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Kate Saenko, Trevor Darrell

Abstract—
Models based on deep convolutional networks have dominated recent image interpretation tasks; we investigate whether models which
are also recurrent are effective for tasks involving sequences, visual and otherwise. We describe a class of recurrent convolutional
architectures which is end-to-end trainable and suitable for large-scale visual understanding tasks, and demonstrate the value of these
models for activity recognition, image captioning, and video description. In contrast to previous models which assume a fixed visual
representation or perform simple temporal averaging for sequential processing, recurrent convolutional models are “doubly deep” in
that they learn compositional representations in space and time. Learning long-term dependencies is possible when nonlinearities are
incorporated into the network state updates. Differentiable recurrent models are appealing in that they can directly map variable-length
inputs (e.g., videos) to variable-length outputs (e.g., natural language text) and can model complex temporal dynamics; yet they can be
optimized with backpropagation. Our recurrent sequence models are directly connected to modern visual convolutional network
models and can be jointly trained to learn temporal dynamics and convolutional perceptual representations. Our results show that such
models have distinct advantages over state-of-the-art models for recognition or generation which are separately defined or optimized.
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1 INTRODUCTION

Recognition and description of images and videos is
a fundamental challenge of computer vision. Dramatic
progress has been achieved by supervised convolutional
neural network (CNN) models on image recognition tasks,
and a number of extensions to process video have been
recently proposed. Ideally, a video model should allow pro-
cessing of variable length input sequences, and also provide
for variable length outputs, including generation of full-
length sentence descriptions that go beyond conventional
one-versus-all prediction tasks. In this paper we propose
Long-term Recurrent Convolutional Networks (LRCNs), a class
of architectures for visual recognition and description which
combines convolutional layers and long-range temporal re-
cursion and is end-to-end trainable (Figure 1). We instanti-
ate our architecture for specific video activity recognition,
image caption generation, and video description tasks as
described below.

Research on CNN models for video processing has
considered learning 3D spatio-temporal filters over raw
sequence data [1], [2], and learning of frame-to-frame rep-
resentations which incorporate instantaneous optic flow or
trajectory-based models aggregated over fixed windows
or video shot segments [3], [4]. Such models explore two
extrema of perceptual time-series representation learning:
either learn a fully general time-varying weighting, or apply
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Fig. 1. We propose Long-term Recurrent Convolutional Networks (LR-
CNs), a class of architectures leveraging the strengths of rapid progress
in CNNs for visual recognition problems, and the growing desire to
apply such models to time-varying inputs and outputs. LRCN processes
the (possibly) variable-length visual input (left) with a CNN (middle-
left), whose outputs are fed into a stack of recurrent sequence models
(LSTMs, middle-right), which finally produce a variable-length prediction
(right). Both the CNN and LSTM weights are shared across time, result-
ing in a representation that scales to arbitrarily long sequences.

simple temporal pooling. Following the same inspiration
that motivates current deep convolutional models, we ad-
vocate for video recognition and description models which
are also deep over temporal dimensions; i.e., have temporal
recurrence of latent variables. Recurrent Neural Network
(RNN) models are “deep in time” – explicitly so when
unrolled – and form implicit compositional representations
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in the time domain. Such “deep” models predated deep
spatial convolution models in the literature [5], [6].

The use of RNNs in perceptual applications has been ex-
plored for many decades, with varying results. A significant
limitation of simple RNN models which strictly integrate
state information over time is known as the “vanishing
gradient” effect: the ability to backpropagate an error signal
through a long-range temporal interval becomes increas-
ingly difficult in practice. Long Short-Term Memory (LSTM)
units, first proposed in [7], are recurrent modules which
enable long-range learning. LSTM units have hidden state
augmented with nonlinear mechanisms to allow state to
propagate without modification, be updated, or be reset,
using simple learned gating functions. LSTMs have recently
been demonstrated to be capable of large-scale learning of
speech recognition [8] and language translation models [9],
[10].

We show here that convolutional networks with re-
current units are generally applicable to visual time-series
modeling, and argue that in visual tasks where static or flat
temporal models have previously been employed, LSTM-
style RNNs can provide significant improvement when
ample training data are available to learn or refine the rep-
resentation. Specifically, we show that LSTM type models
provide for improved recognition on conventional video
activity challenges and enable a novel end-to-end optimiz-
able mapping from image pixels to sentence-level natural
language descriptions. We also show that these models
improve generation of descriptions from intermediate visual
representations derived from conventional visual models.

We instantiate our proposed architecture in three ex-
perimental settings (Figure 3). First, we show that directly
connecting a visual convolutional model to deep LSTM
networks, we are able to train video recognition models
that capture temporal state dependencies (Figure 3 left;
Section 4). While existing labeled video activity datasets
may not have actions or activities with particularly com-
plex temporal dynamics, we nonetheless observe significant
improvements on conventional benchmarks.

Second, we explore end-to-end trainable image to sen-
tence mappings. Strong results for machine translation
tasks have recently been reported [9], [10]; such models
are encoder-decoder pairs based on LSTM networks. We
propose a multimodal analog of this model, and describe an
architecture which uses a visual convnet to encode a deep
state vector, and an LSTM to decode the vector into a natural
language string (Figure 3 middle; Section 5). The resulting
model can be trained end-to-end on large-scale image and
text datasets, and even with modest training provides com-
petitive generation results compared to existing methods.

Finally, we show that LSTM decoders can be driven
directly from conventional computer vision methods which
predict higher-level discriminative labels, such as the se-
mantic video role tuple predictors in [11] (Figure 3, right;
Section 6). While not end-to-end trainable, such models offer
architectural and performance advantages over previous
statistical machine translation-based approaches.

We have realized a generic framework for recurrent
models in the widely adopted deep learning framework
Caffe [12], including ready-to-use implementations of RNN
and LSTM units. (See http://jeffdonahue.com/lrcn/.)
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Fig. 2. A diagram of a basic RNN cell (left) and an LSTM memory
cell (right) used in this paper (from [13], a slight simplification of the
architecture described in [14], which was derived from the LSTM initially
proposed in [7]).

2 BACKGROUND: RECURRENT NETWORKS

Traditional recurrent neural networks (RNNs, Figure 2, left)
model temporal dynamics by mapping input sequences to
hidden states, and hidden states to outputs via the following
recurrence equations (Figure 2, left):

ht = g(Wxhxt +Whhht−1 + bh)

zt = g(Whzht + bz)

where g is an element-wise non-linearity, such as a sigmoid
or hyperbolic tangent, xt is the input, ht ∈ RN is the hidden
state with N hidden units, and zt is the output at time t.
For a length T input sequence 〈x1, x2, ..., xT 〉, the updates
above are computed sequentially as h1 (letting h0 = 0), z1,
h2, z2, ..., hT , zT .

Though RNNs have proven successful on tasks such
as speech recognition [15] and text generation [16], it can
be difficult to train them to learn long-term dynamics,
likely due in part to the vanishing and exploding gradients
problem [7] that can result from propagating the gradients
down through the many layers of the recurrent network,
each corresponding to a particular time step. LSTMs provide
a solution by incorporating memory units that explicitly
allow the network to learn when to “forget” previous hid-
den states and when to update hidden states given new
information. As research on LSTMs has progressed, hidden
units with varying connections within the memory unit
have been proposed. We use the LSTM unit as described
in [13] (Figure 2, right), a slight simplification of the one
described in [8], which was derived from the original LSTM
unit proposed in [7]. Letting σ(x) = (1 + e−x)

−1 be the
sigmoid non-linearity which squashes real-valued inputs to
a [0, 1] range, and letting tanh(x) = ex−e−x

ex+e−x = 2σ(2x) − 1
be the hyperbolic tangent non-linearity, similarly squashing
its inputs to a [−1, 1] range, the LSTM updates for time step
t given inputs xt, ht−1, and ct−1 are:

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf )

ot = σ(Wxoxt +Whoht−1 + bo)

gt = tanh(Wxcxt +Whcht−1 + bc)

ct = ft � ct−1 + it � gt
ht = ot � tanh(ct)

http://jeffdonahue.com/lrcn/
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x� y denotes the element-wise product of vectors x and y.
In addition to a hidden unit ht ∈ RN , the LSTM includes

an input gate it ∈ RN , forget gate ft ∈ RN , output gate
ot ∈ RN , input modulation gate gt ∈ RN , and memory cell
ct ∈ RN . The memory cell unit ct is a sum of two terms: the
previous memory cell unit ct−1 which is modulated by ft,
and gt, a function of the current input and previous hidden
state, modulated by the input gate it. Because it and ft are
sigmoidal, their values lie within the range [0, 1], and it
and ft can be thought of as knobs that the LSTM learns
to selectively forget its previous memory or consider its
current input. Likewise, the output gate ot learns how much
of the memory cell to transfer to the hidden state. These
additional cells seem to enable the LSTM to learn complex
and long-term temporal dynamics for a wide variety of
sequence learning and prediction tasks. Additional depth
can be added to LSTMs by stacking them on top of each
other, using the hidden state h(`−1)t of the LSTM in layer
`− 1 as the input to the LSTM in layer `.

Recently, LSTMs have achieved impressive results on
language tasks such as speech recognition [8] and ma-
chine translation [9], [10]. Analogous to CNNs, LSTMs are
attractive because they allow end-to-end fine-tuning. For
example, [8] eliminates the need for complex multi-step
pipelines in speech recognition by training a deep bidirec-
tional LSTM which maps spectrogram inputs to text. Even
with no language model or pronunciation dictionary, the
model produces convincing text translations. [9] and [10]
translate sentences from English to French with a multi-
layer LSTM encoder and decoder. Sentences in the source
language are mapped to a hidden state using an encoding
LSTM, and then a decoding LSTM maps the hidden state to
a sequence in the target language. Such an encoder-decoder
scheme allows an input sequence of arbitrary length to
be mapped to an output sequence of different length. The
sequence-to-sequence architecture for machine translation
circumvents the need for language models.

The advantages of LSTMs for modeling sequential data
in vision problems are twofold. First, when integrated with
current vision systems, LSTM models are straightforward
to fine-tune end-to-end. Second, LSTMs are not confined to
fixed length inputs or outputs allowing simple modeling
for sequential data of varying lengths, such as text or video.
We next describe a unified framework to combine recurrent
models such as LSTMs with deep convolutional networks
to form end-to-end trainable networks capable of complex
visual and sequence prediction tasks.

3 LONG-TERM RECURRENT CONVOLUTIONAL
NETWORK (LRCN) MODEL

This work proposes a Long-term Recurrent Convolutional
Network (LRCN) model combining a deep hierarchical vi-
sual feature extractor (such as a CNN) with a model that can
learn to recognize and synthesize temporal dynamics for
tasks involving sequential data (inputs or outputs), visual,
linguistic, or otherwise. Figure 1 depicts the core of our
approach. LRCN works by passing each visual input xt
(an image in isolation, or a frame from a video) through
a feature transformation φV (.) with parameters V , usually
a CNN, to produce a fixed-length vector representation

φV (xt). The outputs of φV are then passed into a recurrent
sequence learning module.

In its most general form, a recurrent model has param-
eters W , and maps an input xt and a previous time step
hidden state ht−1 to an output zt and updated hidden state
ht. Therefore, inference must be run sequentially (i.e., from
top to bottom, in the Sequence Learning box of Figure 1), by
computing in order: h1 = fW (x1, h0) = fW (x1, 0), then
h2 = fW (x2, h1), etc., up to hT . Some of our models stack
multiple LSTMs atop one another as described in Section 2.

To predict a distribution P (yt) over outcomes yt ∈ C
(where C is a discrete, finite set of outcomes) at time step
t, the outputs zt ∈ Rdz of the sequential model are passed
through a linear prediction layer ŷt = Wzzt + bz , where
Wz ∈ R|C|×dz and bz ∈ R|C| are learned parameters. Finally,
the predicted distribution P (yt) is computed by taking the
softmax of ŷt: P (yt = c) = softmax(ŷt) =

exp(ŷt,c)∑
c′∈C

exp(ŷt,c′ )
.

The success of recent deep models for object recogni-
tion [17], [18], [19] suggests that strategically composing
many “layers” of non-linear functions can result in powerful
models for perceptual problems. For large T , the above
recurrence indicates that the last few predictions from a
recurrent network with T time steps are computed by a very
“deep” (T layer) non-linear function, suggesting that the
resulting recurrent model may have similar representational
power to a T layer deep network. Critically, however, the
sequence model’s weights W are reused at every time step,
forcing the model to learn generic time step-to-time step
dynamics (as opposed to dynamics conditioned on t, the
sequence index) and preventing the parameter size from
growing in proportion to the maximum sequence length.

In most of our experiments, the visual feature transfor-
mation φ corresponds to the activations in some layer of
a deep CNN. Using a visual transformation φV (.) which
is time-invariant and independent at each time step has the
important advantage of making the expensive convolutional
inference and training parallelizable over all time steps of
the input, facilitating the use of fast contemporary CNN
implementations whose efficiency relies on independent
batch processing, and end-to-end optimization of the visual
and sequential model parameters V and W .

We consider three vision problems (activity recognition,
image description and video description), each of which
instantiates one of the following broad classes of sequential
learning tasks:

1) Sequential input, static output (Figure 3, left):
〈x1, x2, ..., xT 〉 7→ y. The visual activity recognition
problem can fall under this umbrella, with videos
of arbitrary length T as input, but with the goal
of predicting a single label like running or jumping
drawn from a fixed vocabulary.

2) Static input, sequential output (Figure 3, middle):
x 7→ 〈y1, y2, ..., yT 〉. The image captioning problem
fits in this category, with a static (non-time-varying)
image as input, but a much larger and richer label
space consisting of sentences of any length.

3) Sequential input and output (Figure 3, right):
〈x1, x2, ..., xT 〉 7→ 〈y1, y2, ..., yT ′〉. In tasks such as
video description, both the visual input and output
are time-varying, and in general the number of
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Fig. 3. Task-specific instantiations of our LRCN model for activity recognition, image description, and video description.

input and output time steps may differ (i.e., we may
have T 6= T ′). In video description, for example, the
number of frames in the video should not constrain
the length of (number of words in) the natural
language description.

In the previously described generic formulation of re-
current models, each instance has T inputs 〈x1, x2, ..., xT 〉
and T outputs 〈y1, y2, ..., yT 〉. Note that this formulation
does not align cleanly with any of the three problem classes
described above – in the first two classes, either the input
or output is static, and in the third class, the input length
T need not match the output length T ′. Hence, we describe
how we adapt this formulation in our hybrid model to each
of the above three problem settings.

With sequential inputs and static outputs (class 1), we
take a late-fusion approach to merging the per-time step
predictions 〈y1, y2, ..., yT 〉 into a single prediction y for the
full sequence. With static inputs x and sequential outputs
(class 2), we simply duplicate the input x at all T time
steps: ∀t ∈ {1, 2, ..., T} : xt := x. Finally, for a sequence-
to-sequence problem with (in general) different input and
output lengths (class 3), we take an “encoder-decoder”
approach, as proposed for machine translation by [9], [20].
In this approach, one sequence model, the encoder, maps
the input sequence to a fixed-length vector, and another se-
quence model, the decoder, unrolls this vector to a sequential
output of arbitrary length. Under this type of model, a run
of the full system on one instance occurs over T+T ′−1 time
steps. For the first T time steps, the encoder processes the
input x1, x2, ..., xT , and the decoder is inactive until time
step T , when the encoder’s output is passed to the decoder,
which in turn predicts the first output y1. For the latter T ′−1
time steps, the decoder predicts the remainder of the out-
put y2, y3, ..., yT ′ with the encoder inactive. This encoder-
decoder approach, as applied to the video description task,
is depicted in Section 6, Figure 5 (left).

Under the proposed system, the parameters (V,W )
of the model’s visual and sequential components can
be jointly optimized by maximizing the likelihood of
the ground truth outputs yt at each time step t, con-
ditioned on the input data and labels up to that point
(x1:t, y1:t−1). In particular, for a training set D of labeled
sequences (xt, yt)

T
t=1 ∈ D, we optimize parameters (V,W )

to minimize the expected negative log likelihood of a

sequence sampled from the training set L(V,W,D) =
− 1
|D|

∑
(xt,yt)Tt=1∈D

∑T
t=1 logP (yt|x1:t, y1:t−1, V,W ).

One of the most appealing aspects of the described sys-
tem is the ability to learn the parameters “end-to-end,” such
that the parameters V of the visual feature extractor learn
to pick out the aspects of the visual input that are relevant
to the sequential classification problem. We train our LRCN
models using stochastic gradient descent, with backprop-
agation used to compute the gradient ∇V,WL(V,W, D̃) of
the objective L with respect to all parameters (V,W ) over
minibatches D̃ ⊂ D sampled from the training dataset D.

We next demonstrate the power of end-to-end trainable
hybrid convolutional and recurrent networks by exploring
three applications: activity recognition, image captioning,
and video description.

4 ACTIVITY RECOGNITION

Activity recognition is an instance of the first class of se-
quential learning tasks described above: each frame in a
length T sequence is the input to a single convolutional
network (i.e., the convnet weights are tied across time). We
consider both RGB and flow as inputs to our recognition
system. Flow is computed with [21] and transformed into a
“flow image” by scaling and shifting x and y flow values to
a range of [−128,+128]. A third channel for the flow image
is created by calculating the flow magnitude.

During training, videos are resized to 240× 320 and we
augment our data by using 227 × 227 crops and mirroring.
Additionally, we train the LRCN networks with video clips
of 16 frames, even though the UCF101 videos are generally
much longer (on the order of 100 frames when extracting
frames at 30 FPS). Training on shorter video clips can be
seen as analogous to training on image crops and is a useful
method of data augmentation. LRCN is trained to predict
the video’s activity class at each time step. To produce a
single label prediction for an entire video clip, we average
the label probabilities – the outputs of the network’s softmax
layer – across all frames and choose the most probable label.
At test time, we extract 16 frame clips with a stride of 8
frames from each video and average across all clips from a
single video.

The CNN base of LRCN in our activity recognition
experiments is a hybrid of the CaffeNet [12] reference model
(a minor variant of AlexNet [17]) and the network used
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by Zeiler & Fergus [22]. The network is pre-trained on
the 1.2M image ILSVRC-2012 [23] classification training
subset of the ImageNet [24] dataset, giving the network a
strong initialization to facilitate faster training and avoid
overfitting to the relatively small video activity recognition
datasets. When classifying center crops, the top-1 classifica-
tion accuracy is 60.2% and 57.4% for the hybrid and CaffeNet
reference models, respectively.

We compare LRCN to a single frame baseline model.
In our baseline model, T video frames are individually
classified by a CNN. As in the LSTM model, whole video
classification is done by averaging scores across all video
frames.

4.1 Evaluation
We evaluate our architecture on the UCF101 dataset [25]
which consists of over 12,000 videos categorized into 101
human action classes. The dataset is split into three splits,
with just under 8,000 videos in the training set for each split.

We explore various hyperparameters for the LRCN activ-
ity recognition architecture. To explore different variants, we
divide the first training split of UCF101 into a smaller train-
ing set (≈6,000 videos) and a validation set (≈3,000 videos).
We find that the most influential hyperparameters include
the number of hidden units in the LSTM and whether fc6
or fc7 features are used as input to the LSTM. We compare
networks with 256, 512, and 1024 LSTM hidden units. When
using flow as an input, more hidden units leads to better
peformance with 1024 hidden units yielding a 1.7% boost in
accuracy in comparison to a network with 256 hidden units
on our validation set. In contrast, for networks with RGB
input, the number of hidden units has little impact on the
performance of the model. We thus use 1024 hidden units
for flow inputs, and 256 for RGB inputs. We find that using
fc6 as opposed to fc7 features improves accuracy when
using flow as input on our validation set by 1%. When using
RGB images as input, the difference between using fc6 or
fc7 features is quite small; using fc6 features only increases
accuracy by 0.2%. Because both models perform better with
fc6 features, we train our final models using fc6 features
(denoted by LRCN-fc6). We also considered subsampling
the frames input to the LSTM, but found that this hurts
performance compared with using all frames. Additionally,
when training the LRCN network end-to-end, we found that
aggressive dropout (0.9) was needed to avoid overfitting.

Table 1 reports the average accuracy across the three
standard test splits of UCF101. Columns 2-3, compare video
classification of LRCN against the baseline single frame
architecture for both RGB and flow inputs. LRCN yields the
best results for both RGB and flow and improves upon the
baseline network by 0.83% and 2.91% respectively. RGB and
flow networks can be combined by computing a weighted
average of network scores as proposed in [4]. Like [4],
we report two weighted averages of the predictions from
the RGB and flow networks in Table 1 (right). Since the
flow network outperforms the RGB network, weighting the
flow network higher unsurprisingly leads to better accuracy.
In this case, LRCN outperforms the baseline single-frame
model by 3.40%.

Table 2 compares LRCN’s accuracy with the single frame
baseline model for individual classes on Split 1 of UCF101.

Single Input Type Weighted Average
Model RGB Flow 1/2, 1/2 1/3, 2/3
Single frame 67.37 74.37 75.46 78.94
LRCN-fc6 68.20 77.28 80.90 82.34

TABLE 1
Activity recognition: Comparing single frame models to LRCN networks
for activity recognition on the UCF101 [25] dataset, with RGB and flow

inputs. Average values across all three splits are shown. LRCN
consistently and strongly outperforms a model based on predictions

from the underlying convolutional network architecture alone.

Label ∆ Label ∆
BoxingPunchingBag 40.82 BoxingSpeedBag -16.22
HighJump 29.73 Mixing -15.56
JumpRope 28.95 Knitting -14.71
CricketShot 28.57 Typing -13.95
Basketball 28.57 Skiing -12.50
WallPushups 25.71 BaseballPitch -11.63
Nunchucks 22.86 BrushingTeeth -11.11
ApplyEyeMakeup 22.73 Skijet -10.71
HeadMassage 21.95 Haircut -9.10
Drumming 17.78 TennisSwing -8.16

TABLE 2
Activity recognition: comparison of improvement ∆ in LRCN’s per-class
recognition accuracy versus the single-frame baseline. Here we report
results on all three splits of UCF101 (only results on the first split were
presented in the paper). ∆ is the difference between LRCN’s accuracy

and the single-frame model’s accuracy.

For the majority of classes, LRCN improves performance
over the single frame model. Though LRCN performs worse
on some classes including Knitting and Mixing, in general
when LRCN performs worse, the loss in accuracy is not
as substantial as the gain in accuracy for classes like Box-
ingPunchingBag and HighJump. Consequently, accuracy is
higher overall.

Table 3 compares accuracies for the LRCN flow and
LRCN RGB models for individual classes on Split 1 of
UCF101. Note that for some classes the LRCN flow model
outperforms the LRCN RGB model and vice versa. One
explanation is that activities which are better classified by
the LRCN RGB model are best determined by which objects
are present in the scene, while activities which are better
classified by the LRCN flow model are best classified by the
kind of motion in the scene. For example, activity classes
like Typing are highly correlated with the presence of certain
objects, such as a keyboard, and are thus best learned by the
LRCN RGB model. Other activities such as SoccerJuggling
include more generic objects which are frequently seen
in other activities (soccer balls, people) and are thus best
identified from class-specific motion cues. Because RGB and
flow signals are complementary, the best models take both
into account.

LRCN shows clear improvement over the baseline
single-frame system and is comparable to accuracy achieved
by other deep models. [4] report the results on UCF101
by computing a weighted average between flow and RGB
networks and achieve 87.6%. [3] reports 65.4% accuracy on
UCF101, which is substantially lower than LRCN.

5 IMAGE CAPTIONING

In contrast to activity recognition, the static image caption-
ing task requires only a single invocation of a convolutional
network since the input consists of a single image. At each
time step, both the image features and the previous word



6

Label ∆ Label ∆
BoxingPunchingBag 57.14 Typing -44.19
PushUps 53.33 TennisSwing -42.86
JumpRope 50.00 FieldHockeyPenalty -32.50
SoccerJuggling 48.72 BrushingTeeth -30.56
HandstandWalking 44.12 CuttingInKitchen -30.30
Basketball 40.00 Skijet -28.57
BodyWeightSquats 38.46 Mixing -26.67
Lunges 37.84 Skiing -25.00
Nunchucks 34.29 Knitting -20.59
WallPushups 34.29 FloorGymnastics -19.44

TABLE 3
Activity recognition: comparison of per-class recognition accuracy

between the flow and RGB LRCN models. ∆ is the difference between
LRCN flow accuracy and LRCN RGB accuracy.

are provided as inputs to the sequence model, in this case a
stack of LSTMs (each with 1000 hidden units), which is used
to learn the dynamics of the time-varying output sequence,
natural language.

At time step t, the input to the bottom-most LSTM is the
embedded word from the previous time step yt−1. Input
words are encoded as “one-hot” vectors: vectors y ∈ RK

with a single non-zero component yi = 1 denoting the ith

word in the vocabulary, where K is the number of words
in the vocabulary, plus one additional entry for the <BOS>
(beginning of sequence) token which is always taken as y0,
the “previous word” at the first time step (t = 1). These
one-hot vectors are then projected into an embedding space
with dimension de by multiplication Weyt with a learned
parameter matrix We ∈ Rde×K . The result of a matrix-
vector multiplication with a one-hot vector is the column
of the matrix corresponding to the index of the single non-
zero component of the one-hot vector. We can therefore be
thought of as a “lookup table,” mapping each of the K
words in the vocabulary to a de-dimensional vector.

The visual feature representation φV (x) of the image x
may be input to the sequence model – a stack of L LSTMs
– by concatenating it at each time step either with (1) the
embedded previous word Weyt−1 and fed into the first
LSTM of the stack, or (2) the hidden state h

(`−1)
t output

from LSTM `− 1 and fed into LSTM `, for some ` ∈ 2, ..., L.
These choices are depicted in Figure 4. We refer to the
latter choice as “factored,” as it forces a sort of separation
of responsibilities by “blinding” the first ` − 1 LSTMs and
forcing all of the capacity of their hidden states at time step
t to represent only the partial caption y1:t−1 independent
of the visual input, while the LSTMs starting from ` are
responsible for fusing the lower layer’s hidden state given
by the partial caption with the visual feature representation
φV (x) to produce a joint hidden state representation h

(`)
t

of the visual and language inputs up to time step t from
which the next word yt can be predicted. In the factored
case, the hidden state ht for the lower layers is conditionally
independent of the image x given the partial caption y1:t−1.

The outputs of the final LSTM in the stack are the
inputs to a learned linear prediction layer with a softmax
producing a distribution P (yt|y1:t−1, φV (x)) over words yt
in the model’s vocabulary, including the <EOS> token de-
noting the end of the caption, allowing the model to predict
captions of varying length. The visual model φV used for
our image captioning experiments is either the CaffeNet [12]
reference model, a variant of AlexNet [17], or the more

R@1 R@5 R@10 Medr

Caption to Image (Flickr30k)

DeViSE [30] 6.7 21.9 32.7 25
SDT-RNN [29] 8.9 29.8 41.1 16
DeFrag [28] 10.3 31.4 44.5 13
m-RNN [27] 12.6 31.2 41.5 16
ConvNet [31] 11.8 34.0 46.3 13
LRCN2f (ours) 17.5 40.3 50.8 9

Image to Caption (Flickr30k)

DeViSE [30] 4.5 18.1 29.2 26
SDT-RNN [29] 9.6 29.8 41.1 16
DeFrag [28] 16.4 40.2 54.7 8
m-RNN [27] 18.4 40.2 50.9 10
ConvNet [31] 14.8 39.2 50.9 10
LRCN2f (ours) 23.6 46.6 58.3 7

TABLE 4
Image description: retrieval results for the Flickr30k [32] datasets.
R@K is the average recall at rank K (high is good). Medr is the

median rank (low is good).

modern and computationally expensive VGGNet [18] model
pre-trained for ILSVRC-2012 [23] classification.

Without any explicit language modeling or impositions
on the structure of the generated captions, the described
LRCN system learns mappings from images input as pixel
intensity values to natural language descriptions that are
often semantically descriptive and grammatically correct.

At training time, the previous word inputs y1:t−1 at time
step t are from the ground truth caption. For inference of
captions on a novel image x, the input is a sample ỹt ∼
P (yt|ỹ1:t−1, φV (x)) from the model’s predicted distribution
at the previous time step, and generation continues until an
<EOS> (end of sequence) token is generated.

5.1 Evaluation

We evaluate our image description model for retrieval and
generation tasks. We first demonstrate the effectiveness of
our model by quantitatively evaluating it on the image and
caption retrieval tasks proposed by [26] and seen in [27],
[28], [29], [30], [31]. We report results on Flickr30k [32], and
COCO 2014 [33] datasets, both with five captions annotated
per image.

5.1.1 Retrieval
Retrieval results on the Flickr30k [32] dataset are recorded in
Table 4. We report median rank, Medr, of the first retrieved
ground truth image or caption and Recall@K , the number
of images or captions for which a correct caption or image is
retrieved within the top K results. Our model consistently
outperforms the strong baselines from recent work [27],
[28], [29], [30], [31] as can be seen in Table 4. Here, we
note that the VGGNet model in [31] (called OxfordNet in
their work) outperforms our model on the retrieval task.
However, VGGNet is a stronger convolutional network [18]
than that used for our results on this task. The strength
of our sequence model (and integration of the sequence
and visual models) can be more directly measured against
the ConvNet [31] result, which uses a very similar base
CNN architecture (AlexNet [17], where we use CaffeNet)
pretrained on the same data.

We also ablate the model’s retrieval performance on a
randomly chosen subset of 1000 images (and 5000 cap-
tions) from the COCO 2014 [33] validation set. Results are
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Fig. 4. Three variants of the LRCN image captioning architecture that we experimentally evaluate. We explore the effect of depth in the LSTM
stack, and the effect of the “factorization” of the modalities.

recorded in Table 5. The first group of results for each
task examines the effectiveness of an LSTM compared with
a “vanilla” RNN as described in Section 2. These results
demonstrate that the use of the LSTM unit compared to
the simpler RNN architecture is an important element of
our model’s performance on this task, justifying the addi-
tional complexity and suggesting that the LSTM’s gating
mechanisms allowing for “long-term” memory may be quite
useful, even for relatively simple sequences.

Within the second and third result groups, we compare
performance among the three sequence model architectural
variants depicted in Figure 4. For both tasks and under all
metrics, the two layer, unfactored variant (LRCN2u) per-
forms worse than the other two. The fact that LRCN1u out-
performs LRCN2u indicates that stacking additional LSTM
layers alone is not beneficial for this task. The other two
variants (LRCN2f and LRCN1u) perform similarly across
the board, with LRCN2f appearing to have a slight edge
in the image to caption task under most metrics, but the
reverse for caption to image retrieval.

Unsurprisingly, finetuning the CNN (indicated by the
“FT?” column of Table 5) and using a more powerful CNN
(VGGNet [18] rather than CaffeNet) each improve results
substantially across the board. Finetuning boosts the R@k
metrics by 3-5% for CaffeNet, and 5-8% for VGGNet. Switch-
ing from CaffeNet to VGGNet improves results by around
8-12% for the caption to image task, and by roughly 11-17%
for the image to caption task.

5.1.2 Generation
We evaluate LRCN’s caption generation performance on
the COCO2014 [33] dataset using the official metrics on
which COCO image captioning submissions are evaluated.
The BLEU [34] and METEOR [36] metrics were designed
for automatic evaluation of machine translation methods.
ROUGE-L [37] was designed for evaluating summarization
performance. CIDEr-D [35] was designed specifically to
evaluate the image captioning task.

In Table 6 we evaluate variants of our model along the
same axes as done for the retrieval tasks in Table 5. In the
last of the three groups of results, we additionally explore
and evaluate various caption generation strategies that can

Vision Model Sequence Model Retrieval Performance

CNN FT? Unit L Factor? R@1 R@5 R@10 Medr

Caption to Image

CaffeNet - RNN 2 X 21.3 51.7 67.2 5
CaffeNet - LSTM 2 X 25.0 56.2 70.6 4

CaffeNet - LSTM 1 - 25.2 56.2 70.8 4
CaffeNet - LSTM 2 - 23.4 54.8 69.3 5
CaffeNet - LSTM 2 X 25.0 56.2 70.6 4

CaffeNet X LSTM 1 - 28.5 60.0 74.5 4
CaffeNet X LSTM 2 - 25.6 57.2 72.2 4
CaffeNet X LSTM 2 X 27.2 59.6 74.7 4

VGGNet - LSTM 2 X 33.5 68.1 80.8 3
VGGNet X LSTM 2 X 39.3 74.7 85.9 2

Image to Caption

CaffeNet - RNN 2 X 30.2 61.0 72.6 4
CaffeNet - LSTM 2 X 33.8 65.3 75.3 3

CaffeNet - LSTM 1 - 32.3 64.5 75.6 3
CaffeNet - LSTM 2 - 29.9 60.8 72.7 3
CaffeNet - LSTM 2 X 33.8 65.3 75.3 3

CaffeNet X LSTM 1 - 36.1 68.4 79.5 3
CaffeNet X LSTM 2 - 33.1 63.7 76.9 3
CaffeNet X LSTM 2 X 36.3 67.3 80.6 2

VGGNet - LSTM 2 X 46.0 77.4 88.3 2
VGGNet X LSTM 2 X 53.3 84.3 91.9 1

TABLE 5
Retrieval results (image to caption and caption to image) for a randomly

chosen subset (1000 images) of the COCO 2014 [33] validation set.
R@K is the average recall at rank K (high is good). Medr is the

median rank (low is good).

be employed for a given network. The simplest strategy,
and the one employed for most of our generation results
in our prior work [43], is to generate captions greedily;
i.e., by simply choosing the most probable word at each
time step. This is equivalent to (and denoted in Table 6 by)
beam search with beam width 1. In general, beam search
with beam width N approximates the most likely caption
by retaining and expanding only the N current most likely
partial captions, according to the model. We find that of the
beam search strategies, a beam width of 3-5 gives the best
generation numbers – performance saturates quickly and
even degrades for larger beam width (e.g., 10).

An alternative, non-deterministic generation strategy is
to randomly sample N captions from the model’s distri-
bution and choose the most probable among these. Under
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Generation Strategy Vision Model Sequence Model Generation Performance (COCO 2014 [33] Validation Set)

Beam Sample
Width N T CNN FT? Unit L Factor? B1 B2 B3 B4 C M R

1 - - CaffeNet - RNN 2 X 0.638 0.454 0.315 0.220 0.660 0.209 0.473
1 - - CaffeNet - LSTM 2 X 0.646 0.462 0.321 0.224 0.674 0.210 0.477

1 - - CaffeNet - LSTM 1 - 0.654 0.475 0.333 0.231 0.661 0.209 0.480
1 - - CaffeNet - LSTM 2 - 0.653 0.470 0.328 0.230 0.682 0.212 0.480
1 - - CaffeNet - LSTM 2 X 0.646 0.462 0.321 0.224 0.674 0.210 0.477

1 - - CaffeNet X LSTM 1 - 0.661 0.485 0.344 0.241 0.702 0.216 0.489
1 - - CaffeNet X LSTM 2 - 0.659 0.478 0.338 0.238 0.716 0.217 0.486
1 - - CaffeNet X LSTM 2 X 0.659 0.478 0.336 0.237 0.717 0.218 0.486

1 - - VGGNet - LSTM 2 X 0.674 0.494 0.351 0.248 0.773 0.227 0.497
1 - - VGGNet X LSTM 2 X 0.695 0.519 0.374 0.268 0.839 0.237 0.512

- 100 1.5 CaffeNet - RNN 2 X 0.647 0.466 0.334 0.244 0.703 0.212 0.479
- 100 1.5 CaffeNet - LSTM 2 X 0.657 0.478 0.344 0.251 0.720 0.215 0.485

- 100 1.5 CaffeNet - LSTM 1 - 0.664 0.490 0.354 0.254 0.704 0.211 0.488
- 100 1.5 CaffeNet - LSTM 2 - 0.664 0.486 0.352 0.257 0.732 0.216 0.489
- 100 1.5 CaffeNet - LSTM 2 X 0.657 0.478 0.344 0.251 0.720 0.215 0.485

- 100 1.5 CaffeNet X LSTM 1 - 0.679 0.507 0.370 0.268 0.753 0.219 0.499
- 100 1.5 CaffeNet X LSTM 2 - 0.672 0.495 0.361 0.265 0.762 0.222 0.495
- 100 1.5 CaffeNet X LSTM 2 X 0.670 0.493 0.358 0.264 0.764 0.222 0.495

- 100 1.5 VGGNet - LSTM 2 X 0.690 0.514 0.377 0.278 0.828 0.231 0.508
- 100 1.5 VGGNet X LSTM 2 X 0.711 0.541 0.402 0.300 0.896 0.242 0.524

1 - - VGGNet X LSTM 2 X 0.695 0.519 0.374 0.268 0.839 0.237 0.512
2 - - VGGNet X LSTM 2 X 0.707 0.533 0.394 0.291 0.879 0.242 0.520
3 - - VGGNet X LSTM 2 X 0.708 0.536 0.399 0.298 0.888 0.243 0.521
4 - - VGGNet X LSTM 2 X 0.706 0.534 0.398 0.299 0.888 0.243 0.521
5 - - VGGNet X LSTM 2 X 0.704 0.533 0.398 0.300 0.888 0.242 0.520
10 - - VGGNet X LSTM 2 X 0.699 0.528 0.395 0.298 0.886 0.241 0.518

- 1 2.0 VGGNet X LSTM 2 X 0.658 0.472 0.327 0.224 0.733 0.222 0.483
- 10 2.0 VGGNet X LSTM 2 X 0.708 0.534 0.391 0.286 0.868 0.239 0.519
- 25 2.0 VGGNet X LSTM 2 X 0.712 0.540 0.398 0.294 0.885 0.241 0.523
- 100 2.0 VGGNet X LSTM 2 X 0.714 0.543 0.402 0.297 0.889 0.242 0.524

- 100 1.0 VGGNet X LSTM 2 X 0.674 0.494 0.357 0.261 0.805 0.228 0.494
- 100 1.5 VGGNet X LSTM 2 X 0.711 0.541 0.402 0.300 0.896 0.242 0.524
- 100 2.0 VGGNet X LSTM 2 X 0.714 0.543 0.402 0.297 0.889 0.242 0.524

TABLE 6
Image caption generation performance (under the BLEU 1-4 [34] (B1-B4), CIDEr-D [35] (C), METEOR [36] (M), and ROUGE-L [37] (R) metrics)

across various network architectures and generation strategies. In the topmost set of results, we show performance across various CNN and
recurrent architectures for a simple generation strategy – beam search with beam width 1 (i.e., simply choosing the most probable word at each
time step). In the middle set of results, we show performance across the same set of architectures for a more sophisticated and computationally
intensive generation strategy found to be the best performing (in terms of performance under the CIDEr-D metric) among those explored in the

bottom-most set of results, which explores various generation strategies while fixing the choice of network. In the first two sets of results, we vary
the visual input CNN architecture (either CaffeNet [12], an architecture similar to AlexNet [17], or the more modern VGGNet [18]) and whether its

weights are finetuned (FT?). Keeping the visual input CNN fixed with CaffeNet, we also vary the choice of recurrent architecture, comparing a
stack of “vanilla” RNNs with LSTMs [7], as well as the number of layers in the stack L, and (for L = 2) whether the layers are “factored” (i.e.,
whether the visual input is passed into the second layer). In the last set of results, we explore two generation strategies – beam search, and

choosing the best (highest log-likelihood) among N samples from the model’s predicted distribution. For beam search we vary the beam width
from 1-10. For the sampling strategy we explore the effect of sample size N as well as the effect of applying various choices of scalar factor T

(inverse of the “temperature”) to the logits input to the softmax producing the distribution.

this strategy we also examine the effect of applying various
choices of scalar factors (inverse of the “temperature”) T to
the real-valued predictions input to the softmax producing
the distribution. For larger values of T the samples are
greedier and less diverse, with T = ∞ being equivalent to
beam search with beam width 1. Larger values of N suggest
using smaller values of T , and vice versa – for example,
with large N and large T , most of the O(N) computation is
wasted as many of the samples will be redundant. We assess
saturation as the number of samples N grows, and find that
N = 100 samples with T = 2 improves little over N = 25.
We also varied the temperature T among values 1, 1.5, and
2 (all with N = 100) and found T = 1.5 to perform the best.

We adopt the best-performing generation strategy from
the bottom-most set of results in Table 6 (sampling with
T = 1.5, N = 100) as the strategy for the middle set

of results in the table, which ablates LRCN architectures.
We also record generation performance for all architectures
(Table 6, top set of results) with the simpler generation
strategy used in our earlier work [43] for ease of comparison
with this work and for future researchers. For the remainder
of this discussion, we will focus on the middle set of
results, and particularly on the CIDEr-D [35] (C) metric,
as it was designed specifically for automatic evaluation of
image captioning systems. We see again that the LSTM unit
outperforms an RNN unit for generation, though not as
significantly as for retrieval. Between the sequence model
architecture choices (depicted in Figure 4) of the number
of layers L and whether to factor, we see that in this
case the two-layer models (LRCN2f and LRCN2u) perform
similarly, outperforming the single layer model (LRCN1u).
Interestingly, of the three variants, LRCN2f is the only one
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Generation Performance (COCO 2014 [33] Test Set)

Method B1 B2 B3 B4 C M R

[38] NIC 0.895 0.802 0.694 0.587 0.946 0.346 0.682
[39] MSR Captivator 0.907 0.819 0.710 0.601 0.937 0.339 0.680
[40] m-RNN (2015) 0.890 0.798 0.687 0.575 0.935 0.325 0.666

(Ours) * LRCN, this work (sample) 0.895 0.804 0.695 0.585 0.934 0.335 0.678
[41] MSR 0.880 0.789 0.678 0.567 0.925 0.331 0.662
[42] Nearest Neighbor 0.872 0.770 0.655 0.542 0.916 0.318 0.648
[33] Human 0.880 0.744 0.603 0.471 0.910 0.335 0.626
[27] m-RNN (2014) 0.890 0.801 0.690 0.578 0.896 0.320 0.668

(Ours) [43] LRCN (greedy) 0.871 0.772 0.653 0.534 0.891 0.322 0.656
[44] Show, Attend, and Tell 0.872 0.768 0.644 0.523 0.878 0.323 0.651
[31] MLBL 0.848 0.747 0.633 0.517 0.752 0.294 0.635
[45] NeuralTalk 0.828 0.701 0.566 0.446 0.692 0.280 0.603

TABLE 7
Image caption generation results from top-performing methods in the 2015 COCO caption challenge competition, sorted by performance under the

CIDEr-D metric. (We omit submissions that did not provide a reference to a report describing their method; see full results at
http://mscoco.org/dataset/#captions-leaderboard.) All results except for our updated result (denoted by LRCN, this work) were competition entries

(submitted by May 2015). Our updated result differs from our original competition entry only by generation strategy (sampling with N = 100,
T = 1.5, rather than beam search with width 1; i.e., greedy search); the visual and recurrent architectures (and trained weights) are the same.

to perform best for both retrieval and generation.
We see again that fine-tuning (FT) the visual represen-

tation and using a stronger vision model (VGGNet [18])
improves results significantly. Fine-tuning improves CIDEr-
D by roughly 0.04 points for CaffeNet, and by roughly 0.07
points for VGGNet. Switching from finetuned CaffeNet to
VGGNet improves CIDEr-D by 0.13 points.

In Table 7 we compare generation performance with
contemporaneous and recent work submitted to the 2015
COCO caption challenge using our best-performing method
(under the CIDEr-D metric) from the results on the valida-
tion set described above – generating a caption for a single
image by taking the best of N = 100 samples with a scalar
factor of T = 1.5 applied to the softmax inputs, using an
LRCN model which pairs a fine-tuned VGGNet with our
LRCN2f (two layer, factored) sequence model architecture.
Our results are competitive with the contemporary work,
performing 4th best in CIDEr-D (0.934, compared with the
best result of 0.946 from [38]), and 3rd best in METEOR
(0.335, compared with 0.346 from [38]).

In addition to standard quantitative evaluations, we also
employ Amazon Mechnical Turk workers (“Turkers”) to
evaluate the generated sentences. Given an image and a
set of descriptions from different models, we ask Turkers
to rank the sentences based on correctness, grammar and
relevance. We compared sentences from our model to the
ones made publicly available by [31]. As seen in Table 8,
our fine-tuned (FT) LRCN model performs on par with the
Nearest Neighbour (NN) on correctness and relevance, and
better on grammar.

We show sample captions in Figure 6. We additionally
note some properties of the captions our model generates.
When using the VGG model to generate sentences in the
validation set, we find that 33.7% of our generated setences
exactly match a sentence in the training set. Furthermore,
we find that when using a beam size of one, our model
generates 42% of the vocabulary words used by human
annotators when describing images in the validation set.
Some words, such as “lady” and “guy”, are not generated
by our model but are commonly used by human annotators,
but synonyms such as “woman” and “man” are two of the
most common words generated by our model.

Correctness Grammar Relevance

TreeTalk [46] 4.08 4.35 3.98
VGGNet [31] 3.71 3.46 3.70
NN [31] 3.44 3.20 3.49
LRCN fc8 (ours) 3.74 3.19 3.72
LRCN FT (ours) 3.47 3.01 3.50

Captions 2.55 3.72 2.59

TABLE 8
Image description: Human evaluator rankings from 1-6 (low is good)
averaged for each method and criterion. We evaluated on 785 Flickr

images selected by the authors of [31] for the purposes of comparison
against this similar contemporary approach.

6 VIDEO DESCRIPTION

In video description the LSTM framework allows us to
model the video as a variable length input stream. How-
ever, due to the limitations of available video description
datasets, we rely on more “traditional” activity and video
recognition processing for the input and use LSTMs for
generating a sentence. We first distinguish the following
architectures for video description (see Figure 5). For each
architecture, we assume we have predictions of activity, tool,
object, and locations present in the video from a CRF based
on the full video input. In this way, we observe the video as
whole at each time step, not incrementally frame by frame.

(a) LSTM encoder & decoder with CRF max. (Fig-
ure 5(a)) This architecture is motivated by the video de-
scription approach presented in [11]. They first recognize
a semantic representation of the video using the maximum
a posteriori (MAP) estimate of a CRF with video features
as unaries. This representation, e.g., 〈knife,cut,carrot,cutting
board〉, is concatenated into an input sequence (knife cut
carrot cutting board) which is translated to a natural language
sentence (a person cuts a carrot on the board) using statistical
machine translation (SMT) [47]. We replace SMT with an
encoder-decoder LSTM, which encodes the input sequence
as a fixed length vector before decoding to a sentence.

(b) LSTM decoder with CRF max. (Figure 5(b)) In this
variant we provide the full visual input representation at
each time step to the LSTM, analogous to how an image is
provided as an input to the LSTM in image captioning.

(c) LSTM decoder with CRF probabilites. (Figure 5(c))
A benefit of using LSTMs for machine translation compared

http://mscoco.org/dataset/#captions-leaderboard


10

LSTM

LSTM
CRF cutting 

board

cut

knife

board

cutting

cut

knife

[0, 1, 0, 0…]

[1, 0, 0, 0…]

[0, 0, 1, 0...]

[0, 0, 0, 1…]

LSTM

LSTM

A

man

cuts

<EOS>

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

D
ec

o
d

er

E
n

co
d

er

CRF-max
Input 

Sentence
One Hot

Visual 
Input

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

[0, 1, 0, 0…] [0, 0, 1, 0...] [0, 0, 0, 1…]

[0, 1, 0, 0…] [0, 0, 1, 0...] [0, 0, 0, 1…]

[0, 1, 0, 0…] [0, 0, 1, 0...] [0, 0, 0, 1…]

[0, 1, 0, 0…] [0, 0, 1, 0...] [0, 0, 0, 1…]

LSTM

LSTM

CRF

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

A

man

cuts

<EOS>

[0, 0.8, 0.2, 0…][0.3, 0, 0.7, 0…][0, 0.1, 0.2, 0.7…]

[0, 0.8, 0.2, 0…][0.3, 0, 0.7, 0…][0, 0.1, 0.2, 0.7…]

[0, 0.8, 0.2, 0…][0.3, 0, 0.7, 0…][0, 0.1, 0.2, 0.7…]

[0, 0.8, 0.2, 0…][0.3, 0, 0.7, 0…][0, 0.1, 0.2, 0.7…]

CRF-prob
Visual 
Input knifecut

cutting
board

(a) (b) (c)
LSTM Encoder-Decoder LSTM Decoder (CRF-max) LSTM Decoder (CRF-prob)

Fig. 5. Our approaches to video description. (a) LSTM encoder & decoder with CRF max (b) LSTM decoder with CRF max (c) LSTM decoder with
CRF probabilities.

Architecture Input BLEU

SMT [11] CRF max 24.9
SMT [48] CRF prob 26.9
(a) LSTM Encoder-Decoder (ours) CRF max 25.3
(b) LSTM Decoder (ours) CRF max 27.4
(c) LSTM Decoder (ours) CRF prob 28.8

TABLE 9
Video description: Results on detailed description of TACoS multilevel

[48], in %, see Section 6 for details.

to phrase-based SMT [47] is that it can naturally incorporate
probability vectors during training and test time which
allows the LSTM to learn uncertainties in visual generation
rather than relying on MAP estimates. The architecture is
the the same as in (b), but we replace max predictions with
probability distributions.

6.1 Evaluation
We evaluate our approach on the TACoS multilevel [48]
dataset, which has 44,762 video/sentence pairs (about
40,000 for training/validation). We compare to [11] who use
max prediction as well as a variant presented in [48] which
takes CRF probabilities at test time and uses a word lattice
to find an optimal sentence prediction. Since we use the
max prediction as well as the probability scores provided
by [48], we have an identical visual representation. [48]
uses dense trajectories [49] and SIFT features as well as
temporal context reasoning modeled in a CRF. In this set
of experiments we use the two-layered, unfactored version
of LRCN, as described for image description.

Table 9 shows the BLEU-4 score. The results show that
(1) the LSTM outperforms an SMT-based approach to video
description; (2) the simpler decoder architecture (b) and
(c) achieve better performance than (a), likely because the
input does not need to be memorized; and (3) our approach
achieves 28.8%, clearly outperforming the best reported
number of 26.9% on TACoS multilevel by [48].

More broadly, these results show that our architecture is
not restricted only to input from deep networks, but can be
cleanly integrated with fixed or variable length inputs from
other vision systems.

7 RELATED WORK

We present previous literature pertaining to the three tasks
discussed in this work. Additionally, we discuss subsequent
extensions which combine convolutional and recurrent net-
works to achieve improved results on activity recognition,

image captioning, and video description as well as related
new tasks such as visual question answering.

7.1 Prior Work
Activity Recognition. State-of-the-art shallow models com-
bine spatio-temporal features along dense trajectories [50]
and encode features as bags of words or Fisher vectors
for classification. Such shallow features track how low
level features change through time but cannot track higher
level features. Furthermore, by encoding features as bags of
words or Fisher vectors, temporal relationships are lost.

Many deep architectures proposed for activity recogni-
tion stack a fixed number of video frames for input to a
deep network. [3] propose a fusion convolutional network
which fuses layers which correspond to different input
frames at various levels of a deep network. [4] proposes
a two stream CNN which combines one CNN trained
on RGB frames and one CNN trained on a stack of 10
flow frames. When combining RGB and flow by averaging
softmax scores, results are comparable to state-of-the-art
shallow models on UCF101 [25] and HMDB51 [51]. Results
are further improved by using an SVM to fuse RGB and
flow as opposed to simply averaging scores. Alternatively,
[1] and [2] propose learning deep spatio-temporal features
with 3D convolutional neural networks. [2], [52] propose
extracting visual and motion features and modeling tempo-
ral dependencies with recurrent networks. This architecture
most closely resembles our proposed architecture for activ-
ity classification, though it differs in two key ways. First, we
integrate 2D CNNs that can be pre-trained on large image
datasets. Second, we combine the CNN and LSTM into a
single model to enable end-to-end fine-tuning.

Image Captioning. Several early works [53], [54], [55],
[56] on image captioning combine object and scene recog-
nition with template or tree based approaches to generate
captions. Such sentences are typically simple and are easily
distinguished from more fluent human generated descrip-
tions. [46], [57] address this by composing new sentences
from existing caption fragments which, though more human
like, are not necessarily accurate or correct.

More recently, a variety of deep and multi-modal models
[27], [29], [30], [58] have been proposed for image and cap-
tion retrieval, as well as caption generation. Though some of
these models rely on deep convolutional nets for image fea-
ture extraction [30], [58], recently researchers have realized
the importance of also including temporally deep networks
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to model text. [29] propose an RNN to map sentences into
a multi-modal embedding space. By mapping images and
language into the same embedding space, they are able to
compare images and descriptions for image and annotation
retrieval tasks. [27] propose a model for caption generation
that is more similar to the model proposed in this work:
predictions for the next word are based on previous words
in a sentence and image features. [58] propose an encoder-
decoder model for image caption retrieval which relies on
both a CNN and LSTM encoder to learn an embedding of
image-caption pairs. Their model uses a neural language
decoder to enable sentence generation. As evidenced by the
rapid growth of image captioning, visual sequence models
like LRCN are increasingly important for describing the
visual world using natural language.

Video Description. Recent approaches to describing
video with natural language have made use of templates,
retrieval, or language models [11], [59], [60], [60], [61], [62],
[63], [64]. To our knowledge, we present the first application
of deep models to the video description task. Most similar
to our work is [11], which use phrase-based SMT [47] to
generate a sentence. In Section 6 we show that phrase-based
SMT can be replaced with LSTMs for video description as
has been shown previously for language translation [9], [65].

7.2 Contemporaneous and Subsequent Work

Similar work in activity recognition and visual description
was conducted contemporaneously with our work, and a
variety of subsequent work has combined convolutional and
recurrent networks to both improve upon our results and
achieve exciting results on other sequential visual tasks.

Activity Recognition. Contemporaneous with our work,
[66] train a network which combines CNNs and LSTMs for
activity recognition. Because activity recognition datasets
like UCF101 are relatively small in comparison to image
recognition datasets, [66] pretrain their network using the
Sports-1M [3] dataset which includes over a million videos
mined from YouTube. By training a much larger network
(four stacked LSTMs) and pretraining on a large video
dataset, [66] achieve 88.6% on the UCF101 dataset.

[67] also combines a convolutional network with an
LSTM to predict multiple activities per frame. Unlike LRCN,
[67] focuses on frame-level (rather than video-level) predic-
tions, which allows their system to label multiple activities
that occur in different temporal locations of a video clip.
Like we show for activity recognition, [67] demonstrates
that including temporal information improves upon a sin-
gle frame baseline. Additionally, [67] employ an attention
mechanism to further improve results.

Image Captioning. [45] and [38] also propose models
which combine a CNN with a recurrent network for image
captioning. Though similar to LRCN, the architectures pro-
posed in [45] and [38] differ in how image features are input
into the sequence model. In contrast to our system, in which
image features are input at each time step, [45] and [38]
only input image features at the first time step. Furthermore,
they do not explore a “factored” representation (Figure 4).
Subsequent work [44] has proposed attention to focus on
which portion of the image is observed during sequence
generation. By including attention, [44] aim to visually

focus on the current word generated by the model. Other
works aim to address specific limitations of captioning
models based on combining convolutional and recurrent
architectures. For example, methods have been proposed
to integrate new vocabulary with limited [40] or no [68]
examples of images and corresponding captions.

Video Description. In this work, we rely on intermedi-
ate features for video description, but end-to-end trainable
models for visual captioning have since been proposed. [69]
propose creating a video feature by pooling high level CNN
features across frames. The video feature is then used to
generate descriptions in the same way an image is used to
generate a description in LRCN. Though achieving good
results, by pooling CNN features, temporal information
from the video is lost. Consequently, [70] propose an LSTM
to encode video frames into a fixed length vector before
sentence generation with an LSTM. Using an end-to-end
trainable “sequence-to-sequence” model which can exploit
temporal structure in video, [70] improve upon results for
video description. [71] propose a similar model, adding a
temporal attention mechanism which weights video frames
differently when generating each word in a sentence.

Visual Grounding. [72] combine CNNs with LSTMs for
visual grounding. The model first encodes a phrase which
describes part of an image using an LSTM, then learns to
attend to the appropriate location in the image to accurately
reconstruct the phrase. In order to reconstruct the phrase,
the model must learn to visually ground the input phrase to
the appropriate location in the image.

Natural Language Object Retrieval. In this work, we
present methods for image retrieval based on a natural
language description. In contrast, [73] use a model based on
LRCN for object retrieval, which returns the bounding box
around a given object as opposed to an entire image. In or-
der to adapt LRCN to the task of object retrieval, [73] include
local convolutional features which are extracted from object
proposals and the spatial configuration of object proposals
in addition to a global image feature. By including local
features, [73] effectively adapt LRCN for object retrieval.

8 CONCLUSION

We’ve presented LRCN, a class of models that is both
spatially and temporally deep, and flexible enough to be
applied to a variety of vision tasks involving sequential
inputs and outputs. Our results consistently demonstrate
that by learning sequential dynamics with a deep sequence
model, we can improve upon previous methods which learn
a deep hierarchy of parameters only in the visual domain,
and on methods which take a fixed visual representation
of the input and only learn the dynamics of the output
sequence.

As the field of computer vision matures beyond tasks
with static input and predictions, deep sequence modeling
tools like LRCN are increasingly central to vision systems
for problems with sequential structure. The ease with which
these tools can be incorporated into existing visual recog-
nition pipelines makes them a natural choice for percep-
tual problems with time-varying visual input or sequential
outputs, which these methods are able to handle with little
input preprocessing and no hand-designed features.



12

A female tennis player in action on
the court.

A group of young men playing a
game of soccer

A man riding a wave on top of a
surfboard.

A baseball game in progress with the
batter up to plate.

A brown bear standing on top of a
lush green field.

A person holding a cell phone in
their hand.

A close up of a person brushing his
teeth.

A woman laying on a bed in a bed-
room.

A black and white cat is sitting on a
chair.

A large clock mounted to the side of
a building.

A bunch of fruit that are sitting on a
table.

A toothbrush holder sitting on top of
a white sink.

Fig. 6. Image description: images with corresponding captions generated by our finetuned LRCN model. These are images 1-12 of our randomly
chosen validation set from COCO 2014 [33]. We used beam search with a beam size of 5 to generate the sentences, and display the top (highest
likelihood) result above.
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