. Despite the démement of powerful algorithms
for the detection of remote sequence signals that fa@lpabbing below the so-called twilight
zone of sequence similarity, functional annotation s¢ithains a problem.

Many new structures are being solved through structurabigpécs [18, 26]. A recent analysis
of solved target structures revealed that for 29% of domé#nes3-D structure revealed relation-
ships not apparent from sequen@®&|[ This increasing amount of 3-dimensional information
should impact significantly on our understanding of key proips that determine function and
will aid the recognition of distant sequence relationshiasstructure. If a hypothetical pro-
tein shares structural similarity to that of a functionalhyaracterised protein we might expect
this to narrow down the possible functional roles of the @iroeand thereby aid in functional
annotation.

Protein structure classification databases such as thet@tmuClassification of Proteins (SCOP)
enable us to explore the characteristics of proteins theptatie same global structuresd].
SCORP is a hierarchical categorisation in which a structdeahain is classified according to
class (secondary structure content), fold (broadly theiaparrangement of the secondary
structural elements), superfamily and family. Proteinshat superfamily level are believed
to be related although this may not be apparent from coregiderof sequences alone. Some
folds are associated with a wide range of functions, whiteert seem less functionally versa-
tile. For example, the TIM barrel fold contains 28 superf@siand is associated with 4 of the
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6 possible enzyme commission numbel§][| Knowledge that a hypothetical protein adopts a
functionally diverse fold such as a TIM barrel will not immatgly narrow down the functional
space. In contrast, the globins show a very specific reperddfunction despite large sequence
diversity [3].

Here the relationship between structural and functiona ity at the level of protein super-
families is explored. Many authors have developed pairmisasures of similarity for sequence
[17, 23, 1], structure L1, 28] and function L3, 21]. The relationships between metrics have
also been examined[21]. The approach investigated in this paper is to examinbgerahan
pairwise similarity, the breadth of diversity of functiomang homologous groups of proteins.
The analysis is restricted to superfamilies which showdargmbers of sequences with less
than ten percent sequence similarity, as these have theigafi differing functions 7).
Two classification schemes are used: SCOP for structurssi@ilzation and Gene Ontology
(GO) for functional classification. A novel method for chatexising the functional repertoire
of a protein family is suggested, and the range of functidivarsity exhibited under the metric
is discussed. It is shown that the functional diversity otipesfamily shows some correlation
with the numbers of proteins in the superfamily and the sizbeconserved core of the super-
family.

2 Methods

2.1 Dataset

The SCOP database (version 1.67) is used as a classifichpostein structure. The ASTRAL
database is then used to select a non-redundant subset & &@@ains showing no more than
ten percent sequence identity with each ottr The dataset was formed by choosing from
ASTRAL all superfamilies with more than ten members at tleigel of sequence diversity.
This dataset contains 1260 domains distributed in 58 saplies. It is envisaged that this
dataset will grow considerably as high throughput expenitalestructure determination projects
progress.

2.2 Structural Diversity

Two measures of structural diversity are examined: theaayeRMSD (root mean square de-
viation) between members of the superfamily and the sizé@fcbre conserved structure of
the superfamily. In order to measure the average RMSD, alhagall structural alignments
for domains in a given superfamily are performed using th® $Pogram 24]. This program
reports 3 RMSD scores: a weighted RMSD, an unweighted RMS4D avbest’ set of closely
aligned atoms and an RMSD for the whole alignment. The we@)RMSD is used for the
measure as this will not be overly affected by outliers.

To measure the size of the conserved core, the number ofgpesiharked as core in a structure-
based multiple alignment of the superfamily is divided by #iverage length of a domain in the
superfamily. The multiple alignments were constructedesedbed in§] requiring that no two
domains shared more than 10% sequence identity as defineB DRAL. Core positions were
defined as those positions where the gap content is less gyt percent and the average
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separation is less than three Angstroms. This measurenigtethe core size — if most of the
structure is conserved across all domains in the supesfatti$ value will be close to 1.0.

2.3 Functional diversity

To measure functional diversity, diversity amongst GO twrsnused. To obtain GO terms for
domains in the dataset, the program InterProS28hwas used to assign GO terms. This pro-
gram scans a query sequence against all databases in tinfgrPignificant hits are reported,
with a corresponding InterPro record. InterPro mappings@oare used to convert the InterPro
records into GO terms. We consider only the molecular famotintology in this study.

The GO terms for the superfamily are enumerated and Greattsgntropy function is used
to measure the functional diversit9][ Unlike Shannon’s entropy which has no method for
incorporating knowledge of relationships between staBgsgen’s path entropy allows for the
entropy to be considered where the relationship betwegesstapre-determined, in this case
by GO.

For a given leaf in a tree specifying a unique path = uy, ...u,,, [, the path entropy is defined

as:
H(l) = > logd(u;)
u; €

Whered(u) is the outward degree of node The entropy of a given tree is then the average of
these path lengths, or given a weighting over the leayés, which we can assumg; w(l;) =

1, the leaf weighted tree entropy is the expected path lengdkeithe weightingy”; p(l;) H (1;).

A slight modification of the path entropy function is intrashd by weighting the entropic
contribution of a decision according to the depth in the.tr€er a leafl the path entropy

becomes:
H(l)= > f(i)logd(u;)

uiEPl

The tree entropy remains the weighted sum of path entropies.

A possible weighting scheme §i) = K’ where K < 1 is a constant. This gives a relative
weighting of K to a decision at depth + 1 compared to a decision at depth This function
reduces to the normal classification entropy for= 1. For an example of why this weighting
is desirable, see figure 1.

In order to measure the functional diversity, for each donveeé take the GO terms assigned
above and all their parent terms and combine them to fornea @@ is not strictly a tree struc-
ture, however, we induce a tree structure by only observargm terms forming the shortest
route to the root. This tree represents the functional rariglee superfamily. To measure the
functional diversity, the entropy of this tree is measui&@.weight the leaves by the proportion
of domains observed with that term (or terms), and calculeentropy.

However, the annotation stage may, and usually does, retara than one GO term for each
domain. This is not surprising given that GO contains thregrontologies for process, func-
tion and location. Nevertheless, it may even return mora thee term in each of the main
ontologies. Some of these can be explained by the fact tbetHroScan may report several
different levels of detail, e.g. a protein may be reportethe¢dooth a ‘binding’ and an ‘ATP-
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Figure 1: An example of the effect of depth weighting. Considr as an example the classification
shown. Imagine we were to observe a set of objects with labels {4, B}, and a set of objects
Y with labels {A, C'}. Taking X first, we prune the leavesC and D and the new leafC, D and
calculate the classification entropy. Clearly, there is a @ssification entropy of 1. Now looking at
Y, we prune B and D and calculate the classification entropy, again itis 1. BottX and Y have a
classification entropy of 1 despite the fact thatX is clearly a more related set of examples lying in
a more constrained subtree. In order to overcome this problm, we use the depth weighted clas-
sification entropy. For this example example, consider the epth weighted classification entropy
with K = 1/2. Now, for X itis 1/2, whereas forY itis 1. Thus the depth weighted entropy reflects
the level in the classification at which the branching is made

binding’ protein. Therefore, a preliminary comparison @fmis associated to each domain is
made, and any terms which are parents of other terms are egmov

Even after removing related terms, a given protein wouldlsiive more than one annotation
in an ontology. This is because gene ontology terms are lysomlly ‘atomic’, a functional
description requires more than one term. For example, airgiolay be described as both
‘heme binding’ and ‘oxygen binding’. The functional degtion is the combination of both
terms.

It is undesirable that two GO terms representing a singleadlmshould contribute to the func-
tional diversity of the superfamily. If the functional detion is both terms, then ideally we
would like there to exist a single node in the tree labellethwbth terms where we can place
the domain. A domain should exist at only one point in thedr@ny, else it will increase the
functional diversity measure artificially. To achieve this can use Greens tree product to cre-
ate a tree that contains all combinations of terms acrods leael in GO (but still observing
the hierarchy) by taking the product of the GO tree with ftf@). This generates all possible
combinations of terms. However, the product of a classiticatee with itself is a special case
of the product. When taking the product any nodes which ssprethe product of a term with
itself become simple the term (i.e., term (A,A) becomes t&)nand the terms are required to
be ordered so that term (B,A) is the same as term (A,B). Thdymtocan be taken multiple
times if more than two GO terms are given for a domain. La#thny annotations belonging
to a domain are parents of another term on the tree, a ‘siakisantroduced to represent the
fact that the functional annotation is not specific enougtelation to other terms, since each
domain must appear at the leaf. The result is a tree where aidsmannotations appear at one
leaf only. An example of a such a tree showing the functioaabe of a superfamily can be
seen in figure 2.
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Figure 2: An example of a GO tree representing the "Globin-lke” superfamily. A combination of
functions can be observed in some domains, as well as a ‘sinligaf introduced for those domains
that were only annotated as binding.

Superfamily sunid | functional diversity
P-loop containing nucleoside triphosphate hydrolasea540 4.33
NAD(P)-binding Rossmann-fold domains 51375 3.27
Nucleic acid-binding proteins 50249 2.70
Ribosomal protein S5 domain 2-like 54211 2.66
PLP-dependent transferases 53383 2.64
PH domain-like 50729 0.56
Thiamin diphosphate-binding fold (THDP-binding) 52518 0.42
RNA-binding domain, RBD 54928 0.42
Acyl-CoA N-acyltransferases (Nat) 55729 0.18
DEATH domain 47986 0.00

Table 1: Most and least diverse superfamilies in the datasetsing a depth weighting of 0.75

3 Results

Across the superfamilies in the dataset there exists a targge of functional diversity. Figure
3 shows that the diversity ranges from highly conserved ty deverse. Most superfamilies
however, are, by our measure, in the range 0.5-3.

In table 1 the five most functionally diverse and the five |dasttionally diverse SCOP su-
perfamilies (out of the 58 superfamilies in our datasetpatiog to our metric are shown. The
Enzyme Commission (EC) number presents a high level viewmmétion where the first digit
of EC number represents the class of the enzyme and can tatssthle values]2. From
the top five, two superfamilies, the NAD(P)-binding Rossm#wid domains and the P-loop
containing nucleotide triphosphate hydrolases are as®atwith 4 different 1st digit EC hum-
bers B]. The PLP-dependent transferases are associated witfe8edhf 1st digit EC numbers
and the Ribosomal protein S5 domain 2-like superfamily waitbingle 1st digit EC number.
Functional diversity among the PLP-dependent transferaseoenzyme binding domain (PLP,
pyridoxal-phosphate is a cofactor) has been studied by Btagl [4]. From the five least
functionally diverse superfamilies, the Thiamin diphostgibinding fold (THDP-binding) is
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Figure 3: Histogram showing numbers of superfamilies with agiven functional diversity (depth

weighting of 0.75)
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Figure 4: Scatter showing number of domains against functinal diversity (depth weighting of

0.75)

IS
T

>
= °
4
e’
= ® o0
5 s, o *
© LI °
52 .' o °
S o o ® 0
=] . . .
E .'..l . .
= e, 8 °
1 . . .
oo ® o
o
L]
.
of °
1 2 4 6
RMSD

Figure 5: Scatter showing average RMSD of superfamily agaist functional diversity (depth

weighting 0.75)
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Figure 6: Scatter showing core size of superfamily againstuhctional diversity (depth weighting
of 0.75)

associated with 3 1st digit EC numbers and the Acyl-CoA Ntemysferases (Nat) with 1.

The most functionally diverse superfamilies, namely thedp containing nucleoside triphos-
phate hydrolases, the NAD(P)-binding Rossmann-fold damand the Nucleic acid-binding
proteins are large sequence diverse families with 81, 5&68rdbmains in our dataset. The Ri-
bosomal protein S5 domain 2-like superfamily and the PLpeddent transferases superfamily
have 24 and 18 domains in our dataset. Among the least furattyadiverse superfamilies, the
Thiamin diphosphate-binding fold (THDP-binding) supenfly, the RNA-binding domain, and
the DEATH domain are considerably smaller each with 11 domai our dataset. However,
also having low functional diversity are the PH domain-lggerfamily and the the Acyl-CA
N-acyltransferases which have 21 and 17 domains in ouretatd®e see that some of the most
functionally diverse superfamilies are among the more faipd superfamilies in our sequence
diverse dataset and some of the least functionally diveage far fewer domains.

Figure 4 shows a plot of superfamily size against the funetialiversity of the superfamily.
The plot shows a correlation between superfamily size anctifonal diversity, as confirmed by
a correlation coefficient of 0.59. This trend was also obsegty Shakhnovich et al1f]. How-
ever, all but ten superfamilies have between ten and thotgains. Amongst these domains,
the correlation is much less pronounced, with a correlatmefficient of 0.18.

Figures 5 and 6 show plots of functional diversity againsrage RMSD and core size respec-
tively. The figures show that, although there is no correfabetween RMSD and functional
diversity, there is a correlation between the core size andtfonal diversity. This correla-
tion is weak and statistical in nature, but is confirmed bydbeelation coefficient on -0.50.
Moreover, this relationship remains for superfamiliedviietween ten and thirty domains (cor-
relation coefficient -0.4).

4 Discussion

The function of a protein is not a trivial matter to describ@e level of abstraction best suited
to functional annotation is not clear, and it may only be gmego define a function in a very
specific context22]. Despite this, in order to understand genomics data coatipully, a
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controlled ontology is a valuable tool. In order to proceethwhe development of the method
we have used the available data and tools (InterProScachwhe based on sequence similarity
and other methods. We remain aware of the limitations ofsfearof functional annotation by
computational methods and that precise functional aniootz generally only revealed from
experiment.

We have shown a method for describing and measuring theifunattrepertoire of a protein
family based on a given ontology. Nevertheless, other nreasaf functional diversity could
be adopted. A recent approach by Shakhnovich et al alsolatdsua functional flexibility
score by averaging the Shannon entropy over each level ofb@tthis definition does not
fully account for the underlying hierarchy of function debed by the gene ontologg{, 19].

A parwise distance for functional similarity within GO hasdm developed, but the distance
measure cannot quantify the entropy of a set of GO lal#ls [Other groups have examined
the lowest node in a hierarchy, whether GO or enzyme comamsgiat describes the function
of a group of proteinsl0, 13]. However, applying Greens path entropy to the Gene Onjolog
functional classification considers the hierarchy of fimtin calculating the entropy and also
handles multiple functional labels through the tree produc

We remain aware that an automated functional annotatioenseltould produce errors which

would, in turn, affect the measure of functional diversitghould also be noted that annotating
function at the level of the domain may be problematic in thgecof multi-domain proteins, or

even multi function domains.

Our results have shown a correlation between functiona&lrdity and the size of the conserved
core of the superfamily. This core measure is arbitrary agdin, other measures could be used.
For instance, another measure we examined was the avenagie ¢ conserved residues across
pairwise alignments. Although these results were not shivay agreed with the results using
the measure based on the multiple alignment as shown inxhdttdoes appear, however, that
RMSD is not a useful measure when considering functionardity. Perhaps this is because
RMSD measures how conserved the core residues are, andwmatday of the residues are in
the core.

Global studies of the structure-function relationship lareted in their use when considering
a particular example of a protein family. These results doyéver, relate to previous studies
investigating structure-function relationships. Matsua Bryant found that the size of the
conserved core was greater between homologs than anahoigbzd presence of this conserved
core was discriminatory between the two (and that RMSD wa[td]. We find that the size
of the homologous core structure affects the functionatmdity of homologous structures. It
would be interesting to relate the functional special@atvith patterns of conservation in the
core.
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