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Abstract. These are notes for a Stanford SUMO talk on space-filling curves. We will look at

a few examples and then prove the Hahn-Mazurkiewicz theorem. This theorem characterizes
those subsets of Euclidean that are the image of the unit interval.

After a historical introduction, we spend two sections constructing space-filling curves. In
particular, we treat Peano’s example because of its historical significance and Lebesgue’s example
because of its relevance to the proof of the Hahn-Mazurkiewicz theorem. This theorem is proven in
the fourth section, with the exception of some point-set topology lemma’s that have been delegated
to the appendix. The first three sections only require basic knowledge of real analysis, while the
fourth section and the appendix also require some knowledge of point-set topology. The best
reference for space-filling curves is Sagan’s book [Sag94].

1. What are curves?

The end of the 19th century was an exciting time in mathematics. Analysis had recently been
put on rigorous footing by the combined effort of many great mathematicians, most importantly
Cauchy and Weierstrass. In particular, they defined continuity using the well-known ε,δ-definition:
a function f : R → R is continuous if for every x ∈ R and ε > 0, there exists a δ > 0, such that
|y − x| < δ implies |f(y) − f(x)| < ε. We will be more interested in curves: continuous functions
f : [0, 1]→ Rn.

This definition was supposed to capture the intuitive idea of a unbroken curve, one that can
be drawn without lifting the pencil from the paper. Continuous curves should not be the same
as smooth curves, as they for example can have corners. Though continuity might seem like the
correct definition for this, it in fact admits “monstrous” curves: Weierstrass in 1872 wrote down
a nowhere differentiable continuous function1. By looking at its graph in R2, one finds a curve
having “corners” everywhere!

Shortly after this, in 1878, Cantor developed his theory of sets. One of the (then) shocking
consequences was that R and R2 had the same cardinality, i.e. the “same number” of points. This
means that there exists a bijection between both sets, which Cantor explicitely wrote down. This
result questioned intuitive ideas about the (rather elusive) concept of dimension and an obvious
question after the previous discovery of badly-behaved curves was: Can we find a bijection between
R and R2 which is continuous or maybe even smooth? The answer to this question turns out to
be “no” – a 1879 result by Netto – something we will prove later this lecture.

However, it remained open for more than a decade whether it was also impossible to find
a surjective continuous map R → R2 or, closely related, [0, 1] → [0, 1]2. Peano shocked the
mathematical community in 1890 by constructing a surjective continuous function [0, 1]→ [0, 1]2,
a “space-filling curve”. It is pictured in figure 1.

This result is historically important for several reasons. Firstly, it made people realize how
forgiving continuity is as a concept and that it doesn’t always behave as one intuitively would
expect. For example, the space-filling curves show it behaves badly with respect to dimension
or measure. Secondly, it made clear that result like the Jordan curve theorem and invariance of
domain need careful proofs, one of the main motivations for the then new subject of algebraic
topology (back then called analysis situs). I think this makes space-filling curves worthwhile to
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1It is given by

∑∞
n=1 a

n cos(bnx) with a ∈ (0, 1) and b an odd integer satisfying ab > 1 + 3
2
π.
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Figure 1. The first, second and third iterations f0, f1, f2 of the sequence defining
the Peano curve.

know about, even though they are no longer an area of active research and they hardly have any
applications in modern mathematics. If nothing else, thinking about them will teach you some
useful things about analysis and point-set topology.

In this lecture we’ll construct several examples, look at their properties and end with the Hahn-
Mazurkiewicz theorem which tells you exactly which subsets of Rn can be image of a continuous
map with domain [0, 1].

2. Peano’s curve

We start by looking at Peano’s original example. The main tool used in its construction is the
theorem that a uniform limit of continuous function is continuous:

Theorem 2.1. Let fn be a sequence of continuous functions [0, 1] → [0, 1]n such that for η > 0
there is a N ∈ N having the property that for all n,m > N we have supx∈[0,1] ||fn(x)−fm(x)|| < η.

Then f(x) := limn→∞ fn(x) exists for all x ∈ [0, 1] and is a continuous function.

Proof. Suppose we are given a x ∈ [0, 1] and ε > 0, then we want to find a δ > 0 such that
|y − x| < δ implies ||f(y)− f(x)|| < ε. Note that for all n ∈ N,

||f(y)− f(x)|| ≤ ||f(y)− fn(y)||+ ||fn(y)− fn(x)||+ ||fn(x)− f(x)||
By taking n to be a sufficiently large number N , we can make two of the terms in the right hand

side be bounded by 1
3ε. By continuity of fN , we can find a δ > 0 such that |y − x| < δ implies

||fN (y)− fN (x)|| < 1
3ε. Then if |y − x| < δ we have

||f(y)− f(x)|| ≤ ||f(y)− fN (y)||+ ||fN (y)− fN (x)||+ ||fN (x)− f(x)|| ≤ 1

3
ε+

1

3
ε+

1

3
ε = ε

�

To get Peano’s curve, we will define a sequence of continuous curves fn : [0, 1]→ [0, 1]2 that are
uniformly convergent to a surjective function. The previous theorem guarantees that this function
will in fact be continuous as well. We will get the fn through an iterative procedure. The functions
fn are defined by dividing [0, 1]2 into 9n squares of equal size and similarly dividing [0, 1] into 9n

intervals of equal length. It is clear what the i’th interval is, but the i’th square is determined by
the previous function fn−1 by the order in which it reaches the squares. The i’th interval is then
mapped into the i’th square in a piecewise linear manner. The basic shape of these piecewise linear
segments is that of f0, given in figure 1. The next iteration is obtained by replacing the piecewise
lienar segements in each square with a smaller copy of f0, matching everything up nicely.

Clearly each fn is continuous, but also they become increasingly close.

Lemma 2.2. For n,m > N we have that supx∈[0,1] ||fn(x)− fm(x)|| <
√

2 ·9−min(n,m). Hence the
sequence fn is uniformly convergent.

Proof. Without loss of generality n > m. To get from fm to fn we only modify fm within each of
the 9m cubes. Within such a cube, the points that are furthest apart are in opposite corners and
their distance is

√
29−m. �
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The theorem about uniform convergence of continuous functions now tells us that the following
definition makes sense.

Definition 2.3. The Peano curve is the continuous function f : [0, 1]→ [0, 1]2 given by

f(x) = lim
n→∞

fn(x)

Lemma 2.4. The Peano is surjective.

Proof. Note that n’th iterate fn of the Peano curve goes through the centers of all of 9n squares.

Hence any point (x, y) ∈ [0, 1]2 is no more than
√
2
2 9−n away from a point on fn. Using the uniform

convergence, we see that there is a point on the image of f that is less than 3
√
2

2 9−n away from
(x, y). Hence (x, y) lies in the closure of the image of f . We will see in proposition 4.3 that the
image of the interval under any continuous function is compact and hence closed, as (x, y) in fact
lies in the image of f . �

Though each of the fn is injective, the limit f is not. This is will proven later, as a consequence
of one of the intermediate results in the proof of the Hahn-Mazurkiewicz theorem.

3. Lebesgue’s curve

We will now give a second construction of a space-filling curve, due to Lebesgue in 1904. The
ideas in this construction will play an important role in the proof of the Hahn-Mazurkiewicz
theorem, and along the way we’ll meet an interesting space known as a Cantor space.

Lebesgue’s curve will be clearly surjective, because it will be given by connecting the point in
the image of a surjective map from a subset of [0, 1] by linear segments. This subset is the Cantor
set:

Definition 3.1. Let C be the subset [0, 1] by deleting all elements that have a 1 in their ternary
decimal expansion.

Alternatively, C is given by the repeatedly removing middle thirds of intervals. One starts with
C0 = [0, 1], C = [0, 1/3] ∪ [2/3, 1], etc., and sets C =

⋂
Cn. Lebesgue then defined the following

function from C to [0, 1]2:

l(0.3(2a1)(2a2)(2a3) . . .) =

(
0.2a1a3a5 . . .
0.2a2a4a6 . . .

)
This is easily seen to be surjective. We will show it is continuous.

Lemma 3.2. The function l is continuous.

Proof. We will prove that if |y − x| < 1
32n+1 (i.e. our δ), then ||l(y)− l(x)|| <

√
2

2n (i.e. our ε). The

idea is to note that if |y − x| < 1
32n+1 , then the first 2n ternary decimals are the same. Hence the

first n binary decimals of the x and y-coordinate of l(x) are the same. This means that they are

no further that
√
2

2n apart. �

Now Lebesgue extends this function linearly over the gaps in [0, 1] left by the Cantor set. We

denote such a gap by (an, bn). An example is (1/3, 2/3). We obtain l̃ : [0, 1]→ [0, 1]2 as follows

l̃(x) =

{
l(x) if x ∈ C
(l(bn)− l(an)) x−anbn−an + l(an) if x ∈ (an, bn) ⊂ ([0, 1]\C)

We claim that this function is continuous. Clearly it is continuous on the gaps (an, bn) in the
complement of the Cantor set because it is linear there. It is however not clear it continuous at
the points of the Cantor set. However, by continuity of l and the fact that linear interpolations
don’t get far from their endpoints, we will also be able to prove continuity there.

Lemma 3.3. The function l̃ is continuous.
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Figure 2. The first, second and third iterations of a sequence converging to hte
Lebesgue curve.

Proof. By the remarks above it suffices to prove continuity at x ∈ C. Since C has empty interior
or equivalently every point is a boundary point, there are three situations: (i) x is both on the left
and the right a limit of points in C, (ii) x borders a gap (an, bn) on the left, (iii) x borders a gap
(an, bn) on the right. We will do the last case and skip the first two, because they are very similar
to the last case.

We don’t need to worry about continuity from the right, as l̃ is linear there. We can take a
δ satisfying 1

32n+1 > δ > 0 and such that if y < x and |y − x| < δ, then y lies in C or in a gap

(ak, bk) such that |ak − x| < 1
32n+1 . The idea is just to take δ a bit smaller than 1

32n+1 such that

[x− 1
32n+1 , x− δ] contains an element of C.

Then, if y ∈ C, then we know that ||l̃(y)− l̃(x)|| = ||l(y)− l(x)|| <
√
2

2n by the previous lemma. If

y /∈ C, then y lies in another gap (ak, bk) with x ≤ ak and |ak−x| < 1
32n+1 . That ||l̃(y)− l̃(x)|| <

√
2

2n

now follows by the convexity of balls in Euclidean space: if the endpoints of a line segment lie in
a ball, then the entire line segment lies in the ball. Alternatively, we can simply estimate

||l̃(y)− l̃(x)|| = ||(l(bk)− l(ak))
y − ak
bk − ak

+ l(ak)− l(y)||

=
1

bk − ak
(||l(bk)− l(y)||(y − ak) + ||l(ak)− l(y)||(bk − y))

<
1

bk − ak
(

√
2

2n
(y − ak + bk − y)) =

√
2

2n

where we have used that (ak, bk) ⊂ [x − 1
32n+1 , x] implies that ||l(bk) − l(y)|| <

√
2

2n and similarly
for ||l(ak)− l(y)||. �

There is an iterative construction of Lebesgue’s curve similar to Peano’s curve. It is given in
figure 2.

4. The Hahn-Mazurkiewicz theorem

In this section we prove the Hahn-Mazurkiewicz theorem for subsets of Euclidean space.

Definition 4.1. A subset A of Rn is said to be compact if every sequence has a convergent
subsequence with limit in A. Equivalently, by Bolzano-Weierstrass, it is bounded and closed.

The set A is said to be connected if we can’t write it A = (U t V ) ∩ A, where U and V are
non-empty disjoint open subsets of Rn.

Finally, it is said to be weakly locally-connected if for all a ∈ A and η > 0 we can find a smaller
ε > 0 such that x ∈ Bε(a), then x and a lie in the same connected component of A ∩Bη(a).

The last definition, that of weakly locally-connectedness, is in fact equivalent to the more widely
used notion of locally-connectedness. However, weakly locally-connectedness at a point is not
equivalent to locally-connectedness at that point! This is proven in the appendix.

Theorem 4.2. A subset A ⊂ Rn is the image of some continuous map f : [0, 1]→ Rn if and only
if it is compact, connected and weakly locally-connected.
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We will split the proof into two parts. The easier implication is that the image of a space-filling
curve is compact, connected and locally-connected, i.e. that our conditions are necessary. For the
converse we’ll have to work a bit harder. The trick is to mimic Lebesgue’s construction in general,
using Hausdorff’s theorem on the images of the Cantor set.

4.1. The conditions are necessary. We will start by proving that the conditions of compactness,
connectedness and weakly locally-connectedness are necessary.

Proposition 4.3. The image of a continuous map f : [0, 1] → Rn is compact, connected and
weakly locally-connected.

Proof. Let’s call the image A. One of the equivalent definitions of being compact is that every
sequence in A has a convergent subsequence with limit in A. Let’s prove this. Let an be a sequence
in A, then by picking a point in each preimage of an an we get a sequence xn in [0, 1]. The interval
[0, 1] is closed and bounded, hence compact by Bolzano-Weierstrass. Thus there is a convergent
subsequence xnk

in [0, 1], with limit x. We claim that the ank
converge for f(x). But this is a

direct consequence of the continuity of f : it sends convergent sequences to convergent sequences.
The image of a path-connected set is clearly path-connected. But path-connected implies con-

nected, so A is in fact connected.
For weakly locally-connectedness we have to a bit more careful. Suppose that for a ∈ A the

condition of weakly locally-connectedness fails. Then we can find an ε > 0 and ηn < ε with ηn → 0
and an ∈ Bηn(a)∩A such that an and a don’t lie in the same connected component of Bε(a). Note
that by construction the sequence {an} converges to a. Pick an element xn in the preimage of an.
By compactness of [0, 1] this has a convergent subsequence xnk

with limit x, which necessarily is
mapped to a. There is a δ > 0 such that |y−x| < δ implies ||f(y)−f(x)|| < ε. Take K sufficiently
large such that |x − xnK

| < δ. Then the entire line segment [xnK
, x] (or [x, xnK

], depending on
what makes sense), is mapped into Bε(a) ∩ A and hence anK

and a lie in the same connected
component of Bε(a) ∩A, contradicting our assumption on anK

. �

This theorem is generalized in point-set topology, where one proves that the image of any
compact, resp. connected, space is compact, resp. connected.

4.2. Intermezzo: Netto’s theorem. In the first part of the proof of the previous proposition, we
actually proved the image of each closed subset B ⊂ [0, 1] under a continuous map f : [0, 1]→ Rn
is closed. We will use this to prove that no space-filling curve can be injective. This is known as
Netto’s theorem. It is a special version of the theorem that a continuous bijection from a compact
space to a Hausdorff space is homeomorphism.

Proposition 4.4. A continuous surjective map f : [0, 1]→ [0, 1]2 can not be injective.

Proof. We claim that the inverse g := f−1 : [0, 1]2 → [0, 1] is continuous and hence f is a home-
omorphism (a continuous bijective function with continuous inverse). Let C ⊂ [0, 1] be a closed
subset. It is also bounded, so compact. We have that g−1(C) = f(C) and every continuous func-
tion sends compact sets to compact sets, as implicitly proven in proposition 4.3. Every compact set
in [0, 1]2 is in particular closed. So g−1 of closed sets are closed, hence by looking at complements
under g−1 of open sets we can conclude that these are open. Hence g = f−1 is continuous.

Connectedness is preserved by homeomorphisms, because if X and Y are homeomorphic, a
decomposition of one of them into a disjoint union of non-empty open sets can be We can find a
y ∈ int([0, 1]2) whose preimage x is not equal to 0 or 1. Then the restriction of f to [0, x) ∪ (x, 1],
gives a homeomorphism of the set [0, x) ∪ (x, 1], having two connected components, with the
connected set [0, 1]2\{y}. This gives a contradiction. �

4.3. Hausdorff’s theorem and a theorem on pathconnectedness. In this subsection we will
prove Hausdorff’s theorem about the possible images in Euclidean space under a continuous map
of the Cantor set. This was proven in 1927 by Hausdorff and independently in 1928 by Alexandroff.
It says, in some sense, that the Cantor set is the universal compact subset of Euclidean space of
any dimension.
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Theorem 4.5. Every compact subset of Rn is a continuous image of the Cantor set.

Proof. Let A be our compact set. Consider the cover of A given by B1(a) for a ∈ A. By compact-
ness there is a finite subcover, which by duplicating elements of the cover if necessary is of the form
B1(ai) for 1 ≤ i ≤ 2n1 . Now cover Ai = B̄1(ai)∩A by B1/2(a) for a ∈ B1(ai)∩A and by duplicating
elements of the finitely many covers if necessary we can assume it has a finite subcover B1/2(ai,j)

for 1 ≤ i ≤ 2n1 and 1 ≤ j ≤ 2n2 with n2 independent of i. We set Ai,j = B̄1/2(ai,j) ∩ B̄1(ai) ∩ A.
Continue this procedure, making the radius of the balls half as large each step.

Notice that for a sequence ki ∈ {1, . . . , 2ni} we get a sequence of nested closed sets with ra-
dius going to 0. This determines a unique element of A as follows: a is the unique element of⋂
iAk1,k2,...,ki . Since we are dealing with increasingly fine covers and every element of A lies in

some intersection of elements of the cover, we obtain each element of A this way. For convenience,
we define a way of getting from a sequence {an}n∈N of 0, 1’s to a sequence of numbers {Kn}n∈N
in {1, . . . , 2ni}. They are given by K1 =

∑n1

j=1 aj2
j−1, K2 =

∑n2

j=1 aj+n1
2j−1 and in general by

Ki =
∑ni

j=1 aj+n1+...+ni−1
2j−1.

We will define a function f : C → A. It is given by

f(0.3(2a1)(2a2)(2a3) . . .) = unique element of
⋂
i

AK1,K2,...,Ki

This is surjective by the previous remark about every element lying in an intersection of some
elements of the cover. We also claim it is continuous. This is actually rather simple: if |y −
x| < 3n+1 then the first n digits in the ternary expansion are equal. We can find a j such that
n1 +n2 + . . .+nj ≤ n ≤ n1 +n2 + . . .+nj+1. Thus f(y) and f(x) lie in the same Ak1,k2,...,kj , which

lies in a ball of radius 1
2k−1 . Hence ||f(y)−f(x)|| < 1

2k−1 and we conclude that f is continuous. �

We want to construct our space-filling curve using this map, by connecting using paths in A
over the gaps in the Cantor set. However, to be able to do this we need find such paths and show
they can be chosen sufficiently short for points in A that are close together. Let’s make definitions
for these notions.

Definition 4.6. We say that a subset A of Rn is path-connected if any two points can be joined
a continuous path with image in A.

The subset A is said to be uniformly path-connected if for all ε > 0 there exists a η ∈ (0, ε) such
that if a, a′ ∈ A satisfy ||a′−a|| < η, then there is a continuous path with image in Bε(a

′)∩Bε(a)∩A
connecting a′ and a.

Theorem 4.7. If A is compact, connected and weakly locally-connected, it is path-connected and
uniformly path-connected.

This is proven in the appendix.

4.4. The conditions are sufficient. Now we’ll combine Hausdorff’s theorem and our theorem
on pathconnectedness to construct a surjective map [0, 1]→ A under the conditions listed before.
As said before, the idea is to copy the idea of Lebesgue’s construction of a space-filling curve: use
Hausdorff’s theorem to get a surjective map from the Cantor set into A and use our theorem on
pathconnectedness to prove that we can connect the image by paths our the gaps in the Cantor
set.

Theorem 4.8. If A ⊂ Rn is compact, connected and weakly locally-connected, then there exists a
surjective continuous function f : [0, 1]→ A.

Proof. Since A is compact, by Hausdorff’s theorem there exists a continuous surjective function
g : C → A.

By uniformly path-connectedness, we can find a decreasing sequence of ηn such that ||a′−a|| < ηn
implies that there is a continuous path with image in B1/2n(a)∩B1/2n(a′)∩A. By continuity of g
and compactness of C, we can find a decreasing sequence of δn > 0 such that |y − x| < δn implies
||g(y) − g(x)|| < ηn. If (ak, bk) is a gap in C such that δn+1 ≤ |bk − ak| < δn, then we can find a
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continuous path γk : [ak, bk]→ A such that γk lies in B1/2n(g(ak)) ∩ B1/2n(g(bk)) ∩ A connecting
g(ak) to g(bk). We define f as follows:

f(x) =

{
g(x) if x ∈ C
γk(x) if x ∈ (ak, bk) ⊂ ([0, 1]\C)

This function is clearly continuous at all points of ([0, 1]\C) and as before the points x ∈ C
comes in three types: (i) x is both on the left and the right a limit of points in C, (ii) x borders a
gap (an, bn) on the left, (iii) x borders a gap (an, bn) on the right. Again we will do the last case
and skip the first two, because they are very similar to the last case.

Continuity from the right is obvious, as f is just a continuous path there. For continuity from
the left pick δ > 0 satisfying δn > δ > 0 and such that if y < x and |y − x| < δ, then y ∈ C or it
lies in a gap (ak, bk) such that |ak − x| < δn.

If y ∈ C, then |y − x| < ηn and hence ||f(y) − f(x)|| = ||g(y) − g(x)|| ≤ ηn. If y /∈ C, then y
lies on a path that doesn’t get further than 1

2n from g(x) and hence ||f(y)− f(x)|| ≤ 1
2n . So given

an ε > 0 just take a n ∈ N so that min({ηn, 1
2n }) < ε and set δ = δn. Then |y − x| < δn implies

||f(y)− f(x)|| < ε. �

Appendix A. Different notions of local connectedness

In this appendix we prove several relations between different notion of connectedness. Let’s
recall their definitions. We will use open sets instead of open balls for convenience, except in the
definition about uniform path-connectedness, which needs explicit ε’s.

Definition A.1. (1) A subset A ⊂ Rn is said to be weakly locally-connected if for all a ∈ A
and open neighborhoods U of a in A we can find open neighborhood V ⊂ U containing a
such that x ∈ V , then x and a lie in the same connected component of U .

(2) The subset A is said to be uniformly weakly locally-connected if for all ε > 0 there exists
a η ∈ (0, ε) such that if a, a′ ∈ A satisfy ||a− a′|| < η then a, a′ lie in the same connected
component of Bε(a) ∩Bε(a′) ∩A.

(3) A ⊂ Rn is said to be locally connected if for all a ∈ A and all open neighborhoods U of a
in A we can find a neighborhood V ⊂ A of a which is connected.

(4) A is said to be locally path-connected if for all a ∈ A and all open neighborhoods U of a in
A we can find a neighborhood V ⊂ A of a which is path-connected.

(5) The subset A is said to be uniformly locally path-connected if for all ε > 0 there exists a
η ∈ (0, ε) such that if a, a′ ∈ A both satisfy ||a − a′|| < η then there is a continuous path
with image in Bε(a) ∩Bε(a′) connecting a′ and a.

Lemma A.2. The subspace A is weakly locally-connected if and only if it is locally connected.

Proof. The implication⇐ is clear. For the implication⇒, we claim that the connected components
of all open subsets of A are open. For if this is true, then take V to be the connected component
containing a in U .

Let C be a connected component of U . We will cover C by open sets Vc ⊂ A, then the expression
C = (∪cVc) ∩ A shows it’s open and we are done. Pick c ∈ C and an open neighborhood Vc of it
such that Uc ⊂ U . Using weakly locally-connectedness, take a smaller open neighborhood Vc such
that if x ∈ Vc, then c and x lie in the same connected component of Uc. In particular c and x must
then both lie in C. This means that Vc ⊂ C and we are done. �

Lemma A.3. Connected and locally path-connected implies path-connected. Uniformly locally
path-connected implies locally path-connected.

Proof. Let’s start with the first statement. Let a ∈ A and Pa be the subset of A of all points that
can be connected by a path to A. It is open by locally path-connectedness. To see it is closed as
well, use that “being connected be a path” is an equivalence relation, hence A = tPai . Hence the
complement of Pa is open and thus Pa is closed. An open and closed set is a connected component
and since A was assumed connected, we conclude A = Pa.

The second statement is trivially true. �
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Lemma A.4. If A is compact and weakly locally-connected it is uniformly weakly locally-connected.

Proof. Suppose that it is not uniformly weakly locally-connected. Then there exists an ε > 0, ηi →
0 and ||ai−a′i|| < ηi such that ai and a′i lie in different connected components of Bε(a)∩Bε(a′)∩A.
By compactness, we can assume that ai and a′i converge, necessarily to the same element a. Now
we apply weakly locally-connectedness at a to Bε(a): we get a η > 0 such that x ∈ Bη(a) implies
that x, a lie in the same connected component of Bε(a). Take i large enough such ηi <

1
2η. Then

ai and a′i lie in the same connected component of Bε(a) at a and hence lie in the same connected
component. This gives a contradiction. �

Theorem A.5. If A is compact, connected and weakly locally-connected, it is path-connected,
locally path-connected and in fact uniformly locally path-connected.

Proof. By the previous lemma’s, it suffices to prove uniform locally path-connectedness. Take ε > 0
and set εk = 1

4
ε
2k

. Take ηk to be number coming out of uniformly weakly locally-connectedness for
εk and set η = η1. Let a, a′ ∈ A be such that ||a− a′|| < η.

We claim that by connectedness we can find a n1 ≥ 1 and a sequence of points x
(1)
i for 0 ≤ i ≤ 2n1

such that x
(1)
0 = a, x

(1)
2n1 = a′ and ||x(1)i − x

(1)
i+1|| < η1. This is because the set of points in A that

can be connected by a η1-chain of points is both open and closed, hence equal to A. Each of the

x
(1)
i lie the same connected component of Bε1(x

(1)
i )∩Bε1(x

(1)
i+1)∩A and hence we can find n2 and

sequences x
(2)
i,j in Bε1(x

(1)
i ) ∩ Bε1(x

(1)
i+1) ∩ A for 0 ≤ i ≤ 2n1 , 0 ≤ j ≤ 2n2 with x

(2)
i,0 = x

(1)
i and

x
(2)
i,2n2 = x

(1)
i+1. Continue this process, getting nk and x(k).

Let J ⊂ [0, 1] be the set of points with binary expansion that can be written as i
2n1+...+nk

for

some i and k. This is dense. Then we define g : J → A by sending i
2n1+...+nk

to the point of the

x(nk) that i corresponds to. This can be checked to be continuous, since ηk < εk and the εk go
to zero. Hence g extends to a continuous function γ : [0, 1] → A. The image lies in A since A is
compact, hence closed.

The only thing left to check is that γ stays within Bε(a) ∩ Bε′(a) ∩ A. But it stays within∑∞
k=1 εk < ε of a and a′ by construction. �
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