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ABSTRACT
Modern compilers perform wholesale restructuring of programs to
improve their efficiency. Dependence analysis is the most widely
used technique for proving the correctness of such transformations,
but it suffers from the limitation that it considers only the memory
locations read and written by a statement, and does not assume any
particular interpretation for the operations in that statement. Ex-
ploiting the semantics of these operations permits more transforma-
tions to be proved correct, and is critical for automatic restructuring
of codes such as LU with partial pivoting.

One approach to exploiting the semantics of program operations is
symbolic analysis and comparison of programs. In principle, this
technique is very powerful, but in practice, it is intractable for all
but the simplest programs.

In this paper, we propose a new form of symbolic analysis and com-
parison of programs which is appropriate for use in restructuring
compilers. Fractal symbolic analysis compares a program and its
transformed version by repeatedly simplifying these programs un-
til symbolic analysis becomes tractable while ensuring that equality
of the simplified programs is sufficient to guarantee equality of the
original programs.

Fractal symbolic analysis combines some of the power of symbolic
analysis with the tractability of dependence analysis. We discuss
a prototype implementation of fractal symbolic analysis, and show
how it can be used to solve the long-open problem of verifying
the correctness of transformations required to improve the cache
performance of LU factorization with partial pivoting.

1. INTRODUCTION
Modern compilers perform source-level transformations of programs
to enhance locality and parallelism. Before a program is trans-
formed, it must be analyzed to ensure that the proposed transfor-
mation does not change the input-output behavior of that program.
In this paper, we will say that two programs are equal if their input-

�This work was supported by NSF grants EIA-9726388, ACI-
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output behavior is identical (that is, the programs are extensionally
equal). Dependence analysis, the most commonly-used analysis
technique, computes a partial order between execution instances
of statements: a dependence is said to exist from one statement
instance to another if one of these instances writes to a memory lo-
cation that is read or written by the other one [22]. Any reordering
of statements consistent with this partial order is permitted since
it is guaranteed to leave the input-output behavior of the program
unchanged.

Dependence analysis has been the focus of much research in the
past two decades. In early work, program transformation was car-
ried out manually by the programmer, and dependence analysis was
used only to verify the legality of the transformation. More re-
cently, the research community has invented powerful algorithms
for automatically synthesizing performance-enhancing transforma-
tions for a program from representations of its dependences such
as dependence matrices, cones, and polyhedra [3, 8, 21, 13]. These
techniques are sufficiently well-understood that they have been in-
corporated into production compilers such as the SGI MIPSPro.

In spite of these successes, dependence analysis has its shortcom-
ings as is shown by applying statement reordering to the contrived
program of Figure 1(a). There are dependences from statement S1
to S2, and from S1 to S3. There are only two statement reorder-
ings consistent with this partial order: the original program, and the
program obtained by reordering S2 and S3. In particular, the state-
ment order shown in Figure 1(b) is not consistent with this partial
order. However, it is not difficult to verify that the two program
fragments in Figure 1 are equivalent. If xin and yin are the values
of x and y at the start, the final value contained in both x and y are
� � xin for both programs. Therefore, the statement reordering of
Figure 1 is legal, even though a compiler that relies on dependence
analysis alone will declare that this transformation is illegal. Note
that this reordering is legal even if no assumptions are made about
algebraic properties of multiplication.

Intuitively, dependence analysis provides sufficient but not neces-
sary conditions for the legality of restructuring transformations since
this analysis considers only the sets of locations read and written
by statements, and does not assume any particular interpretation
(meaning) for the operations in the right-hand sides of these state-
ments1. For example, the dependences in Figure 1 do not change
even if statement S1 is changed to y = x*x, although statement
reordering is not legal in the new program. Exploiting the seman-

�A more precise variation of dependence analysis is value-based
dependence analysis [7]. It is easy to verify that this alternative
analysis makes no difference in our problem.



S1: y = x S3: x = 2*x
S2: y = 2*y => S2: y = 2*y
S3: x = 2*x S1: y = x

(a) Original program (b) Transformed program

Figure 1: Simple Reordering of Statements

tics of program operations can lead to a richer space of program
transformations as is shown by our simple example, and is critical
for restructuring important codes like LU with partial pivoting.

Symbolic analysis is the usual way of exploiting the semantics of
operations. To compare two programs for equality, we derive ex-
pressions for the outputs of these programs as functions of their
inputs, and attempt to prove that these expressions are equal. If an
algebraic axiom such as the distributive, associate, or commutative
law of arithmetic can be assumed by the compiler, it may be used
when proving equality.

In principle, symbolic analysis and comparison of programs is an
extremely powerful technique for proving equality of programs; not
only can it be used to verify the legality of program restructuring,
but it can also be used to prove equality of programs that imple-
ment very different algorithms, such as sorting programs that im-
plement quicksort and mergesort. For example, the effect of the
statement reordering shown in Figure 1 can be obtained by using
techniques such as value numbering [1] which implicitly rely on
symbolic evaluation. However, for all but the simplest programs,
symbolic execution and comparison is intractable.

In this paper, we describe fractal symbolic analysis which is a novel
way of performing symbolic analysis and comparison of a program
and its restructured version. Figure 2 illustrates the high-level idea.
We assume we are given a symbolic analyzer that can symboli-
cally analyze programs that are “simple enough”. Depending on the
power of the analyzer, these may be programs with only straight-
line code, or programs with only straight-line code and DO-ALL
loops, etc. Let S be a program that is to be restructured to a pro-
gram T. If these programs are simple enough, we invoke the sym-
bolic analyzer on these programs and either prove or disprove their
equality. On the other hand, if the programs are too complex to
be analyzed by the symbolic analyzer, we generate two simplified
programs S� and T� and try to prove that these simplified programs
are themselves equal2. The simplified programs have a very spe-
cial property: if these simplified programs are equal, we can con-
clude that the original programs S and T are equal as well. Anal-
ysis of the simplified programs is performed in a manner similar
to the analysis of the original programs: if the programs are sim-
ple enough, they are analyzed by the symbolic analyzer; otherwise,
they in turn are simplified to produce new programs and so on (this
is why we call our approach fractal symbolic analysis).

It is guaranteed that at some point, we will end up with programs Sn
and Tn that are simple enough to be analyzed even by a symbolic
analyzer that can only handle straight-line code. If we can prove
that these programs are equal, we can conclude that S and T are
equal; otherwise, we conservatively assume that S and T are not
equal, and disallow the transformation.

There are two important caveats. First, the rules for simplifying
programs are derived from the transformation that relates the two
�A minor technical detail is that a simplification step may actually
produce a number of simplified programs from each of the original
programs, in which case it is necessary to establish equality of that
number of pairs of simplified programs.
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Figure 2: Overview of Fractal Symbolic Analysis

programs whose equality is to be established. Therefore, our ap-
proach cannot be used to prove that quicksort and mergesort are
equal, for example, since these programs are not related by a re-
structuring transformation. Second, equality of simplified programs
is a sufficient but not in general necessary condition for equality of
the original programs. Therefore, successive simplification steps
produce programs that are less and less likely to be equal even if
the original programs are equal. It is desirable therefore that the
core symbolic analyzer be powerful so that recursive simplification
can be applied sparingly.

The rest of this paper is organized as follows. In Section 2, we in-
troduce the highlights of our technology by discussing transforma-
tion of a small program. In Section 3, we discuss the simplification
rules for key transformations in the literature. In Section 4, we de-
scribe the base symbolic analyzer we use in our implementation.
We apply this technology to automatic blocking of LU factoriza-
tion with pivoting in Section 5 and show that we can achieve per-
formance comparable with that of the LAPACK library [2] on the
SGI Octane. Finally, in Section 6, we discuss ongoing work.

2. A SMALL EXAMPLE
In this section, we discuss a small example which is a distillation
of LU with partial pivoting and which illustrates various aspects of
fractal symbolic analysis.

2.1 Source and Transformed Programs
The source program of Figure 3(a) traverses an array A; at the jth

iteration, it swaps elements A(j) and A(j+1), and updates all
the elements from A(j+1) through A(N) using the new value in
A(j). This is a much simplified version of LU factorization with
partial pivoting in which entire rows of a matrix are swapped and
entire sub-matrices are updated at each step. In our discussion,
meta-variables B1 and B2 will be used to refer to the swap and
update statement blocks respectively.

Loop distribution transforms this program into the one shown in
Figure 3(b). In this program, all the swaps are done first, and then
all the updates are done together. This transformation is useful be-
cause the second loop nest is perfectly-nested and can be tiled to
get good locality of reference. Are these programs equal?

Dependence analysis requires that there not be a dependence from



do j = 1,N-1 do j = 1,N-1
B1(j): //swap B1(j): //swap

tmp = A(j); tmp = A(j);
A(j) = A(j+1); A(j) = A(j+1);
A(j+1) = tmp; A(j+1) = tmp;

B2(j): //update do j = 1,N-1
do i = j+1,N B2(j): //update
A(i) = A(i)/A(j) do i = j+1,N

A(i) = A(i)/A(j);
(a) Original Program (b) Transformed Program

B1

B2
B2(1)

..........

B1(1) B1(j1)

B2(j2)

B1(N)

B2(N)

....................

..........

(c) Incremental Loop Distribution

B1(j1): //swap B2(j2)://update
tmp = A(j1); do i = j2+1,N
A(j1) = A(j1+1); A(i) = A(i)/A(j2)
A(j1+1) = tmp; B1(j1)://swap

B2(j2): //update tmp = A(j1)
do i = j2+1,N A(j1) = A(j1+1);
A(i) = A(i)/A(j2) A(j1+1) = tmp;

(d) S1(j1) before S2(j2) (e) S2(j2) before S1(j1)

Figure 3: Loop Distribution in Running Example

an instance B2(j2) to an instance B1(j1) where j1 � j2. Unfortu-
nately, this condition is violated: for any j0 between � and �N���,
instance B2(j0) writes to location A(j0 +1), and instance B1(j0 +1)
reads from it. Symbolic analysis of these programs on the other
hand is too difficult.

2.2 Fractal Symbolic Analysis of Example
The key to fractal symbolic analysis is to consider the transforma-
tion of the program in Figure 3(a) to the one in Figure 3(b) not as
a one-step transformation but as an incremental process in which
instances of B1 are scheduled before successively earlier instances
of B2 as shown in Figure 3(c). At each step of the incremental
process, we locate an instance of block B2 (say B2(j2)) which is
executed just before an instance of block B1 (say B1(j1) where j1
� j2), and reschedule it so that it is executed just after that instance.
It is obvious that at the end of this process, loop distribution is com-
plete, and that this distribution is legal if each step of the process is
legal.

To verify the legality of each step of the incremental process, we
must verify that the programs shown in Figures 3(d) and (e) are
equal; in other words, that B1(j1) and B2(j2) commute (assuming
that N � j1 � j2 � 1). Notice that (i) these programs are simpler
than the ones in Figures 3(a) and (b) since each one has one less
loop, and (ii) their equality implies equality of the original pro-
grams, as required by Figure 2.

The symbolic analyzer we use in our implementation can analyze
programs with straight-line code and DO-ALL loops, so it can per-
form analysis and comparison of the programs in Figure 3(d) and
(e) without any further simplification. Let Ain and Aout be the
values in array A before and after the execution of the program in
Figure 3(d). It is easy to see that Aout can be expressed in terms
of Ain as a guarded symbolic expression (GSE for short), shown
in Figure 4, consisting of a sequence of guards defining array re-
gions and symbolic expressions for the values in the array in those
regions.

Aout�k� �

����
���

� � k � j� � Ain�k�

k � j� � Ain�j� � ���Ain�j��

k � j� � � � Ain�j���Ain�j��

else � Ain�k��Ain�j��

Figure 4: Guarded Symbolic Expression for Aout

B1(j1)://swap B2(j2,i)://update body
tmp = A(j1); A(i) = A(i)/A(j2);
A(j1) = A(j1+1); B1(j1)://swap
A(j1+1) = tmp; temp = A(j1);

B2(j2,i)://update body A(j1) = A(j1+1);
A(i) = A(i)/A(j2); A(j1+1) = tmp;

(a) B1(j1); B2(j2,i) (b) B2(j2,i); B1(j1)

Figure 5: Another Step of Simplification

An identical GSE expresses the result of executing the program
of Figure 3(e). If A is assumed to be the only live variable after
execution of the two programs, we can conclude that the programs
of Figure 3(d) and (e) are equal, so the programs of Figure 3(a) and
(b) are also equal.

2.3 Discussion
It is useful to understand what happens if we apply another step of
simplification to the programs of Figure 3(d) and (e). The reorder-
ing of block B1(j1) over the iterations of loop B2(j2) can be viewed
incrementally as a process in which block B1(j1) is moved over
the iterations of loop B2(j2) one iteration at a time. If each move
is legal, the entire reordering is clearly legal. The simplified pro-
grams are shown in Figure 5(a) and (b); we must verify that B1(j1)
and B2(j2,i) commute, assuming that N � j� � j� � � and that
N � i � j�.

However, it is easy to verify that these programs are not equal. For
example, for k � i � j�, the final values in Aout�k� are differ-
ent. This illustrates the caveat discussed in Section 1. Equality of
the simplified programs is a sufficient but not in general necessary
condition for equality of the original programs, so the simplifica-
tion process that is at the heart of fractal symbolic analysis should
be applied sparingly. In particular, had our base symbolic analyzer
been able to analyze only straight-line code, we would have con-
cluded conservatively that the loop distribution of Figure 3(a,b) is
not legal.

To formalize the intuitive ideas presented in this section, we need
to answer two questions.

1. What are the simplification rules?

2. What core symbolic analyzer is both powerful and practical?

We answer the first question in Section 3 and the second one in
Section 4.

3. SIMPLIFICATION RULES
To determine equality of a program and its restructured version,
the compiler uses a table similar to the one shown in Table 1(a).
To verify legality of a transformation shown in the first column, the
Commute function is invoked on appropriate instantiations of pro-
gram statements as shown in the second column of this table. The
intuition behind these legality conditions has been described in Sec-
tion 2 — the transformation is viewed incrementally as reordering



Transformation Legality Condition

Statement Reordering
S1; S2; <-> S2; S1; Commute�hS�� S�i�

Loop Distribution/Jamming
do i = 1,n do i = 1,n
S1(i); <-> S1(i);
S2(i); do i = 1,n

S2(i);

Commute�hS��i��� S��i��i � � �� i� � i� �� n�

Loop Interchange
do i = 1,n do j = 1,m
do j = 1,m <-> do i = 1,n
S(i,j); S(i,j);

Commute�hS�i� � j��� S�i�� j��i �

� �� i� � i� �� n � � �� j� � j� �� m�

Linear Loop Transformation T
do (i1,i2,...,ik) do (i1’,i2’,...,ik’)
S(i1,i2,...,ik); <-> S’(i1’,i2’,...,ik’)
where (i1’,i2’,...,ik’) = T(i1,i2,...,ik)

Commute�hS��i�� S��j�i �
�i � �j � T��i� � T��j��

(a) Simplification Rules for Common Loop Transformations

Commute Condition Recursive Condition

Statement Sequence

Commute�h S1; S2;...; SN,B2 i � cond�

Commute�hS�� B�i � cond� �

Commute�hS�� B�i � cond� �

���

Commute�hSN�B�i � cond�
Loop
Commute�h do i = l,u

S1(i); ,B2i � cond� Commute�hS��i�� B�i � cond � l �� i �� u�

Conditional Statement

Commute�h
if (pred) then

S1;
else

S2;
,B2i � cond�

Commute�hS�� B�i � cond � pred� �

Commute�hS�� B�i � cond � �pred�

(b) Recursive Simplification Rules

Table 1: Simplification Rules

pairs of instances at a time. For lack of space, we have shown the
legality conditions for only a few common transformations.

The Commute function is shown in Figure 6. It is passed two pro-
gram fragments pgm� and pgm�, some optional bindings which
are constraints on free variables in the program fragments, and a
list of variables that are live at the end of execution of the program
fragments. It returns true if pgm� and pgm� commute — that is,
if the result of executing pgm� followed by pgm� is the same as
the result of executing them in the opposite order, assuming that
we are only interested in the values of live variables at the end of
execution.

The Commute function invokes the symbolic analysis and compar-
ison engine directly by calling the Compare method if the program
fragments pgm� and pgm� are simple enough. Our implementa-
tion of this method is discussed in Section 4. On the other hand, if
these program fragments are not simple enough, it applies the rules
shown in Table 1(b) to simplify the programs recursively till the
programs are simple enough to be analyzed symbolically. As with
the rules shown in Table 1(a), the rules in Table 1(b) are easy to
understand if the restructuring is viewed incrementally. Note that
exactly one of the rules in Table 1(b) can be applied at each simpli-
fication step, resulting in a deterministic simplification procedure.

3.1 Proof of Correctness of Simplification Rules
The validity of the legality conditions in Table 1 follows from the
following result, many variations of which have appeared in the
literature [11].

THEOREM 1. Let S � fS��S��S�� � � � �Sng be a sequence of
program fragments, and let p be any permutation on S. Define
R�p� � f�Si� Sj� � � � i � j � n � p�i� � p�j�g as the set of
pairs of statements reordered by p. Then, the program S is equal to
the program p�S� � fSp����Sp����Sp���� � � � �Sp�n�g if fSi�Sjg
is equal to fSj �Sig where �Si� Sj� � R�p�.

PROOF. The proof follows from induction on the cardinality of
R�p�. If kR�p�k � � then clearly S � p�S�. Otherwise, there
must exist an i such that p�i � �� � p�i�, which implies that
�Sp�i���� Sp�i�� � R�p�. Since Sp�i� and Sp�i��� commute and
are adjacent in p�S�, transposing them gives us an equivalent pro-
gram p��S� where R�p�� � R�p� and kR�p��k � kR�p�k� �. By
induction, S � p�S�.

Intuitively, Theorem 1 allows us to reformulate the problem of
checking legality of a transformation as a problem of verifying
commutativity of statement instances that are reordered by that
transformation. The validity of the rules given in Table 1 follows
directly from this result.

3.2 Reduction Example
An interesting example of the use of the rules in Table 1 is pro-
vided by the reduction example shown in Figure 7. The loop inter-
change shown in Figures 7(a,b) is legal if we assume that addition
is commutative and associative, but every iteration of the loop nest
reads and writes variable k, so dependences are violated by the
restructuring. This program is simple enough that symbolic anal-
ysis is tractable in principle although it requires reasoning about



Commute(pgm� ,pgm�,bindings,live vars) f
if Simple(pgm� ) then

if Simple(pgm� )
return Compare(fpgm� ;pgm�g, fpgm� ;pgm�g,
bindings,live vars)

else
return Commute(pgm� ,pgm� ,bindings,live vars)

else //implementation of Table 1(b)
case (pgm�) f

//statement composition
hpgm�

�
;pgm��

�
i �

return Commute(pgm�

�
,pgm� ,

bindings,live vars) � Commute(pgm��

�
,pgm�,

bindings,live vars)

//conditional
hif pred then pgm�

�
else pgm��

�
i �

return Commute(pgm�

�
,pgm� ,

bindingskpred,live vars) � Commute(pgm��

�
,

pgm� ,bindingsk�pred,live vars)

//loop
hdo i = l, u pgm�

�
�i�i �

return Commute(pgm�

�
�i�,pgm� ,

bindingsk�i�l � i � u,live vars)
g

g

Figure 6: The Commute function

do i = 1,M do j = 1,N
do j = 1,N do i = 1,M
B(i,j)://update on k B(i,j)://update on k
k = k + A(i,j) k = k + A(i,j)

(a) Original Program (b) Transformed Program

B(i1,j1): B(i2,j2):
k = k + A(i1,j1) k = k + A(i2,j2)

B(i2,j2): B(i1,j1):
k = k + A(i2,j2) k = k + A(i1,j1)
(c) B(i1,j1); B(i2,j2) (d) B(i2,j2); B(i1,j1)

Figure 7: Loop Interchange of Reduction Code

summations. In practice most compilers use pattern matching to
detect reductions and treat them specially, but pattern matching is
notoriously fragile (for example, introducing a temporary into the
reduction will cause most pattern matchers to fail).

Fractal symbolic analysis solves the problem elegantly. Using Ta-
ble 1, we generate the simplified programs shown in Figure 7(c,d).
A symbolic analyzer that can analyze straight-line code can deduce
easily that these programs equal if it is allowed to assume that addi-
tion is commutative and associative; if addition cannot be assumed
to have these properties, the symbolic analysis and comparison en-
gine deduces correctly that the program transformation is not legal.

This simple example illustrates an important point. The framework
of fractal symbolic analysis does not require that the objects being
computed, such as numbers, obey any algebraic laws. It is entirely
up to the compiler writer to decide whether or not the restructurer is
allowed to assume these laws when proving equality of expressions,
as described in the next section.

3.3 Discussion
As mentioned in Section 2, the precision of fractal symbolic anal-
ysis depends on the power of the core symbolic comparison en-
gine. Notice that the procedure in Figure 6 stops simplifying as
soon as the statements being compared can be handled by the Com-
pare procedure. A more powerful Compare procedure will result in
fewer levels of simplification and potentially more accurate sym-

A��k� �

������
�����

guard���k� � expression���k�

guard���k� � expression���k�
...

guardn��k� � expressionn��k�

Figure 8: Guarded Symbolic Expressions

Compare(stmt� ,stmt� ,bindings,live vars) f
live� = set of live altered variables in stmt�
live� = set of live altered variables in stmt�
if(live� �� live� )

return false

for each a��k� in live� f
tree� � Build Expr Tree(stmt�,a��k�,�)
tree� � Build Expr Tree(stmt�,a��k�,�)

gse� = Build GSE(tree� ,bindings)
gse� = Build GSE(tree� ,bindings)

if(� Compare GSEs(gse� ,gse�))
return false

g
return true

g

Figure 9: Comparision of Simple Programs

bolic analysis.

4. SYMBOLIC COMPARISON ENGINE
We now describe the core symbolic comparison procedure we use
in our implementation.

The symbolic procedure described in this section can compare pro-
grams that satisfy the restrictions described below. It is important
to remember that these restrictions are not required of input pro-
grams; rather, the Commute function of Figure 6 recursively sim-
plifies its program parameters until these conditions are met. In
other words, these conditions must be met by program Sn and Tn

in Figure 2, not by programs S and T.

1. Programs consist of assignment statements, for-loops and
conditionals. No unstructured control flow is allowed.

2. Loops do not have loop-carried dependences.

3. Array indices and loop bounds are restricted to be affine func-
tions of enclosing loop variables and symbolic constants, and
predicates are restricted to be conjunctions and disjunctions
of affine inequalities.

The important constraint is the second one. Although a loop may
write to a section of an array that is potentially unbounded at compile-
time, at most one iteration may affect the value of any given loca-
tion in an array. This ensures that the symbolic value of a given
element of the array can be expressed very simply. We can then
summarize the unbounded set of expressions for the values in an
entire array with a finite expression called a guarded symbolic ex-
pression (or GSE for short) which contains symbolic expressions
that hold for affinely constrained portions of the array as shown in
Figure 8. Figure 4 shows an example of a GSE.

Figure 9 provides a high-level overview of our symbolic compari-
son algorithm. We consider each altered scalar or array variable in
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Figure 10: Conditional Expression Trees for Running Example

Build Expr Tree(stmt,tree,bindings) f
case (tree) f

Op(op,tree� ,...,treen) �
return Op(op,

Build Expr Tree(stmt,tree� ,bindings),...,
Build Expr Tree(stmt,treen,bindings))

Cond(pred,treet ,treef ) �
return Cond(pred,

Build Expr Tree(stmt,treet ,bindings),
Build Expr Tree(stmt,treef ,bindings))

A(�k) �
case (stmt) f
hA’(T ��i � c) = tree���i�i �

if (A � A’) then
return Cond(bindingsk�k � T ��i � c,

tree��T
�� � ��k � c��,A(�k))

else
return A(�k)

hstmt� ;stmt�i �
return Build Expr Tree(stmt�,

Build Expr Tree(stmt� ,tree,bindings),
bindings)

hif pred then stmt� else stmt�i �
return Cond(bindingskpred,

Build Expr Tree(stmt� ,tree,bindings),
Build Expr Tree(stmt� ,tree,bindings))

hdo ik = lk , uk stmt�i �
return Build Expr Tree(stmt�,tree,
bindingsk	ik �lk � ik � uk )

g
g

g

Figure 11: Expression Tree Generation

the two programs being compared. Note that we only need to con-
sider live variables [1]. If the GSE’s corresponding to each live al-
tered variable are equal, the two programs are declared to be equal.
We now describe how GSE’s are constructed and compared.

4.1 Generation of Conditional Expression Trees
A guarded symbolic expression is essentially a description of the
effect of a program on an array. As an intermediate step towards
the construction of this description, we build a symbolic represen-
tation of the program that we call a conditional expression tree. A
conditional expression tree may be viewed as a functional expres-
sion that describes the output of the program as a function of its
inputs. Figure 10 shows the conditional expression trees for the
programs of Figure 3(d,e). The interior nodes of the tree are pred-
icates and operators while the leaves of the tree are scalars and
array references. Since simplified programs have only straight-line
code and DO-ALL loops, the construction of these trees is straight-
forward. Figure 11 shows an algorithm to generate such trees. This

Build GSE(tree,bindings) f
return Flatten(Normalize(tree),bindings)

g

Normalize(tree) f
case (tree) f

Op(op,tree� ,...,Cond(pred,tree ti ,tree fi),...,treen) �
return Normalize(Cond(pred,

Op(op,tree� ,...,tree ti,...,treen),
Op(op,tree� ,...,tree fi,...,treen)))

Op(op,tree� ,...,treen) �
return Op(op,Normalize(tree�),...,,Normalize(treen))

Cond(pred,treet ,treef ) �
return Cond(pred,Normalize(treet),Normalize(treef ))

A(�k) �
return A(�k)

g
g

Flatten(tree,guard) f
if (guard) then

case (tree) f
Cond(pred,treet ,treef ) �

return Flatten(treet ,guard � pred)
S

Flatten(treef ,guard � �pred)

Op(op,tree� ,...,treen) �
A(�k) �

return f�guard� expr�g
g

else
return �

g

Figure 12: From Expression Trees to GSE’s

algorithm processes the statements of a program in reverse order,
determining at each step the tree corresponding to relevant output
data in terms of input data and linking these together to produce
the final result. Procedure Build Expr Tree can be described
as follows. The first parameter stmt is a statement, the second pa-
rameter tree is an expression (such as an array reference), and the
third parameter bindings is a set of constraints on variables. The
procedure computes the value of the expression tree as a function
of the values of variables before statement stmt is executed, us-
ing the constraints in parameter bindings to permit simplification
of this function by eliminating impossible cases. For example, to
compute the tree shown in Figure 10(a), this procedure is passed
the program of Figure 3(d) as the first parameter, the expression
A(k) as the second parameter, and the constraint j� � j� as the
third parameter.

4.2 Generating Guarded Symbolic Expressions
In general, the conditional expression trees generated above con-
tain a mix of conditions predicated by affine constraints on one
hand and arithmetic expressions on the other (Figure 10(a) is an
example of such a mixture). To convert these to guarded symbolic
expressions, we need to separate the two (Figure 10(b) is an ex-
ample where the affine constraints are separate from the arithmetic
expressions). We accomplish this by converting conditional ex-
pression trees into a normal form in which affine constraints are
moved above arithmetic expressions by repeated application of the
following transformation.



Compare GSEs(gse� ,gse�) f
for each (guard� ,expr�) in gse� f

for each (guard� ,expr�) in gse� f
if (guard� � guard� �� false)

if (expr� �� expr�) // symbolic comparison
return false

g
g

return true
g

Figure 13: Comparision of GSE’s

Op(op,tree�,...,Cond(pred,tree ti,tree fi),...,treen)
�

Cond(pred,Op(op,tree�,...,tree ti,...,treen),
Op(op,tree�,...,tree fi,...,treen))

At this point, the guards are generated by flattening the predicates
at the top of the normalized expression tree, and the corresponding
arithmetic expressions are simply taken from the subtrees beneath
these predicates, as is shown in Figure 12.

4.3 Comparison of Guarded Symbolic Expres-
sions

Finally, Figure 13 illustrates the comparison of two guarded sym-
bolic expressions. There are two steps to this comparison. First, we
must compare each pair of affine guards of the two guarded sym-
bolic expressions. Second, for any two guards that potentially in-
tersect, we must compare the corresponding symbolic expressions.
If every comparison returns true, then the guarded symbolic ex-
pressions are declared to be equal. The validity of this conclusion
follows from the following argument. Each guard specifies some
region of the index space of the array in question, and the union
of these regions in a guarded symbolic expression is equal to the
entire index space of that array. If the values in the two guarded
symbolic expressions are identical whenever their guards intersect,
the two array values are obviously equal.

For comparison of affine guards, we may employ an integer pro-
gramming tool such as the Omega Library [16]. If the tool proves
that a pair of affine guards do not intersect, no comparison of the
corresponding arithmetic expressions needs to be performed. On
the other hand, if the guards do intersect, the expressions must be
compared for equality. This comparison is done symbolically, us-
ing whatever axioms may be assumed to prove equality of expres-
sions. In our current implementation, we just check for syntactic
equality. This is sufficient both for our simple example and, as we
shall see in Section 5, for LU factorization.

4.4 Discussion
It is important to realize that the framework described here does
not rely in any way on the algebraic properties of numbers. If
arithmetic operations such as addition can be assumed to be com-
mutative, associative, etc., the corresponding axioms can be used
in proving equality of expressions in Figure 13. If the use of these
properties to restructure programs may change the numerical prop-
erties of the algorithm, only syntactic equality is used in proving
expression equality. This is the only place in the entire framework
where algebraic properties of numbers can be used, and the choice
of whether to use these properties or not is under the control of the
compiler writer.

5. LU WITH PIVOTING

do j = 1, N
// Pick the pivot
p(j) = j
do i = j+1, N

if abs(A(i,j)) > abs(A(p(j),j))
p(j) = i

// Swap rows
do k = 1, N

tmp = A(j,k)
A(j,k) = A(p(j),k)
A(p(j),k) = tmp

// Scale current column
do i = j+1, N

A(i,j) = A(i,j) / A(j,j)
// Update portion of matrix to right of column j
do k = j+1, N

do i = j+1, N
A(i,k) = A(i,k) - A(i,j)*A(j,k)

Figure 14: LU Factorization with Pivoting

Fractal symbolic analysis was developed for use in an ongoing
project on optimizing the cache behavior of dense numerical lin-
ear algebra programs. LU factorization with partial pivoting is a
key routine in this application area since it is used to solve sys-
tems of linear equations of the form Ax = b. Figure 14 shows the
canonical version of LU factorization with pivoting that appears in
the literature [9]. In iteration j of the outer loop, computations are
performed on column j of the matrix A, and a portion of the matrix
to the right of this column is updated.

LU factorization with pivoting poses a number of challenges for
restructuring compilers.

1. Cache-optimized versions of LU factorization can be found
in the LAPACK library [2]. These blocked codes are too
complex to be reproduced here, but they perform much better
than the point version shown in Figure 14.

Given point-wise LU factorization with pivoting, can a com-
piler automatically generate a cache-optimized version by
blocking the code? If so, how does the performance of the
compiler-optimized code compare with that of hand-blocked
code?

2. Right-looking (eager updates) and left-looking (lazy updates)
versions of LU factorization can be obtained by interchang-
ing the two loops of the update step. Can a compiler trans-
form right-looking LU to left-looking LU and vice versa?

Fractal symbolic analysis is crucial to address both these challenges.
In this paper, we discuss only the problem of blocking; the use of
fractal symbolic analysis to convert between left- and right-looking
versions is described elsewhere [15].

5.1 Automatic Blocking of LU Factorization
To obtain code competitive with LAPACK code, Carr and Lehoucq
suggest carrying out the following sequence of restructuring trans-
formations [4].

1. Stripmine the outer loop to formulate block-column opera-
tions.

2. Index-set-split the expensive update operation to separate com-
putation outside the current block-column from computation
inside the current block-column.



3. Distribute the inner of the stripmined loops to isolate the out-
of-column update.

4. Tile the out-of-column update.

The first two steps, stripmining and index-set-splitting, are trivially
legal as they do not reorder any computation. The next step, loop
distribution, is not necessarily legal. If legality is checked using
dependence analysis, the compiler will declare the distribution ille-
gal if there is a dependence from an iteration B2(m) to an iteration
B1(l) where l � m. In fact, such a dependence exists in our pro-
gram; for example, both B2(j) and B1(j+1) read and write to
A(m+1,jB+B..N). Therefore, a compiler that relies on depen-
dence analysis cannot block LU with pivoting using the transforma-
tion strategy of Carr and Lehoucq. Carr and Lehoucq suggest that
a compiler may be endowed with application-specific information
to recognize the swap and update operations in LU factorization,
and to realize that they can be legally interchanged.

We now discuss how our implementation of fractal symbolic anal-
ysis, a general-purpose technique, can verify the legality of these
transformations. A high level view of the steps of this process is
shown in Figure 16. To verify the legality of the loop distribu-
tion step, our compiler consults Table 1(a) and determines that it
must check if B1(l) commutes with B2(m) where jB � m �
l � jB � B � �, as shown in Figure 17. However, these sim-
pler programs are not “simple enough”; the loop that computes the
pivot in B1.b(l) is a recurrence that cannot be handled by our
core symbolic comparison engine, as we discussed in Section 4.
Therefore, these programs are simplified again using the rule for
statement sequences in Table 1(b). This requires the compiler to
test whether B2(m) commutes with the five subblocks in B1(l).
Other than B1.c(l), the subblocks of B1(l) touch data that is
disjoint from the data touched by B2(m). Therefore, our compiler
deduces that these subblocks commute with B2(m) (a small detail
is that the analysis of whether B1.b(l) commutes with B2(m)
requires an additional step of simplification to eliminate the recur-
rence in B1.b(l)).

The only problem remaining is to demonstrate that B1.c(l) and
B2(m) commute as shown in Figure 18. At this point, these pro-
grams are “simple enough”, and the Compare method in Figure 9
is invoked to establish equality of the simplified programs. In fact,
they are quite similar to the running example of Section 2. The only
live, altered variable in either program is the array A, and the Com-
pare method generates guarded symbolic expressions for A from
each program. Both GSE’s generated from Figure 18 contain six
guarded regions, shown pictorially in Figure 19. To prove that the
GSE’s are actually equivalent, Compare GSEs is invoked to generate
the 36 pairwise intersections, and the Omega library [16] is used
to test non-emptiness of these regions. Only six intersections are
non-empty (the six regions shown in Figure 19), and the corre-
sponding symbolic expressions are syntactically identical in each
case. Thus, the compiler is able to demonstrate the equality of the
simplified programs and, therefore, the equality of the programs in
Figure 15. Since the symbolic expressions are syntactically equal,
it follows that the restructuring does not change the output of the
program even if arithmetic is finite-precision (that is, the transfor-
mation is legal even if nothing is assumed about the commutativity
and associativity of addition and multiplication).

One important note is that the programs of Figure 18 are equal only
if p�j� � j. Techniques such as value propagation [14, 6] have

been developed to perform this type of analysis for indirect array
accesses to more accurately compute dependences. It is clear that
this information may easily be inferred from the pivot computation
in B1.a and B1.b. In our implementation, this information is
passed by the compiler as bindings to the method Commute along
with the legality conditions in Table 1.

With this information, our implementation of fractal symbolic anal-
ysis is able to automatically establish the legality of the loop dis-
tribution transformation in Figure 15. For this example, our imple-
mentation, prototyped in Caml-Light [12], took slightly less than
one second. Most of the analysis time is spent on the construction
and comparison of guarded symbolic expressions since we have not
yet optimized the code for doing this.

5.2 Experimental Results
Figure 20 shows the improvement in performance that results from
blocking LU with pivoting as discussed above. The lowest line (la-
beled Right-looking LU) shows that the SGI compiler is not
able to block the original code shown in Figure 14. However, if
the loop distribution of Figure 15 is performed by hand, the SGI
compiler can effectively block the resulting code. The compiler is
able to automatically tile the right-looking update (B2) and essen-
tially accomplish the last Carr/Lehoucq step listed above. Once we
have isolated the update, standard dependence analysis will allow
us to distribute the portion of the swap computation to left and right
of the current block column outside the block column computation
to obtain a blocking structure almost identical to that in the Netlib
LAPACK. The SGI compiler does not do this itself; when we apply
this transformation by hand, we see a modest increase in perfor-
mance. The resulting performance is shown by the line labeled
Distributed update.

Nevertheless, this code, at 200 MFlops, is still a factor of two
slower than the LAPACK codes. Further experimentation found the
remaining performance gap due the compiler’s suboptimal treat-
ment of the right-looking update computation. Although, the SGI
compiler is able to block the update, we conjectured that it might
have been confused by the partially triangular loop bounds of the
update. When we index-set split the i loop by hand to separate
the triangular and rectangular portions of the update, the compiler
generated substantially faster code achieving over 300 MFlops. Fi-
nally, we note that if we replace the triangular and rectangular por-
tions of the update with the corresponding BLAS-3 calls (DTRSM
and DGEMM) used in LAPACK, the resulting code achieves nearly
400 MFlops and is within 10% of Netlib LAPACK and 20% of the
best code in the vendor-supplied library.

We conclude that a compiler which uses fractal symbolic analysis
should be able to restructure LU with pivoting and obtain perfor-
mance comparable to that of the LAPACK library code, provided
the performance of compiler-generated BLAS improves.

6. RELATED AND FUTURE WORK
A simple kind of symbolic analysis called value numbering [1]
and a generalization called global value numbering [18] are used
in some optimizing compilers to identify opportunities for com-
mon subexpression elimination and constant propagation, but these
techniques are not useful for comparing different programs.

Sophisticated symbolic analysis techniques for finding generalized
induction variables have been developed by Haghighat and Poly-
chronopoulos [10] and by Rauchwerger and Padua [17], but their



do jB = 1, N, B
do j = jB, jB+B-1

B1(j):
// Pick the pivot
p(j) = j
do i = j+1, N
if abs(A(i,j)) > abs(A(p(j),j))

p(j) = i
// Swap rows
do k = 1, N
tmp = A(j,k)
A(j,k) = A(p(j),k)
A(p(j),k) = tmp

// Scale column
do i = j+1, N
A(i,j) = A(i,j) / A(j,j)

// In-Column Update
do k = j+1, jB+B-1
do i = j+1, N
A(i,k) = A(i,k) - A(i,j)*A(j,k)

B2(j):
// Right-Looking Update
do k = jB+B, N
do i = j+1, N

A(i,k) = A(i,k) - A(i,j)*A(j,k)

do jB = 1, N, B
do j = jB, jB+B-1

B1(j):
// Pick the pivot
p(j) = j
do i = j+1, N

if abs(A(i,j)) > abs(A(p(j),j))
p(j) = i

// Swap rows
do k = 1, N

tmp = A(j,k)
A(j,k) = A(p(j),k)
A(p(j),k) = tmp

// Scale column
do i = j+1, N

A(i,j) = A(i,j) / A(j,j)
// In-Column Update
do k = j+1, jB+B-1

do i = j+1, N
A(i,k) = A(i,k) - A(i,j)*A(j,k)

// Distributed Loop
do j = jB, jB+B-1

B2(j):
// Right-Looking Update
do k = jB+B-1, N

do i = j+1, N
A(i,k) = A(i,k) - A(i,j)*A(j,k)

(a) Before Loop Distribution (b) After Loop Distribution
Figure 15: LU Factorization: Distribution Step

Independently True

Symbolically True

Independently True

Independently True

Commute(<B1.a(l),B2(m)>:

Commute(<B1.b(l),B2(m)>:

Commute(<B1.c(l),B2(m)>:

Commute(<B1.d(l),B2(m)>:

   given j<p(j) ^ m<l)

   given j<p(j) ^ m<l)

   given j<p(j) ^ m<l)

   given j<p(j) ^ m<l)

Independently TrueCommute(<B1.e(l),B2(m)>:
   given j<p(j) ^ m<l)

Commute(<B1(l),B2(m)>: 
   given j<=p(j) ^ m<l)           given j<=p(j)

Program 15(a)  =  Program 15(b)

Figure 16: Commute Calls for LU

B1.a(l): p(l) = l
B1.b(l): do i = l+1, N

if abs(A(i,l)) > abs(A(p(l),l))
p(l) = i

B1.c(l): do k = 1, N
tmp = A(l,k)
A(l,k) = A(p(l),k)
A(p(l),k) = tmp

B1.d(l): do i = l+1, N
A(i,l) = A(i,l) / A(l,l)

B1.e(l): do k = l+1, jB+B-1
do i = l+1, N
A(i,k) = A(i,k) - A(i,l)*A(l,k)

B2(m): do k = jB+B, N
do i = m+1, N
A(i,k) = A(i,m) - A(i,m)*A(m,k)

B2(m): do k = jB+B, N
do i = m+1, N

A(i,k) = A(i,m) - A(i,m)*A(m,k)
B1.a(l): p(l) = l
B1.b(l): do i = l+1, N

if abs(A(i,l)) > abs(A(p(l),l))
p(l) = i

B1.c(l): do k = 1, N
tmp = A(l,k)
A(l,k) = A(p(l),k)
A(p(l),k) = tmp

B1.d(l): do i = l+1, N
A(i,l) = A(i,l) / A(l,l)

B1.e(l): do k = l+1, jB+B-1
do i = l+1, N

A(i,k) = A(i,k) - A(i,l)*A(l,k)

(a) B1(l); B2(m) (b) B2(m); B1(l)
Figure 17: Simplified Comparison #1



B1.c(l): do k = 1, N
tmp = A(l,k)
A(l,k) = A(p(l),k)
A(p(l),k) = tmp

B2(m): do k = jB+B, N
do i = m+1, N
A(i,k) = A(i,m) - A(i,m)*A(m,k)

B2(m): do k = jB+B, N
do i = m+1, N

A(i,k) = A(i,m) - A(i,m)*A(m,k)
B1.c(l): do k = 1, N

tmp = A(l,k)
A(l,k) = A(p(l),k)
A(p(l),k) = tmp

(a) B1.c(l); B2(m) (b) B2(m); B1.c(l)
Figure 18: Simplified Comparison #2
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Figure 19: Regions and Expressions for Simplified LU
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Figure 20: Experimental Results

goal is to perform strength increasing to eliminate loop-carried de-
pendences for automatic parallelization. Since this may produce
DO-ALL loops from loops with loop-carried dependences, it may
be advantageous to preprocess programs in this way before apply-
ing fractal symbolic analysis since this may eliminate the need for
recursive simplification in such programs.

The work that is closest to our own is Rinard’s commutativity analy-
sis [19] which is a program parallelization technique that uses sym-
bolic analysis to determine if method invocations can be executed
concurrently. This approach is based on the insight that a sequence
of atomic operations can be executed in parallel if each pair of oper-
ations can be shown to commute. We are interested in proving the
correctness of program transformations, not in parallelizing pro-
grams, and requiring all operations to commute with each other is
too strong a condition for our application; there is also no analog
of recursive simplification in commutativity analysis.

The algorithm for generating guarded symbolic expressions in Sec-
tion 4 is reminiscent of backward slicing [20] which is a technique
that isolates the portion of a program that may affect the value of
a variable at some point in the program. Our algorithm is simpler
than the usual algorithms for backward slicing since the programs
it must deal with have been simplified beforehand by recursive sim-
plification, an operation that has no analog in backward slicing.

The work described in this paper can be extended in many ways
such as the following.

� The symbolic analysis engine can be extended to recognize
and summarize reductions involving associative arithmetic
operations like addition and multiplication, and the symbolic
comparison engine can invoke a symbolic algebra tool like
Maple [5] to compare such expressions using the usual alge-
braic axioms of numbers. These enhancements might elimi-
nate the need for recursive simplification in some programs,
but we do not yet have any applications where this additional
power is needed. The finite precision of computer arithmetic
means that computer arithmetic does not necessarily obey
these algebraic axioms, so these axioms must be used with
care.

� The intuition behind fractal symbolic analysis is to view a
program transformation as a process which transforms the
initial program incrementally to the final program. In gen-
eral, there are many incremental processes that achieve the
effect of a given transformation, and Table 1 shows just one
such way for the transformations listed there.

Given a program and its transformation, fractal symbolic anal-
ysis may succeed in proving the correctness of some of these
processes, but it may fail conservatively for others. A useful
analogy is induction which can be viewed as an incremental



way of proving predicates: given a predicate, we can usually
formulate many inductive strategies for proving it, but only
some of them will actually succeed.

Is it useful to explore an entire space of incremental pro-
cesses for converting one program to another? If so, how
do we manage the search to keep it tractable?

� The proof of correctness of the transformation for LU with
pivoting discussed in Section 5 required knowing that p�j� �
j. This constraint is easy to deduce, but how does a com-
piler know in general that this information is useful? One
approach is to have the compiler gather as many constraints
on variables as it can deduce, and pass them to the fractal
symbolic analyzer. An alternative lazy strategy is to gather
only facts that are required for proving the validity of trans-
formations, but it is not clear how such facts can be identified.

� Finally, we note that dependence information for loops can
be represented abstractly using dependence vectors, cones,
polyhedra etc. These representations have been exploited to
synthesize transformation sequences [3, 21, 13]. At present,
we do not know suitable representations for the results of
fractal symbolic analysis, nor do we know how to synthesize
transformation sequences from such information.

One possibility is to compute dependence information, and
then eliminate some of the apparent dependences by per-
forming fractal symbolic analysis. For this strategy to work
well, it is necessary to perform analysis at the right level of
granularity; dependences between statement instances may
be too fine-grain for this strategy to be effective. In depen-
dence analysis, granularity of analysis is not an issue because
two blocks cannot be independent if they have subblocks that
are dependent. Therefore, we can choose as low a level
of granularity as we want, so we usually compute depen-
dences between statement instances. In symbolic analysis,
two blocks may commute even though they have individual
subblocks that do not. For example, in LU with pivoting,
the pivot block and the update block must considered in their
entirety to establish the legality of the loop distribution dis-
cussed earlier.

How does a compiler determine the right level of granularity
at which it should do fractal symbolic analysis?

We leave these questions for future work.
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