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CHAPTER 1

Introduction

1. Purpose and structure

Dynamical systems has grown from various roots into a field of great diversity that
interacts with many branches of mathematics as well as with the sciences. The purpose of
this survey is to describe the general framework for several principal areas of the theory of
dynamical systems. We are aware that this is an ambitious goal and that the presentation is
bound to be both brief and in many respects superficial.

Our primary aim is to set the stage for the surveys collected in this and the subsequent
volume by establishing the unity of the various specialties within dynamics. The range
of surveys in these volumes therefore has a strong effect on the presentation given here.
Certain topics, which appear in a number of surveys and which we consider as basic for
several branches of dynamics, are presented in some detail. Examples are recurrence in
topological dynamics, ergodicity, topological and metric entropy, variational principle for
entropy, invariant stable and unstable manifolds, cocycles over dynamical systems. Even
such topics are usually discussed with only few complete proofs. Topics central to any of
the subsequent surveys are often discussed just enough to place them in the greater context,
deferring to the corresponding survey for exact statements and further detail. Examples
of these are dynamical ζ-functions, variational methods in Lagrangian and Hamiltonian
dynamics, KAM theory, dynamics of unipotent homogeneous systems, dynamical methods
in combinatorial number theory. Nevertheless, some topics are surveyed here because they
play an essential role in the overall picture even though they are not given much attention in
subsequent surveys. Bifurcations and applications per se are virtually absent here, because
they are in the purview of other volumes in the series.

A possible use of this survey is as an introduction to mathematicians unfamiliar with
dynamics, and it may be interesting to experts as an overview of a diverse field. With this in
mind we pay attention to examples, motivations, informal explanations and discussion of
key special cases or simplified versions of general results. Nevertheless, they may often be
too brief and may sometimes look cryptic to a nonexpert reader. Expanding the pedagogi-
cal aspects of the survey substantially would interfere with its primary goal and expand its
size beyond a reasonable limit. Hopefully, a compromise between comprehensiveness and
accessibility has been achieved.

A limited number of key results is proved in the text, when the importance of the
result, the insights provided by the proof, or its brevity suggested doing so. Other results
are provided with sketches or outlines of proofs, many more are only formulated or just
mentioned.

13



14 1. INTRODUCTION

The structure of this survey is intended to reflect a coherent framework. Accordingly,
this chapter introduces a collection of important notions in generic terms, i.e., without re-
lying on any specific structure of the dynamical system (topological, measure-theoretic,
smooth, etc.). Although examples are therefore deferred, this serves to provide a struc-
ture that organizes the notions and techniques in such a way that later chapters can present
large subareas of dynamics in a coherent fashion. Starting from Chapter 2 we introduce
basic examples as close to the beginning of each chapter as practicable and then inter-
sperse further examples, as well as comments on previously introduced ones, throughout
the chapters. The central structural elements are presented in the following order: the no-
tions of equivalence, principal constructions, recurrence, and orbit growth. The chapters on
topological dynamics and ergodic theory follow this pattern closely. The succeeding chap-
ters on smooth dynamics, which are based on the earlier ones, fit into the same framework
as well, although the starting point and emphasis is of necessity slightly different. Some
background material is incorporated into the text. Examples of these are the treatment of
Lebesgue spaces, symplectic manifolds, and Hamiltonian formalism.

When specific results are given without complete proof, we usually provide references
to accessible sources, where these can be found. If the original source is mentioned, this is
usually done for information only rather than to oblige the reader to consult it. We choose
our accessible sources in the following order of preference:

(1) Other surveys in this and the subsequent volume. References to these are distin-
guished by a format such as [S-H], where the S stands for “Survey”.

(2) Our book [KH], where a variety of topics is presented in settings similar to those
of this survey.

(3) Other books from the section “major sources” in the bibliography.
(4) Further books and articles in major journals available at most university libraries.

At the beginning of (sub)sections that introduce a new subject, we occasionally give refer-
ences to the places in the survey, where that subject is treated in more detail, as well as to
other surveys in this volume dedicated to it.

We do not claim to present a comprehensive or even fully representative bibliography
on any of the topics. The bibliographies in subsequent surveys and in our major sources
are better suited for that purpose. Furthermore, we are aware of the bias in the references
toward works that fit to our own point of view on the subject as well as the omission of
some important sources with which we are not sufficiently familiar.

2. The basic objects of dynamics

a. What is a dynamical system. The setting for the study of dynamical systems
involves a space, time, and a time evolution.

1. Phase space. This is a set with some additional structure, whose elements or points
represent possible states of the system. The most basic structures are a measure, a topology
or a finite-dimensional differentiable structure. In this survey we also include some more
specialized smooth structures, namely symplectic, contact, Lagrangian and holomorphic,
as well as homogeneous structures.

Taken together, these cover most of the general aspects of the theory of dynamical sys-
tems as well as traditional applications (celestial mechanics, thermodynamics) and more
modern ones (diophantine approximations, Riemannian geometry), but, for example, not
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infinite-dimensional differentiable dynamics which, within the conceptual framework de-
veloped in these volumes, can be treated only partially and with various qualifications.

To summarize, the methods of dynamical systems apply to spaces that are not too big
in an appropriate sense (such as (locally) compact, (σ-)finite measure, finite-dimensional).

2. Time. Time may be discrete or continuous and may be reversible or irreversible,
i.e., parametrized by a group or a semigroup. Again, it is important that this (semi-) group
is not too large. Local compactness and second countability are typically required for the
methods to apply. On the other hand, it is essential that time be noncompact, in order to
allow a notion of behavior asymptotic in time.

We make a point of providing the framework in appropriate generality, but when dis-
cussing specific notions and results, we are usually concerned with the classical setting
of time given by a one-parameter (semi-) group. In this case, integer time parametrizes a
reversible discrete-time process, the natural numbers an irreversible one, real numbers a
reversible continuous-time process, and nonnegative real numbers an irreversible one (of
which we present no examples). Thus, time is parametrized by Z, N0, R, or R+

0 .
In the discrete-time case the action is defined by iterates of a single generator, so this

map itself is usually referred to as the dynamical system. In the continuous-time case the
dynamical system is called a flow or semiflow, respectively. As a unifying term for these
four classical possibilities we use the term cyclic dynamical system.

Actions of larger groups are an important area of study in dynamical systems and
some fundamental results naturally hold in such generality. The appropriate groups are
those that are not too large locally or globally. Specifically, this means local compactness
(local), second countability (both local and global) and often amenability (global). Specific
reasons for precisely these requirements will be supplied in due course.

On the other hand, there are results and paradigms that do not hold for cyclic dy-
namical systems but are specific to actions of certain classes of locally compact second
countable nonamenable groups such as semisimple Lie groups, lattices in such groups, or
groups with property T or for some noncyclic amenable groups, e.g., Zk or Rk, k ≥ 2.
Such facts appear in the survey [S-FK]. Noncyclic dynamical systems also arise in other
surveys in this volume, [S-B, S-KSS, S-LS, S-T].

3. Time evolution. The time-evolution law is represented by the action of time, given
by the (semi-) group G, on the phase space X , i.e., a map Φ: G × X → X , (g, x) 7→
Φ(g, x) =: Φg(x) such that

(1.1) Φe = Id and Φg1g2 = Φg2 ◦Φg1 for all g1, g2 ∈ G.

We usually consider left actions, but occasions arise when right actions need to be dis-
cussed (e.g., suspensions, see Section 1.3j). We will be explicit at those times.

Dynamics deals with actions that preserve or in some other way respect the structure
onX , i.e., continuous or smooth (or piecewise continuous or smooth), measure-preserving,
or at least nonsingular actions, etc. An important additional aspect needs to be made ex-
plicit in the case of continuous time: We require continuous dependence (in an appropriate
topology) on the group element. This is, of course, vacuous in the discrete-time case.

Most of the main dynamical phenomena are apparent already in the discrete-time case,
with only some layers of technicality added in the corresponding continuous-time setting.
In some applications, however, these technical issues are rather central (partial differential
equations, statistical mechanics). To illustrate the most basic such issue note that a smooth
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flow (R-action) is determined by a single infinitesimal generator, i.e., a vector field, but that
the flow appears by way of solving a differential equation rather than by iterating a map
as in the discrete-time case. See [S-FK] for a more general discussion of that kind, still
confined to a finite-dimensional situation. In the infinite-dimensional situation the mere
existence of continuous time dynamics becomes a major issue, both in connection with
dynamical systems arising from partial differential equations and from continuous-time
models in statistical mechanics. This is another reason, along with the large “size” of the
phase space, for difficulties in applying the methods from the theory of dynamical systems
to these natural infinite-dimensional situations.

b. Asymptotic behavior. The characteristic feature of dynamical theories, which dis-
tinguishes them from other areas of mathematics dealing with groups of automorphisms
of various mathematical structures, is the emphasis on asymptotic behavior, especially in
the presence of nontrivial recurrence, i.e., properties related to the behavior as time goes
to infinity (in the sense of leaving any given compact subset of G). Specifically, this sug-
gests the following convenient notation: If (gn)n∈N is a sequence in the (semi-) group then
“gn → ∞” as n → ∞ means that for any compact set K there exists an N ∈ N such that
gn /∈ K for n ≥ N .

The specific aspects of asymptotic behavior that one can examine depend largely on
the structure of the phase space (such as measurable versus topological), and accordingly
appear later on, first in Section 1.4 and then when the discussion becomes specific to the
respective settings (Section 2.3, Section 2.4, Section 2.5, Section 3.1a, Section 3.5, Sec-
tion 3.6, Section 3.7, Section 5.1g, Section 6.4).

c. Dynamics without time. In several settings one can use ideas and concepts of a
dynamical nature even when there is no action of the kind we consider here. Instead of
orbits one may have other equivalence classes with some structure that are “large” enough
to give meaning to some ideas of asymptotic behavior.

Instances of such areas of study are

(1) foliations of compact manifolds by noncompact leaves (Section 5.1e, Section 8.4b),
and

(2) discrete measurable equivalence relations of measure spaces.

The latter turns out to be the natural setting for the study of orbit equivalence of group
actions with an invariant or quasi-invariant measure (see Section 3.4a and Section 3.5d).

In these situations one can define certain actions naturally associated with the struc-
ture, such as local holonomy maps in case 1. and the full group in case 2., but these cannot
usually be organized into sufficiently manageable group or semigroup structure. Neverthe-
less, one can still introduce the concept of asymptotic behavior similarly to the previous
subsection, which in case 1. amounts to going along a leaf away from any compact subset,
and in case 2. to leaving any finite set in an equivalence class.

We do not systematically include any treatment of such situations in this survey, al-
though occasionally specific instances arise in connection with the discussion of group
actions [FM].

d. Orbit properties. For a point x ∈ X its orbit or trajectory is O(x) := Φ(G, x) ⊂
X . A point x is said to be fixed or stationary if O(x) = {x}. The action is said to be
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transitive if X is an orbit. (This is distinct from the notion of topological transitivity we
introduce later.)

For the remainder of this paragraph assume thatG is a group. The stationary subgroup
of x is

G(x) := {g ∈ G Φg(x) = x}.
Under our standing continuity assumption this is always a closed subgroup.

The orbit of x is said to be compact if the factor G/G(x) is compact in the induced
topology; in particular a fixed point has a compact orbit. For G = Z one can then define
the period of a point x with compact orbit as the positive generator of G(x). For G = R
the same can be done for nonfixed periodic points. Accordingly, such orbits are also said
to be periodic. For noninvertible cyclic systems one can also define periodic orbits by
Φt(x) = x for some t > 0; the smallest such t is the period.

A locally free point is one for which G(x) is discrete. An action is said to be locally
free if there is a neighborhood U of the identity Id in G such that G(x)∩U = {Id} for all
x ∈ X . The action is said to be effective if Φg 6= Id for all g ∈ G.

Notice that in the measurable setting, where the notion of a single point is not well
defined, most of the above notions are not directly applicable and have to be properly mod-
ified. The notion of Lebesgue point (Section 3.2b) often provides an appropriate substitute.

e. Transverse behavior and time change. Dynamics of actions of continuous groups
includes an important aspect of transverse behavior, which deals with relative behavior of
orbits and thus involves more robust properties independent of time changes. Transverse
behavior can often be understood by considering sections and the corresponding holonomy
maps. The notion of transversality and hence that of a transversal section is quite straight-
forward in the differentiable case and presents only moderate difficulties in the case of
topological dynamics, if both the phase space and the action group are sufficiently nice.
In the measurable situation, a section is a set of measure zero and as such does not make
direct sense. Nevertheless, sections still can be constructed and provide a useful tool for
studying flows and measurable actions of other continuous groups. Transverse behavior
is the central feature of “dynamics without time” although in some cases there is an addi-
tional geometric structure on leaves, which replaces the homogeneous structure appearing
in the case of a group action.

3. Equivalence and functorial constructions

a. Isomorphism and invariants. An isomorphism between dynamical systems Φ: G×
X → X and Ψ: G × Y → Y is a bijection h : X → Y that preserves or respects the
particular structure (diffeomorphism, homeomorphism, measure-preserving, nonsingular
map, etc.), such that

h(Φg(x)) = Ψg(h(x)) for all g ∈ G, x ∈ X.
Let us remark parenthetically that while this notion is natural from the categorical

point of view, in some particular settings a weaker structure should be preserved for a
meaningful working notion. A characteristic example is that for smooth dynamical systems
a topological classification is in many situations more natural and tractable than a smooth
one (Section 5.2f).
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An obvious purpose of introducing the notion of isomorphism is to provide a rea-
sonable equivalence relation, i.e., a working term describing when two systems are to be
considered structurally identical. It naturally prompts a search for invariants, i.e., prop-
erties preserved by isomorphism. However, many of these invariants were not developed
with this question in mind, but arose early on as properties of the orbit structure pertinent
to concrete and important qualitative questions. Specific invariants are discussed later in
the appropriate contexts.

b. Orbit equivalence. Some of these invariants relate to the orbit structure or trans-
verse behavior and their invariance depends merely on the fact that isomorphisms preserve
orbits. This motivates a weaker notion of equivalence:

An orbit equivalence between dynamical systems Φ: G×X → X and Ψ: G′×Y →
Y is a bijection h : X → Y preserving or respecting the particular structure (diffeomor-
phism, homeomorphism, measure-preserving, nonsingular map, etc.) that sends orbits onto
orbits. We say that Ψ is a time change of Φ if h = Id.

As it turns out, the essential meaning of orbit equivalence is quite different for the
measurable category and the categories that include topology as a part of the structure in the
phase space. In fact, the latter case is more similar to Kakutani equivalence (Section 3.4e,
Section 3.4p, [S-T]) in the measurable category.

c. Classification. A natural concept related to the functorial notions of isomorphism
and orbit equivalence would be the classification of dynamical systems within a given cat-
egory up to either of these two fundamental equivalence relations A classification of cyclic
dynamical systems in any of the major branches of dynamics is infeasible in full general-
ity because the sets of equivalence classes are usually both huge and lack any convenient
structure. Among these branches ergodic theory is the only one where the general classifi-
cation problems have been seriously posed and investigated. One reason for that is that in
ergodic theory at least the phase spaces are standard (Lebesgue spaces, see Section 3.2b)
However, the following more limited classification problems are sometimes tractable.

1. Restricted phase space. The structure of the phase space may put substantial limi-
tations on the dynamics. The classical examples occur in low-dimensional topological and
differentiable dynamics: homeomorphisms and diffeomorphisms of the circle and flows on
compact surfaces.

2. Restrictions of the type of dynamics. Examples of such a priori conditions of a
dynamical nature are distality in topological dynamics, discrete spectrum in ergodic the-
ory, hyperbolicity in differentiable dynamics and complete integrability in Hamiltonian
dynamics.

3. Classification up to a weaker type of equivalence. This is a very characteristic phe-
nomenon in situations with dynamical restrictions. The classical examples are topological
classification of circle diffeomorphisms and of various classes of hyperbolic differentiable
dynamical systems.

4. Local classification. Sometimes one can classify perturbations of certain dynam-
ical systems within a natural space of systems. This of course depends on the topology
being sufficiently fine. Examples are structural stability in differentiable dynamics and
classification up to differentiable cojugacy via local moduli.

5. Classification on a part of the phase space. This is an even more general phenom-
enon which appears in the special situations described above. The orbit structure may be
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robust with respect to small or large perturbations on certain invariant sets. These phenom-
ena are central both in the nonuniformly hyperbolic situation and in KAM theory.

6. Noncyclic dynamical systems. Actions of certain groups such as semisimple Lie
groups of higher rank or lattices in such groups exhibit strong rigidity properties. These
put various classification problems for actions of such groups into a different and more
accessible category. Such problems can at least be seriously discussed. See [S-FK].

d. Functorial constructions. The remainder of this section is dedicated to a descrip-
tion of general constructions that produce new dynamical systems from present ones. Sev-
eral of these “enlarge” a given dynamical system by an extension process. Of these, some
combine several dynamical systems into a single new one by product-like constructions.
Conversely, there are also various reductive operations associated with subsets of the phase
space. In some cases, these may lead to a decomposition. While there is a certain univer-
sality to these constructions, the implementation of several of them depends strongly on
the structure (topological, measurable, smooth) of the setting.

The last few subsections (beginning with Section 1.3k) introduce cocycles, among
whose applications are several further constructions of this nature.

e. Products. The (direct) product of two dynamical systems Φ: G × X → X and
Ψ: H × Y → Y is defined on (G×H,X × Y ) by

(Φ×Ψ)((g, h), (x, y)) := (Φg(x),Ψh(y)).

In the special case G = H this gives rise to the diagonal action or Cartesian product of Φ
and Ψ defined by (g, (x, y)) 7→ (Φg(x),Ψg(y)).

This clearly extends to finitely many factors and often to countable products, if an
appropriate product structure is defined (such as product topology or measure).

f. Restrictions and inducing. An almost trivial construction is the restriction to an
invariant subset: If A ⊂ X and Φ(G,A) = A then A is said to be invariant under Φ.
In this case there is a natural action of G on A. This is of interest when the subset A is
well-behaved with respect to the structure onX , such as being a measurable set of positive
measure in the measurable case, or being closed in the topological case. In the smooth case,
one naturally encounters invariant sets that are compact, but not necessarily submanifolds
(fractal sets, including strange attractors). This is one of the principal reasons for the
widespread interest in these notions. See Section 5.1c and Section 5.2i below.

For cyclic systems a set A is forward invariant if Φt(A) ⊂ A for all t ≥ 0. Such sets
replace invariant ones for nonreversible systems.

At times, it is desirable to employ a procedure like this for sets that are not invariant.
This is fraught with various difficulties, which can be resolved only in certain contexts
and in ways that depend upon the setting, such as the first-return (or induced) map for
a measure-preserving transformation or a Poincaré section map on a transversal near a
periodic orbit. Therefore, these are addressed at the appropriate time (Section 3.4c, Sec-
tion 5.2h).

A complementary restriction is in the group: One may restrict an action to a sub-
group. In the case of transitive actions, for example, this often leads to dynamically inter-
esting situations, such as in homogeneous dynamics (see Section 2.1b and, for more detail,
[S-KSS]).
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g. Irreducibility and decomposition into irreducible components. If the phase
space or an essential part of it can be split into a well-behaved union (finite, countable,
or uncountable) of invariant subsets, the action on these subsets may be studied separately.
If no such decomposition is possible, then the dynamical system is said to be irreducible.
An a priori stronger notion of irreducibility requires that there are no proper invariant sub-
sets compatible with the structure, such as closed in the topological context or of positive
but not full measure in the measurable context. Such dynamical systems are natural build-
ing blocks for more general ones. If a decomposition into irreducible components exists,
there is also information on how the pieces or components are put together, but to a large
extent the dynamics of an action is reduced to that of the components.

This approach generally fails in topological dynamics, except for special cases such as
actions by isometries (Section 4.3d) or distal actions (Section 2.4a). But it works in ergodic
theory (Section 3.4f). Other instances when it is applicable are the spectral decomposition
for subshifts of finite type (Section 2.6d) and compact locally maximal hyperbolic sets
(Theorem 6.7.1, [S-H], [KH, Section 18.3]). In smooth and symplectic dynamics the
decomposition problem is closely related to the classical question of finding first integrals
and complete integrability (Section 5.3h, Section 7.1e).

h. Factors and extensions. An action Ψ: G × Y → Y is said to be a factor of
Φ: G×X → X , and Φ an extension of Ψ if there exists a surjective morphism h : X → Y
such that h(Φg(x)) = Ψg(h(x)) for all (g, x) ∈ G × X . Ψ is said to be an orbit factor
of Φ if there exists a surjective morphism h : X → Y mapping orbits onto orbits. This
generalizes the isomorphism notion from Section 1.3a.

Similarly to invariant sets, factors, even natural ones, may lack the full structure of
the original system. This happens, for example, with some topological factors of smooth
systems.

i. Inverse limits. Iteration of extensions to a sequence of morphisms · · · → X3 →
X2 → X1 gives rise to the construction of inverse limit. The specifics of these construc-
tions differ according to the structure considered on X . An important application of a
version of the inverse limit construction is to produce an invertible system from a nonin-
vertible one, which is then called the natural extension of the original system (Section 2.2h,
Section 3.4j).

j. Suspension. LetG be a topological group,H a closed subgroup and Φ: H×X →
X a left action on a space X that preserves some structure. It lifts to an action

Φ̃ : H × (X ×G)→ (X ×G), Φ̃h(x, g) = (Φh(x), hg).

The action Rg0
(x, g) = (x, gg0) of G on X ×G by right translations in G commutes with

Φ̃ and hence projects to the space Φ̃\X × G of Φ̃-orbits. Since H is a closed subgroup,
Φ̃\X ×G usually inherits the structure from X ×G. The factor action of G on Φ̃\X ×G
is called the suspension ΦG of Φ.

Naturally interesting cases appear when H is “sufficiently large” in G, i.e., when the
asymptotic behavior in H essentially captures that in G. The classical case is G = R,
H = Z, in which case one speaks of the suspension flow. More generally, one may
consider G = Rn and H = Zn. An even more general case is that of a lattice H in G
(Section 3.3c).
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k. Cocycles. A central role in many aspects of dynamical systems is played by cocy-
cles.

A 1-cocycle with values in a topological group H over an action Φ: G ×X → X is
defined to be a map α : G×X → H , continuous in G, such that

α(g1g2, x) = α(g2,Φ
g1(x))α(g1, x).

Two cocycles α, β are said to be cohomologous if there is a map C : X → H , called a
transfer function, such that

α(g, x) = C(Φg(x))β(g, x)C(x)−1.

A cocycle is said to be a coboundary if it is cohomologous to the identity in H .
The notion of regularity of a cocycle as a function on the phase space depends on

the structure of the phase space (measurable, topological, smooth). Sometimes it turns
out to be natural to consider cohomology of cocycles in a sense weaker than the ambient
structure, i.e., the transfer function may only need to be of some lower regularity than the
cocycles themselves.

Note that a cocycle independent of x is given by a homomorphism G → H . If H
is abelian then one can define a product of cocycles, coboundaries form a subgroup of
the abelian group of all cocycles, and hence the set of cohomology classes has a group
structure. Formally this is the first cohomology group of G acting on X with coefficients
in H . In dynamics the regularity of the cocycles and transfer functions plays a central role
and in the presence of nontrivial asymptotic behavior the calculation of the cohomology
groups only rarely reduces to formal algebraic manipulations. Higher cohomology groups
can be defined following the general prescription of homological algebra [Bn].

IfH is nonabelian the set of cohomology classes does not possess any group structure.
Depending on the structure of the space on which the dynamics is defined, there are

cocycles naturally associated with the dynamics, such as the Radon–Nikodym cocycle for
transformations with quasi-invariant measures (the Jacobian cocycle in the case of smooth
dynamics, Section 5.2k).

l. Skew products and cocycles. An important particular kind of extension is given
by the skew product construction, which generalizes the product construction: Consider an
extension Φ of Ψ: G × Y → Y to X = Y × Z with h = π1 the projection to the first
coordinate. Then

Φg((y, z)) = (Ψg(y), α(g, y)z),

and α must be a 1-cocycle over Ψ whose values are morphisms of Z:

(1.1) (Ψg1g2(y), α(g1g2, y)z) = Φg1g2(y, z) = Φg2(Φg1(y, z))

= (Ψg2(Ψg1(y)), α(g2,Ψ
g1(y))α(g1, y)z) = (Ψg1g2(y), α(g2,Ψ

g1(y))α(g1, y)z).

Diagonal actions (Cartesian products of Ψ with actions of G on Z) correspond to cocycles
α independent of y.

This construction is quite useful when a group H acts on Z by morphisms. Then any
1-cocycle with values in H gives rise to a skew product. Examples are compact groups Z
with H the left translations, or affine or projective spaces Z with H the linear group.
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If one considers skew products Φ1,Φ2 over Ψ defined by cohomologous cocycles α1

and α2, then there is a bijection c(y, z) = (y, C(y)z) between these extensions:

(1.2) Φg1(c(y, z)) = Φg1(y, C(y)z) = (Ψg(y), α1(g, y)C(y)z)

= (Ψg(y), C(Ψg(y))α2(g, y)z) = c(Φg2(y, z)).

If the transfer function C respects the structure then this bijection is an isomorphism.
Skew products also provide the natural setting for “random dynamics” [S-F].

m. Orbit equivalence and cocycles. Cocycles also appear in connection with orbit
equivalence, in particular time changes. In this case H(Φg(x)) = Ψ(α(g,H(x)),H(x))
and α is a 1-cocycle over Φ with values in G′ such that α(·, x) is bijective:

Ψ(α(g1g2,H(x)),H(x)) = H(Φg1g2(x)) = H(Φg2(Φg1(x)))

= H(Φg2(H−1(Ψ(α(g1,H(x)),H(x)))))

= Ψ(α(g2,H(Φg1(x))),Ψ(α(g1,H(x)),H(x)))

= Ψ(α(g2,H(Φg1(x)))α(g1,H(x)),H(x)).

If G = G′ and α is cohomologous to the identity map G → G′ then, similarly to the
previous situation, Ψ and Φ are isomorphic via the bijection x 7→ ΦC(x)(x), where C is
the transfer function.

n. Induced action and Mackey range. Cocycles also provide a natural generaliza-
tion of the suspension construction. If α : H × X → G is a cocycle, then Φ̃hα(x, y) :=
(Φh(x), α(h, x)g) is an action of H , according to Section 1.3l. The action Φα commutes
with the right action R(·), which hence projects to the space of Φ̃α-orbits.

Notice that we do not assume that H is a closed subgroup. The case of the cocycle
α(h, x) = h ∈ H ⊂ G over Φ independent of x, i.e., the inclusion H ↪→ G, gives the
standard suspension.

Sometimes the orbit space inherits a nice structure from X . In this case the resulting
action can be viewed as a direct generalization of the suspension and it is usually called
the action induced by cocycle α, or the twisted product [S-FK]. However, the orbit space
may not always have the right structure, and then one is forced to consider a proper “hull”
of the orbit space, the resulting right G-action on which is called a Mackey range Φα of
Φ. The specifics appear in due course. If two cocycles are cohomologous in the proper
category, then the corresponding induced actions or Mackey ranges are isomorphic in that
category.

o. Special flow, integral map, induced map. The case G = R, H = Z, ϕ :=
α(1, ·) > 0 gives a flow with a natural fundamental domain

{(x, t) 0 ≤ t ≤ ϕ(x)} ⊂ X × R,
which is called the flow under a function or special flow over the map f generating the
Z-action. We denote this flow by fϕ. The flow can be described as going along “vertical”
lines x = const with unit speed and jumping from (x, ϕ(x)) to (f(x), 0).

Another special case is G = H = Z with ϕ > 0, called the integral map.
On the other hand, if α takes values in {0, 1} this construction can be identified with

the first-return map to ϕ−1({1}), also called the induced map, which may not be defined
everywhere (Section 3.4c).
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4. Asymptotic behavior and averaging

a. Dissipative and conservative behavior. The core issue in dynamics is to under-
stand, how a sufficiently “large”, i.e., noncompact group acts on a “small” space, such as
a finite measure space, a compact topological space or a compact subset of a differentiable
manifold. At its center lies the general concept of recurrence, i.e., the phenomenon that
some points come back to certain parts of the phase space again and again as time goes
to infinity. Section 2.3 and Section 3.4c present the most basic manifestations of this phe-
nomenon. However, some points never return. This happens quite naturally if the phase
space itself is not “sufficiently small”, i.e., only locally compact but not compact, or of
σ-finite but not finite measure, in which case no recurrence is guaranteed for any orbit. But
this may also happen in a compact or finite measure space, although in the latter case the
presence of a positive-measure set of nonrecurrent points implies that the measure is not
invariant. This type of behavior is called dissipative, because in mechanical systems it ap-
pears when energy dissipates in some way, e.g., via friction. The opposite type of behavior,
when orbits return again and again to where they came from, is called conservative, since it
appears in mechanics when the total energy of the system is preserved and a hypersurface
of fixed energy is compact (hence of finite volume) in the phase space.

The dichotomy between dissipative and conservative behavior is central to dynamics.
In the former case, the emphasis is on the limit behavior of orbits, which is often (but far
from always) simple (steady state, limit cycle, regular escape to infinity). Of course, it
may also be complicated (strange attractors), in which case the study of dissipative orbits
splits into two parts: existence of limit regimes, which are themselves rather complicated
conservative motions, and the study of the conservative dynamics on this limit set.

Except for the trivial cases of fixed points and periodic orbits, conservative behavior
is not simple. Hence various branches of dynamics develop an appropriate set of concepts
and invariants to describe this behavior. A central role in this circle of ideas is played by
averaging.

This survey, as well as the others in this volume, concentrates primarily on the conser-
vative case.

b. Averaging. If one considers the roots of dynamical systems in mechanics, where
the state of a system evolves in time (a point in phase space moves along an orbit), then an
experimental observation of some observable quantity associated with the dynamical sys-
tem corresponds to the evaluation of a function (on the phase space) at a point of the orbit.
Repeated measurements correspond to multiple samplings of the function. In numerous
systems one has come to expect that averages of such measurements settle down. Specifi-
cally, in the case of a map f and a function ϕ one wants to study the Birkhoff averages

1

n

n−1∑

i=0

ϕ(f i(x))

and their convergence. These are also called ergodic, time, or Cesaro averages. Similarly
one defines the Birkhoff average for a continuous-time system. The convergence of such
averages plays a central role in ergodic theory and its applications to other branches of
dynamics.

This idea admits a natural degree of generalization. SupposeG is a discrete semigroup.
A sequence (Fn)n∈N ⊂ G of finite sets is said to be left-Følner if card(Lg(Fn)4Fn)/ card(Fn)→
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0 as n → ∞ for every g ∈ G. Here Lg : G → G, γ 7→ gγ is the left translation. (Right-
Følner sets are defined analogously.) Given a G-action Φ such a sequence induces a notion
of averaging of a function ϕ by setting

(1.1) Fn(ϕ) :=
1

card(Fn)

∑

g∈Fn
ϕ ◦ Φg.

The Følner condition gives limn→∞ Fn(ϕ) − Fn(ϕ ◦ Φg) → 0 for bounded ϕ and any
g ∈ G. The question is whether Fn(ϕ) converges.

For continuous groups one can do the same: A left-Følner is a sequence (Fn)n∈N of
sets of nonzero finite Haar measure ν such that ν(Lg(Fn)4Fn)/ν(Fn) → 0 as n → ∞
for every g ∈ G. Then let Fn(ϕ) :=

∫
Fn
ϕ ◦ Φg dν(g)/ν(Fn).

c. Amenability. Two obvious questions arise from this argument. First of all, which
groups possess Følner sequences? We call such groups amenable. Partial answers can be
given ad hoc: Z and R do (consider sequences of ever longer intervals) and this property is
preserved under taking products, so Zn and Rn also have Følner sequences. More gener-
ally, finitely generated discrete groups of subexponential growth (of the number of group
elements expressible in words of generators of a given length) have Følner sequences, e.g.,
balls in the word length metric. Shifts of balls lie inside larger balls and too many large
symmetric differences would imply exponential growth of the cardinality of balls with the
radius. Abelian groups are amenable whether they are finitely generated or not. Further-
more, amenability is inherited by extensions (semidirect products) if both the base and the
fiber are amenable. This gives amenability for all solvable groups. Notice that many such
groups that are finitely generated in fact have exponential growth. Thus, Følner sets need
not resemble balls in a word metric. Among connected Lie groups, compact extensions of
solvable groups are the most general amenable groups. Typical examples of nonamenable
discrete groups are free groups with more than one generator and groups containing them,
such as SL(n,Z), n ≥ 2 [Gl, Z].

The second question is how Følner sequences may look like in a given group. The
Følner sequences we just proposed for Z were quite simple, but already in this context
some rather complicated sets would also satisfy the definition: Any sequence of sets that
are unions of sufficiently long intervals, plus possibly some “sparse” further appendages,
would qualify, because the symmetric difference is dominated by neighborhoods of the
ends of the intervals. This is the reason why in general Følner sets are not the best device
for studying more subtle issues in ergodic theory, such as pointwise convergence. Nev-
ertheless, every Følner sequence contains a subsequence for which the Birkhoff ergodic
theorem holds [Li].

We presently give one characterization of amenability and we present another when
we discuss existence of invariant measures for group actions (Theorem 4.2.2).

d. Characterizations of amenability. Amenability can be characterized in other ways
that are illuminating and useful in various situations. One of these is the Kakutani–Markov
fixed point property [Gl, Z]:

THEOREM 1.4.1. A group is amenable if and only if every affine action has a fixed
point.
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Here, an affine action is an action on a weak*-compact convex subset X of the unit
ball in the dual E∗ of a separable Banach space that arises from X being an invariant set
in E∗ under the adjoint representation of some continuous isometric representation on E.

PROOF OF “ONLY IF”. We show (in the discrete case) that existence of a left-Følner
gives the desired fixed point. Let G be a group, {Fn} a left-Følner, E a separable Banach
space, I : G → Iso(E) a representation, Φ: G × E∗ → E∗, (g, ϕ) 7→ ϕ ◦ Ig the adjoint
representation, and X ⊂ E∗ a weak*-compact Φ-invariant convex subset of the unit ball.
If ϕ ∈ X then Fn(ϕ) ∈ X by convexity; weak*-compactness implies that there is a
sequence nk → ∞ such that Fnk(ϕ) → ϕ0 ∈ X . By the Følner condition Φg(ϕ0) = ϕ0

for all g ∈ G. �
This immediately implies an alternative description in terms of existence of invariant

measures for actions on compact spaces that we exhibit in Theorem 4.2.2. It is this char-
acterization that is most transparently responsible for the fact that amenable group actions
are the most general setting in which many aspects of dynamics in the “standard” sense
can be pursued.

Here we give another characterization that refers only to the group.

THEOREM 1.4.2. A groupG is amenable if and only if it has an invariant mean, i.e., a
positive linear functional of norm 1 on the space Cb(X) of bounded continuous functions
G→ R that is invariant under left translations.

SKETCH OF PROOF OF “ONLY IF” IN THE DISCRETE CASE. Set l = 0 on the closure
V of span{ϕ− ϕ ◦Lg ϕ ∈ Cb(X)}. Applying (1.1) over a Følner shows that no ψ ∈ V
has positive infimum and hence 1 /∈ V . Thus set l(1) = 1 and extend by the Hahn–Banach
Theorem. �

For the converse, see [Gl].





CHAPTER 2

Topological dynamics

1. Setting and examples

a. Topological dynamical systems. Topological dynamics considers groups of home-
omorphisms and semigroups of continuous transformations of topological spaces. We sup-
pose X is a topological space, G a topological semigroup and Φ: G×X → X continuous
such that Φg1g2 = Φg2 ◦ Φg1 for all g1, g2 ∈ G.

Topological dynamics provides many basic concepts and paradigms of asymptotic be-
havior that are central for dealing with more refined settings such as smooth, symplectic,
and homogeneous dynamics. Some of these concepts also serve as models for more quan-
titative counterparts in ergodic theory.

The prevalence of topological notions in the study of various classes of smooth sys-
tems is quite remarkable. For example, the concept of structural stability is quite substantial
in differentiable dynamics: There are many differentiable dynamical systems whose C1-
perturbations are topologically conjugate (Section 6.7h), whereas the analogous smooth
stability is vacuous in the classical setting of cyclic systems, although relevant for actions
of larger groups beginning with higher-rank abelian ones [S-FK].

Furthermore, much of the description of the orbit structure of smooth systems is made
in topological terms: Periodic orbits, recurrence, topological entropy, structural stability,
attractors, etc. (We associate periodic points with the topological category by way of con-
trast to the measurable one, where individual points may not be meaningful.)

Several general observation concerning the general setting of topological dynamics
are in order.

1. Standing assumptions. We henceforth make the standing assumptions that X is a
complete metric space with countable base and G is a locally compact noncompact sec-
ond countable topological (semi-) group. We call such an action a topological dynamical
system.

Usually the metric on X is less important than the uniform structure it entails. The
latter is needed to define notions of relative asymptotic behavior of orbits. The leading case
is that of a compact Hausdorff space X with countable base, which is hence metrizable.
Therefore we usually intend “compact” to mean compact Hausdorff with countable base.

2. The compactness principle. The essential reason for the compactness assumption
is that packing “large” orbits into a compact space provides for some nontrivial asymp-
totic accumulation and hence recurrent behavior. Accordingly, results about existence of
various kinds of recurrence require compactness of the phase space (Theorem 2.2.1, Propo-
sition 2.3.1, the Kryloff–Bogoliouboff Theorem 4.2.2 etc.), whereas those pertaining to the
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description of various relationships between diverse properties often hold in greater gener-
ality (e.g., Proposition 2.3.5, Proposition 2.3.7, Lemma 2.3.9). We sometimes refer to the
former observation as the compactness principle.

3. Cyclic dynamical systems. Special attention is given to the case of cyclic dynam-
ical systems, i.e., actions of Z, N0, or R. There is no universal rule that determines the
generality in which any notion makes sense or any given result holds, but a useful guiding
principle is that in the cyclic case there is only one way of going to infinity (except the
distinction of ±∞), in that leaving compact sets is pertinent to all asymptotic behavior,
whereas in larger groups the notion of asymptotic behavior involves many ambiguities,
such as a choice of “directions” (determined by a generator, subgroup, factor, or an ele-
ment of a group boundary) or of a growing family of compact sets exhausting the (semi-)
group.

Topological dynamics plays an essential role in the surveys [S-FM, S-B, S-KSS].
We presently introduce a few classes of standard examples of topological dynamical

systems that play an important role throughout this survey and elsewhere in these volumes.

b. Homogeneous dynamics. (See also [S-KSS, S-FK].) For a locally compact sec-
ond countable metrizable group H with a right-invariant metric and a closed subgroup K
the factor M := H/K has a metric. Given another topological group G and a continuous
homomorphism ρ : G→ H there is a natural action Φ: G×M →M defined by left trans-
lations Φ(g, x) = ρ(g)x. In particular, G may be a subgroup of H . The case of compact
M , i.e., that of cocompact subgroups K ⊂ H , is of particular interest. Compact H give a
special case. The G-action on M is isometric if there is a left-invariant metric on M . This
happens when H is abelian or, more generally, possesses a bi-invariant metric, or if K is
compact. However, in many interesting situations this is not the case. Basic examples of
this kind are in Section 4.3f and Section 6.5e. For further discussion, see Section 3.3c.

EXAMPLE 2.1.1. Consider the n-torus Tn = Rn/Zn and for γ ∈ Rn (as generator of
an embedding of Z) the translation Tγ : Tn → Tn, x 7→ x + γ (mod 1), which defines
a Z-action. In particular, for n = 1 we obtain a rotation of the circle Rα : x 7→ x + α
(mod 1), arguably the most basic nontrivial example of a dynamical system.

Similarly, a one-parameter subgroup of the torus generates a flow of translations, the
linear flow, which is the basic building block in integrable behavior of Hamiltonian dy-
namics.

c. Group automorphisms and endomorphisms. (See also [S-LS, S].) Another im-
portant class of examples consists of actions defined by discrete groups of automorphisms
or semigroups of endomorphisms of a group H . This gives interesting dynamics already
in some simple cases, e.g., the linear expanding maps Em : x 7→ mx (mod 1) (m ∈ Z,
|m| ≥ 2) on the circle or automorphisms of the torus (defined by the action of an integer
matrix with determinant ±1 on Rn/Zn). This subject is discussed further in Section 3.7g
and Section 6.5a.

d. Shifts and symbolic systems. (See also Section 2.6, [S-LS].) For a discrete (semi-
) group Γ and a compact (Hausdorff second countable) K let H = KΓ be the space of all
maps η : Γ → K with the product topology. Then Γ acts on H via (γ, η) 7→ η ◦ Lγ . This
action is called the shift or Bernoulli action.
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The standard cases are those of finite K and Γ = Z or N0. They give rise to the N -
shift σN on ΩN = {0, . . . , N − 1}Z, where N = cardK and, in case of Γ = N0 to the
one-sided N -shift σRN on ΩRN = {0, . . . , N − 1}N0 .

A symbolic dynamical system is the restriction of a (one-sided) N -shift to a closed in-
variant subset. Although this definition looks innocuous, even for N = 2 it produces a rich
class of dynamical systems, which is not tractable in full generality (see Theorem 4.3.10).

When K has a topological group structure then so does KΓ, and a shift acts by au-
tomorphisms or endomorphisms, so shifts also provide examples of actions by automor-
phisms or endomorphisms of compact groups.

For a comprehensive treatment of symbolic dynamical systems see [LM].

2. Basic concepts and constructions

This section revisits the basic notions and constructions from Section 1.3 in the topo-
logical setting.

a. Topological conjugacy and orbit equivalence. Let Φ: G × X → X , Ψ: G ×
Y → Y be topological dynamical systems. Φ and Ψ are said to be topologically conjugate
if there exists a homeomorphism h : X → Y such that

h(Φ(g, x)) = Ψ(g, h(x)) for all g ∈ G, x ∈ X.
Φ and Ψ are said to be (topologically) orbit equivalent if there exists a homeomorphism
h : X → Y sending orbits of Φ onto orbits of Ψ.

For actions of continuous groups, orbit equivalence is the more natural isomorphism
notion. It classically appears in the qualitative theory of ordinary differential equations and
reflects the aspects of the orbit structure transverse to orbits rather than the parametrization
of orbits. This equivalence relation is more robust because, e.g., in the case of flows,
topological conjugacy preserves the periods of periodic points, whereas orbit equivalence
does not. Accordingly, the concept of structural stability for flows involves topological
orbit equivalence (Section 5.2f and [S-H]).

As was mentioned in Section 1.3c classification of general topological dynamical sys-
tems up to topological conjugacy or topological orbit equivalence is not feasible. The
primary function of these notions in the framework of topological dynamics is to provide
a background for describing various properties related to asymptotic behavior.

b. Invariant sets, inducing. The restriction of a topological dynamical system Φ: G×
X → X to a closed invariant set A is again a topological dynamical system, which is
sometimes denoted ΦA.

The closure O(x) of the orbit of a point x ∈ X is a closed invariant set. If X is com-
pact then the orbit itself is closed if and only if it is compact in the sense of Section 1.2d,
i.e., if G/G(x) is compact.

As mentioned in Section 1.3f, one may try to “restrict” a map f to a noninvariant set
A. This results in the induced or first-return map x 7→ fmin{n∈N fn(x)∈A}(x) defined
on a possibly empty subset of A. There are problems with this construction other than
that it may be defined for no point: Even if A is closed and the induced map is defined
on a nonempty subset, it often fails to be continuous. In some cases this construction is
nevertheless useful and we return to it in the setting of smooth dynamics (Section 5.2h).
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c. Topological transitivity and minimality. A semigroup action Φ: G×X → X is
said to be topologically transitive if there is an x ∈ X such that for every y ∈ X there is a
sequence gk →∞ such that Φgk(x)→ y. In particular, the orbit of x is dense. Topological
transitivity is one of two natural notions of irreducibility in topological dynamics.

Nonempty closed invariant sets are partially ordered by inclusion. Any minimal ele-
ment of this partial ordering is called a minimal set. Equivalently, A ⊂ X is minimal if
O(x) = A for all x ∈ A. If X is minimal then Φ is said to be a minimal dynamical system.
Minimality is the second and stronger irreducibility notion in topological dynamics.

If X is compact then any intersection of an ordered chain of closed invariant sets is
nonempty, so by Zorn’s Lemma there is a minimal element in the partial order. This implies

THEOREM 2.2.1. Every topological dynamical system Φ of a compact metric space
X has an invariant minimal subset.

PROOF WITHOUT ZORN’S LEMMA. The collection C of closed invariant sets is com-
pact with respect to the Hausdorff metric dH on the spaces CX of all closed subsets of
X defined as dH(A,B) = max{maxx∈A d(x,B),maxx∈B d(x,A)} . Let m(B) =
max{dH(A,B) B ⊃ A ∈ C} for B ∈ C and take M ∈ C such that m(M) =
minm =: m0. Then M is minimal, for otherwise m0 > 0 and there exists a closed
invariant M1 ⊂ M such that dH(M1,M) = m0. By assumption m(M1) ≥ m0 so there
is M2 ⊂ M1 such that dH(M2,M1) ≥ m0 and hence dH(M2,M) ≥ m0—inductively
find Mi such that dH(Mi,Mj) ≥ m0, contradicting compactness of CX with respect to
the Hausdorff metric. �

This result is the first instance of the “compactness principle” at work.
For noninvertible systems one can use forward invariant sets (Section 1.3f) to make

the same definition and prove existence of minimal sets.

d. Examples of transitivity and minimality.

EXAMPLE 2.2.2. The translation Tγ on the torus (Section 2.1b) is topologically tran-
sitive if and only if the cyclic subgroup Zγ is dense or, equivalently, if the coordinates of
the vector γ = (γ1, . . . , γn) and 1 are rationally independent.

This can be checked by the following general criterion:

PROPOSITION 2.2.3. A translation Lg on a compact abelian group is topologically
transitive iff only the trivial character is 1 at g.

PROOF. If Lg is topologically transitive then it is minimal (all orbits are isometric).
Thus, if χ is a character such that χ(g) = 1 then χ = 1 on G = {gn}n∈Z by continuity.
On the other hand, if H := {gn}n∈Z is a proper subgroup then a nontrivial character on
G/H lifts to a nontrivial character χ on G with χ(g) = 1. �

PROPOSITION 2.2.4. If Φ is an isometric group action then every orbit closure is a
minimal set.

PROOF. If y, z ∈ O(x) then there exist (gn)n∈N, (γn)n∈N such that d(Φgn(x), y) →
0 and d(Φγn(x), z)→ 0. Therefore

d(Φg
−1
n γn(y), z) ≤ d(Φg

−1
n γn(y),Φγn(x))+d(Φγn(x), z) = d(Φgn(x), y)+d(Φγn(x), z)→ 0

and the orbit of y is also dense in O(x). �
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In particular, left group translations have this property because one can consider a left
invariant metric.

EXAMPLE 2.2.5. Any translation Tγ with (1, γ1, . . . , γn) rationally independent is
minimal.

Transitivity and minimality are distinct.

EXAMPLE 2.2.6. The shift σ2 (Section 2.1d) is topologically transitive (concatenating
all possible finite 0-1-sequences gives a point with dense orbit) but also has nondense
orbits, such as fixed points (constant sequences). Furthermore periodic points are dense,
so there are many nondense orbits.

e. Isolated sets and attractors. (See also [S-FM].) An invariant set A of an invert-
ible dynamical system is said to be isolated or locally maximal if there exists an open neigh-
borhood U ⊃ A, called an isolating neighborhood, such that O(x) ⊂ U =⇒ x ∈ A.
Equivalently, there is a neighborhood V of A such that any closed invariant set B ⊂ V
satisfies B ⊂ A.

For cyclic dynamical systems there is a particular class of invariant sets that occupies
a central place in the study of dynamical systems, notably dissipative ones: A compact set
A ⊂ X is said to be an attractor for Φ if there is a neighborhood V of A and a T with
ΦT (V ) ⊂ V andA =

⋂
t>0 Φt(V ). In this case, the complete preimage {Φ−t(V ) t > 0}

is called the basin of attraction of A. Attractors are isolated in the invertible case.
A compact set A ⊂ X is said to be a repeller if it has a neighborhood U such that for

every x ∈ U r A there is a T > 0 with ΦT (x) /∈ U . Repellers are also isolated invariant
sets.

Note that products of isolated invariant sets are themselves isolated invariant sets under
the product action, and that products of attractors are again attractors.

EXAMPLE 2.2.7. The origin is an isolated invariant set for a linear map L : Rn → Rn
if and only if L is hyperbolic, i.e., has no eigenvalues on the unit circle in C (this follows,
e.g., from the Jordan normal form).

It is an attractor if and only if all eigenvalues are inside the unit circle.

f. Factors and almost isomorphism. Let Φ: G × X → X , Ψ: G × Y → Y be
topological dynamical systems. Ψ is said to be a (topological) factor of Φ if there exists
a surjective continuous map h : X → Y such that h(Φ(g, x)) = Ψ(g, h(x)) for all g ∈
G, x ∈ X . Accordingly, the action Φ is an extension of Ψ.

Ψ is said to be a (topological) orbit factor of Φ if there exists a surjective continuous
map h : X → Y mapping orbits onto orbits.

In some important situations the factor map is injective on a large set, such as open
dense or denseGδ [AdM]. Although the spaces may be far from homeomorphic, the factor
map is almost a conjugacy in these cases. We call a factor map an almost-isomorphism or
almost-conjugacy if it is injective on a dense Gδ .

A simple natural example is related to the binary expansion of real numbers.

EXAMPLE 2.2.8. Let σR2 : {0, 1}N0 → {0, 1}N0 be the one-sided 2-shift (Section 2.1d).
The map E2 : x 7→ 2x (mod 1) on Y = S1 = R/Z is a factor by binary expansion
h(ω0ω1 . . . ) = 0.ω0ω1 . . . (mod 1). The factor map is injective away from binary ratio-
nals, hence on a denseGδ . Although the Cantor set {0, 1}N0 and the circle are topologically
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distinct, the main dynamical properties of both systems are similar, as the existence of this
almost-conjugacy suggests.

A similar, but geometrically much more intersting example of the same kind is the
coding of a hyperbolic automorphism of the 2-torus via a topological Markov chain, de-
scribed, for example in [KH, Section 2.5]. Section 6.7g explains that coding is generally
possible in hyperbolic dynamics. (See also [S-C].)

g. Inverse limits. Suppose Xi (i ∈ N) are compact metrizable spaces with continu-
ous surjections hi : Xi+1 → Xi and consider the compact metric space

X := {(xi)i∈N hi(xi+1) = xi}, dist(x, y) :=
∑

i

2−i distXi(xi, yi).

If the hi are factor maps for group actions on the Xi then the action is naturally defined on
X , which is then called an inverse limit.

EXAMPLE 2.2.9. Let Xi = Z/2iZ with hi the natural projection. These are factors
for the Z-action generated by adding 1. Then the inverse limit is the additive group Z2 of
dyadic integers, which is the dual group to the discrete group of all binary rationals mod 1
and is homeomorphic to a Cantor set. The resulting dynamical system which is generated
by the map x → x + 1 on Z2 is an example of the class of sytems called the adding
machines or odometers.

h. Natural extension. The natural extension of a continuous surjective map f of a
compact metric space X is obtained by taking Xi = X and hi = f . The inverse limit f̂
on X̂ := X is given by {x1, x2, . . . } 7→ {f(x1), f(x2), . . . } = {f(x1), x1, x2, . . . }.

EXAMPLE 2.2.10. Starting from the one-sided shift this gives the two-sided shift.

EXAMPLE 2.2.11. From x 7→ 2x on S1 one gets an automorphism of a solenoid,
namely the dual group to the discrete group Z[1/2] of all binary rationals. A smooth
realization is given by the Smale attractor (Section 5.2i, Section 6.5c).

i. Isometric extensions. A topological dynamical system Φ: G × X → X is an
isometric extension of Ψ: G×Y → Y with respect to a metric d in X if Φ is an extension
of Ψ with factor map h and in addition d(Φ(g, x1),Φ(g, x2)) = d(x1, x2) for any g ∈ G
and any x1, x2 ∈ X with h(x1) = h(x2). Isometric extensions are building blocks in the
classification of distal dynamical systems (Section 2.4c).

A particular case of an isometric extension appears when X is a locally trivial fiber
bundle over Y with compact structure group H , acting transitively on the fibers Xy =
h−1(y), y ∈ Y in such a way that the metric in X is H-invariant and the extension Φ
commutes with the action of H in the fibers. Then every fiber is naturally identified with
a homogeneous space of the group H . A particularly simple situation of this type appears
when X is the principal bundle, i.e., the fibers can be identified with the group H itself.
An extension from this class is called a group extension.

EXAMPLE 2.2.12. Let φ : S1 → S1 be a continuous map. Then F : T2 → T 2,
F (x, y) = (x + α, y + φ(x)) is an S1-extension of the rotation Rα. For φ = const this
gives a translation on the torus. For φ = Em, m ∈ Z r {0}, this is an affine map, which
will appear on numerous occasions later on (Section 4.3e, Section 4.3i, Corollary 7.5.4)
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j. Suspensions. In the topological category suspension produces a space that is a
locally trivial fiber bundle over H\G with fiber X . It is compact if and only if X is
compact andH is cocompact inG. Topological transitivity and minimality of theH-action
are inherited by the suspension action.

k. Cocycles and skew products. Clearly cocycles (Section 1.3k) and their cohomol-
ogy have to be considered in the topological category now. A new facet that arises in
regard to skew products is that there are locally trivial bundles that are topologically non-
trivial (such as tangent bundles when the derivative extension is being considered). In this
case skew products are not generated by cocycles. In fact, group extensions of actions
to nontrivial principal bundles and, more generally, to locally trivial bundles with an H
action, provide a natural generalization of the notion of cocycle in the topological setting
[S-FK].

l. Induced action. In the construction of an induced action, conditions on the cocycle
are needed in order to produce a Hausdorff space of orbits for Φα. A convenient condition
is a co-Lipschitz or bounded contraction property:

∃C > 0 ∀x distH(h1, h2) ≤ C distG(α(h1, x), α(h2, x)),

where dist(·) are distances induced from left-invariant metrics.
A flow under a continuous function over a homeomorphism of a compact space is

topologically orbit equivalent to the corresponding suspension flow.

m. Principal classes of asymptotic properties and invariants. The study of dy-
namical systems relies on a collection of notions describing various aspects of asymptotic
behavior of individual orbits, pairs of orbits relative to each other, or larger collections
of orbits. In topological dynamics one can separate several principal categories of such
notions:

(1) Types of recurrence,
(2) behavior of orbits relative to each other,
(3) growth of the number of orbits of various kinds and the complexity of various

families of orbits, and
(4) asymptotic distribution of orbits in a statistical sense.

The first three classes are of a purely topological nature and are discussed in this chapter.
The last class is related to ergodic theory and invariant measures for topological dynam-
ical systems. The corresponding notions are accordingly discussed in Chapter 4 after the
introduction to ergodic theory.

Many of these notions give rise to invariants, which accordingly can be divided into
the corresponding categories and are discussed in turn.

3. Recurrence

a. Limit points. If Φ: G×X → X is a semigroup action then y ∈ X is said to be a
limit point for x ∈ X if there is a sequence gk → ∞ such that Φgk(x) → y. The limit set
of x ∈ X is then the set of limit points of x. (See [KH, Section 3.3].)

PROPOSITION 2.3.1. If X is compact then every limit set is nonempty.
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Thus every point sooner or later comes to any given neighborhood of its limit set and
stays there. Note that the definition of topological transitivity amounts to requiring that the
whole phase space is a limit set.

For cyclic dynamical systems the ordering provides for a distinction between +∞ and
−∞ and accordingly one can define two notions:

For a cyclic dynamical system a point y ∈ X is called an ω-limit point for x ∈ X if
there is a sequence tk → +∞ such that Φtk(x)→ y. If Φ is an R or Z action then y is an
α-limit point for x if it is an ω-limit point for x under reversal of time. The closed invariant
sets

ω(x) =
⋂

T≥0

⋃

t≥T
Φt(x), α(x) =

⋂

T≤0

⋃

t≤T
Φt(x).

of all ω-limit points and α-limit points for x are called its ω-limit and α-limit set.

b. Recurrence. For cyclic dynamical systems we say that x ∈ X is positively re-
current if x ∈ ω(x). If Φ is a Z- or R-action then x is said to be negatively recurrent
if x ∈ α(x), it is recurrent if it is both positively and negatively recurrent. Denote the
closures of the sets of all positively recurrent, negatively recurrent, and recurrent points by
R+(Φ), R−(Φ), and R(Φ).

Positive recurrence does not necessarily imply negative recurrence and the sets of all
positively recurrent, negatively recurrent, and recurrent points need not be closed.

Periodic points represent the simplest recurrence. However, not every dynamical sys-
tem has periodic orbits, even if the phase space is compact. The presence of nonperiodic
recurrent points is often referred to as nontrivial recurrence, especially in the literature on
ordinary differential equations. It is the first indication of complicated asymptotic behav-
ior. In certain low-dimensional situations such as homeomorphisms of the circle and flows
on surfaces it is possible to give a comprehensive description of the nontrivial recurrence
that can appear [KH, Chapters 11, 14].

EXAMPLE 2.3.2. A left translation (Z-action) by an element h ∈ H on a groupH (see
Section 2.1b) has no recurrent points if the subgroup (hn)n∈Z is closed in H . Otherwise
all points are recurrent.

Since every point of a minimal set for a cyclic system is obviously recurrent, Theo-
rem 2.2.1 implies

COROLLARY 2.3.3. If X is compact and Φ is cyclic then R(Φ) 6= ∅.

c. Minimality and uniform recurrence. Every point of a minimal set is recurrent.
Indeed, minimality can be characterized by recurrence that is uniform in a very general
sense:

If G is a locally compact topological (semi-) group then S ⊂ G is said to be syndetic
if there exists a compact K ⊂ G such that SK−1 = G. If Φ: G ×X → X is an action
then x ∈ X is said to be uniformly recurrent if for each neighborhood V of x the set
{g ∈ G Φg(x) ∈ V } is syndetic. In the cases of Z, N0, R, or R+

0 this means that there is
an upper bound for the length of complementary intervals.

PROPOSITION 2.3.4. Every point of a compact minimal set of a topological dynamical
system is uniformly recurrent. Conversely, if X is locally compact and a point x ∈ X is
uniformly recurrent then the closure of its orbit is a compact minimal set [F1, Section 1.4].
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d. Nonwandering points, regional recurrence and the center. (See also [Bi].) So
far we were concerned with recurrence properties directly associated with individual orbits.
There are others related to the behavior of entire sets. The simplest such property is the
following:

A point x ∈ X is said to be nonwandering with respect to Φ if for any open set U 3 x
and T > 0 there is a t > T such that Φt(U) ∩ U 6= ∅. The set of all nonwandering points
of Φ is denoted by NW (Φ) or Ω(Φ). Φ is said to be regionally recurrent if Ω(Φ) = X .
For reversible Φ, a nonwandering point x, and open V 3 x there are also arbitrarily large
negative T such that ΦT (V ) ∩ V 6= ∅.

PROPOSITION 2.3.5. Ω(Φ) is closed and invariant and contains all ω- and α-limit
points for all points.

PROOF. We only consider maps. If Ω(f) 3 xn → x ∈ U open then xn ∈ U for
large enough n, so fN (U) ∩ U 6= ∅ for arbitrarily large N and thus x ∈ Ω(f). If
x ∈ Ω(f), f(x) ∈ U and V = f−1(U) then V ∩ fN (V ) 6= ∅ for some N > 0 and
∅ 6= f(V ∩ fN (V )) = U ∩ fN (U). If x = limnk→∞ fnk(y) ∈ U and nk is increasing
then fnk(y), fnk+1(y) ∈ U for large k, so U ∩ fnk+1−nk(U) 6= ∅. The argument for
α-limit points is similar. �

COROLLARY 2.3.6. If X is compact then Ω(Φ) 6= ∅.

PROPOSITION 2.3.7. If Φ is regionally recurrent then R(Φ) = X .

Let Ω1(Φ) = Ω(Φ) and Ωn+1(Φ) = Ω(Φ�Ωn(Φ)
). This yields a nested sequence with

intersection Ωω(Φ) and then the construction can be started again, so (if there is a count-
able base) by transfinite induction up to a countable ordinal we obtain the center of the
dynamical system. In virtually all interesting examples this construction stabilizes quickly,
at most after one or two steps, so the center is either Ω(Φ) or Ω2(Φ). It is not difficult,
however, to construct examples where this is not so. Since recurrent points are defined in-
trinsically using only their own orbits, Proposition 2.3.5 can be applied inductively to see
that R(Φ) is contained in the center. Since the construction of the center stabilizes, there
are no wandering points in the center, and by Proposition 2.3.7 we find

PROPOSITION 2.3.8. R(Φ) is the center of Φ.

Thus Ω(Φ) is the hub of recurrence behavior: It contains all α- and ω-limit points and
recurrent points, including all periodic points.

Denote by M(Φ) the closure of the union of all invariant minimal sets for Φ. Then

(2.1) Per(Φ) ⊂M(Φ) ⊂ R(Φ) ⊂ R+(Φ) ∪R−(Φ) ⊂ Ω(Φ).

Each of these inclusions may be proper and by Theorem 2.2.1 all sets in (2.1), except
possibly Per(Φ), are nonempty for compact metric X .

e. Topological transitivity and topological mixing. One can define topological tran-
sitivity in terms of asymptotic behavior of sets.

LEMMA 2.3.9. A dynamical system Φ: G×X → X on a complete separable metric
spaceX is topologically transitive if and only if for any two nonempty open sets U, V ⊂ X
there exists g ∈ G such that Φg(U) ∩ V 6= ∅.
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PROOF. For maps necessity goes as follows: If Of (x) is dense then it intersects U
and V , so fn(x) ∈ U , fm(x) ∈ V , where, say m ≥ n. Consequently fm−n(U)∩V 6= ∅.
This clearly works without invertibility and generalizes to groups (but not semigroups).

If the intersection condition holds let U1, U2, . . . be a countable base of open subsets
of X with U1 compact. There exists g1 ∈ G such that Φg1(U1) ∩ U2 6= ∅. If V1 6= ∅ is
open and V1 ⊂ U1 ∩ (Φg1)−1(U2) then there exists g2 ∈ G such that Φg2(V1) ∩ U3 6= ∅.
Again, take an open set V2 such that V2 ⊂ V1 ∩ Φ−g2(U3). Inductively, construct a nested
sequence of open sets Vn such that Vn+1 ⊂ Vn ∩Φgn+1

−1

(Un+2). Then V =
⋂∞
n=1 Vn =⋂∞

n=1 Vn 6= ∅ because the Vn are compact. If x ∈ V then Φgn−1(x) ∈ Un for every
n ∈ G. �

COROLLARY 2.3.10. A continuous open dynamical system (i.e., one that maps open
sets to open sets) of a complete separable metric space is topologically transitive if and
only if there are no two disjoint open nonempty invariant sets.

COROLLARY 2.3.11. If Φ is topologically transitive then there is no nonconstant in-
variant continuous function ϕ : X → R.

Another aspect of asymptotic behavior is related to regularity of set recurrence with
respect to time. Topological transitivity implies that iterates of any open set from time to
time intersect any other open set. Here is a stronger property:

DEFINITION 2.3.12. A topological dynamical system Φ is said to be topologically
mixing if for any two nonempty open U, V ⊂ X there exists a compact set K ⊂ G such
that Φg(U) ∩ V 6= ∅ for every g ∈ GrK.

By Lemma 2.3.9, every topologically mixing dynamical system is topologically tran-
sitive.

Notice that minimality, which is also a stronger property than topological transitivity,
concerns the regularity of returns for individual orbits (Proposition 2.3.4). To demonstrate
the difference between minimality and mixing, note that topological transitivity and mini-
mality are equivalent for actions by isometries (Proposition 2.2.4), but on the other hand,
mixing is impossible:

PROPOSITION 2.3.13. Isometric actions are not topologically mixing if cardX > 1.

PROOF. For cardX = 2 this is trivial. For cardX > 2 and isometric Φg : X → X
take {x1, x2, x3} ⊂ X such that 0 < δ := mini6=j d(xi, xj)/10 and let Ui = B(xi, δ)
for i ∈ {1, 2, 3}. The diameter of Φg(U1) is at most 2δ whereas d(p, q) > δ for p ∈ U2,
q ∈ U3, so for g ∈ G either Φg(U1) ∩ U2 = ∅ or Φg(U1) ∩ U3 = ∅. �

f. Homological and homotopical recurrence, asymptotic cycles. For flows, there
is a way to quantify the character of recurrence by considering homotopical or homological
properties of long orbit segments. Given a compact connected manifold M and p ∈M fix
a family Γ = {γx x ∈ M} of arcs γx of bounded length connecting p and x. Then for a
flow ϕt : M → M fix T and consider for each x ∈ M the closed loop l(x, T ) consisting
of the arc γx, the orbit segment {ϕtx}Tt=0, and the reverse of the arc γϕT (x). Those loops
represent elements of the fundamental group π1(M,p). Via the Hurewicz identification
of the first homology group H1(M) with π1(M,p)/[π1(M,p), π1(M,p)], they also give
homology classes c(x, T ). Any limit point of {c(x, T )/T}T is called an asymptotic cycle
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for x. Existence and the value of the limit of a sequence {c(x, Tn)}/Tn are independent
of the choices of p and Γ. Ergodic theory implies that c(x, T )/T converges for many x ∈
M , i.e., the asymptotic cycle is uniquely defined. One may also consider the asymptotic
behavior of the l(x, T ) ∈ π1(M) directly, using such structures as boundaries of groups
(e.g. the Aranson–Grines homotopy rotation class for flows on surfaces, Section 2.7b).

For discrete time systems, these constructions can be applied to the suspension flow
in order to obtain asymptotic cycles in the homology group of the suspension manifold or
limits on the boundary of the fundamental group.

We sketch a proof of convergence in the smooth setting [KH, Section 14.7b]. Suppose
M is a differentiable manifold and ϕt preserves a finite measure µ. A homology class is
fixed by its action on a basis of 1-forms, so pick a 1-form ω. Taking the arcs in Γ to have
bounded length and denoting by X the vector field generating the flow ϕt we find that
limT→∞

∫
l(x,T )

ω = limT→∞
∫ T

0
ω(X(ϕt(x))) dt =

∫
ω(X) dµ for µ-a.e. x ∈ M . Here

the first equality reflects boundedness of the contribution of the two arcs of Γ to the integral,
and the second is a consequence of the Birkhoff Ergodic Theorem (Theorem 3.5.2). If there
is only one invariant probability measure, convergence is uniform in x (Section 4.3a).

g. Rotation number. There is one classical case where the above construction always
produces asymptotic cycles independently of the point x. This is that of circle homeomor-
phisms and flows on T2 without fixed points and periodic orbits. [KH]. Taking p = 0 ∈ T2

and constructing Γ from paths pieced together from horizontal intervals and orbit segments,
one sees that the asymptotic cycle is the asymptotic speed (“rotation vector”) of an orbit
for the lift of the toral flow to R2. By periodicity and the fact that orbits cannot cross, this
is well-defined and independent of all choices. For this the assumption that there are no
periodic orbits is needed. (This also follows from the last remark above because there is
only one invariant probability measure.) Starting from a circle homeomorphism without
periodic orbits, one obtains this result via suspension, but because the suspension has unit
speed one can consider simply the slope rather than the direction. This quantity can, in
fact, be calculated directly and in this case there are no restrictions on periodic orbits.

For a homeomorphism f : S1 → S1 = R/Z and a lift F : R→ R (i.e., f ◦ π = π ◦ F
for the standard projection π : R→ S1) it is not hard to show (using essential subadditivity
of an :=Fn(x)−x) that ρ(f):=π(lim|n|→∞(Fn(x)−x)/n) is well-defined independently
of x. This is the rotation number of f . Note that it is defined via the Birkhoff average of the
“displacement” function F − Id. This admits numerous generalizations. Independence of
x can be shown to imply that the rotation number is rational if and only if there is a periodic
point. It is evidently a conjugacy invariant. For sufficiently smooth circle diffeomorphisms
without periodic points it is a complete invariant (Theorem 5.1.1).

In general, possible orbits in the cases of rational or irrational rotation number, respec-
tively, are described via the Poincaré classification [S-JS], [KH, Chapter 11]. If there are
any periodic orbits (rational rotation number) then they have the same period and all orbits
are ordered exactly as the orbits of the corresponding rotation. Any nonperiodic points are
positively and negatively asymptotic to periodic orbits (to the same if there is only one).
These facts can be seen by using that fn(p) = p implies that fn can be identified with an
orientation-preserving homeomorphism of [0, 1]. For irrational rotation number all orbits
are ordered as for the corresponding rotation. All orbits have the same ω-limit set Λ (Sec-
tion 2.3a), which is a perfect set, i.e., either a Cantor set or the circle. The corresponding
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rotation is a factor of the restriction to Λ, and topologically equivalent if Λ = S1. Or-
bits not in Λ are positively and negatively asymptotic to Λ. Circle homeomorphisms with
no periodic point, i.e., with irrational rotation number, are uniquely ergodic and measure-
theoretically a rotation (Section 3.4a).

4. Relative behavior of orbits

a. Proximality and distality. (See also [F1, F2].) Let Φ: G ×X → X be a (semi-
) group action. Then (x, y) ∈ X × X is said to be proximal if there exists a sequence
(gn)n∈N in G such that d(Φgn(x),Φgn(y)) → 0, distal otherwise. A point x is said to be
distal if (x, y) is proximal only for y = x.

Φ is said to be proximal if all pairs of points are proximal, distal if all points are distal.
IfX is compact then proximality is equivalent to the orbit under Φ×Φ of (x, y) having

a limit point on the diagonal, and (x, y) is distal if and only if its orbit closure is disjoint
from the diagonal, i.e., if d(Φg(x),Φg(y)) is bounded away from 0.

Obvious examples of distal dynamical systems are isometries and, more generally,
equicontinuous dynamical systems (which have an invariant metric, so these classes are
topologically the same).

In general, proximal and distal behavior is interspersed in the same system.

EXAMPLE 2.4.1. In the two-shift σ2 for any ω ∈ Ω2 the set of ω′ such that (ω, ω′) is
proximal is dense. Take, for example, thoseω′ with ω′i = ωi for large i to get d(σn2ω, σ

n
2 ω
′)→

0.
On the other hand, if ω 6= ω′ are periodic then (ω, ω′) is distal because the orbit of

(ω, ω′) in the product is compact and disjoint from the diagonal.

b. Examples of proximal actions. Natural examples of cyclic proximal systems have
very simple recurrent behavior.

EXAMPLE 2.4.2. Identify the circle S1 with the projective lineR∪{∞}. and consider
the map x→ x+ 1. It is proximal.

For proximal Z-actions this example is fairly representative:

PROPOSITION 2.4.3. A minimal set for a proximal Z-action is a fixed point.

PROOF. If x is in the minimal set of a transformation f then there is a sequence
nk →∞ such that d(fnk(x), fnk (f(x))) → 0. By compactness there is an accumulation
point z of (fnk(x))k∈N, which must then be fixed. Thus the minimal set contains, and
hence is, a fixed point. �

On the other hand, for actions of some large groups there are natural proximal actions
with complicated recurrence structure.

EXAMPLE 2.4.4. With the identification described in the previous example the group
SL(2,R) acts on the circle by projective (fractional–linear) transformations: For A =(
a b
c d

)
∈ SL(2,R) we define ΦA(x) =

ax+ b

cx+ d
. This action is transitive and proximal.

Its restriction to the group SL(2,Z) gives an example of a minimal proximal action of a
discrete (countable) group. (See Example 3.3.2)
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c. Classification of distal systems. (See also [El, F2].) Distal systems can be viewed
as a natural generalization of isometric actions. Compare the following property with
Proposition 2.2.4:

PROPOSITION 2.4.5. A distal point is uniformly recurrent and (by Proposition 2.3.4)
any orbit closure in a distal system is a minimal set.

COROLLARY 2.4.6. A distal system uniquely decomposes into invariant minimal sets.

PROPOSITION 2.4.7. An isometric extension of a distal system is itself distal.

Thus Example 2.2.12 provides a collection of distal systems. If degφ 6= 0 such a
system is obviously not equicontinuous. See Section 4.3e, Section 8.3a and Example 8.3.2
for further examples of distal systems.

Beginning from a minimal isometry one can take any isometric extension, decompose
it into minimal components each of which is a minimal isometric extension of the original
system and continue this process using induction, transfinite if necessary, but up to a count-
able ordinal. The result will always be a minimal distal system on a metrizable compact
space. It is quite remarkable that every distal system can be obtained by such a process.

THEOREM 2.4.8. [F2] Any distal minimal system is topologically conjugate to a sys-
tem obtained from the dynamical system on a point by a (possibly transfinite) succession
of isometric extensions.

The crucial part of the proof which allows to begin the induction as well as carry out
the inductive step is the following.

PROPOSITION 2.4.9. Every minimal distal system has an equicontinuous factor.

d. Expansiveness. (See also [KH, Section 3.2g].) An action Φ: G × X → X of a
discrete (semi-) group G is said to be expansive if there exists a number δ > 0, called an
expansivity constant, such that if d(Φg(x),Φg(y)) < δ for all g ∈ G then x = y. The
maximal such number is called the expansivity constant of the action Φ. Equivalently, the
action is expansive if the diagonal in X × X is an isolated invariant set for the diagonal
action.

EXAMPLE 2.4.10. The shift σN is expansive because for x 6= y there exists an n ∈ Z
such that σnN (x) and σnN (y) have distinct zero coordinates and are hence more than a
certain fixed distance away from each other.

The restriction of an expansive system to a closed invariant subset is clearly expan-
sive. Thus, in particular, any symbolic system (see Section 2.6) is expansive. This shows
that there is no hope for a classification or comprehensive description of expansive systems
along the lines of that for distal systems. However, under some conditions on the phase
space, expansivity becomes a strong property, which makes a good structural description
possible. For example, expansive homeomorphisms of compact surfaces have been classi-
fied [L].

Products of expansive actions are again expansive.

PROPOSITION 2.4.11. If f is an expansive continuous map and h ◦ f = f ◦ h,
d(h(x), x) < δ for all x ∈ X then h = Id.
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PROPOSITION 2.4.12. Let f be an expansive map, n ∈ N. Then the set of periodic
points of period up to n consists of isolated points.

Defining expansivity for continuous groups requires allowing for a relative drift of
orbits in the time direction in order to capture actual divergence of orbits. For flows one
handles this as follows:

DEFINITION 2.4.13. A continuous flow ϕt is said to be expansive with expansiv-
ity constant δ > 0 if for any two points x, y we have the following implication: If
there is a continuous function s : R → R with s(0) = 0, d(ϕt(x), ϕs(t)(x)) < δ and
d(ϕt(x), ϕs(t)(y)) < δ for all t ∈ R then y ∈ O(x).

For further uses of expansiveness see Section 2.5f6, Section 4.4e and Section 6.7c.

5. Orbit growth properties

Growth properties relate to the numbers of orbits or families of orbits of various kinds
as time goes to infinity. Thus, these properties are usually defined unambiguously for cyclic
systems, where there is essentially only one way of going to infinity. For more general
systems, growth invariants may be of “global type”, usually associated with a choice of
a growing family of compact sets exhausting G, or of a “partial type”, measuring growth
in various directions. The difficulties and uncertainty of the choices involved are but one
reason to restrict attention to the case of cyclic systems.

Nevertheless, there will be occasions to mention such notions in connection with
higher-rank abelian groups, where these complications are manageable.

a. Periodic orbits. Periodic orbits (see Section 1.2d) represent the most distinctive
special class of orbits. Finding periodic orbits and studying their asymptotic growth and
spatial distribution is one of the central aims in dynamics. It is also closely related to
various questions in number theory, algebraic geometry and statistical mechanics. Accord-
ingly, various aspects of this subject are broadly represented in these volumes. ζ-functions
(see below) and related topics are the main subjects of [S-P], and also appear briefly in
[S-C] as well as in [S-FM], among whose main topics is to find and classify periodic
points. Finding periodic orbits was the original goal of the variational approach to dy-
namics and remains central to that area, see [S-BK], [S-R] and [HZ]. There are also
connections with number theory [S-KSS].

One can count periodic points or periodic orbits. In the discrete-time case it is fre-
quently convenient to count periodic points with (not necessarily minimal) period n, whereas
for continuous-time systems one has no choice but to count periodic orbits. These numbers
are useful and finite when periodic orbits are isolated. While this is generically the case,
there are classes of systems, such as systems with symmetries, where periodic orbits natu-
rally appear in infinite families. It is natural to count connected components of such sets of
orbits because usually calculations of the number of periodic points result in the number
of connected components by solving systems of equations and obtaining joint level sets of
certain functions. In the case of isolated periodic orbits this gives the same number.

DEFINITION 2.5.1. Let Φ be a discrete-time dynamical system. Then we denote by
Pn(Φ) the number of connected components of the set of periodic points of Φ with (not
necessarily minimal) period n. If Φ is a continuous-time dynamical system we denote by
Pt(Φ) the number of connected components of the set of periodic orbits of period up to t.
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While there are situations where this formulation is necessary, we repeat that generi-
cally periodic orbits are isolated.

This construction becomes problematic when there are connected sets of periodic or-
bits with varying periods. This often happens in Hamiltonian systems and in that case more
elaborate counting methods should be used.

The most natural measure of asymptotic growth of the number of periodic points is
the exponential growth rate p(Φ) of Pn(Φ) and Pt(Φ):

(2.1) p(Φ) =

{
limn→∞ log(Pn(Φ))/n for discrete time

limt→∞ log(Pt(Φ))/t for continuous time,

where we set log 0 = 0.

b. The ζ-function for discrete time systems. If p(f) < ∞, i.e., if the growth rate
of periodic points is at most exponential, one can incorporate all the information about the
numbers of periodic points into the zeta-function

(2.2) ζf (z) = exp
∞∑

n=1

Pn(f)

n
zn,

where z ∈ C [S-P, S-FM, S-C]. This series converges for |z| < exp(−p(f)) and always
has a singularity at exp(−p(f)). For some nice classes of systems this is an isolated simple
pole and the only singularity on the circle |z| = exp(−p(f)). In many cases the function
ζf admits an analytic continuation, often to a meromorphic function in the whole complex
plane, whose poles, zeroes, and residues provide topological invariants for f , thus encoding
the countably many integer invariants given by numbers of periodic points by finitely many
complex numbers. Although these are determined by the numbers of periodic points, they
often provide nontrivial insights into the orbit structure.

EXAMPLE 2.5.2. For the linear expanding map Em : S1 → S1 (Section 2.1b) we
have Pn(Em) = |mn − 1| and hence

ζEm(z) =
m− |m|z
m−m|m|z .

c. Index and algebraic ζ-function. One can motivate the introduction of the ζ-
function and see why there is hope to organize the periodic data into a nice function by
considering the algebraic ζ-function. It uses the notion of index indf (x) of an isolated
fixed point of a continuous map f : U → M on a manifold [KH, Section 8.4]. The index
of a fixed point may be interpreted as a multiplicity of the fixed point with a sign, e.g., a
point of zero index can be removed by a C0 perturbation of f .

The sum of the indices of all fixed points can be found from the global behavior of the
map via the Lefschetz Fixed Point Formula—it is given by the Lefschetz number L(f),
which can be calculated as follows. For i = 1, . . . , βk (the kth Betti number) let λki be the
eigenvalues of fk∗ (on the kth homology), then [S-FM, Section 4]

L(f) =

dimM∑

k=0

βk∑

i=1

λki.
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The Lefschetz Fixed Point Formula may be applied to iterates of f so long as their fixed
points are still isolated. This yields the sum PAn (f) of the indices of all periodic points of
any given period in terms of a finite set of data, namely the eigenvalues λki:

PAn (f) =
∑

x∈Pern(f)

indfk x =
dimM∑

k=0

βk∑

i=1

λnki.

If one defines the algebraic ζ-function of f by

ζAf (z) := exp
∑

n∈N

PAn (f)

n
zn

then it is easy to check that this is always rational, indeed

ζAf (z) =
dimM∏

k=0

(1− λkiz)(−1)k+1

.

REMARK. There are two important ways in which the dynamical ζ-function ζf and
the algebraic ζ-function ζAf differ: The indices of some periodic points may be large and
the contributions of points with indices of different signs to ζAf partially cancel each other.
Nevertheless, there is a number of cases where ζf can be calculated along somewhat similar
lines. This usually happens when one can guarantee that all (or all but finitely many)
periodic orbits have index ±1 and when the signs can be systematically calculated. A
good example is [S-FM, Theorem 4.11], which follows [Fr] and proves rationality of the
zeta-function under remarkably general conditions.

A simple example was given in the previous subsection: For m > 1 the indices of
all periodic points of Em are −1, whereas for m < −1 the indices are (−1)n for all n-
periodic points. A similar calculation can be made for toral automorphisms with no roots
of unity as eigenvalues (which guarantees that periodic points are isolated).

d. The ζ-function for flows. In the continuous-time case assume that periodic orbits
come in families of constant period and let l(γ) denote the smallest positive period of the
orbits in such a family γ. Then we can set

(2.3) ζΦ(z) =
∏

γ

(1− exp(−zl(γ)))−1,

where the product is taken over all families of nonfixed periodic points. This converges
for <(z) > p(Φ) and has singularities on the critical line <(z) = p(Φ), one of which is
always at p(Φ). As in the discrete-time case this is often the only singularity on that line
and a simple pole and it is of particular interest. Again, often a meromorphic extension to
C provides interesting insights. For a development of these facts see [S-P].

Using the power series form for the discrete-time case is a matter of convenience and
the transformation z 7→ e−z changes the discrete-time counterpart of (2.3) to (2.2).

REMARK. Unlike the discrete time case where the ζ-function is often quite simple,
e.g., rational, in the continuous time case ζ-functions do not usually belong to an easily
characterized class of functions and in particular do not come from any finite-parameter
families. The reason is that the periods are now real numbers and vary with perturbations.
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Clearly the numbers Pn(Φ) and Pt(Φ), and hence the ζ-function, are topological con-
jugacy invariants. The relative simplicity of ζ-functions for some discrete time systems is
related to structural stability, which provides for few conjugacy classes, whereas in con-
tinuous time at best one has only orbit equivalence available, and hence still a large set of
conjugacy classes. Nevertheless we have:

PROPOSITION 2.5.3. Whether p(Φ) is zero, infinite, or neither, is an invariant of orbit
equivalence.

e. Entropy. The most important numerical invariant related to the orbit growth is
topological entropy. It represents the exponential growth rate of the number of orbit seg-
ments distinguishable with arbitrarily fine but finite precision and thus describes in a crude
but suggestive way the total exponential complexity of the orbit structure with a single
number. We define it first for dynamical systems on compact metric spaces, though the
definition is independent of the metric chosen. We then exhibit definitions that relax the
assumptions on metrizability and compactness.

1. Entropy by separated sets. The details missing here can be found in [KH, Sec-
tion 3.1]. Let (X, d) be a compact metric space, Φ a dynamical system. Define

(2.4) dΦ
t (x, y) = max

0≤τ<t
d(Φτ (x),Φτ (y)),

measuring the distance between the orbit segments Ot(x) = {Φτ (x) 0 ≤ τ < t} and
Ot(y). Let Nd(Φ, ε, t) be the maximal number of points in X with pairwise dΦ

t -distances
at least ε. We call such a set of points (t, ε)-separated. Such points generate the maximal
number of orbit segments of length t that are distinguishable with precision ε.

DEFINITION 2.5.4. We define the topological entropy by

h(Φ) := htop(Φ) := lim
ε→0

lim
t→∞

1

t
logNd(Φ, ε, t) = lim

ε→0
lim
t→∞

1

t
logNd(Φ, ε, t).

It is not hard to show that these two expressions coincide and are independent of the
metric. This also becomes apparent below when we give the original definition of topolog-
ical entropy. Topological entropy is nonnegative and the primary distinction of levels of
complexity of a dynamical system is between zero and positive entropy (Section 5.1g).

2. Entropy by spanning sets. Another way of measuring the exponential complexity
of the orbit structure is to count the minimal number of orbit segments needed to approxi-
mate any orbit segment of a certain length to a given accuracy. This also gives topological
entropy. A set E ⊂ X is said to be (t, ε)-spanning if it is ε-dense for dΦ

t . Let Sd(Φ, ε, t)
be the minimal cardinality of an (t, ε)-spanning set, or equivalently the cardinality of a
minimal (t, ε)-spanning set or the minimal number of initial conditions whose behavior up
to time t approximates the behavior of any initial condition up to ε. Then

htop(Φ) = lim
ε→0

lim
t→∞

1

t
logSd(Φ, ε, t).

That one gets topological entropy both ways follows from the fact that a maximal (t, ε)-
separated set is a (t, ε)-spanning set because otherwise it would be possible to increase the
set by adding any point not covered, while on the other hand no ε-ball can contain two
points 2ε apart, i.e.,

Nd(Φ, ε, t) ≥ Sd(Φ, ε, t) ≥ Nd(Φ, 2ε, t).
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In the definition of htop the limt and limt may disagree for positive ε in either of
these cases. There is a third quantity, the minimal cardinality Dd(Φ, ε, t) of a cover by
sets whose dΦ

t -diameter is less than ε, for which the limit exists by submultiplicativity:
Dd(Φ, ε, t+ s) ≤ Dd(Φ, ε, t) ·Dd(Φ, ε, s).

We will see soon (Section 2.5f3) that htop(ΦT ) = |T |htop(Φ1), so it suffices to develop
entropy theory for discrete-time dynamical systems.

3. Entropy as dimension. One can interpret the preceding definition of entropy in a
way that is reminiscent of the definition of the box dimension of a set in a metric space.
Passing to an analog of Hausdorff dimension then leads to a more general definition of
entropy [PPi].

Define the ε-size of E ⊂ X as

exp(− sup{t ≥ 0 diam(Φτ (E)) < ε for 0 ≤ τ < t}),
where e−∞ := 0. Then Dd(Φ, ε, t) is the minimal cardinality of a cover of X by sets
of ε-size less than e−t and one can re-express the definition of entropy through Dd by
considering the asymptotics of the sum

∑
i δ
s as δ → 0 for any minimal cover of X by

sets Ei of ε-size less than δ = e−t and a parameter s. This diverges for s > sε and
converges for s < sε. Then htop(Φ) = limε→0 sε. This is a calculation as it appears in the
definition of box dimension. Note that by considering covers of a given subset we obtain
a definition of entropy of a set. Passing to a Hausdorff-dimension analog and allowing
infinite covers leads to a definition of the entropy of a not necessarily compact set and that
of entropy of a dynamical system on some noncompact spaces. To that end assume X is
precompact (i.e., has finite covers of arbitrarily small diameter) and consider a set Y ⊂ X .
Denote by S(ε, δ) the infimum of

∑
i δ
s
i over countable covers of Y by open sets of ε-size

δi < δ and let h(Φ, Y, ε) := inf{s limδ→0 S(ε, δ) = 0} and

htop(Φ, Y ) := lim
ε→0

h(Φ, Y, ε).

We write htop(Φ) := htop(Φ, X). If X is compact then this coincides with our earlier
definition.

4. Entropy via covers. The original definition of topological entropy for discrete-time
dynamical systems as given by Adler, Konheim, and McAndrew [AdKM] uses covers as
follows. Let A be an open cover of a compact space X and N(A) the minimal cardinality
of a subcover. If A and B are covers, let A ∨ B := {A ∩ B A ∈ A, B ∈ B} and
Φ−1(A) := {Φ−1(A) A ∈ A}, where Φ−1 denotes the preimage under the map Φ1.
Then

htop(Φ) = sup
A

lim
n→∞

1

n
logN(A ∨ Φ−1(A) ∨ · · · ∨ Φ1−n(A)).

By construction, this definition is topologically invariant, in particular independent of the
metric. It is also clear from it that the entropy does not increase when one passes to a
topological factor.

Considering the cover A by all sets of diameter less than ε leads to the previous defi-
nition using Dd, once one shows that taking the limit as ε→ 0 amounts to the same as the
sup over A.

5. Entropy for noncompact spaces. In a similar vein one can pass to a definition, due
to Bowen [B2], which does not require the space to be precompact by defining an analog
to the ε-size above that requires no metric. To that end fix a finite open cover A of a set
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Y ⊂ X and define the A-size of a set E as

exp(− sup{t ≥ 0 Φτ (E) ≺ A for 0 ≤ τ < t}),
where E ≺ A means E ⊂ A for some A ∈ A. As before this leads to a definition of
the entropy htop(Φ, Y ) of Φ on a set Y . One should be careful to note that the definition
of htop(Φ, Y ) is extrinsic to Y in the following sense: It may happen that two dynamical
systems contain subsets Y1 and Y2 on which they are conjugate, but the respective subset-
entropies disagree.

f. Basic properties of entropy. [B2], [KH, Proposition 3.1.6, Proposition 3.1.7, Corol-
lary 3.2.13]

(1) htop(Φ,Λ) ≤ htop(Φ).
(2) If Λi ⊂ X are invariant then htop(Φ�⋃Λi

) = supi htop(Φ�Λi ).

(3) htop(ΦT , Y ) = |T |htop(Φ, Y ).
(4) If g is a factor of f , then htop(g) ≤ htop(f).
(5) htop(Φ1 × Φ2, Y1 × Y2) = htop(Φ1, Y1) + htop(Φ2, Y2).
(6) If f is expansive then Pn(f) ≤ N(f, ε, n) and hence p(f) ≤ htop(f). If δ is an

expansivity constant then the limε→0 in the definition of entropy is attained for
any ε < δ.

The reason for 6. is that under an expansive map ε-separated sets are δ-separated after a
few iterates, and that periodic orbits are always δ-separated.

g. Finiteness of entropy. Entropy can be related to the local expansion rate of a
dynamical system in various ways. One of the simplest of these is based on the observation
that any “direction” contributes no more to the entropy than the expansion rate in that
direction, which is, of course, bounded by the maximal expansion rate, i.e., the Lipschitz
constant

(2.5) Lip(f) := sup
x6=y

d(f(x), f(y))/d(x, y).

PROPOSITION 2.5.5. [KH, Theorem 3.2.9] Let f be a map of a compact metric space
X with box dimension D(X). Then htop(f) ≤ D(X) max(0, log(Lip(f))).

Thus, in particular, smooth maps of compact manifolds have finite entropy [Ks].

h. Growth of separated and spanning sets. In systems with zero topological en-
tropy, particularly those with parabolic behavior (Section 8.2a), the most straightforward
way to measure the complexity of the orbit structure is to look at the subexponential as-
ymptotic growth of the quantities Nd(Φ, ε, t) and Sd(Φ, ε, t) with t that were used in the
definition of topological entropy in Section 2.5e. Various scales of growth can be used, and
we briefly describe a convenient general scheme for producing a numerical invariant. We
treat continuous and discrete time in a homogeneous fashion.

A function a : (0,∞) × (0,∞) → (0,∞) is said to be a scale function if a(·, t) is
increasing for all t and limt→∞ a(s, t) = ∞ for all s. For the case of parabolic systems
the power scale a(s, t) = ts is the most suitable. Define the upper a-entropy as

lim
ε→0

sup{s lim
t→∞

Nd(Φ, ε, t)/a(s, t) > 0}.
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The lower a-entropy is defined analogously, with lim instead of lim. If both agree then
this defines the a-entropy enta(Φ) of Φ. For a(s, t) = ts the a-entropy is called the power
entropy and denoted by entp(Φ). Evidently the power entropy of an isometry is zero,
because Nd(Φ, ε, t) is bounded for given ε.

i. Slow entropy and the Hamming metric. A more robust approach, which works
for both the topological and measure-theoretic situation (Section 3.7l), is based on replac-
ing the supremum metric dΦ

t from (2.4) by an integral metric

(2.6) ðΦ
t (x, y) =

1

t

∫
d(Φs(x),Φs(y)) ds,

where, as usual, the integral stands for summation in the discrete time case. The construc-
tion then proceeds exactly as above. The results of this modified definition of topological
a-entropy with the metric ðΦ

t are denoted by ent
top
a (Φ), enttop

a (Φ) and enttop
a (Φ), according

to whether we use upper or lower limits, or these coincide.

j. Weighted zeta-functions. Fix a bounded function ϕ : X → C on the phase space
X of a dynamical system. In order to use this function to assign weight to periodic orbits
as we count them, we assume that periodic orbits are isolated. The weight of a periodic
orbit is then given by the integral of ϕ over the periodic orbit. In the discrete-time case this
is just a sum of the values of the function along the orbit, but for a monolithic treatment we
use integrals throughout.

If we replace the exponent −zl(γ) in (2.3) by
∫ l(γ)

0
(ϕ(Φt(x)) − z) dt we obtain the

weighted zeta-function

(2.7) ζΦ,ϕ(z) =
∏

γ

(
1− exp

( ∫ l(γ)

0

(ϕ(Φt(x))− z) dt
))−1

,

The analog to our earlier discrete-time version is

ζΦ,ϕ(z) = exp
∞∑

n=1

zn

n

∑

x∈Fix(Φn)

exp
n−1∑

k=0

ϕ(Φk(x)),

which explains more clearly why this is appropriately described as taking weighted sums.
Note that for ϕ = 0 we recover the original zeta-function. See [S-P, PP].

k. Pressure. Similarly, such a function ϕ can be added to the data used in the defi-
nition of entropy by counting orbits with weights. This leads to the definition of pressure.
Specifically we assign the weight exp

∫ T
0
ϕ(Φt(x)) dt to an orbit segment Ot(x).

DEFINITION 2.5.6. The topological pressure of ϕ is

Pϕ(f) := lim
ε→0

lim
t→∞

1

t
logNd(Φ, ϕ, ε, t),

where

Nd(Φ, ϕ, ε, t) := sup
{∑

x∈E
exp(

∫ t

0

ϕ(Φt(x)) dt) E ⊂ X is (t, ε)-separated
}

and in the discrete time case integrals are replaced by sums.
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Note that we can similarly modify the alternative definitions of entropy and that we
recover entropy as the special case ϕ = 0.

The definition of pressure is often used with potential functions ϕ that are naturally
related to the dynamics in some way. The principal importance of pressure appears in
connection with the study of a special class of invariant measures for topological (in par-
ticular, smooth and symbolic) dynamical systems, equilibrium states, see Section 4.4g,
Section 6.7c, [S-C], [KH, Chapter 20].

l. Higher rank abelian actions. The notions of entropy and pressure can be allow a
strightforward extension to the case of Zk and Rk actions. This is important for applica-
tions that involve the thermodynamical formalism on lattice models as well as the study of
actions by automorphisms of compact abelian groups [S-LS]. The basic point is that we
can define metrics

dΦ
t (x, y) = max

0≤τi<t
d(Φ(τ1,...,τk)(x),Φ(τ1,...,τk)(y)),

also for these actions. The notions of separated and spanning sets become immediately
natural. Since the cubes in Zk and Rk used here tile the respective group, the arguments
from the cyclic case go through to prove the existence of the expressions defining entropy
and pressure [Ru3, Mi].

m. Complexity of families of orbits. In addition to considering the growth of dis-
crete families of orbits one can measure the growth of continuous families of orbits. To
that end one may consider their topological complexity. This idea leads to several alge-
braic counterparts of entropy. The first invariant of this kind is related to the growth of
homotopical complexity of iterates for a closed loop.

1. Fundamental group entropy. To define the entropy of an endomorphismF : π → π
of a finitely generated group π let Γ = {γ1, . . . , γs} be a system of generators and for
γ ∈ π set

L(γ,Γ) = min{
ks∑

j=1

|ij | γ = γi11 γ
i2
2 · · · γiss γ

is+1

1 · · · γi2ss · · · γikss },

Ln(F,Γ) = max1≤i≤s L(Fnγi,Γ) and hA(F ) := limn→∞ logLn(F,Γ)/n. This is in-
dependent of Γ and is called the algebraic entropy of F . Clearly it is invariant under
conjugacy of group endomorphisms.

Now consider a continuous map f of a compact connected manifoldM and let p ∈M .
Fix a continuous path α connecting p with its image f(p), i.e., a map α : [0, 1]→M such
that α(0) = p, α(1) = f(p). Then define an endomorphism fα∗ : π1(M,p) → π1(M,p),
[γ] 7→ [αf(γ)α−1], which is represented by the path α followed by the loop f ◦ γ and
then by α taken in the opposite direction. Define the fundamental-group entropy of f as
h∗(f) := hA(fα∗ ). This is independent of the choice of α and p and clearly a topological
invariant [KH, Section 3.1]. It turns out [S-FM], [KH, Section 8.1] that

h∗(f) ≤ htop(f).
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2. Homological entropy. Other useful topological growth invariants come from con-
sidering the linear maps f∗i induced by f on the homology groupsHi(M,R). The spectral
radii r(f∗i) are topological invariants of f . It follows immwdiately from the Hurewicz
identification H1(M) ∼ π1(M,p)/[π1(M,p), π1(M,p)] that

log r(f∗1) ≤ h∗(f).

See[S-FM] for other results in this direction.
3. Homotopical entropy. For continuous-time dynamical systems the invariants de-

fined above are vacuous since every element of the flow is homotopic to the identity and
hence induces trivial maps of the fundamental group and homology groups. There are,
however, different ways to measure the growth of topological complexity. For example,
on a compact connected manifold X one can fix a point p ∈ X and a family of arcs
Γ = {γx x ∈ X} of bounded length connecting p with various points of X . Then
for a flow Φ = ϕt : X → X one fixes T and considers for each x ∈ X the closed
loop l(x, T ) consisting of the arc γx, the orbit segment {ϕtx}Tt=1, and the reverse of the
arc γfT x. Those loops represent different elements of the fundamental group π1(X, p).
Their number Π(Φ, p,Γ, T ) grows at most exponentially and the exponential growth rate
hhom(Φ) := limT→∞ log Π(Φ, p,Γ, T )/T is independent of p and Γ and is called the ho-
motopical entropy of Φ. It is obviously invariant under flow equivalence and similarly to
before we have

hhom(Φ) ≤ htop(Φ).

In Section 2.3f, similar ideas were used from the point of view of recurrence.

6. Symbolic dynamical systems

We now look more carefully at the structure of the n-shift introduced in Section 2.1d.
See [LM], [KH, Section 1.9] for more detailed accounts.

a. Metrics and functions of exponential type. For N ≥ 2 consider the Cantor
set ΩN = {0, 1, . . . , N − 1}Z of two-sided sequences of N symbols and the one-sided
space ΩRN = {0, 1, . . . , N − 1}N0 with the product topology. Since the set of “states”
{0, 1, . . . , N − 1} can be identified with the cyclic group Z/NZ, the spaces ΩR

N also pos-
sess the structure of a compact abelian topological group. For n1 < n2 < · · · < nk and
α1, . . . , αk ∈ {0, 1, . . . , N − 1} we call

(2.1) Cn1,...,nk
α1,...,αk

= {ω ∈ ΩN ωni = αi for i = 1, . . . , k}
a cylinder and k the rank of that cylinder. Cylinders in ΩR

N are defined similarly. Cylinders
form a base for the product topology. Every cylinder is also closed because the complement
of a cylinder is a finite union of cylinders. The most general open set is a countable union
of cylinders. The topology is given by any metric

dλ(ω, ω′) = λmax{n∈N0 ωk=ω′k for |k|≤n}

with λ ∈ (0, 1). Then any symmetric cylinder C−n,...,nα−n,...,αn of rank 2n+ 1 is a λn-ball.
The different metrics dλ define the same topology on ΩN (although they are not equiv-

alent as metrics) and also determine a Hölder structure. This means that the notion of
Hölder-continuous function with respect to the metric dλ does not depend on λ. The
class of Hölder-continuous functions plays an important role in applications to differen-
tiable dynamics and can be described as follows. Let ϕ be a continuous complex-valued
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function defined on ΩN or on a closed subset and write ω = (. . . , ω−1, ω0.ω1, . . . ) and
ω′ = (. . . , ω′−1, ω

′
0.ω
′
1, . . . ). Then for n ∈ N let

Vn(ϕ) := max{|ϕ(ω)− ϕ(ω′)| ωk = ω′k for |k| ≤ n}.
Since ΩN is compact, ϕ is uniformly continuous and Vn(ϕ) → 0 as n→ ∞. We say that
ϕ has exponential type if Vn(ϕ) ≤ ce−an for some a, c > 0.

PROPOSITION 2.6.1. ϕ has exponential type if and only if it is Hölder continuous with
respect to some (and hence any) metric dλ.

All this translates to ΩRN and has obvious analogs for Zk and Zk+ as index sets. This
more general setting is motivated by lattice models in statistical mechanics.

b. Shifts. Topological entropy and periodic orbit growth coincide for shifts. It is easy
to calculate

htop(σN ) = p(σN ) = logN.

Note that these maps are expansive and

ζσN (z) = ζσRN (z) = exp
∞∑

n=1

Nn

n
zn =

1

(1−Nz)
.

Orbit closures are easy to characterize: If ω ∈ ΩN then

O(ω) = {ω′ ∈ ΩN ∀m ∈ N∃k ∈ Z : ω′i = ωk+i for |i| ≤ m}.
However, they may be rather complicated.

EXAMPLE 2.6.2. The one-sided shift on two symbols arises naturally from coding
in simple examples: It is topologically conjugate to the restriction of the tripling map
E3 : x 7→ 3x (mod 1) to the ternary Cantor set (in [0, 1] embedded into S1 = R/Z) as
well as to the restriction of fa : R → R, x 7→ ax(1 − x) for a > 4 to the invariant set
Λ :=

⋂
n∈N f

−n([0, 1]).

These are simple instances of the fact that shifts are standard models for some closed
invariant sets in smooth dynamical systems. This is one of the central themes in hyperbolic
dynamics, see Section 6.7g, [S-C, Chapter 8], [KH, Section 18.7].

Recall that the restriction of the shifts σN or σRN to any closed invariant subset Λ of
ΩN or ΩRN , respectively, is called a symbolic dynamical system. Properties of symbolic
dynamical systems vary widely. They are a rich source of examples and counterexamples
for topological dynamics and ergodic theory.

Any symbolic dynamical system can be characterized by the existence of a collection
S of “forbidden” blocks, i.e., of finite sequences α = (α0, . . . , αnα−1), such that

Λ = {ω ∈ ΩN (ωk, . . . , ωk+nα) 6= α for all k ∈ Z, α ∈ S}.
c. Topological Markov chains and subshifts of finite type. It is natural to try to

look at those symbolic systems for which the collection S of forbidden blocks is simple,
in particular those with finite S. We begin with the situation where S contains only blocks
of length two.

Let A = (aij)
N−1
i,j=0 be a 0-1 matrix, i.e., with entries aij ∈ {0, 1} and

(2.2) ΩA := {ω ∈ ΩN aωnωn+1
= 1 for n ∈ Z}.
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In other words, the matrix A determines all admissible transitions between the symbols
0, 1, . . . , N − 1. The set ΩA is obviously shift invariant.

The restriction σN �ΩA =:σA is called the topological Markov chain determined by the

matrix A. Let A : {1, . . . , N}n+1 → {0, 1} and ΩA := {ω ∈ ΩN A(ωm, . . . , ωm+n) =
1 for m ∈ Z}. Then the restriction σA of σN to ΩA is called an n-step topological Markov
chain or a subshift of finite type. The latter terminology derives from the fact that these
shifts can be described by giving a finite list of forbidden words (of length up to n + 1),
i.e., a subshift of finite type can be described as the set of sequences containing none of a
finite list of excluded words. Some authors, however, intend “subshift of finite type” to be
synonymous with “topological Markov chain”.

Topological Markov chains constitute a special (although important) class of symbolic
dynamical systems. From the point of view of their intrinsic dynamics n-step topological
Markov chains are the same as topological Markov chains, since they can be described as
topological Markov chains over the alphabet {1, . . . , N}n by taking the matrix A given by
A(i1,...,in),(j1,...,jn) = 1 if jk = ik+1 for k = 1, . . . , n− 1 and A(i1, . . . , in, jn) = 1.

Subshifts of finite type and hence topological Markov chains are of interest e.g., be-
cause of the following.

PROPOSITION 2.6.3. A closed shift-invariant set Λ ⊂ ΩN is locally maximal (iso-
lated) if and only if σN �Λ is a subshift of finite type.

This expresses the fact that checking blocks of finite length corresponds to fixing a
point up to a finite error.

d. Properties of topological Markov chains. There is a useful geometric represen-
tation for topological Markov chains. Connect i with j by an arrow if aij = 1. This way
we obtain a directed graph GA with N vertices. We call a finite or infinite sequence of
vertices of GA an admissible path or admissible sequence if any two consecutive vertices
in the sequence are connected by an oriented arrow. A point of ΩA corresponds to a doubly
infinite path in GA with marked origin, and the topological Markov chain σA corresponds
to moving the origin to the next vertex. Here is a simple example:

0 −→ 1
↑↓ ↘ ↓
3 −→ 2

corresponds to




0 1 1 1
0 0 1 0
0 0 0 0
1 0 1 0


 .

This topological Markov chain consists of a single period-2 orbit 03.

PROPOSITION 2.6.4. htop(σA) = log r(A), the spectral radius of A, and Pn(σA) =
tr(An), in particular the zeta-function is rational.

REMARK. This resembles the algebraic ζ-function discussed earlier. One could say
that the appearance of only one matrix in the formula (compared to one per homology
dimension) reflects the fact that the sequence space is zero-dimensional.

Assume from now on that A is a 0-1 N × N matrix which has at least one 1 in each
row and each column. If i ∈ {0, . . . , N−1} then ΩA,i :={ω ∈ ΩA ω0 = i} 6= ∅. If there
is an element ω ∈ ΩA that contains the symbol i at least twice then we call i essential.
Otherwise i is said to be transient. This is equivalent to the existence of a periodic point
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ω′ ∈ ΩA such that ω′0 = i. Any ω-limit point (see Section 2.3a) of any element of ΩA

contains only essential symbols. We call two essential symbols i and j equivalent if there
exist ω, ω′ ∈ ΩA, k1 < k2, l1 < l2 such that ωk1

= ω′l2 = i, ωk2
= ω′l1 = j, i.e., they

occur in the same cycle. Thus the set of all essential symbols splits into disjoint equivalence
classes. Now σA has a dense positive semiorbit if and only if all symbols are essential and
equivalent. This gives

PROPOSITION 2.6.5. If σA has a dense positive semiorbit then there existsm ∈ N and
a decomposition of ΩA into closed disjoint subsets Λ1, . . . ,Λm = Λ0 such that σAΛi =
Λi+1 for i = 0, 1, . . . ,m − 1 and the restriction of (σA)m to each Λi is topologically
mixing. Moreover, the decomposition of ΩA into Λi’s corresponds to a decomposition of
the set {1, . . . , N} into m equal groups such that every element ω ∈ ΩA has only symbols
from one group in positions equal modulo m. The nonwandering set is a disjoint union
corresponding to different classes of essential symbols.

This is an instance of the so-called spectral decomposition, where the phase space
decomposes into transitive sets, each of which is a union of cyclically permuted sets on
which the appropriate iterate is topologically mixing.

SKETCH OF PROOF. Let m be the greatest common divisor of lengths of cycles (se-
quences beginning and ending at the same symbol) and identify two symbols if they are
connected by a path whose length is a multiple of m. Let Λi be the equivalence classes.
For mixing assume without loss of generality that m = 1. �

The preceding proposition shows that the primary case of interest is the mixing one.

PROPOSITION 2.6.6. A is a transitive matrix, i.e., there is a power of A all of whose
entries are positive, if and only if σA is topologically mixing. In this case A has a single
eigenvalue λmax = r(A) of maximal absolute value and |Pn(σA) − λnmax| ≤ Cλn for
some C > 0 and λ < λmax.

REMARK. As we have just seen, topological Markov chains and subshifts of finite
type represent a class of symbolic systems that allow a comprehensive structural descrip-
tion. However, the classification of those systems up to topological conjugacy is a difficult
algebraic and combinatorial problem and engendered considerable activity in the last 25
years, which produced highly nontrivial invariants and finally led to counterexamples to
the leading classification conjecture (see [LM, Chapter 7]).

e. Some subshifts of infinite type. While subshifts of finite type are the simplest
symbolic systems in terms of enumeration of forbidden blocks, there are numerous other
symbolic systems which can be algorithmically described and some of them produce rather
simple dynamics. We refer the reader to [LM] for a survey of such constructions and
present here only some characteristic examples.

EXAMPLE 2.6.7. The Prouhet–Thue–Morse sequence [LM] is a uniformly recurrent
point for σR2 , which produces minimal non-Markov systems. It is constructed as follows.
Beginning with the word W0 = 0 recursively define words Wn+1 = WnWn, where Wn

is obtained from Wn by replacing 0 by 1 and vice versa. For n ≥ k the word Wn begins
with the word Wk, so the limit is a well-defined one-sided sequence W . Indeed,

W = 0 1 10 1001 10010110 1001011001101001 . . .
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Equivalently, one can start from the word 0 and repeatedly apply the substitution scheme
0 → 01, 1 → 10. Again, the limit is W . Indeed, this is an example of an interesting class
of non-Markov symbolic systems called substitution shifts [LM].

As W is made up of pairs 01 and 10, any two 0’s are separated by at most two entries.
Therefore any two words 01 (obtained from 0 by the substitution scheme) are separated by
at most four entries, any two words 0110 by at most eight, and so on. These initial words
include all allowed words, so W is uniformly recurrent for σR2 .

To obtain a minimal non-Markov shift extend W to a two-sided sequence x = αW ∈
Ω2 and let Λ = ω(x) be the ω-limit set of x under σ2. Then σ2�Λ is minimal by Propo-
sition 2.3.4. Λ can equivalently be described as the collection of sequences all of whose
subwords appear in W .

EXAMPLE 2.6.8. Toeplitz shifts are defined as orbit closures of Toeplitz sequences.
A sequence x ∈ ΩN is said to be a Toeplitz sequence if Z decomposes into arithmetic
progressions on which x is constant. Toeplitz shifts are always minimal [LM, p. 460],
but may have positive entropy. (There are also smooth minimal dynamical systems with
positive entropy [Hm4].)

EXAMPLE 2.6.9. For α ∈ R r Q consider the coding of the circle rotation Rα by
[0, 1/2), [1/2, 1). Although the words 01 and 10 are allowed, this symbolic system S is
not the full shift because there are no periodic sequences. It is not hard to check minimality
and that S is not a subshift of finite type.

Since htop(S) = 0, we can try to study a subexponential rate of orbit growth in this
case. For symbolic dynamical systems one can define the power entropy (Section 2.5h) via
the number of nonempty cylinders of rank n instead of Nd(S, ε, n). In the present example
there are 2n nonempty cylinders of length n, so entp(S) = 1.

On the other hand, rotations are isometries, so entp(Rα) = 0.

EXAMPLE 2.6.10. Let

Bk = {ω ∈ Ω2 m,n ∈ Z,m > n⇒
∣∣
m∑

i=n

(−1)ωi
∣∣ ≤ k}.

It is easy to see that Bk is a closed σ2-invariant subset of Ω2. Denote Sk = σ2�Bk . Partial

sums of ω give (in a nonunique way) sequences that vary within [0, k] up to translation.
Let Ak be the (k + 1) × (k + 1) 0-1 matrix with aij = 1 if |i − j| = 1 and aij =
0 otherwise. The corresponding topological Markov chain ΩAk represents the discrete
random walk on the interval [0, k] because for each element ω ∈ ΩAk successive entries
differ by exactly 1. Notice that ΩAk is topologically transitive but not topologically mixing,
because it interchanges even and odd symbols. Coding decreasing transitions by zeroes and
increasing transitions by ones defines a map Hk : ΩAk → Ω2. The image of Hk is Bk and

(2.3) Hk ◦ σAk = Sk ◦Hk.

The mapHk is in fact an almost isomorphism (Section 2.2f). The set of nonuniqueness
consists of the walks that do not cover the whole interval [0, k]. For example for k = 2
this set contains exactly two period two orbits 01 and 12, which are both mapped to 01.
Similarly, for k > 2 there are two copies of ΩAk−1

inside ΩAk that differ by translation
and are identified by the map Hk. Thus S2

k is not transitive but Bk is the union of two
transitive invariant sets that are the closures of their interiors and whose intersection is
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an invariant nowhere dense set. And this is incompatible with spectral decomposition
(Proposition 2.6.5).

Thus, we have shown that Sk is not a subshift of finite type although it is an almost
isomorphic factor of one. Symbolic systems that are factors of subshifts of finite type are
called sofic.

f. Complexity of symbolic systems. A natural notion closely related to slow topo-
logical entropy (Section 2.5h) is the complexity function pΛ(n) for a symbolic dynamical
system, which gives the number of standard cylinders of rank n which intersect the set
Λ. This notion has been extensively studied both with an eye to describing possible com-
plexity functions and characterizing systems with low complexity. The area is surveyed
in [Fe2]. An interesting open question is the characterization of symbolic systems with
complexity function growing at most linearly.

g. The Furstenberg Reduction Principle and multiple recurrence. Any ω ∈ ΩN

defines a partition of Z into subsets Si = {m ∈ Z ωn = i} (0 < i < N ). Accordingly,
σmω ∈ C0

i if and only if m ∈ Si. This simple observation lies at the root of an important
class of applications of topological dynamics to combinatorics (and vice versa). Rather
loosely we can say that any statement asserting that one of the sets from any finite partition
of Z possesses a certain large scale structure is equivalent to a certain statement about
recurrence behavior in topological dynamical systems. Furstenberg made systematic use
of this observation (as well as its quantitative counterpart, Section 4.2f [Pt]), so we refer
to both as the Furstenberg Reduction Principle [F1, S-B, F4].

Let us illustrate this by an important example. As the statement about partitions of Z
take the van der Waerden Theorem [PY]: If Z is partitioned (or covered) by finitely many
subsets then at least one of these contains arbitrarily long arithmetic progressions.

Let f : X → X be a continuous map of a compact metric space. A point x ∈ X is
said to be multiply nonwandering if for any open neighborhood U and k there exists l such
that

⋂k−1
j=0 f

−jl(U) 6= ∅.

THEOREM 2.6.11. The van der Waerden Theorem is equivalent to the existence of a
multiply nonwandering point for every map.

PROOF. To any partition Z = S0 ∪ · · · ∪ SN−1 corresponds an ω ∈ ΩN by setting
ωn = i if n ∈ Si. Then Si contains an arithmetic progression (m,m+ l, . . . ,m+(k−1)l)
if and only if σjl(σm(ω)) ∈ C0

i for 0 < j < k.
Assuming that the restriction of the shift σ to the invariant compact set O(ω) has a

multiply nonwandering point ω0 we obtain
k−1⋂

j=0

σ−jl(C0
i ∩ O(ω)) 6= ∅.

But since cylinders are closed this implies that also

k−1⋂

j=0

σ−jl(C0
i ∩ O(ω)) 6= ∅.

and hence σmω ∈ ⋂k−1
j=0 σ

−jl(C0
i ) for some m ∈ Z, implying the statement of the van der

Waerden Theorem: the set Sω0
0

contains an arbitrary long arithmetic progression.
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Conversely, assume the van der Waerden Theorem holds and consider an arbitrary
continuous map f of a compact metric space. Without loss of generality we may assume
that f is invertible by considering the natural extension of f because multiply recurrent
points of the natural extension project to multiply recurrent points of the map. Now con-
sider a nested sequence of partitions (Pn)n∈N into sets of diameter less than 2−n. Using
the coding associated with the partition Pn and applying the van der Waerden Theorem one
finds for each n an element Cn ∈ Pn such that for any k ∈ N there exists an l ∈ N with⋂k−1
j=0 f

−jl(Cn) 6= ∅. By compactness one can find a sequence of points xnm ∈ Cnm
converging to x. For any open neighborhood U of the point x one has Cnm ⊂ U for
sufficiently large m. This proves that x is multiply nonwandering. �

h. Topological Markov chains and subshifts of finite type for other groups. Sym-
bolic systems are naturally defined over groups other than Z, and subshifts of finite type
are defined by “localized” interactions, i.e., by prohibiting the appearance of some finite
patterns. The case Zk is important and relates to statistical mechanics (lattice models)
[Ru2] and automorphisms of abelian groups [S].

This subject has many more intricacies than the cyclic situation and is surveyed in
[S-LS].

7. Low-dimensional topological dynamical systems

In most of this chapter topological dynamical systems were considered in a generic
way without any particular regard to the topology of the phase space save for compactness
or an even weaker assumption. When one begins to look into topological dynamics in a
more thorough fashion specific properties of the phase space come to the fore. Symbolic
systems represent the most important class of dynamical systems acting on the totally dis-
connected and hence zero-dimensional phase space. Since topological dynamics grew out
of attempts to distill some natural general properties of more classical systems, dynami-
cal systems acting on manifolds and similar spaces are of particular interest. Algebraic
topology plays an essential role in this area of dynamics, see [S-FM].

An area where the impact of topology is particularly well understood is dynamics on
low-dimensional connected phase spaces. The primary cases are discrete-time (invertible
and, more interestingly, noninvertible) systems in dimension one, especially on the interval,
the circle, and the line, homeomorphisms of two-dimensional manifolds, flows on two-
dimensional manifolds and, to a limited extent, flows on three-dimensional manifolds.

a. One-dimensional dynamics. For a detailed overview of topological dynamics in
one dimension see [S-JS, Chapter 1]. The comprehensive monograph [MS] on one-
dimensional dynamics pays considerable attention to the topological aspects of the subject.
[ALM] covers one-dimensional topological dynamics in even greater depth.

The key topological property of connected one-dimensional spaces is the fact that a
small connected neighborhood of a point becomes disconnected when the point itself is
removed. A closely connected fact is the intermediate value theorem for functions of one
real variable. This theorem allows to use simple combinatorial data to construct invariant
sets for an interval map closely associated with topological Markov chains determined by
these data. Here is a simple illustrative example.

Let I be an interval and f : I → I be continuous map. We say that J ⊂ I covers
K ⊂ I (under f ) if K ⊂ f(J) and we denote this situation by J → K.
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Consider a collection C = {I1, . . . , In} of closed subintervals of I with pairwise
disjoint interiors. The relation “→” then yields the edges of a directed graph, the Markov
graph, associated to C, whose vertices are the intervals in C. Let A be the 0-1 matrix
determined by the graph and σRA the one-sided topological Markov shift defined by A. We
will say that A is associated to the collection C.

THEOREM 2.7.1 ([KH, Theorem 15.1.5]). Let C = {I1, . . . , In} be a collection of
pairwise disjoint closed subintervals of I , J :=

⋃
Ii, and A the matrix associated to C.

Then there exists a closed f -invariant subset S ⊂ J such that σRA is a factor of f�S via a

map h : S → ΩRA. There are at most countably many points with more than one preimage
under h and the preimages of these points are intervals.

Markov covers of this type are the basic tool for studying the topological dynamics
of noninvertible maps in one dimension (for invertible ones the rotation number from Sec-
tion 2.3g plays a similar role). In particular, they play a central role in the proof of the
following definitive result by Misiurewicz and Szlenk which connects two fundamental
growth invariants, the growth of periodic orbits and the topological entropy.

THEOREM 2.7.2 ([KH, Corollary 15.2.2], [ALM, Theorem 4.3.14]). htop(f) ≤ p(f)
for any continuous map f of the interval or the circle.

b. Flows and homeomorphisms on surfaces. The Jordan curve theorem plays a
crucial role in two-dimensional topological dynamics. In particular, it is responsible for
the simplicity of flows on the plane and sphere (Poincaré–Bendixon theory [KH, Sec-
tion 14.1]) as well as for the limited complexity of flows on other surfaces (Section 8.4,
[KH, Chapter 14]). In these situations the principal tool is the construction of closed
transversals and return maps to these. The Jordan curve theorem is used to show that
certain arrangements of transversals must cut the surface into pieces, thus producing lim-
itations on recurrent behavior. The main invariants for flows on surfaces of genus greater
than one are of a homological nature (Section 8.4d) and can be viewed as generalizations of
asymptotic cycles and rotation number for flows on the torus (Section 2.3f, Section 2.3g).
An alternative (in fact, historically earlier) approach was suggested by Aranson and Grines
in the form of the homotopy rotation class (see [NZ] for a comprehensive modern account).
In that approach the Jordan curve theorem is used to associate with a flow on a compact
surface M of genus g ≥ 2 a subset of the circle that is identified with the boundary of
the hyperbolic plane, the universal cover of M . For a broad class of flows the homotopy
rotation class is a complete invariant of topological orbit equivalence, albeit not an easily
computable one.

While the orbit structure of surface homeomorphisms may be much more complicated
than that of flows it is remarkable that the homotopy type of such a homeomorphism, ab-
solute or modulo an invariant set consisting of several periodic orbits, provides substantial
infornation about the dynamics (see [S-FM]). This connection is the basis of Nielsen (or
Nielsen–Thurston) Theory. (See [KH, Section 8.7] for a basic introduction, [Ji] for a com-
prehensive account and also [FLP].)





CHAPTER 3

Ergodic theory

1. Introduction

a. Invariant measures and asymptotic distribution. In the most general terms, the
subject of ergodic theory is the study of groups and semigroups of nonsingular transforma-
tions of measure spaces. Most attention is given to the case where the measure in question
is both finite and invariant. This assumption is somewhat akin to the compactness assump-
tion in topological dynamics. Its implications are more powerful and include a quantitative
analog of regional recurrence (Section 2.3d).

To be more specific for the purpose of providing motivation, we consider only the
case of cyclic systems with discrete time. For a Borel measure µ on a topological space
X define the support of µ as the set of all points for which any neighborhood has positive
measure. As the complement of the maximal open null set, it is a closed set. The Poincaré
Recurrence Theorem (Section 3.4c), which is often hailed as the first true result of ergodic
theory, implies that the restriction of a continuous map to the support of a finite invariant
measure is regionally recurrent.

However the main reason ergodic theory has such a powerful presence in other major
areas of dynamics, lies in ergodic theorems, which assert that for almost every initial con-
dition the distribution of iterates among various parts of the phase space satisfies a certain
asymptotic law. This explains why interest in invariant measures arises naturally in the
study of smooth or topological dynamical systems (which are the primary applications).

Let X be a set, f : X → X , and for x ∈ X and U ⊂ X let FU (f, x, n) =∑n−1
k=0 χU (fk(x)) = card{k ∈ [0, n − 1] fk(x) ∈ U}, i.e., the number of visits to

the set U under the first n iterates of x. The limit

FU (f, x) := lim
n→∞

FU (f, x, n)

n
= lim

n→∞
1

n

n−1∑

k=0

χ
U

(fk(x)),

if it exists, gives the asymptotic density of the distribution of the iterates between the set
U and its complement X r U . It is called the time average or Birkhoff average of χ

U
.

As a corollary of the Birkhoff Ergodic Theorem (Theorem 3.5.2), we conclude that for
any measurable set U the time average exists for almost every initial condition x ∈ X .
Furthermore, it is positive for almost every x ∈ U .

As mentioned in Section 1.4b, one can consider time averages of functions other than
characteristic functions. Bounded functions, or integrable ones, are the most natural can-
didates. Thus, for a given x ∈ X and a bounded measurable function ϕ the time average
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is defined as

Ix(ϕ) := lim
n→∞

1

n

n−1∑

k=0

ϕ(fk(x)),

and again the Birkhoff Ergodic Theorem implies existence of the limit for almost every
x ∈ X .

See [S-B] for a survey and [Kg],[Tp] for extensive treatments of the subject.

b. Quantitative recurrence properties. Beginning from the parallel between re-
gional recurrence and existence of a finite invariant measure one arrives at a panoply of
quantitative or “statistical” counterparts of other recurrence properties in topological dy-
namics.

The premier among those is ergodicity, which is modeled on topological transitivity
but vastly exceeds its topological cousin in importance. The reasons are twofold. First, in
a certain sense the study of arbitrary measure-preserving systems may be reduced to er-
godic ones by ergodic decomposition (Section 3.4f), while there is no decomposition into
topologically transitive components for a general topological dynamical system. Second,
another corollary of the Birkhoff Ergodic Theorem gives the Birkhoff average for an er-
godic system: it is simply the space average of the function, i.e., the measure of the set in
the case of a characteristic function.

A natural counterpart of topological mixing is mixing (see Section 3.6h). Even the
terminology suggests that it is a more basic and fundamental property than the topological
one. Mixing means roughly that any set of initial conditions of positive measure becomes
almost uniformly distributed throughout the phase space in the long run.

There are various refinements of the mixing property. In our context the most impor-
tant one being the K-property (see Section 3.6k and Section 3.7j), which can be formulated
as uniform mixing with respect to the distant past but is also intimately connected with
entropy, the natural statistical counterpart (and precursor) of topological entropy, an im-
portant theme in the previous chapter.

c. The classification problem versus applications. Ergodic theory is a more exten-
sive and better developed discipline in its own right than topological dynamics. One of
the reasons is that the measure spaces which appear as phase spaces in the ergodic theory
are standard (Section 3.2b). Ergodic theory may be considered from the general struc-
tural point of view as the branch of dynamics that deals with the structure of groups of
measure-preserving (and more generally, nonsingular) transformations of a measure space
up to metric isomorphism (see Section 3.4a). From this point of view its main goal is
to describe invariants and models that classify maximally broad classes of systems with
respect to metric isomorphism and certain weaker natural equivalence relations such as
orbit equivalence (Section 3.4a) or Kakutani equivalence (Section 3.4e, Section 3.4p) as
completely as possible. However, when ergodic theory is viewed in the broad context of
dynamics the usefulness of the structural approach has to be qualified by two reasons.

First, and most importantly, measurable coordinate changes form too broad a class
from the topological or differentiable point of view. In particular they do not preserve any
“local” properties. Thus, the existence of a metric isomorphism with a certain “model”
often provides only limited information about asymptotic properties important in the topo-
logical or differentiable context.
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Second, while within ergodic theory an enormous variety of invariants and isomor-
phism types exist, those that appear in (or are at least typical for) interesting more “clas-
sical” situations are more limited. These two factors account for a perceptible difference
between “abstract” and “applied” ergodic theory. The former is centered around the struc-
tural approach. It is presented in the surveys on the isomorphism problem and spectral and
combinatorial constructions [S-T, S-KT]. The latter mostly concerns itself with several
principal invariants of metric isomorphism, such as ergodicity, mixing, entropy, K-property
and a variety of noninvariant properties.

Applications of ergodic theory to smooth dynamics and other areas appear in the sur-
veys [S-C, S-BKP, S-K, S-LS, S-KSS]. Ergodic theory also plays a central role in [S-B].

In this chapter we describe some basics of ergodic theory having mostly “applied”
aspects in mind. We briefly outline the structural approach but concentrate on notions and
examples that are of particular relevance for other branches of dynamics.

d. Dynamical systems and random processes. There are two principal ways to in-
troduce a surrogate of local properties in the general context of measurable transforma-
tions. One is to select in the space of bounded measurable functions an invariant subspace,
separable but not closed in the L∞ topology, which plays the role of regular (e.g., differ-
entiable or Hölder) functions. The other way is to fix a partition of the phase space into a
finite or countable number of measurable sets. Then two points are “close” if they belong
to the same element of the partition. This suggests to define nearby orbit segments, at
least for discrete time systems, as those that visit the same elements of the partition during
a prescribed time interval. One can view such a partition as a measuring device and say
that only points in different elements of the partition may by identified as distinct. This is
connected with symbolic representation: The partition defines an alphabet with respect to
which every orbit gives a well-defined sequence. When this correspondence is injective,
one obtains a natural conjugacy to a subshift, otherwise the subshift is a factor.

Both approaches are related to the representation of measure-preserving transforma-
tions as stationary random processes. These are the primary objects of probability theory,
which provides the insights for selecting properties important for ergodic theory. Ob-
viously the same or isomorphic measure-preserving transformations may be represented
as stationary random processes in many different ways. The probability theory of such
processes concerns itself with properties or numerical quantities that may happen to be
invariant under metric isomorphism, such as mixing, entropy, or the law of large numbers,
which is another name for ergodicity, or that are not invariant, such as various kinds of
strong regularity, central limit theorem, exponential decay of correlations (Section 3.6l),
large deviations estimates, the law of iterated logarithm etc. [S-F].

e. Entropy. The entropy of a finite state random process (or, equivalently, entropy of
a measure-preserving transformation with respect to a given finite partition) can be defined
as the average amount of information obtained on one step given complete knowledge of
the past, i.e., the sequence of partition elements to which preimages of a given point belong
(Section 3.7, [Rk1, Pa1], [KH, Section 4.3]). In the case of an ergodic transformation, en-
tropy can be characterized in a way parallel to its topological counterpart as the exponential
growth rate for the number of statistically significant distinguishable orbit segments [K4].
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2. Measure spaces, maps, and Lebesgue spaces

Natural measure spaces are standard and represent only a few classes up to an intrinsi-
cally defined equivalence. There is only one model of real significance for most of ergodic
theory, namely the nonatomic Lebesgue space with finite measure, essentially an interval
(Section 3.2b). Naturally, understanding the structure of the phase space helps develop
dynamical notions and results. This is the reason an exposition of ergodic theory is usually
preceded by a discussion of the structure of measure spaces.

This contrasts with the case of topological dynamics with its great variety of different
phase spaces, where only basic concepts and principles of general topology (compactenss,
completeness etc.) are relevant.

a. Measure spaces and maps. A measure space (X,A, µ) consists of a set X , a σ-
algebraA of subsets ofX and a monotone σ-additive function µ : A → [0,∞] with respect
to which A is complete and σ-finite [Rk1, H2]. µ is said to be a probability measure and
(X,µ) a probability space if µ(X) = 1. Let (X,A, µ), (Y,B, ν) be measure spaces.

A map T : X → Y is said to be measurable if T−1(B) ⊂ A. In this case we set
(T ∗ν)(T−1(A)) := ν(A) and (T∗µ)(A) := µ(T−1(A)) for A ∈ B. T ∗ν is thus only
defined on T−1(B).

T is said to be nonsingular if furthermore T∗µ� ν. In this case we define the Radon–
Nikodym derivative ρT : Y → [0,∞] by T∗µ = ρT ν.

A measurable map T is said to be surjective if T (A) = B, measure-preserving if
T∗µ = ν, an equivalence if T is surjective with T−1(B) = A (up to discarding a single
null set), and an isomorphism if it is a measure-preserving equivalence.

Two measures on the same space are said to be equivalent if the identity is an equiva-
lence, i.e., if they have the same null sets.

If T is measure-preserving then (Y, ν) is said to be a factor of (X,µ) and sometimes
T is said to be a factor. To any factor T : (X,A, µ) → (Y,B, ν) one can associate the
σ-algebra T−1(B) ⊂ A.

(µ, ν) is said to be quasi-equivariant if ν(T (E)) = 0 ⇐⇒ µ(E) = 0. If µ = ν this
single measure is then said to be quasi-invariant.

Throughout, we use the “mod-0-convention” that equalities between sets, transforma-
tions, etc., are to be understood modulo null sets, i.e., two sets agree if their symmetric
difference is a null set, etc. In particular, one cannot assign definite meaning to a specific
point or null set. Occasionally it is nevertheless necessary to emphasize an instance where
a single null set can be discarded, rather than possibly uncountably many. Implicit in this
convention and assumed therefore throughout, is completeness of the measure considered,
i.e., that subsets of null sets are always measurable.

There is a natural distance in the space of equivalence classes mod 0 measurable sets:
d(A,B) = µ(A4B), i.e., the L1 distance between corresponding characteristic functions

b. Lebesgue spaces. (See also [Rk1].) In ergodic theory the phase space X is a
measure space with a finite or σ-finite measure µ, often a probability measure. Several
results, including some important ones, can be proved in such a bare setting. However,
in order to develop a comprehensive theory it is necessary to work in a context where
the relation between σ-algebra and points of the space can be clarified sufficiently. The
proper setting for this is that of a Lebesgue space. This assumption is nothing like as
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restrictive as any of those we make about topological spaces. Indeed any measure space
worth considering, as it were, is a Lebesgue space:

A measure space (X,A, µ) is said to be a Lebesgue space if for some a ∈ [0,∞] it
is isomorphic to the union of [0, a] with Lebesgue measure and at most countably many
points of positive measure.

There is also an intrinsic characterization of Lebesgue spaces that does not involve the
isomorphism to the standard space. It includes separability (which for complete measures
is equivalent to separability of the corresponding L1) and a certain completeness property
(which is different from completeness of the measure mentioned above). Similarly to the
case of metric spaces there is a uniquely defined completion of a separable measure space
which is a Lebesgue space [Rk1].

We describe the structural theory of these in case of finite measure, which is all that is
needed in most of our applications. Infinite Lebesgue spaces primarily arise in connection
with quasi-invariant measures, in which case one may consider an equivalent finite mea-
sure instead. Notice however difficulties which arise in the the description of measurable
partitions (end of Section 3.2e).

An illustration of the generality of the notion of Lebesgue space is that any σ-finite
Borel measure on a Borel subset of a separable metric space gives a Lebesgue space by
completion.

c. Lebesgue points. Although individual points are not easy to get a handle on in the
pure measure-theoretic context, Lebesgue spaces offer a way of finding a set of points of
full measure that are individually “meaningful”. These are Lebesgue points. Atoms are
always Lebesgue points and in the standard model [0, a] with Lebesgue measure one can
define the Lebesgue points of a function f ∈ L1([0, a], λ) as those x for which

f(x) =
1

2ε
lim
ε→0

∫ x+ε

x−ε
f dλ.

or f(x) = (d/dx)
∫ x

0
f dλ. This is a set of full measure. Thus if a countable collection of

functions on a Lebesgue space is fixed, almost every point is a Lebesgue point for all of
these functions. See the proof of Theorem 3.6.3 below for an application of this method.

d. Measurable partitions. For a partition ξ of a Lebesgue space (X,A, µ) with finite
measure let A(ξ) := {⋃α Cα ∈ A Cα ∈ ξ} be the σ-algebra of unions of elements of
ξ. A measurable partition of a Lebesgue space (X,A, µ) is a partition ξ ⊂ A for which
A(ξ) contains a countable subset that separates any two elements of ξ (up to discarding a
single null set).

Among the useful properties of Lebesgue spaces is that the relation between factors
and sub-σ-algebras goes both ways. Following [Rk1] we have:

THEOREM 3.2.1. For every measurable partition ξ of a Lebesgue space (X,A, µ) the
triple (ξ,P(ξ), ν), where P(ξ) := {A ⊂ ξ

⋃
C∈A C ∈ A} and ν(A) := µ(

⋃
C∈A C), is

a Lebesgue space.
Furthermore every sub-σ-algebra arises in the above fashion:
If (X,A, µ) is a Lebesgue space and B ⊂ A a sub-σ-algebra there exists a unique

(mod 0) measurable partition ξ such that B = A(ξ).
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This implies that for any partition ξ the σ-algebra A(ξ) is of the form A(η) for a
unique measurable partition η, which is called the measurable hull of ξ.

There is an obvious partial-ordering relation between partitions: We say that η is a
refinement of ξ and that ξ is subordinate to η, and we write ξ ≤ η, if A(ξ) ⊂ A(η), i.e.,
for all D ∈ η there exists a C ∈ ξ such that D ⊂ C.

For measurable partitions ξ, η we define the joint partition

ξ ∨ η := {C ∩D C ∈ ξ, D ∈ η}.
For any family {ξα}α∈A of partitions define

∨
α∈A ξα to be the measurable partition de-

fined by the smallest σ-algebra containing
⋃
α∈A ξα.

A complementary definition is that of
∧
α∈A ξα via A(

∧
α∈A ξα) =

⋂
α∈AA(ξα).

We say that ξ and η are independent if µ(C ∩D) = µ(C) · µ(D) for all C ∈ A(ξ),
D ∈ A(η).

To each measurable partition corresponds the spaceL2(A(ξ), µ). Note thatL2(A(ξ), µ)
is multiplicative in the sense that the algebra L2(A(ξ), µ) ∩ L∞(A(ξ), µ) (with multipli-
cation defined pointwise) is dense in L2(A(ξ), µ). Conversely, every linear subspace gen-
erated by bounded functions and closed under multiplication of its bounded elements is of
the form L2(A(ξ), µ) for a unique measurable partition ξ.

e. Conditional measures. The central property of Lebesgue spaces is that for every
measurable partition ξ there exists a system of conditional measures:

THEOREM 3.2.2. Let (X,A, µ) be a Lebesgue space and ξ a measurable partition.
Then on each C ∈ ξ there is a probability measure µC defined on a σ-algebra AC such
that for every A ∈ A we have:

(1) A ∩ C ∈ AC for almost every C ∈ ξ,
(2) µ(A) =

∫
ξ
µC(A ∩ C) dν, where ν is as in Theorem 3.2.1.

In Section 4.2d we indicate a proof using continuous realization (Section 4.2e, [F1,
Proposition 5.3, Theorem 5.8]). This approach is equivalent to one using sub-σ-algebras
and conditional expectation.

Any two systems of conditional measures coincide outside a null set. The projection
operator on L1(A, µ) to ξ-measurable functions is obtained by integration with respect to
the conditional measures. On L2(A, µ), this is an orthogonal projection onto the subspace
L2(A(ξ), µ) of functions constant on elements of ξ. The measures µC are naturally defined
on X via µC(C ∩ (·)).

This and the preceding subsection contain the essence of the theory of Lebesgue spaces
and provide sufficient measure theoretic background for the study of ergodic theory.

One can describe measurable partitions of a Lebesgue space with finite measure up to
equivalence of the Lebesgue space. The leading case is that where there are no elements of
positive measure (atoms) and almost every conditional measure is nonatomic. In this case
the partition is isomorphic to the standard partition of the unit square into vertical fibers.
The atomic parts of the conditional measures can also be organized measurably. This in
particular gives the following observation:

PROPOSITION 3.2.3. Any measurable partition of a Lebesgue space such that almost
all elements (C, µC) are isomorphic to a fixed Lebesgue space (Y, ν), is isomorphic to
the direct product (X(ξ), µ) × (Y, ν). Thus, every skew product (space with a factor) is a
product.
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For infinite measure Lebesgue spaces the theory of measurable partitions presents
certain difficulties. While the notion of a measurable partition can be defined by using
an equivalent finite measure the factor measure and conditional measures are not always
defined. On the other hand, there are important cases where the measure on the factor space
is defined and is either infinite or finite: projection of Lebesgue measure from the real line
R to the circle R/Z is an example where the factor measure is finite and the conditional
measures are infinite. A more general example of this situation appears in Section 3.3c
below (lattices in locally compact groups).

f. The Radon–Nikodym cocycle. As an application and an illustration of the utility
of the restriction to Lebesgue spaces, we now construct a Radon–Nikodym cocycle on the
preimage. Suppose T : (X,A, µ) → (Y,B, ν) with (µ, ν) quasi-equivariant probability
measures (Section 3.2a) so that the Radon–Nikodym derivative ρT : Y → [0,∞] is defined
by T∗µ = ρT ν. Consider T−1(B) ⊂ A and the corresponding measurable partition ξ such
that T−1(B) = A(ξ). Then almost every conditional measure µC is atomic (because
otherwise there would be a null set with nonnull image) and hence defines a function on
X accociating to almost every point x ∈ X the conditional measure µC(x)(x) of x on the
element of C(x) ∈ ξ that contains x. We then obtain

ν(T (A)) =

∫

A

1

ρT (T (x))µC(x)(x)
dµ,

so JT := 1/(ρT ◦ T · µC) is called the Radon–Nikodym Jacobian for T . In Section 5.2m
we use this to find a criterion for existence of an invariant measure in an invariant measure
class.

g. Relative products. Here is another application of conditional measures. Letϕ1 : (X1, µ1)→
(Y, ν) and ϕ2 : (X2, µ2) → (Y, ν) be measure-preserving maps of Lebesgue spaces (i.e.,
(X1, µ1) and (X2, µ2) have a common factor). Then the relative product of (X1, µ1) and

(X2, µ2) over (X, ν) is the space X = X1

Y
× X2 := {(x1, x2) ∈ X1 × X2 ϕ1(x1) =

ϕ2(x2)} with the measure µ = µ1

ν
× µ2 defined by the conditions π∗µ = ν, where

π(x1, x2) = ϕ1(x1), and the conditional measure on π−1({y}) is the product of the con-
ditional measures for µ1 on ϕ−1

1 ({y}) and µ2 on ϕ−1
2 ({y}).

In particular, the case cardY = 1 gives the standard product measure. Further-
more, since every measurable partition (or sub-σ-algebra) ξ defines a factor π : (X,µ) →
(X(ξ), µ), the case ϕ1 = ϕ2 = π defines the relative product of a Lebesgue space with
itself over a sub-σ-algebra.

3. Setting and examples

a. Measurable actions. A measurable action of a second countable locally compact
topological group or countable semigroup G is a measurable map Φ: G × X → X with
Φg1g2 = Φg2 ◦Φg1 for all g1, g2 ∈ G.

We consider only actions of groups and discrete semigroups. Actions of continuous
semigroups are omitted because they are not sufficiently prominent in ergodic theory and
present some technical difficulties. In both cases there is a natural measurable structure on
G×X (obvious in the discrete case and given by left Haar measure in case of a group).
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Ergodic theory may study two possible structures on the phase space, namely either
a measure itself or its equivalence class (with respect to mutual absolute continuity), i.e.,
the collection of all sets of measure zero. Accordingly, ergodic theory concerns groups or
semigroups of measurable transformations of X that either preserve µ (µ is invariant) or
transform it into an equivalent measure.

Ergodic theory provides the appropriate paradigms and tools for studying the asymp-
totic distribution and statistical behavior of orbits for continuous and smooth dynamical
systems and as such impinges upon virtually all dynamics. The central point is existence
of Borel invariant measures for topological dynamical systems on compact spaces (Sec-
tion 4.2 and Section 4.4) and of an invariant measure class for smooth systems.

b. Quasi-invariant measures. The most general natural settings are semigroup ac-
tions by nonsingular surjective maps and group actions by equivalences. In the latter case
we get the Radon–Nikodym Jacobian Jg,µ by Φg∗µ = Jg,µ · µ. This is a multiplicative
cocycle over Φ whose values are positive reals (see Section 1.3k). There exists an equiva-
lent invariant measure if the Jacobian is a coboundary. The density is the transfer function,
because it gives the multiple of µ for which the Jacobian is 1.

For a semigroup action by transformations with quasi-invariant measure µ the density
θ of an absolutely continuous invariant measure ν = θµ is a fixed point of the Perron–
Frobenius operator or transfer operator T (·) defined by

T (θ)(x) :=
∑

Φg(y)=x

θ(y)

Jg,µ(y)

(see Section 3.2f, Section 5.2m).
Now we look at the examples introduced in Section 2.1 from the point of view of

ergodic theory and introduce some more examples relevant to the subject.

c. Homogeneous dynamics. (See also [S-KSS].) Left Haar measure on a groupH is
naturally invariant under any group of left translations. This measure is finite if H is com-
pact. In particular, translations on compact abelian groups (Section 2.1b, especially Exam-
ple 2.1.1) give nice examples of transformations with finite invariant measures. These play
an important role in parts of the later discussion (Theorem 3.6.3, Section 4.3c, Section 4.3d,
Section 7.1).

If H is not compact, then Haar measure is infinite. It produces a measure on the
factor M = H/K (where K is a closed subgroup), which is quasi-invariant under left
translations. However, it does not necessarily produce a finite or σ-finite measure invariant
under all or any left translations on M , even if K is cocompact (i.e., M is compact).

Several cases are worth special attention. Assume that there is a two-sided Haar mea-
sure on H . Any discrete subgroup K < H such that M = H/K has a finite invariant
measure, is said to be a lattice. If K is a discrete cocompact subgroup of H then it is a
lattice: Simply take any fundamental domain F for K with compact closure, restrict Haar
measure to it, and project to the factor.

EXAMPLE 3.3.1 (A lattice that is not cocompact). Let H = SL(n,R) be the group
of all real n× n matrices with determinant 1. Then K = SL(n,Z), the subgroup with in-
teger matrix entries, is a lattice that is not cocompact: There is an unbounded fundamental
domain for K that has finite Haar measure.
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EXAMPLE 3.3.2 (An example without invariant measure on a compact factor). This
is another aspect of Example 2.4.4. Consider H = SL(2,R) and K the upper triangular
subgroup. The factor can be identified with a projective line (i.e., the circle) with action
by projective transformations. There is no invariant measure in the class obtained from
projecting Haar measure, which is in this case the Lebesgue class. Moreover, there is no
σ-finite invariant measure at all. Even for countable subgroups such as SL(2,Z) there are
no finite invariant measures (Section 4.2b).

d. Group automorphisms. For any automorphism of a compact group, normalized
Haar measure is invariant by uniqueness. In fact, this holds for endomorphisms as well.
For a noncompact group, the Haar measure is multiplied by a constant and is hence quasi-
invariant. Examples of this are toral automorphisms and endomorphisms, which preserve
Lebesgue measure.

e. Bernoulli shifts. For any Borel probability measure µ on a compact set K the
product measure µΓ on KΓ is invariant under the shift. Such measures are said to be
Bernoulli measures and the measure preserving transformation given by the shift is then
called Bernoulli shift. In particular, if K is a compact group and µ the Haar measure then
µΓ is the Haar measure on KΓ, providing an example of the previous situation.

If K = {0, . . . , N − 1}, then any probability measure on K, hence any Bernoulli
measure on KΓ, is defined by a probability distribution p = (p0, . . . , pN−1) ∈ RN (i.e.,
µi ≥ 0,

∑
µi = 1). The product Bernoulli measure is denoted by µp.

f. Markov measure. (See also [KH, Section 4.4c].) A more general class of invariant
measures for the N -shift and topological Markov chains are Markov measures. Let Π :=

(πij)i,j=0,...,N−1 be an N × N matrix with nonnegative entries such that
∑N−1
i=0 πij = 1

for j = 0, . . . , N − 1. Such matrices are said to be stochastic. Similarly to the case of 0-1
matrices, we say that a stochastic matrix Π is transitive if for some m all entries of Πm are
positive. Every stochastic matrix Π has an invariant vector p with nonnegative coordinates.
If Π is transitive, such a vector is unique (up to rescaling), 1 is a simple eigenvalue, and all
other eigenvalues of Π have absolute values less than 1 [KH, Theorem 1.9.11].

Given a stochastic matrix Π and an invariant probability vector pwe define the Markov
measure µΠ,p on ΩN by

(3.1) µΠ,p(C
m
α ) =

( m−1∏

i=−m
παiαi+1

)
pαm .

Let us emphasize that πij represents the proportion of the measure of the cylinder C0
j

(whose measure is pj) that is transported to C0
i . (Compare with

∑
j πijpj = pi.) This

makes stochasticity of the matrix an obvious necessary condition for invariance of the
measure. Calculation shows that Πp = p guarantees σN -invariance of µΠ,p.

Suppose now A is a 0-1 matrix and suppose that a stochastic matrix Π is such that
πij = 0 if aij = 0. Then suppµΠ,p ⊂ ΩA and hence µΠ,p can be viewed as an invariant
measure for the topological Markov chain σA. If Π is a transitive matrix we denote the
measure µΠ,p simply by µΠ since the vector p is unique in this case.
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4. Basic concepts and constructions

Now we revisit the basic notions and constructions introduced in Section 1.3 and add
some more that are specific to the present setting.

a. Isomorphism and orbit equivalence. The isomorphism notions from Section 1.3a
and Section 1.3b can be made specific to the present context in two ways, depending on
whether one concentrates on a measure or a measure class.

Let Φ: G × (X,µ) → (X,µ) and Ψ: G × (Y, ν) → (Y, ν) be measure-preserving
actions. Φ and Ψ are said to be metrically isomorphic if there exists an isomorphism
R : (X,µ)→ (Y, ν) with Ψ ◦R = R ◦ Φ.

Φ and Ψ are said to be orbit equivalent if there exists an equivalence R : (X,µ) →
(Y, ν) that maps orbits onto orbits.

If Φ and Ψ are actions with quasi-invariant measures then they are said to be metrically
isomorphic if there is an equivalence R : (X,µ) → (Y, ν) that is injective (mod 0) and
Ψ ◦R = R ◦ Φ.

b. Joinings. (See also [S-T].) An important general construction in ergodic theory is
that of a joining, which, in particular, unifies those of isomorphism and products:

Let Φ: G × (X,µ) → (X,µ) and Ψ: G × (Y, ν) → (Y, ν) be measure-preserving
actions. A joining of these actions is the action Φ × Ψ: X × Y → X × Y together with
an invariant measure η that projects properly: If πX , πY are the projections from X × Y
then πX∗η = µ and πY ∗η = ν.

The product measure always gives a joining of two actions and there are cases in
which this is the only one (Section 3.6f6, [S-T]). On the other hand, the diagonal measure
µ∆ always is a joining of an action on (X,µ) with itself, and, more generally, for two
isomorphic actions a joining other than the product is given by (Id×R)∗µ, where R is
the isomorphism. In particular, any transformation commuting with an action produces a
corresponding self-joining in this way.

c. Poincaré Recurrence and induced maps. In the context of transformations pre-
serving a finite measure, one can define restrictions of a map to sets of positive measure
even if these are not invariant. This is due to the following basic fact.

THEOREM 3.4.1. (Poincaré Recurrence Theorem). Almost every point from a set A of
positive measure returns toA infinitely often, i.e., µ({x ∈ A {T n(x)}n≥N ⊂ XrA}) =
0 for any N ∈ N.

PROOF. To see this, note that replacing T by TN we may assume N = 1. The set

Ã := {x ∈ A {Tn(x)}n∈N ⊂ X rA} = A ∩
( ∞⋂

n=1

T−n(X rA)

)

is measurable, T−n(Ã) ∩ Ã = ∅ for every n and hence T−n(Ã) ∩ T−m(Ã) = ∅ for all
m,n ∈ N, so

∞ > µ(X) ≥ µ
( ∞⋃

n=0

T−n(Ã)

)
=
∞∑

n=0

µ(T−n(Ã)) =
∞∑

n=0

µ(Ã)

and µ(Ã) = 0, as needed. �
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Thus, if T preserves a probability measure and A ⊂ X has positive measure then for
almost every x ∈ A we can define a first return time nA(x) := min{n ∈ N Tn(x) ∈ A}
and hence an induced map TA : (A,µA)→ (A,µA) by x 7→ TnA(x)(x).

d. Ergodicity. The irreducibility notion in the present setting that corresponds to
both topological transitivity and minimality is that of ergodicity: An action is said to be
ergodic if every measurable invariant set is null or conull.

For this definition, and more so for what follows, the following result is useful:

THEOREM 3.4.2. [Vs] For an action of a locally compact group on a Lebesgue space
a measurable set is invariant mod 0 under the entire action if and only if it is invariant mod
0 under the action of each element.

The point is that no potentially dangerous uncountable union of null sets is needed. In
particular, for countable groups and semigroups this result holds because countable unions
of null sets are null sets.

e. Kakutani (monotone) equivalence. (See also [S-T, K1, ORW].) For ergodic
transformations there is another equivalence relation which is modelled on topological
orbit equivalence for flows.

Ergodic measure preserving transformations T : (X,µ) → (X,µ) and S : (Y, ν) →
(Y, ν) are Kakutani equivalent or monotone equivalent if there are measurable sets of pos-
itive measure A ⊂ X and B ⊂ Y such that the induced maps TA and SB are metrically
isomorphic. See Section 3.4p for another definition.

It is quite remarkable that Kakutani equivalence is both much weaker than metric
isomorphism and much stronger than orbit equivalence. In particular, there is a unique
natural simplest class of Kakutani equivalent maps on a nonatomic Lebesue space.

f. Ergodic decomposition. Given a measurable action Φ of G on a Lebesgue space
the invariant σ-algebra I(Φ) is the collection of Φ-invariant measurable sets. By Theo-
rem 3.2.1 and Theorem 3.2.2 this gives rise to a measurable partition η(Φ) with a system
of conditional measures, together called the ergodic decomposition of (Φ, µ). The partition
is invariant by construction and the uniqueness assertion in Theorem 3.2.1. The conditional
measures are invariant by uniqueness. The terminology is justified by the following main
result (Section 4.2d, Section 4.2e):

THEOREM 3.4.3. For a measurable action Φ ofG on a Lebesgue space the conditional
measures in the ergodic decomposition are ergodic.

g. Factors. Let Φ: G× (X,µ)→ (X,µ) and Ψ: G× (Y, ν)→ (Y, ν) be measure-
preserving actions. Ψ is said to be a (metric) factor of Φ if there exists a factorR : (X,µ)→
(Y, ν) such that Ψ ◦R = R ◦ Φ.

Every measurable partition defines a factor via the partition ξT :=
∨
n∈Z T

nξ. If the
partition is finite or countable then the factor is represented as a stationary random process
with a finite or countable set of states correspondingly.

Every factor defines a self-joining of an action with itself via the construction of the
relative product from Section 3.2g. Let Ψ: G × (Y, ν) → (Y, ν) be a factor of Φ: G ×
(X,µ) → (X,µ) and consider the action on X

Y
×X ↪→ X ×X induced by the diagonal

action on X ×X . The measure µ
ν
×µ is invariant under this action and projects to µ under
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the factors, hence is a self-joining. More generally, if two actions of the same group have a
common factor (or, rather, isomorphic factors), the relative product construction similarly
provides for a joining of the two actions.

There are some canonically defined factors in measure-preserving systems, of which
we have already encountered the ergodic decomposition, which can be described as the
maximal factor over the identity. Other examples are the Pinsker algebra (Section 3.7j)
and the maximal algebra with discrete spectrum for ergodic systems (Section 3.6d).

h. Generators. A family Ξ of partitions is said to be sufficient or exhaustive if for
any ε > 0 any measurable set can be approximated in the symmetric difference metric
(Section 3.2a) to within ε by measurable unions from a partition ξl :=

∨l
i=−l T

iξ for some
ξ ∈ Ξ, l ∈ N. A partition ξ is said to be a generator if {ξ} is sufficient.

Generators are needed for effective symbolic representation (Section 3.1d) and the
following nontrivial results [Kr1, Pa1] limit the complexity of the symbolic systems re-
quired:

THEOREM 3.4.4. For ergodic systems there is always a countable generator. If the
entropy (Section 3.1e, Section 3.7c) is finite then there is a finite generator, and there is an
optimal bound for its cardinality expressible in terms of entropy. In particular, zero-entropy
systems have a 2-element generator.

i. Inverse limits. Suppose hi : Xi+1 → Xi (i ∈ N) are factors of probability spaces
(Xi,Ai, µi) and consider the space

X := {(xi)i∈N hi(xi+1) = xi}
with the measure induced by pulling back the measures µi to the σ-algebra A generated
by the pullbacks of the σ-algebras Ai. If the hi define factors of actions on the Xi then the
action on X is naturally defined and is called the inverse limit.

EXAMPLE 3.4.5. The case Xi = Z/2iZ discussed in the topological setting fits into
the present category by using the uniform measures on the Xi, which gives rise to Haar
measure on Z2, an invariant measure for the binary adding machine (Example 2.2.9). It is
easy to see that this is the only invariant Borel probability measure because the projections,
which determine it uniquely, are invariant measures for finite cyclic permutations. This is
an example of unique ergodicity (Section 4.3a).

j. Natural extensions. The natural extension of a measure-preserving transformation
T is obtained by applying the inverse limit construction with Xi = X , hi = T . The map
is defined as in the topological context (Section 2.2h). The resulting map is an invertible
measure-preserving transformation that has the original map as a factor.

Corresponding to the topological situation we now find by way of example that from
any Bernoulli measure for the one-sided shift one obtains a corresponding Bernoulli mea-
sure for the two-sided shift, and from Lebesgue measure for E2 : x 7→ 2x on S1 one gets
Haar measure on the solenoid.

k. Cocycles. A particularly important role of cocycles in ergodic theory stems from
the fact that in the measurable setting every skew product is a direct product. In the case of a
general measurable structure this is due to Proposition 3.2.3, but the same holds even if the
fibers have a more special structure, such as that of a smooth manifold, or a homogeneous
space.
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l. Isometric extensions. Thus, isometric extensions may be identified with cocycles
with values in the isometry group of the fiber. In the case of a compact fiber there is a
natural invariant product measure for isometric extensions and the ergodic decomposition
as well as some other basic properties of the extension can be well understood from the
properties of the base and the structure of the cocycle. In particular, the structure of the
ergodic components in the fiber direction is fairly regular. For example, in the case of a
compact group extension of an ergodic finite measure-preserving action the ergodic de-
composition and the partition into fibers are independent, and in a typical fiber the ergodic
decomposition induces a homogeneous partition by cosets of a closed subgroup.

The situation is quite different for isometic extensions with noncompact fibers, even as
simple as R-extensions of rotations on the circle, which are sometimes called cylindrical
cascades. The ergodic decomposition for such an extension may have nothing to do with
the homogeneous structure in the fibers.

m. Suspensions. In the measurable situation the suspension space is isomorphic to
the product X × (H\G) and in the case of finite-measure-preserving actions on X the
suspension preserves the product of the invariant measure with the right-invariant measure
on H\G (if it exists). Then according to Section 3.3c, if H is a lattice in G, in particular
G = Rn, H = Zn or G = SL(n,R), H = SL(n,Z), such a measure always exists and is
finite.

Ergodicity of the H-action is equivalent to ergodicity of the suspension.

n. Mackey range. (See also [Z].) For the general Mackey range construction in the
measurable category one considers the measurable hull of the partition into orbits. In
general there is no invariant measure. For the flow under a function over an invertible
measure-preserving transformation, however, the restriction of the product measure to the
fundamental domain provides an invariant measure for the flow, which is finite or infinite
according to whether α(1, ·) is integrable or not.

o. Sections, special representations for flows and cocycle representations for Rk
actions. Given a measurable (in particular measure-preserving) action Φ of a continuous
group G and a lattice Γ ⊂ G, it is natural to ask whether Φ is metrically isomorphic to
an action induced by a cocycle from an action of Γ. In order to achieve this, one needs to
construct a proper “section” of the action Φ and then introduce a measurable Γ-structure on
the intersections of the section with the orbits of Φ. If one wants the resulting cocycle to be
nice, one should also make sure that this Γ-structure is somehow related to the G-structure
on each orbit. The most basic and classical result of this kind is the Ambrose–Kakutani
theorem, which we present in a stronger form.

THEOREM 3.4.6 ([AmK]). Every measure-preserving flow is isomorphic to a special
flow over a measure-preserving transformation. Furthermore, for an aperiodic flow one
can choose this special representation in such a way that the roof function is arbitrarily
close to a given constant in the uniform topology.

Thus, the order of points on the orbits of the flow agrees with the order of the points
on the orbits of the section map, and the time distortion is almost constant with a given
precision.

A natural generalization to higher-rank groups is the special representation theorem
for flows [K2].
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THEOREM 3.4.7. Given ε > 0, any essentially free measure-preserving action of Rk
on a space X is isomorphic to an action of Zk induced by a cocycle α : Zk × X → Rk
such that

(1− ε)‖n1 − n2‖ ≤ ‖α(n1, x)− α(n2, x)‖ ≤ (1 + ε)‖n1 − n2‖
for all n1, n2 ∈ Zk, x ∈ X .

For an ergodic flow any section may serve as the “base” for the representation as a
special flow. This is not the case for higher-rank groups, as was conjectured by Furstenberg
and proved by Burago and Kleiner [BK] and independently by McMullen [MM].

On the other hand, for actions of some nonamenable groups, such as noncompact
simple Lie groups or groups of real rank greater than one, a representation as an induced
action is not always possible, even with a measurable cocycle. This follows from the
Zimmer Cocycle Superrigidity Theorem [S-FK, Z].

p. Kakutani equivalence for flows. The Ambrose–Kakutani Theorem 3.4.6 makes
the following question natural: When can two flows be represented as special flows over
the same measure-preserving transformation? A related question is: What do different
sections of the same flow have in common? For ergodic flows these questions are related
to Kakutani equivalence, which first appeared in Section 3.4e.

DEFINITION 3.4.8. Two ergodic flows φ and ψ are said to be Kakutani equivalent if
they are metrically isomorphic to special flows over the same measure-preserving transfor-
mation.

The basic properties of Kakutani equivalence can be summarized as follows:

THEOREM 3.4.9. [K1] Two flows are Kakutani equivalent if and only if they are iso-
morphic to special flows over Kakutani equivalent transformations. In particular, if a flow
is isomorphic to special flows over different transformations these transformations are
Kakutani equivalent.

Two flows φ and ψ are Kakutani equivalent if and only if there exists a measurable
equivalence h between the phase spaces that maps orbits of φ onto orbits of ψ and pre-
serves order on almost every orbit. Furthermore, if such an equivalence exists it can be
chosen differentiable along almost every orbit.

q. Induced action on Lp. Any measure-preserving action Φ of a group G on a mea-
sure space (X,µ) generates an isometric representation of G on Lp(µ) by Ug : ϕ 7→
ϕ ◦ Φg−1 with the property that Ug(ϕ · ψ) = Ug(ϕ) · Ug(ψ) (multiplicativity). For an
action of Z generated by T : X → X the notation UT for the operator U1 is commonly
used.

The case p = 2 is interesting because of the well developed theory of unitary group
representations in Hilbert space. If two actions are isomorphic then the corresponding uni-
tary representations on L2 are unitarily equivalent, hence any invariant of unitary equiv-
alence of such operators defines an invariant of isomorphism. Such invariants are said to
be spectral invariants or spectral properties. Actions for which the corresponding unitary
representations are unitarily equivalent are sometimes called spectrally isomorphic

Metric isomorphism between actions is equivalent to unitary isomorphism between
the corresponding unitary representations which in addition preserves the multiplicative
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structure in L2. Thus in general one does not expect spectrally isomorphic actions to be
metrically isomorphic. As we go through the list of principal invariants of metric isomor-
phism we will indicate whether they are spectral or not.

For actions on probability spaces, ergodicity is a spectral invariant: It is equivalent to
one-dimensionality of the space of invariant functions (because only constant functions are
invariant).

A general approach to spectral invariants is to consider the decomposition of the repre-
sentation in L2(X,µ) into irreducible ones [S-FK, Theorem 4.1] and to look at the spectral
measure on the space of irreducible representations and multiplicities. For abelian groups
all irreducible representations are one-dimensional and are identified with the characters
in the group. Thus, a complete set of spectral invariants consists of a measure class on the
group of characters, called the maximal spectral type and a multiplicity function [S-KT].

For actions of semigroups the associated operators are isometric but not unitary.
Even for actions with a quasi-invariant measure µ one can define unitary operators by

Ugϕ :=
√

[Φg∗µ/µ]ϕ◦Φg−1, but this construction is less useful because isomorphic actions
may produce different representations.

See [S-KT] and [S-FK] for a more detailed discussion of spectral invariants.

r. Rokhlin Lemma. No properties save for positive measure sets of periodic orbits
can be expressed in terms of fixed length orbit segments. The most striking manifestation
of this observation, which is also one of the most useful devices in ergodic theory, is the
celebrated Rokhlin Lemma [S-T, H1][Pt, Lemma 4.7]:

THEOREM 3.4.10. Let T be an aperiodic measure-preserving transformation of (X,µ),
i.e., the set of periodic points has zero measure. Then for n ∈ N, ε > 0 there exists a set A
such that T i(A) ∩ T j(A) = ∅ for i 6= j, 0 ≤ i, j < n and µ(

⋃n−1
k=0 T

k(A)) > 1− ε.
An important negative consequence of the Rokhlin Lemma is that properties of any

aperiodic transformation can be changed in an arbitrary way by altering it on a set of
arbitrarily small positive measure.

As a corollary of the Rokhlin Lemma one has the following general spectral property
of measure preserving transformations.

THEOREM 3.4.11. For an aperiodic measure-preserving transformation T the spec-
trum of the operator UT on L2 is the entire unit circle.

SKETCH OF PROOF. For n ∈ N and k ∈ {0, . . . , n − 1} pick ε > 0 and construct A
as in Theorem 3.4.10. Set f = exp(−2πikm/n) on Tm(A) for m ∈ {0, . . . , n−1}. Then
‖UT f − exp(2πik/n)f‖ < 4ε‖f‖. Hence every rational point on the unit circle belongs
to the spectrum of UT . �

The Rokhlin Lemma is related to amenability. While direct generalizations are possi-
ble only to groups with tiling properties of a Følner sequence, such as Rn or Zn, a weaker
version serves as the basis for ergodic theory of amenable group actions [S-T, OW].

5. Ergodic theorems

We restrict ourselves to cyclic systems. See [S-B] for in-depth discussion of the sub-
ject, including more general types of averaging and ergodic theorems for noncyclic sys-
tems.
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For a measure-preserving transformation T of a probability space (X,B, µ) denote by
I:={A ∈ A T−1(A) = A} the invariant σ-algebra (Section 3.4f) and by PI the projection
to the space I of invariant functions. (For any sub σ-algebra B there is a projection operator
from Lp(A, µ) to Lp(B, µ).)

a. The von Neumann mean ergodic theorem. In the introduction we already dis-
cussed pointwise convergence of asymptotic distribution. Sometimes convergence of cer-
tain averages (in the mean) is more natural and immediate. It is also easier to prove than
pointwise convergence, so we begin there.

THEOREM 3.5.1. Consider an invertible measure-preserving transformation T of a
measure space (X,µ). Then

Bn(f) :=
1

n

n−1∑

k=0

UkT f
Lp−→ PIf

for all f ∈ Lp, 1 ≤ p <∞.

PROOF. The case p = 2 is particularly nice: Since ‖Bn(f)‖ ≤ ‖f‖ it suffices to
check the claim for a dense set of f ∈ L2. Note that Bn(f) = f for f ∈ I. Next,

if f ∈ {UT g − g g ∈ L2} then ‖Bn(f)‖ = ‖ 1

n
(UnT g − g)‖ ≤ 2‖g‖/n → 0 and

consequently the same holds for f ∈ L0 := kerPI, the linear hull of {UT g − g g ∈ L2}.
Finally, for f ∈ L⊥0 we have 0 = 〈f, g〉 = 〈f, UT g〉 = 〈U−1

T f, g〉 for all g ∈ L0. �

This is a Hilbert space argument, i.e., it uses only the unitary nature of the operators,
in fact, most of the argument is independent of unitarity and uses only that UT does not
expand norms, which helps prove the corresponding result in the noninvertible case.

Since this is an averaging argument (Section 1.4b) it works for amenable groups. The
averaging procedure of (1.1) gives Fn(f) → PI(f) in L2 by the same argument: Show
that if f = g ◦ Φg − g then Fn(f)→ 0, and if 〈f, g〉 = 0 for all g ∈ L0 then f ◦ Φg = f .

b. The Birkhoff pointwise Ergodic Theorem.

THEOREM 3.5.2. Let T : (X,µ) → (X,µ) be a measure-preserving transformation
of a probability space, ϕ ∈ L1(X,µ). Then

(3.1) ϕT := lim
n→∞

1

n

n−1∑

k=0

ϕ ◦ T k = ϕI := PI(ϕ)

for µ-a.e. x ∈ X .

PROOF. Let f := ϕ− ϕI − ε ∈ L1(µ) and Fn := maxk≤n
∑k−1

i=0 f ◦ T i. Then

(3.2) lim
n→∞

1

n

n−1∑

k=0

f ◦ T k ≤ lim
n→∞

Fn
n
≤ 0 off A := {x Fn(x)→∞} ∈ I,

but Fn+1 − Fn ◦ T = f − min(0, Fn ◦ T ) ↓ f on A, so (Dominated Convergence)
0 ≤

∫
A

(Fn+1−Fn) dµ =
∫
A

(Fn+1−Fn ◦T ) dµ→
∫
A
f dµ =

∫
A
fI dµ�I and µ(A) = 0

since fI = −ε < 0. Thus limn→∞
∑n−1
k=0 (ϕ ◦ T k)/n − ϕI − ε ≤ 0 µ-a.e. by (3.2).

Replacing ϕ by −ϕ gives limn→∞
∑n−1
k=0 ϕ ◦ T k/n ≥ ϕI − ε µ-a.e. �
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If T is invertible, the Birkhoff Ergodic Theorem applies to T−1 and implies a.e. con-
vergence of negative time averages

∑n−1
k=0 ϕ(T−k(x))/n and hence also for the two-sided

time average
∑n−1
k=1−n ϕ(T k(x))/(2n− 1).

There are generalizations of the Birkhoff Ergodic Theorem in several directions: There
are results about actions of different groups on one hand and about various types of sub-
sequences over which to average on the other. Furthermore it is possible to make some
statements in situations that do not admit a finite invariant measure [Ho, CO].

c. Typical points and recurrence. The points from the set of full measure in the
Birkhoff Ergodic Theorem 3.5.2 are said to behave typically. This is to some extent anal-
ogous to recurrence in topological dynamics: Consider a measurable set U and its charac-
teristic function χ

U
. If x is a point for which (χ

U
)
T

exists then this function is positive

a.e. on U because otherwise the average of (χ
U

)
T

and χ
U

over (χ
U

)
−1

T
({0}) disagree.

This is a strengthening of the conclusion of the Poincaré Recurrence Theorem.

d. Orbit equivalence. We are now in a position to address the question of orbit
equivalence. The ergodic decomposition is an invariant of orbit equivalence, and hence
we may restrict attention to ergodic actions. For transformations preserving an ergodic
finite measure the orbit equivalence problem is solved completely by a result of Dye:

THEOREM 3.5.3. Any two ergodic measure-preserving transformations of a Lebesgue
probability space are orbit equivalent [Dy].

An orbit equivalence can be constructed by inductive application of the Rokhlin Lemma,
Theorem 3.4.10

It turns out that amenability is the proper framework for treating this problem:

THEOREM 3.5.4. A discrete group G is amenable if and only if every ergodic action
of G preserving a finite measure is orbit equivalent to an ergodic Z-action [CFW].

To see this connection note that every group action on a space X generates an equiv-
alence relation (whose classes are the orbits). Ergodicity of an action renders the measur-
able hull of this partition trivial. The fact that the action is measure-preserving can be seen
from an intrinsic property (type II1) of the equivalence relation [FM]. Finally, there is a
certain property of countable equivalence relations, called hyperfiniteness, which can be
paraphrased by saying that the relation is well-approximated by finite equivalence relations
(i.e., with finite classes). By the Rokhlin Lemma this property holds for the equivalence
relations generated by measure-preserving Z-actions. If the group is amenable then the
resulting equivalence relation is still hyperfinite due to a partial extension of the Rokhlin
Lemma [OW]. For actions of amenable groups with infinite invariant measure the situation
is parallel and deals with hyperfinite equivalence relations of type II∞.

Interesting aspects of the equivalence question arise for actions not preserving a mea-
sure or actions of groups that are not amenable. In the former case one deals with hyper-
finite equivalence relations that do not have an invariant measure (type III). They allow a
complete and nontrivial classification due to Krieger and Connes [Kr1, Cn]. The invari-
ants are the so-called ratio set, which distinguishes types III1, IIIα (0 < α < 1) and III0,
and in the latter case the isomorphism type of a measure-preserving flow.

For measure-preserving actions of nonamenable groups, the equivalence relations are
still of type II1 but no longer hyperfinite. Many nonequivalent classes are known, and a
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complete classification does not seem to be feasible. Finally, the classification question for
non-hyperfinite type III relations is wide open. See the survey [S-FK] for a treatment of
some questions related to orbit equivalence of nonamenable groups, and also [Z, Fm].

6. Quantitative recurrence and principal spectral properties

a. Ergodicity. Ergodicity is a property previously encountered in regard to irreducibil-
ity, but due to ergodic theorems it also provides for quantitative recurrence. Here are
several equivalent characterizations of ergodicity for transformations with finite invariant
measure.

(1) TA = A =⇒ µ(A)µ(X rA) = 0
(2) If f : X → R is measurable (or f ∈ Lp) and f ◦ T = f then f ≡ const
(3)

∑n−1
k=0 f ◦ T k/n→

∫
f a.e. for all f ∈ L1

(4) lim supn→∞
∑n−1
k=0 f ◦ T k/n > 0 for all f ≥ 0, f 6≡ 0.

(5)
∑n−1
k=0 f ◦ T k/n →

∫
f a.e. for all f from a family of functions whose linear

hull is dense in L1.
(6)

∑n−1
k=0 〈f ◦ T k, g〉/n → 〈f, 1〉〈1, g〉 for all f, g ∈ L2 (or a family whose linear

hull is dense in L2)
(7) The only invariant measure absolutely continuous with respect to µ is a multiple

of µ.

Furthermore, it suffices to check any of the conditions 3–6 for a dense family of functions
or sets.

That these characterizations are equivalent is obvious in some cases and otherwise a
consequence of the Birkhoff Ergodic Theorem, which is the device that establishes the con-
nection between the qualitative description in terms of irreducibility and the quantitative
recurrence descriptions.

b. Speed of convergence in ergodic theorems. For a measure-preserving transfor-
mation T and a given L1 function f it is natural to ask how fast the Birkhoff averages
Bn(f) converge to

∫
fdµ. It turns out that no uniform estimate is possible for any T , even

for bounded fuctions; convergence can be arbitrary slow. On the other hand for any func-
tion of the form UT f − f + const convergence is as fast as it can be and such functions
are dense. Thus no property reflecting the speed of convergence in the ergodic theorem is
invariant under metric isomorphism.

On the other hand, if an extra structure is present one may ask for a speed of conver-
gence for a a certain family of fucntions related to this structure, such as differentiable,
Hölder or of exponential type in symbolic dynamics (Section 2.6a).

c. Correlation coefficients and spectral measures. Let T : (X,µ) → (X,µ) be a
measure-preserving transformation. For a function f ∈ L2, the scalar products

〈f ◦ Tn, f〉 = 〈U−nT f, f〉
are called the correlation coefficients of the function f . The correlation coefficients are the
Fourier coefficients of a certain measure λf on the unit circle which is called the spectral
measure of f :

〈U−nT f, f〉 =

∫

S1

xndλf .



6. QUANTITATIVE RECURRENCE AND PRINCIPAL SPECTRAL PROPERTIES 75

All spectral measures are subordinate to a measure of the maximal spectral type and
in fact belong to that type for a dense set of f .

Since 〈U−nT f, f〉 = 〈U−nT f, f〉 =
∫
S1 x

−ndλf =
∫
S1 x

nd(I∗λf ) where I(x) = x we
obtain

PROPOSITION 3.6.1. The maximal spectral type of the operator induced by an ergodic
measure-preserving transformation is symmetric with respect to complex conjugation i.e.,
the reflection of the unit circle in the real axis.

For a flow the correlation coefficients are defined similarly, the spectral measure of a
function is defined on the real line, and the maximal spectral type is symmetric with respect
to the origin.

d. Eigenfunctions. As we pointed out, ergodicity is a spectral invariant: It is equiv-
alent to 1 being a simple eigenvalue.

Ergodicity implies that eigenfunctions have constant absolute value: If UT f = λf
then

UT (f · f) = UT (f) · UT (f) = λλff = ff,

hence ff ≡ const. Furthermore, eigenfunctions and eigenvalues for an ergodic trans-
formation form a group. Eigenfunctions determine a canonical factor of T , the maximal
factor with discrete spectrum [W1, CFS], which is usually called the Kronecker factor.

By comparing the correlation coefficients for an arbitrary function g ∈ L2
0 with those

of the function f · g where f is an eigenfunction of absolute value one with the eigenvalue
exp 2πiα one sees that the spectral measure λgf is obtained from λg by rotation by α.
Hence we obtain the following general spectral property of measure-preserving transfor-
mations.

THEOREM 3.6.2. The maximal spectral type of the operatorUT induced by an ergodic
measure-preserving transformation T is invariant under multiplication by any eigenvalue.

THEOREM 3.6.3 (Discrete Spectrum Theorem [CFS]). Any two ergodic measure-
preserving transformations with pure point spectrum that are spectrally isomorphic (i.e.,
have the same groups of eigenvalues) are metrically isomorphic. A complete system of
invariants is given by the countable subgroup Γ < S1 of eigenvalues: A transformation
whose group of eigenvalues is Γ is metrically isomorphic to the translation on the com-
pact group Γ∗ of characters of Γ, considered as a discrete group, by the character s0 that
defines the inclusion Γ ↪→ S1. The invariant measure is Haar measure.

SKETCH OF PROOF. Let T : (X,µ)→ (X,µ) be an ergodic measure-preserving trans-
formation with pure point spectrum and let Γ be the group of eigenvalues for UT . Let x0

be a common Lebesgue point for all eigenfunctions of UT . Denote for each eigenvalue
γ ∈ Γ by fγ the unique eigenfunction for which the Lebesgue value at x0 is 1. Then

(3.1) fγ1γ2
= fγ1

fγ2
.

Now identify Γ with the group of characters of the compact dual group Γ∗ and denote the
character on Γ∗ corresponding to the evaluation at γ by χγ . Thus, we have orthonormal
bases {fγ}γ∈Γ and {χγ}γ∈Γ in the Hilbert spaces L2(X,µ) and L2(Γ∗, λ) correspond-
ingly, where λ is the normalized Haar measure.
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Now extend the correspondence fγ → χγ by linearity to a unitary operator V : L2(X,µ)→
L2(Γ∗, λ), which is multiplicative on the eigenfunctions by (3.1). Their finite linear combi-
nations are dense in L2(X,µ), so V is generated by a measure-preserving invertible trans-
formation H : (X,µ)→ (Γ∗, λ). One immediately sees that V UTV −1χγ (s) = γχγ (s) =

χγ (s0s) for any s ∈ Γ∗, hence HTH−1 = Ls0 . �

PROPOSITION 3.6.4. A measure-preserving transformation T (not necessarily er-
godic) has pure point spectrum if and only if the closure G of the sequence (UTn)n∈Z
is compact in the strong operator topology. In this case, G is abelian and T is metrically
isomorphic to the translation on G induced by multiplication by UT , with Haar measure.

SKETCH OF PROOF. The “if” part follows from Theorem 3.6.3. The “only if” direc-
tion is a fact about unitary operators and can be easily deduced from the spectral theorem
(see e.g., [S-KT, Pa2]). �

Dynamical systems with pure point spectrum include translations and linear flow on
tori. These are basic building blocks for completely integrable Hamiltonian systems and
principal models for elliptic behavior in dynamics.

e. Rigidity and good periodic approximation. Rigidity is a recurrence property,
expressed in terms of unitary operators and hence spectral and weaker than the one given
by pure point spectrum.

A transformation is said to be rigid if the identity is an accumulation point of (Un
T )n∈N

in the strong operator topology.
Recall that a sequence of measurable partitions {ξn} is said to be exhaustive if for any

measurable set A and any ε > 0 one can find N ∈ N such that for any n ≥ N unions from
the partition ξn approximate A within ε in the symmetric difference metric (Section 3.4h).

DEFINITION 3.6.5. A measure-preserving transformation T : (X,µ)→ (X,µ) is said
to allow a good periodic approximation if there exists a exhaustive sequence of finite par-
titions of the form ξn = {C1,n, . . . , Cqn,n, dn} with µ(C1,n) = · · · = µ(Cqn,n) such
that

qn∑

i=1

µ(T (Ci,n)4Ci+1,n) = o(q−1
n ),

where we set Cqn+1,n = C1,n.

One may specify the speed of approximation by replacing o(q−1
n ) by a specific func-

tion [CFS, K6, KS].
Good periodic approximation implies rigidity but it is in fact stronger. For example

it also implies simple spectrum, which rigidity does not. It is not known whether it is a
spectral property and quite likely it is not.

f. Weak mixing. A measure-preserving action is said to be weakly mixing if the orbit
under the unitary operatorsUg (g ∈ G) for a function f orthogonal to the constant functions
never has compact closure. In particular, there are no eigenfunctions other than constants,
which implies ergodicity.

Equivalently, weak mixing means that the unitary representation induced by the action
does not have any finite-dimensional representation as a direct summand. If the group is
abelian then all irreducible representations are one-dimensional and this is equivalent to the
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absence of eigenfunctions or, equivalently, for the maximal spectral type being a nonatomic
measure.

For a measure-preserving transformation T the following are equivalent [H1, S-KT]:

(1) T is weakly mixing.
(2) For any two measurable sets A,B there exists a sequence nk → ∞ such that

µ(T−nk(A) ∩B)→ µ(A) · µ(B) as k →∞.
(3) T × T is ergodic.
(4) T × S is ergodic for any ergodic S.
(5)

∑n−1
k=0 |〈f ◦ T k, g〉 − 〈f, 1〉〈1, g〉|/n→ 0 for all f, g ∈ L2.

(6) Any joining of T with a measure-preserving transformation S with pure point
spectrum is a product.

As in Section 3.6a it suffices to check the convergence conditions in 2 and 5 for a dense
collection of functions or sets.

Let us note the following nontrivial fact:

THEOREM 3.6.6 ([F1, Theorem 4.11]). A weakly mixing measure-preserving trans-
formation T is multiply weakly mixing, i.e., for any finite collection A0, . . . , Am of mea-
surable sets there is a sequence nk → ∞ such that µ(A0 ∩ T−nkA1 ∩ T−2nkA2 ∩ · · · ∩
T−mnkAm)→ µ(A0)µ(A1) . . . µ(Am).

g. Mild mixing. To define the next stronger mixing notion we say that a function f ∈
L2 is rigid if it is recurrent under the action of UT on L2. This holds for eigenfunctions and
their linear combinations, but there exist weakly mixing transformations for which some
(or all) functions are rigid. Rigidity is a spectral property: UnkT f → f ⇐⇒ 〈UkkT f, f〉 →
‖f‖2. In fact, the spectral type [S-KT] of a rigid function is singular [KS, CFS]. A
transformation is rigid (Section 3.6e) if and only if all functions are rigid. Hence rigid
transformations have singular maximal spectral type.

We say that a measure-preserving transformation T is mildly mixing if it has no non-
constant rigid functions.

THEOREM 3.6.7. T is mildly mixing if and only if T × S is ergodic whenever S is an
ergodic transformation preserving a finite or infinite measure [FW].

Further characterizations of mild mixing are in [S-B].

h. Mixing. A measure-preserving transformation T : (X,µ) → (X,µ) is said to be
mixing if for any two measurable sets A,B

µ(T−n(A) ∩B)→ µ(A) · µ(B) as n→∞.
Again, it suffices to verify this for a dense collection of sets.

In terms of functions mixing means that for any function with zero average the cor-
relation coefficients tend to zero as n → ±∞. Thus mixing is a property of the maximal
spectral type. In particular, any factor of a mixing map is mixing.

The following characterization allows to deduce mixing from a seemingly weaker
property [KH, Proposition 20.3.6].

PROPOSITION 3.6.8. Suppose T is a measure-preserving transformation such that

lim sup
n→∞

µ(T−n(A) ∩B)

µ(A) · µ(B)
< c.
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for some constant c and for any two sets A,B of positive measure from a dense collection
of sets. Then T is mixing.

Note that a map with a mixing invariant Borel probability measure is topologically
mixing on the support.

i. Multiple mixing. Analogously to multiple weak mixing one can define a notion of
multiple mixing in two ways, either via proportional returns as above, or via independent
returns. It is not known whether mixing implies either of the resulting notions. This is one
of the oldest unsolved problems in ergodic theory. While there is no compelling structural
reason to believe that the answers are positive (other than the validity of the corresponding
fact for weak mixing), in most natural classes, such as homogeneous and affine systems,
mixing is equivalent to mixing of all orders [S-KSS]. On the other hand, there is a number
of deep results excluding what may look like natural candidates for counterexamples. For
rank one maps mixing implies mixing of all orders [S-KT, Kl]. Kalikow’s result was
extended to a wider class of finite rank transformations by Ryzhikov [Ry]. Host proved
that a mixing transformation with singular spectrum is mixing of all orders [Hos, Na] and
Thouvenot showed that some of the mixing flows on higher genus surface are also mixing
of all orders (unpublished). Mozes achieved the same for actions of Lie groups with finite
center whose adjoint representation is a proper map [Mz].

j. Absolutely continuous spectrum. Another property stronger than mixing is to
have the maximal spectral type [S-KT] absolutely continuous. This is stronger because
the Fourier coefficients of any absolutely continuous measure on the circle converge to
zero as n → ±∞ (Riemann–Lebesgue Lemma). A quite widespread behavior of that
type is countable Lebesgue spectrum: the maximum spectral type is Lebesgue and the
multiplicity is∞ (Section 3.4q). In more pedestrian terms, countable Lebesgue spectrum
means existence of an orthonormal basis {em,n}m∈N,n∈Z in L2

0(X,µ) such that UT em,n =
em,n+1.

There are some rather special (although not unnatural) examples, whose spectrum has
a Lebesgue component of finite multiplicity (at least two, see [MN]). It is quite remarkable
that it is unknown whether one can have simple Lebesgue spectrum or even a spectrum
that consists of a simple Lebesgue and singular part. Together with the multiple mixing
proplem the simple Lebesgue spectrum problem is one of the oldest open questions in
ergodic theory.

k. The K-property. (See also [Rk2].) An automorphism T is said to have the K-
property (after Kolmogorov) or simply is a a K-automorphism , if

lim
n→∞

lim
N→∞

sup{|µ(A ∩ C)− µ(A)µ(C)| C ∈ A(
N∨

i=n

T iξ)} = 0

for any finite partition ξ and every measurable set A.
The most effective criterion for the K-property is existence of a σ-algebra of measur-

able sets A such that A ⊂ TA,
⋃∞
n=0 T

nA is dense in the σ-algebra B of all measurable
sets, and

⋂∞
n=0 T

−nA = N , the trivial subalgebra of null sets and their complements.
Thus any shift with a Bernoulli (Section 3.3e) or transitive Markov (Section 3.3f) measure
is a K-automorphism.
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But the K-property can also be characterized in terms of entropy (Section 3.7j). Any
factor of a K-automorphism is again a K-automorphism.

THEOREM 3.6.9. For any K-automorphism T the operatorUT has countable Lebesgue
spectrum in the space L2

0(X,µ).

SKETCH OF PROOF. LetL be the orthogonal complement toL2(A, µ) inUTL2(A, µ).
The space L is infinite-dimensional, orthogonal to all its images and the sum of these im-
ages generates L2

0(X,µ). �

As will be seen later (Section 3.7j, Section 8.3b) not every automorphism with count-
able Lebesgue spectrum is K. Thus the K-property is not a spectral one.

l. Decay of correlations. The speed of mixing can be measured by the decay of cor-
relations. Lower bounds on these quantities (i.e., limitations on how fast correlations may
decay for particular functions) give spectral invariants. However, there are always L1 func-
tions with arbitrarily slow decay of correlations, which means that this notion is useful only
when one restricts to subfamilies of L1 (that exclude functions with pathologically slow
decay of correlations). The choice of such families is determined by context and typically
consists, for example, of Hölder continuous or smooth functions in the presence of a dif-
ferentiable structure. See[S-C] and [S-P] for the principal results in this direction in the
case of symbolic systems and systems with hyperbolic behavior.

Evidently the resulting decay rates are not measure-theoretic invariants, because the
respective subfamilies may not be equivariant under measure-theoretic equivalence. This
situation is similar to the question of the speed of convergence of Birkhoff averages dis-
cussed in Section 3.6b. In fact, the two types of questions are often related.

For example, the maximal spectral type is Lebesgue if and only if the correlations
vanish for a dense family of functions. For Bernoulli measures (Section 3.3e) this happens
for all functions which depend only on finitely many coordinates.

7. Entropy

Now we introduce the entropy of a measure-preserving transformation, often called
the Kolmogorov (or sometimes Kolmogorov–Sinai) entropy [Pa1, Rk2], [KH, Section 4.3].
The comments about the central role of topological entropy as a growth invariant for topo-
logical dynamical systems apply with even greater force to the role of entropy of a trans-
formation with respect to an invariant measure. This justifies a comparatively detailed
treatment of entropy in a general survey.

a. Entropy and conditional entropy of partitions. We need to start with some ele-
mentary preparations. The entropy of a finite or countable measurable partition ξ is given
by

H(ξ) :=Hµ(ξ) :=−
∑

C∈ξ
µ(C) log µ(C) ≥ 0,

where 0 log 0 := 0. For countable ξ the entropy may be infinite. In most cases we suppress
the dependence of entropy on the measure.

Let ξ(x) be the element of ξ that contains x and

(3.1) Iξ : X → R, Iξ(x) :=− log µ(ξ(x)),
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the information function of ξ. Then

(3.2) Hµ(ξ) =

∫

X

Iξ dµ.

This illuminates and makes natural the following notion of conditional entropy of a parti-
tion with respect to another partition, which plays the central role in the entropy theory for
measure-preserving transformations.

DEFINITION 3.7.1. Let ξ, η be measurable partitions of (X,µ). The conditional en-
tropy of ξ with respect to η is H(ξ | η) :=−∑D∈η µ(D)

∑
C∈ξ µ(C | D) log µ(C | D),

where µ(A | B) := µ(A ∩B)/µ(B).

REMARK. If ν = {X} then H(ξ) = H(ξ | ν). If ξD is the partition of D into the
intersections D ∩ C, C ∈ ξ, then H(ξ | η) =

∑
D∈η µ(D)HµD(ξD). Similarly to (3.2)

one gets

H(ξ | η) =

∫

X

Iξ,η dµ,

where Iξ,η is the conditional information function defined by

Iξ,η(x) = − log µ(Cξ(x) | Cη(x)).

Formula (3.2) allows us to define conditional entropy even in some cases when ξ is a
continuous partition.

Misiurewicz [Mi2] developed a concept of conditional topological entropy which
however is not nearly as useful as the measurable version.

b. Basic properties of entropy and conditional entropy of a partition. (See also
[KH, Section 4.3].) Let (X,B, µ) be a probability space and let ξ, η, ζ be finite or countable
measurable partitions of X . Then:

(1) 0 < − log(supC∈ξ µ(C)) ≤ H(ξ) ≤ log card ξ. If ξ is finite then H(ξ) =
log card ξ if and only if all elements of ξ have equal measure.

(2) 0 ≤ H(ξ | η) ≤ H(ξ), H(ξ | η) = H(ξ) if and only if ξ and η are independent.
H(ξ | η) = 0 if and only if ξ ≤ η. If ζ ≥ η then H(ξ | ζ) ≤ H(ξ | η).

(3) H(ξ ∨ η | ζ) = H(ξ | ζ) + H(η | ξ ∨ ζ). In particular, for ζ = {X} we obtain
H(ξ ∨ η) = H(ξ) +H(η | ξ).

(4) H(ξ ∨ η | ζ) ≤ H(ξ | ζ) +H(η | ζ). In particular H(ξ ∨ η) ≤ H(ξ) +H(η).
(5) H(ξ | η) +H(η | ζ) ≥ H(ξ | ζ).
(6) If λ is another measure on X , ξ a measurable partition for both µ and λ and

p ∈ [0, 1] then

pHµ(ξ) + (1− p)Hλ(ξ) ≤ Hpµ+(1−p)λ(ξ).

(7) On the set of (all equivalence classes mod 0 of) measurable partitions with finite
entropy

(3.3) dR(ξ, η) :=H(ξ | η) +H(η | ξ)

defines a metric, called the Rokhlin metric.
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c. Entropy of a transformation relative to a partition. For a measurable partition ξ
and a measure-preserving (not necessarily invertible) transformation T we define the joint
partition by

ξT−n :=
n∨

i=1

T 1−i(ξ).

From now on, unless stated otherwise, we assume that ξ is a finite or countable measurable
partition with finite entropy. Since H(ξT−n−m) ≤ H(ξT−n) + H(ξT−m) by Section 3.7b4,
limn→∞H(ξT−n)/n exists.

DEFINITION 3.7.2. h(T, ξ) := hµ(T, ξ) := limn→∞H(ξT−n)/n is called the metric
entropy of the transformation T relative to the partition ξ.

The definition of the entropy of T (Section 3.7f) is immediate from here, but some
properties of the entropy relative to a partition are worth exploring now.

The following proposition gives an alternative proof of existence of the limit h(T, ξ)
as well as another expression for it.

PROPOSITION 3.7.3. H(ξ | T−1(ξT−n)) ↓ h(T, ξ).

SKETCH OF PROOF. Using Section 3.7b4. we obtain

H(ξT−n) = H(T−1(ξT−n+1)) +H(ξ | T−1(ξT−n+1))

= H(ξT−n+1) +H(ξ | T−1(ξT−n+1)) = H(ξT0 ) +
n−1∑

k=0

H(ξ | T−1(ξT−k)).

Since T−1(ξT−k) is refined as k increases, bn := H(ξ | T−1(ξT−n)) is nonincreasing by

Section 3.7b2. Thus hµ(T, ξ) = limn→∞
∑n−1

k=0 bk/n = limn→∞ bn. �

In fact, we have

PROPOSITION 3.7.4. h(T, ξ) = H(ξ | ξT−∞).

d. Properties of entropy with respect to a partition. (See also [KH, Section 4.3].)

(1) 0 ≤ limn→∞(−1/n) log(supc∈ξT−n µ(C)) ≤ h(T, ξ) ≤ H(ξ).

(2) h(T, ξ ∨ η) ≤ h(T, ξ) + h(T, η).
(3) h(T, η) ≤ h(T, ξ) +H(η | ξ). In particular, if ξ ≤ η then h(T, ξ) ≤ h(T, η).
(4) |h(T, ξ)− h(T, η)| ≤ H(ξ | η) +H(η | ξ) (the Rokhlin inequality).
(5) h(T, T−1(ξ)) = h(T, ξ) and if T is invertible then h(T, ξ) = h(T, T (ξ)).
(6) h(T, ξ) = h(T,

∨k
i=0 T

−i(ξ)) for k ∈ N and if T is invertible then h(T, ξ) =

h(T,
∨k
i=−k T

i(ξ)) for k ∈ N.
(7) If ν is another measure and p ∈ [0, 1] then

phµ(T, ξ) + (1− p)hν(T, ξ) ≤ hpµ+(1−p)ν(T, ξ).

REMARK. Property 4 means that h(T, ·) is a Lipschitz function with Lipschitz con-
stant 1 on the space of partitions with finite entropy provided with the Rokhlin metric (3.3).
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e. The Shannon–McMillan–Breiman Theorem. The entropy of a transformation
relative to a partition measures the exponential rate of the average size of the elements of
iterated partitions. In other words, the average size of the elements shrinks exponentially
with a rate given by entropy. The following result shows that for ergodic transformations
deviations from this average size are rather rare, or, conversely, that on a set of arbitrarily
large measure all partition elements have close to average size.

THEOREM 3.7.5. [S-T] Let T be an ergodic measure-preserving transformation of X

and ξ a partition. Denote by ξT−n(x) the element of ξT−n containing x. Then− 1

n
logµ(ξT−n(x))→

hµ(T, ξ) almost everywhere.

Section 2.5i and Section 3.7l suggest modifying the definition of entropy by introduc-
ing averaging into the process. Using the Shannon–McMillan–Breiman Theorem one can
show that for regular entropy this makes no difference. (This is proved in [S-T].)

There is a corresponding statement for nonergodic transformations as well. In this
case the limit exists almost everywhere and coincides with the entropy with respect to the
corresponding conditional mesure on the ergodic component.

Existence of the limit in Shannon–McMillan–Breiman theorem is a fairly straightfor-
ward consequence of the Martingale Theorem for stationary random processes in proba-
bility theory [Bi]. Identification of the limit with entropy in the ergodic case is immediate
by comparing averages.

f. Entropy of a measure-preserving transformation. The entropy of T with respect
to µ (or the entropy of µ) is

h(T ) := hµ(T ) := sup {hµ(T, ξ) ξ is a measurable partition with H(ξ) <∞} .
Entropy is invariant under metric isomorphism. This definition is more constructive

than it seems. In many cases hµ(T ) = hµ(T, ξ) for an appropriately chosen ξ (Corol-
lary 3.7.10).

Recalling the definition of the partition entropy through the information function (3.1)–
(3.2) we can interpret the entropy hµ(T, ξ) as the average amount of information provided
by the knowledge of the “present state” in addition to the knowledge of an arbitrarily long
past. Thus, a system with zero entropy can be viewed as strongly deterministic in the sense
that an approximate knowledge of the entire past (i.e., the past itinerary with respect to
a finite partition) precisely determines the future itinerary. Obviously, it is sufficient to
know only the arbitrarily distant past. The K-property which can be characterized using
entropy describes the situation where the more and more distant past carries less and less
information about the present and future and hence the arbitrarily distant past carries no
information at all.

g. Examples. (See also [KH, Section 4.4].)

EXAMPLE 3.7.6. For the N -shift σN with the Bernoulli measure µp (Section 3.3e)
one has

hµp(σN ) = −
N−1∑

i=0

pi log pi.
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EXAMPLE 3.7.7. For the Markov measure µΠ,p (Section 3.3f) one has

hµΠ,p
(σN ) = −

N−1∑

i,j=0

pjπij log πij .

EXAMPLE 3.7.8. Let A be an invertible integer m×m matrix, λ1, . . . , λm the eigen-
values of A counted with multiplicities, FA the corresponding endomorphism of the torus
Tm, µ Lebesgue measure on Tm. Then

hµ(FA) =
∑

i:|λi|>1

log |λi|.

In particular, for the linear expanding map Em : x 7→ mx (mod 1) (m ∈ Z, |m| ≥ 2) of
the circle

hµ(Em) = log |m|.

h. Calculation of entropy. We present criteria for calculating the entropy of a measure-
preserving transformation.

THEOREM 3.7.9. hµ(T ) = supξ∈Ξ hµ(T, ξ) for any sufficient family Ξ of partitions
(Section 3.4h).

SKETCH OF PROOF. Let η be an arbitrary measurable partition of X with Hµ(η) <
∞. Fix ε > 0, ξ ∈ Ξ and k ∈ N such that dR(η, ζ) = H(η | ζ) + H(ζ | η) < ε for some
partition ζ ≤ ∨ki=0 T

−i(ξ) if T is noninvertible and ζ ≤ ∨ki=−k T i(ξ) if T is invertible.
By Section 3.7d4,3,6 we obtain in the noninvertible case hµ(T, η) ≤ hµ(T, ζ) + ε ≤
hµ(T,

∨k
i=0 T

−i(ξ)) + ε = hµ(T, ξ) + ε (and similarly if T is invertible). Since ε is
arbitrary, the statement follows. �

The following corollary is the best-known and simplest criterion for calculating en-
tropy.

COROLLARY 3.7.10. If ξ is a generator (Section 3.4h) for T then hµ(T ) = hµ(T, ξ).

At this point it is useful to stress the difference between the invertible and the non-
invertible case. Let us call a partition ξ a one-sided generator for an invertible measure-
preserving transformation T if partitions subordinate to partitions of the form

∨k
i=0 T

−i(ξ)
(k ∈ N) are dense in the metric dR.

PROPOSITION 3.7.11. If an invertible measure-preserving transformation possesses
a one-sided generator then hµ(T ) = 0.

PROOF. A one-sided generator ξ is obviously a generator for T so by Corollary 3.7.10
it suffices to check hµ(T, ξ) = 0. By Section 3.7d5 this is equivalent to hµ(T, Tξ) = 0.
Suppose ξ is a one-sided generator and ε > 0. Then take k ∈ N and ζ ≤ ∨ki=0 T

−i(ξ)

such that d(T (ξ), ζ) < ε and hence H(T (ξ) | ∨ki=0 T
−i(ξ)) ≤ H(T (ξ) | ζ) < ε. Thus

since the sequence an := H(T (ξ) | ∨ni=0 T
−i(ξ)) is nonincreasing, hµ(T, T (ξ)) < ε by

Proposition 3.7.3. Since ε is arbitrary, we have h(T, T (ξ)) = 0. �
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i. Properties of entropy. (See also [KH, Section 4.3].)

(1) If S : (Y, ν)→ (Y, ν) is a factor (see Section 3.4a) of T : (X,µ)→ (X,µ) then
hν(S) ≤ hµ(T ).

(2) If A is invariant for T and µ(A) > 0 then hµ(T ) = µ(A)hµA(T ) + µ(X r
A)hµXrA(T ).

(3) If µ, ν are invariant probability measures for T and p ∈ [0, 1] then hpµ+(1−p)ν(T ) =
phµ(T ) + (1− p)hν(T ).

(4) hµ(T k) = khµ(T ) for any k ∈ N. If T is invertible then hµ(T−1) = hµ(T ) and
hence hµ(T k) = |k|hµ(T ) for any k ∈ Z.

(5) hµ×λ(T × S) = hµ(T ) + hλ(S).
(6) If Φt is a flow then h(Φt) = |t|h(Φ1). This motivates defining the entropy of a

flow as that of its time one map.
(7) Suppose T is an ergodic measure-preserving transformation of (X,µ). For a

measurable set A ⊂ X denote by TA the induced map. Then hµA(TA) =
hµ(T )/µ(A).

(8) If 0 ≤ ϕ ∈ L1(X,µ) and T tϕ is the special flow over T under the function ϕ then
h(T tϕ) = h(T )/

∫
ϕ (the Abramov formula).

(9) Consider an ergodic skew product S : (X × Y, µ × ν) → (X × Y, µ × ν),
S(x, y) = (T (x), Sx(y)). Pick a finite partition η of Y and consider ξxn := η ∨
Sxη ∨ ST (x)Sxη ∨ · · · ∨ STn−1(x) . . . Sxη. Then

hx(S, η) := lim
Hν(ηxn)

n

exists for almost every x ∈ X and is independent of x. It is called the relative
entropy of η and the supremum h∗ν(S) over η is called the relative entropy.

(10) hµ×ν(S) = hµ(T ) + h∗ν(S)
(11) If (η(T ),P(η(T )), νη) (Theorem 3.2.1) is the ergodic decomposition (Section 3.4f)

of (T, µ) then hµ(T ) =
∫
η(T )

hµC (T ) dνη(C), where µC is as in Theorem 3.2.2.

As corollaries of 7. and 8. correspondingly one sees that Kakutani equivalence (Sec-
tion 3.4e, Section 3.4p) for both maps and flows preserves the property of entropy to be
zero, a finite positive number, or infinity.

j. Pinsker algebra, K-property and entropy. [S-T] Note that the join of two parti-
tions with respect to which a measure preserving transformation T has zero entropy again
is a zero entropy partition. Therefore, one can define the Pinsker algebra π(T ) to be the
maximal zero entropy partition for T .

THEOREM 3.7.12. A measure-preserving transformation T has the K-property if and
only if the Pinsker algebra is trivial.

Another way to express this is that T is a K-automorphism if and only if it has com-
pletely positive entropy, i.e., that it has positive entropy with respect to any nontrivial
partition (i.e., with more than one element of positive measure).

While the K-property is interesting for individual systems and looks fairly strong, it
turns out that in regard to classification it imposes surprisingly few restrictions. Indeed,
any ergodic positive-entropy transformation has many subsets on which the induced map
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has the K-property [OS]. Furthermore, every ergodic positive-entropy flow can be time-
changed to a K-flow [OS]. Thus any Kakutani equivalence class of automorphisms or
flows with positive (finite or infinite) entropy contains a K-system.

Entropy is not a spectral invariant. For example, all Bernoulli shifts (Section 3.3e) have
countable Lebesgue spectrum in the orthogonal complement to constants but may have
an arbitrary positive value of entropy. Furthermore, there are also zero entropy systems
with countable Lebesgue spectrum. Nevertheless there is an important connection between
entropy and spectral properties. It is proved similarly to Theorem 3.6.9.

THEOREM 3.7.13. For a measure-preserving transformation with nonzero (i.e., pos-
itive or infinite) entropy there is a countable Lebesgue component in the spectrum, i.e.,
the maximal spectral type (Section 3.4q) dominates Lebesgue measure and the multiplicity
function is infinite at the Lebesgue part.

Thus there is a sufficient spectral criterion for the vanishing of entropy that can, in
fact, be expressed in terms of the maximal spectral type (Section 3.4q).

COROLLARY 3.7.14. If the maximal spectral type of the operatorUT is singular (pure
point, continuous or mixed), then hµ(T ) = 0.

k. Noninvertible maps. (See also [Pa2].) Any measure-preserving transformation
with zero entropy is invertible. This follows from Proposition 3.7.4

A noninvertible measure-preserving transformation that has positive entropy with re-
spect to any nontrivial partition is said to be an exact endomorphism. A measure-preserving
transformation is exact if and only if its natural extension (Section 3.4j) is a K-automorphism.
Conversely for a K-automorphism T and any partition ξ the increasing partition ξT−∞ de-
ternines a noninvertible factor which is an exact endomorphism.

In general a measure-preserving transformation T has unique maximal invariant sub-
algebra BIT ⊃ π(T ) such that the corresponding factor is invertible.

l. Slow metric entropy. With Example 2.6.9 in mind, where the power entropy dif-
fers for two very closely related systems, it is not surprising that definitions of a measure-
theoretic counterpart of the a-entropy along the lines of Section 3.7 encounter serious
difficulties for measure-preserving transformations T with zero entropy. The problem is
that the sublinear asymptotic of the entropy of the joint partition H(ξT−n) in Section 3.7c
is very sensitive to the choice of partition and, in fact, for an aperiodic transformation any
sublinear growth is exceeded by some ξ. This can be shown using the Rokhlin Lemma
(Theorem 3.4.10). An approach to overcome this difficulty using an “economical” choice
of partition was developed by Blume [Blu].

However, these problems disappear, when one develops a definition in analogy to Sec-
tion 2.5i, using an averaged rather than maximum metric on orbit segments. For simplicity,
we present this measure-theoretic construction only for the case of discrete time. Details
are given in [KT]. See also [Fe1], where the corresponding concept is called measure-
theoretic complexity. Let T : (X,µ)→ (X,µ) be a measure-preserving transformation and
ξ = {C0, . . . , CN−1} a measurable partition. Define the “coding map” φT,ξ : X → ΩN
by Tn(x) ∈ C(φT,ξ(x))n . Let φnT,ξ be the projection of φT,ξ to the coordinates 0, . . . , n− 1

and λn = (φnT,ξ)∗µ.
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The measure-theoretic counterpart of the metric ðΦ
n defined in (2.6) is the Hamming

metric

dHn (ω, ω′) =
1

n

n−1∑

i=0

(1− δωiω′i)

on ΩN,n := {0, . . . , N − 1}{0,...,n−1}. Here we used the Kronecker delta. Denote by
SHξ (T, ε, n, δ) the minimal number of dHn -ε-balls in ΩN,n whose union has λn-measure
at least 1 − δ. This is a measure-theoretic counterpart to the numbers Sd(T, ε, n) used to
define topological entropy in Section 2.5e. From here the construction works as expected.
For a scale function a(s, n) define the upper a-entropy of T with respect to ξ by

ent
µ
a(T, ξ) := lim

δ→0
lim
ε→0
{s lim

n→∞
SHξ (T, ε, n, δ)/a(s, n) > 0}

and the upper a-entropy of T by ent
µ
a(T ) := supξ entµa(T, ξ). Unlike the sublinear asymp-

totic of the entropy of a joint partition, the a-entropy can be calculated using any convenient
partition. With the notations from Section 3.4h we then have [KT]

PROPOSITION 3.7.15. ent
µ
a(T ) = supm ent

µ
a(T, ξm).

COROLLARY 3.7.16. If ξ is a generator then ent
µ
a(T ) = ent

µ
a(T, ξ).

These results work equally well for the “lower” counterparts, which use limn→∞ in
the definition.

As before, the power entropy is defined as the a-entropy for a(s, n) = ns. Power
entropy is not inherited by ergodic components, for example in the map S1 × [0, 1] →
S1 × [0, 1], (x, y) 7→ (x+ y, y).

m. Entropy for amenable groups. Entropy theory has been developed for general
discrete amenable groups [S-T]. This theory serves as the basis for an isomorphism the-
ory for Bernoulli actions of such groups. Note, however, that the notion of a “past” is not
available for general group actions. Therefore the characterization of entropy with respect
to a partition given by Proposition 3.7.4 as well as the definition of the K-property from
Section 3.6k do not have counterparts for arbitrary amenable groups. However for some
groups in which an algebraic past (usually nonunique) exists, such as Zk, the remaining
aspects of entropy theory also can be carried out [PiS]. On the other hand, the charac-
terization of K-property via completely positive entropy (Theorem 3.7.12) can be used to
extend the notion to greater generality.

n. Entropy for continuous groups. An effective way to define entropy for actions of
amenable locally compact groups is to follow the definition based on the Hamming metric
in the space of codes. Naturally the sums in the averages have to be replaced by integrals.

o. Entropy function. For actions of discrete of continuous groups “larger” than Z or
R the entropy of an action whose individual elements have finite entropy is usually equal
to zero. For those actions that appear naturally in differentiable and homogeneous dynam-
ics, where individual elements have finite entropy, a natural growth invariant is the entropy
function h, which is defined on the acting group G and associates to g ∈ G the entropy
of the corresponding element of the action. The entropy function is positive homoge-
neous, h(gn) = |n|h(g) (Section 3.7i, 4), but little else is known about it in full generality.
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However for some important classes of actions (but not always) it is also subadditive for
commuting maps: if g1g2 = g2g1 then h(g1g2) ≤ h(g1) + h(g2). [S-FK].





CHAPTER 4

Invariant measures in topological dynamics

1. Introduction

a. Existence of invariant measures. In many situations both topology and invariant
measures are present. Sometimes there is only one invariant measure (e.g., minimal ro-
tations, see Section 4.3b), in other examples there are many (shifts, Markov chains, toral
automorphisms). Here we consider the question of existence of invariant measures for a
broad class of topological dynamical systems. Since we are looking for finite invariant
measures the analogous topological property of compactness is essential. Indeed, even
such simple and natural transformations as translations on R have no finite invariant mea-
sure. Considering this question for group actions leads once again to amenability as the
essential property—as was mentioned in Theorem 3.5.1, where amenability appears as the
natural setting for the Mean Ergodic Theorem. On the other hand, in Section 3.3c we saw
that there may be no invariant measure for actions of a nonamenable group.

b. Topological versus measure-theoretic properties. While in general measure-theoretic
properties of invariant measures and topological behavior of orbits in their support may not
correspond too closely (see, e.g., Section 4.3i below), there is remarkable agreement in the
case of entropy. Topological entropy and pressure are the supremum over invariant mea-
sures of their measurable counterparts, and in the expansive case the supremum is attained,
i.e., there exists an invariant measure of maximal entropy/pressure (Section 4.4d). For sys-
tems with the additional property of specification this measure is unique and has strong
mixing properties. This latter case covers both transitive topological Markov chains and
dynamical systems with hyperbolic behavior [S-C], [KH, Chapter 20].

c. Smooth measures. Smooth dynamical systems are a natural setting for some of
these considerations because they come with a natural invariant measure class (absolutely
continuous measures, including volume), and furthermore, some member of this class may
be invariant. This is automatically the case for the important classes of Hamiltonian, con-
tact and Lagrangian systems, which provided much of the motivation for the development
of ergodic theory.

2. Existence of invariant measures

a. The Kryloff–Bogoliouboff Theorem.

THEOREM 4.2.1 ([KB]). Any continuous map f of a metrizable compact space to
itself has an invariant Borel probability measure.

89
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SKETCH OF PROOF. Beginning from the point mass δx construct the sequence of av-
erages

δx,n =
1

n

n−1∑

i=0

δfnx

and, using compactenss of the collection M of Borel probability measures in the weak*
topology, find an accumulation point of this sequence, which is f -invariant �

This argument can be generalized direcly to the actions of amenable groups using the
Følner property (Section 1.4b). We give an alternative argument for the general amenable
group case that emphasizes the Riesz Representation Theorem and works with positive
linear functionals and the Kakutani–Markov fixed point property (Section 1.4d), which
implies that the natural affine action on positive linear functionals has a fixed point. Fur-
thermore, amenability is necessary.

THEOREM 4.2.2. A locally compact group is amenable if and only if any continuous
action on a compact metrizable space has an invariant Borel probability measure.

SKETCH OF PROOF. We prove one direction. For any action Φg onX the affine action
on positive linear functionals with norm 1 defined by (Φ∗gF )(ϕ) := F (ϕ ◦ Φg) has a fixed
point by Theorem 1.4.1. By the Riesz Representation Theorem this fixed point is given by
a Borel probability measure, which is invariant by construction. �

b. Nonamenability. Example 2.4.4 (and Example 3.3.2) illustrates the necessity of
amenability: Take H = SL(2,R) and K the upper triangular subgroup. The factor can be
identified with a projective line (i.e., the circle) with action by projective transformations.

EXAMPLE 4.2.3. There is no finite invariant measure for SL(2,Z)-actions by projec-

tive transformations. For, any parabolic element, such as

(
1 1
0 1

)
, has a unique invariant

measure (Section 4.3b), the atom at its fixed point, and the fixed points are not all the same,

such as for

(
1 1
0 1

)
and

(
2 −1
1 0

)
.

c. Ergodicity. For a compact topological space X the collection M of Borel proba-
bility measures is weak*-compact and convex and therefore the same holds for the closed
subset M(Φ) of measures invariant under a group action Φ.

THEOREM 4.2.4. A Φ-invariant probability measure is ergodic if and only if it is an
extreme point of M(Φ).

PROOF. If µ ∈ M(Φ) is not ergodic, A ⊂ X Φ-invariant, 0 < µ(A) < 1 then
µ = µ(A)µA+(1−µ(A))µXrA, where µA(Y ):=µ(Y ∩A)/µ(A). If µ = λµ1+(1−λ)µ2,
0 < λ < 1, µ1 6= µ2, then the density of µ1 � µ is a nonconstant Φ-invariant L1(µ)-
function. �

d. Ergodic decomposition. The advantage of this point of view is that one can bring
to bear results from functional analysis in order to gain insight into invariant measures. For
example, existence of ergodic measures follows immediately from existence of extreme
points. Moreover, one directly obtains the ergodic decomposition of invariant measures by
using the following result:
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THEOREM 4.2.5 (Choquet). If C is a compact metrizable convex set C in a locally
convex topological vector space and x ∈ C then there is a probability measure µ supported
on exC such that x =

∫
exC

z dµ(z).

THEOREM 4.2.6. Every invariant Borel probability measure for an action Φ on a
metrizable compact space X can be decomposed into an integral of ergodic invariant
Borel probability measures in the following sense: There is a partition (modulo null sets)
of X into invariant subsets Xα, α ∈ A with A a Lebesgue space, and each Xα carrying
an f -invariant ergodic measure µα such that

∫
ϕdµ =

∫∫
ϕdµα dα for any function ϕ.

SKETCH OF PROOF. The ergodic decomposition theorem is reduced to the Choquet
theorem as follows. As before let M(Φ) be the closed subset of M consisting of Φ-
invariant probability measures. It is itself compact and convex. By Theorem 4.2.4 the
ergodic Φ-invariant measures are the extreme points of M(Φ), i.e. they are those points
which cannot be written as a nontrivial convex combination of two Φ-invariant probability
measures. We denote by ME(Φ) the space of extreme points (ergodic measures) in M(Φ).
Then by Theorem 4.2.5 for any Φ-invariant probability measure µ on X there exists a
probability measure ν on ME such that

µ =

∫

ME

α dν(α).

For the details, see [Ph]. �
While in the purely measure-theoretic context points and null sets are somewhat elu-

sive, and hence sets are difficult to pin down precisely, the present setting allows an explicit
description of the ergodic decomposition due to Oxtoby [Ox] (which can to some extent
be traced to [KB]): For each ergodic measure consider the Gδ set of typical points with
respect to all continuous functions, e.g., points for which the Birkhoff averages for each
continuous function converge to the integral of this function with respect to the measure in
question (Theorem 3.5.2). This is a null set for all other ergodic measures and these sets
are evidently pairwise disjoint. They are called ergodic sets. This essential uniqueness of
the ergodic decomposition shows that M(Φ) is essentially a simplex.

REMARK. Notice that the above arguments relied on the Birkhoff Ergodic Theorem
in an essential way and hence are not applicable to general nonsingular measurable actions.
The proof of the ergodic decomposition theorem in that case uses that ergodic decomposi-
tion is an invariant of orbit equivalence and uses an appropriate element from the full group
[S-FK].

e. Continuous representation. While the preceding arguments expressly invoked
the topological structure of the space, there is a general scheme by which one can obtain
analogous results for measure-preserving actions. It is the device of continuous represen-
tation.

THEOREM 4.2.7. [F1, Theorem 5.15]. If (X,A, µ) is a separable measure space and
T a measure-preserving transformation then there is a compact topological space Y with
a Borel measure λ and a λ-preserving homeomorphism f : Y → Y such that (Y,B, λ, f)
is equivalent to (X,A, µ, T )

Here a measure space (X,A, µ) is said to be separable if Ã :=A/ ∼ is generated by
a countable set, where ∼ denotes equivalence mod 0.
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SKETCH OF PROOF. To construct the continuous representation letA0 = {Am}m∈N ⊂
A be a countable T -invariant algebra of distinct sets with Ã0 dense in Ã, Y := ΩR2 ,
πm : Y → {0, 1} the mth coordinate projection, A′m := π−1

m ({1}). For N ∈ N con-
struct a Borel measure λN on Y such that λN (

⋂k
j=1 A

′
ij

) = µ(
⋂k
j=1 Aij ) whenever

i1 < i2 < · · · < ik ≤ N and let λ be an accumulation point of (λN )N∈N. Define
f : Y → Y by (f(ω))k = ωl(k), where l(k) is defined by Al(k) = T−1(Ak). Then f is
continuous and f−1(A′k) = A′l(k), so f preserves λ. It is easy to see that (Y,B, λ, f) is
equivalent to (X,A, µ, T ). �

For actions of more general groups the corresponding continuous representation result
has been established by Varadarajan [Va].

These continuous representation results together with Theorem 4.2.6 yield teh Ergodic
Decomposition Theorem 3.4.3 for general measure-preserving actions.

f. The Furstenberg Correspondence Principle; the Szemerédi Theorem. (See also
[S-B, Pt].) In Section 2.6g we discussed a connection between recurrence behavior in topo-
logical dynamics and the appearance of a large scale structure in at least one of the sets
which appear from a finite partition of Z. A counterpart of this principle connects the large
scale structure of positive upper density subsets of Z or N with quantitative recurrence
properties of measure-preserving transformations. For a subset S of natural numbers the
upper density is defined as

lim
n→∞

card([1, . . . , n] ∩ S)/n.

The general construction connecting such statements is as follows. Any S ⊂ N defines
a one-sided sequence ω ∈ ΩR

2 of zeros and ones where ωi = 0 if i ∈ S and ωi = 1 if
i /∈ S. Using the averaging of the point mass δω along the subsequence realizing the upper
density d > 0 of S one constructs an invariant mesure µ for the one-sided shift σR2 such
that µ(C0

0 ) = d.
This construction connects the pattern of returns of the cylinder C0

0 with the pattern of
appearances of natural numbers in the set S.

The argument in the other direction uses coding similarly to the proof of Theorem 2.6.11.
We illustrate the operation of this version of the Furstenberg correspondence principle

by describing its original and most famous application [F1].
The Szemerédi Theorem asserts that any set of natural numbers of positive upper den-

sity contains an arbitrary long arithmetic progression. It is stronger than the van der Waer-
den Theorem (Section 2.6g) because the upper density is subadditive and hence one of the
sets in a finite partition has to have positive upper density.

The corresponding property of a measure-preserving transformation T : (X,µ) →
(X,µ) is multiple Poincaré recurrence: For every set A of positive measure and every
k ∈ N there exists an n ∈ N such that

µ(
k−1⋂

i=0

T−inA) > 0.

Notice that then there are infinitely many such n.

THEOREM 4.2.8. The Szemerédi theorem is equivalent to the multiple Poincaré re-
currence propery for any measure-preserving transformation.
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PROOF. Assuming multiple Poincaré recurrence and having a subset S of natural
numbers of positive upper density construct an invariant measure µ for the shift σR2 as
above. By construction µ is the weak limit of the sequence of measures

µm =
1

n

nm−1∑

i=0

δ(σR2 )iω

for some sequence nm → ∞ and µ(C0
0 ) > 0. By multiple recurrence for any natural

number k there exists an l such that

µ(
k−1⋂

j=0

σ−jl(C0
0 )) > 0,

hence by closeness of the cylinders and weak convergence for a sufficiently large m one
also has

µm(
k−1⋂

j=0

σ−jl(C0
0 )) > 0.

But this implies that δ(σR2 )iω(
⋂k−1
j=0 σ

−jl(C0
0 )) > 0, for some i ∈ {0, . . . , nm − 1}, i.e.,

the set S contains the arithmetic progression (i, i+ l, . . . , i+ (k − 1)l).
Conversely, assume multiple Poincaré recurrence does not hold. This means that for

some k ∈ N there exists a measure-preserving transformation T and a set A of positive
measure such that

µ(

k−1⋂

i=0

T−inA) = 0 for all n ∈ N.

Using ergodic decomposition one can then find an ergodic transformation with the same
property. Let

B =
∞⋃

m=0

∞⋃

n=1

k−1⋂

i=0

T−m−inA

Since µ(B) = 0 there exists a typical point x for A outside of B. For such a point we
define the set of natural numbers S by i ∈ S if T ix ∈ A. Since x is typical the set S
actually has positive density equal to µ(A) but does not contain any arithmetic progression
of length k since x /∈ B, contradicting the assertion of the Szemerédi theorem. �

3. Unique ergodicity

a. Definition and uniform convergence. A topological dynamical system Φ is said
to be uniquely ergodic if card M(Φ) = 1, that is, there is a unique invariant Borel proba-
bility measure. By Theorem 4.2.4 this measure is ergodic.

This is evidently a topological property and it can be described in topological terms:

THEOREM 4.3.1. For a uniquely ergodic action and any continuous function the
Birkhoff averages in (1.1) (or (3.1)) converge uniformly. The converse holds for topo-
logically transitive actions.

PROOF. Nonuniform convergence for some continuous function ϕ gives sequences
xk → x, yk → y ⊂ X for which the averages Fnk lie on either side of some interval (a, b).
By the diagonal process there is a subsequence (nkl)l∈N such that J(ϕ):=liml→∞ Fnkl (ϕ)
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exists at both x and y and gives different values. By the Riesz Representation Theorem we
thus have two distinct invariant measures. �

Transitivity is needed for the converse because it fails for the map f : S1 × [0, 1] →
S1 × [0, 1], (x, t) 7→ (x + α, t) for α /∈ Q, that is, the product of a uniquely ergodic map
(Proposition 4.3.3) with the identity.

Since by the Kryloff–Bogoliouboff Theorem 4.2.2 every minimal set is the support of
an invariant measure we observe

THEOREM 4.3.2. A uniquely ergodic action has only one minimal set; in particular a
topologically transitive uniquely ergodic action is minimal.

Note the analogy to Proposition 2.3.4.

b. Unique ergodicity with trivial recurrence. The simplest examples of uniquely
ergodic systems are those for which the invariant measure is atomic, i.e., is concentrated
on a single point (or periodic orbit in continuous time). A specific instance is the map
x 7→ x + 1 of the projective plane (Example 2.4.2) or the diffeomorphism f : S1 → S1

induced by the map x 7→ x + 1
10 sin2 πx (mod 1) for which the fixed point 0 is not an

attractor but α(f) = ω(f) = {0}, or a parabolic projective map on S1 as in Example 2.4.4,
Example 2.4.4 and Section 4.2b. The only invariant probability measure is the atom at the
fixed point.

Next, we give some examples with nontrivial recurrence.

c. Minimal translations of compact abelian groups. These are the simplest non-
trivial class of topologically transitive examples.

PROPOSITION 4.3.3. Let G be a compact abelian group, g ∈ G. Then the following
properties of the translation Lg are equivalent:

(1) if χ ∈ G∗ and χ(g) = 1 then χ = e, the identity,
(2) topological transitivity,
(3) minimality,
(4) ergodicity of Haar measure,
(5) unique ergodicity.

PROOF. Equivalence of the first three properties is lies entirely within the topological
realm, see Proposition 2.2.3 and Proposition 2.2.4. The first property is equivalent to er-
godicity of Haar measure: The characters are the eigenfunctions with their values at g the
eigenvalues, so the assumption implies that 1 is a simple eigenvalue, which is equivalent to
ergodicity (invariant functions are constant). Ergodicity of Haar measure implies unique
ergodicity: If h ∈ G is typical for Haar measure (in the sense of the Birkhoff Ergodic
Theorem) then so is kh for any k ∈ G by invariance of Haar measure under Lk. �

d. Isometries. More generally, consider an isometry f : X → X of a compact metric
space. As we pointed out in Proposition 2.2.4, every orbit closure is a minimal set. This
implies the following “minimal decomposition” into orbit closures:

COROLLARY 4.3.4. Let Φ be an action by isometries on a compact metric space
X . Then X is uniquely partitioned by closed invariant sets Xα on each of which Φ is
topologically transitive.
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PROPOSITION 4.3.5. Let f : X → X be a minimal isometry. Then f is topologically
conjugate to a translation of a compact abelian group.

This is a topological counterpart of the Discrete Spectrum Theorem 3.6.3.

COROLLARY 4.3.6. A minimal isometry is uniquely ergodic.

COROLLARY 4.3.7. Any ergodic invariant measure for an isometry on a compact
metric space has pure point spectrum.

PROOF. Use Proposition 4.3.5 and the Discrete Spectrum Theorem 3.6.3. �

PROOF OF PROPOSITION 4.3.5. Consider the space C(X,X) = {T : X → X
T continuous} with the uniform topology. (fn)n∈Z is equicontinuous, hence the closure
is a compact abelian group H . Minimality implies that for x, y ∈ X there exists (nk)k∈Z
such that fnk(x)→ y, so by passing to a subsequence we obtain g ∈ H such that g(x) =
y, i.e., H acts transitively. Then ϕ : H/Hx → X , gHx → g(x), whereHx is the stationary
subgroup, is an isomorphism and by definition f ◦ ϕ = ϕ ◦ Lf . �

This argument immediately translates to isometric actions of other discrete or contin-
uous abelian groups. For the discussion of the nonabelian case see the survey [S-FK].

Because of its appearance in transitive components of isometries unique ergodicity is
an important paradigm for elliptic dynamics, which will be discussed in Chapter 7. But it
also appears quite often in systems with parabolic behavior (Chapter 8). Without going
into details we exhibit several characteristic examples.

e. Unipotent affine maps of the torus. For α /∈ Q the map An,α : Tn+1 → Tn+1,
(x1, . . . , xn+1) 7→ (x1 + α, x2 + x1, . . . , xn+1 + xn) (mod 1) is uniquely ergodic (with
Lebesgue measure invariant). This is closely related to uniform distribution of the frac-
tional parts ({p(n)})n∈Z of a polynomial, see [KH, Exercises 2.4.3–7]. The original proof
is due to Weyl and uses estimates of trigonometric sums. A purely qualitative argument
using ergodic theory and generalizing the above argument for translations is due to Fursten-
berg.

These maps have zero entropy, but one can apply the subexponential orbit growth
concepts from Section 2.5h, Section 2.5i and Section 3.7l. The power scale is appropriate.
One easily checks that entp(An,α) = n. Section 8.3a presents more detail as well as a
more general class of examples of this type.

f. Horocycle flows on surfaces of negative curvature. In the setting of Section 2.1b

and Section 3.3c consider H = SL(2,R), Γ ⊂ G a cocompact lattice, ht :=

(
1 t
0 1

)
. The

homogeneous flow Φht onH/Γ given by left translations is uniquely ergodic [S-KSS, F3].
The name horocycle flow will be explained in Section 6.5e.

Here, too, one easily finds the power entropy (Section 2.5h): entp(h
t) = 2. Sec-

tion 8.3b describes more general examples of this nature in some detail.

g. Interval exchanges. (See also [S-MT].) Interval exchanges are maps defined
by rigidly permuting finitely many subintervals of [0, 1]: Consider a permutation π of
{1, . . . , n}, a vector v = (v1, . . . , vn) in the interior of the unit simplex, i.e., such that
vi > 0 for i = 1, . . . , n and

∑n
i=1 vi = 1, and ε = (ε1, . . . , εn) ∈ {−1, 1}n. Let
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ui =
∑i
j=1 vj and ∆i = (ui−1, ui) for i = 1, . . . , n. The interval exchange transforma-

tion Iv,π,ε : [0, 1] → [0, 1] is the map that is an isometry on every interval ∆i, rearranges
those intervals according to the permutation π, and preserves or reverses orientation on ∆i

according to the sign of εi (i = 1, . . . , n). If εi = 1 for all i we write Iv,π for Iv,π,ε and
call it an oriented interval exchange transformation.

Although interval exchanges are not continuous, they properly belong here because
they are closely connected to smooth dynamics. They arise as sections of smooth area-
preserving flows on surfaces of genus greater than 1, which are a standard example of
systems with parabolic behavior (see Section 8.4 and [KH, Section 14.6]).

In the present context the central features of interest are:

(1) An exchange ofm intervals has at mostm nonatomic ergodic invariant measures
[KH, Theorem 14.5.14].

(2) Under a natural irreducibility condition on the permutation, (Lebesgue-) almost
all interval exchanges are uniquely ergodic [V2, Ms1].

Any aperiodic interval exchange transformation I has entp(I) = 1.

EXAMPLE 4.3.8. A circle rotation by α ∈ (0, 1) naturally corresponds to an exchange
of the intervals [0, 1− α) and [1− α, 1).

EXAMPLE 4.3.9 ([KS]). The map induced by the circle rotation by α ∈ (0, 1) an any
interval naturally corresponds to an oriented exchange of three intervals with the permuta-
tion π(k) = 4 − k, k = 1, 2, 3. Conversely, any interval exchange of this kind naturally
corresponds to a map induced by a circle rotation on an interval. Since any other ori-
ented exchange of three intervals reduces to an exchange of two intervals or preserves one
of the end intervals we deduce that for oriented exchanges of three intervals topological
transitivity implies unique ergodicity.

h. Uniquely ergodic realization. In the preceding examples unique ergodicity is re-
lated to rather special behavior with respect to the invariant measure. In particular, topo-
logical and metric entropy are zero. This is, however, not the case in general, even for
symbolic systems.

THEOREM 4.3.10. [J, Kr3, BF] For any ergodic measure-preserving transformation
there is a metrically isomorphic uniquely ergodic homeomorphism of a Cantor set.

For any ergodic measure-preserving transformation with finite entropy there is a met-
rically isomorphic uniquely ergodic symbolic system.

Thus unique ergodicity does not impose any restrictions of ergodic peoperties with
respect to unique invariant measure.

i. Minimal systems with many invariant measures. Unique ergodicity (coupled
with topological transitivity) implies minimality and may be viewed as a stronger quan-
titative counterpart of the latter. While in algebraic systems like those described above
(Section 2.1b, Section 2.2c, Section 3.3c) minimality implies unique ergodicity (with Haar
measure being the only invariant one), this is not the case even for such natural classes of
systems as isometric extensions of rotations (see [KH, Corollary 12.6.4] and Section 7.5a)
and interval exchange transformations ([KH, Corollary 14.5.18] and Section 8.4d). These
are instances of a more general pathology, which often appears in connection with an ab-
normally fast periodic approximation or “Liouvillian” behavior. See Section 7.5 for a more
extensive discussion.
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4. Metric and topological entropy

a. Averaging versus maximizing. Topological entropy was discovered after measure-
theoretic entropy. Measure-theoretic entropy gives a quantitative measure of the complex-
ity of a dynamical system as seen via an invariant measure. Topological entropy was
found by extracting from the same concept an invariant of the topological dynamics only.
Though there are some analogies in the definitions, the absence of a natural measure of
the size of sets in topological dynamics leads to some differences between the two notions.
Notably the measure-theoretic entropy of the union of two invariant sets is the average of
the entropies of the invariant sets, weighted by their measures (Section 3.7i), whereas for
topological entropy the entropy of a union is the maximum of the entropies of the two
components (Section 2.5f). In other words, topological entropy measures the maximal dy-
namical complexity versus an average complexity reflected by measure-theoretic entropy.
Therefore, one expects measure-theoretic entropy to be no greater than topological entropy.
This is indeed the case:

PROPOSITION 4.4.1. Let f : X → X be a homeomorphism of a compact metric space
X . Then hµ(f) ≤ htop(f) for all µ ∈M(f).

SKETCH OF PROOF. [Mi] If ξ = {C1, . . . , Ck} is a measurable partition of X , µ a
Borel measure, then µ(Ci) = sup{µ(B) B ⊂ Ci closed}, so there are compact sets
Bi ⊂ Ci such that H(ξ | β) < 1 for β = {B0, B1, . . . , Bk} with B0 = X r

⋃k
i=1 Bi. By

Section 3.7d3 hµ(f, ξ) ≤ hµ(f, β) +Hµ(ξ | β) ≤ hµ(f, β) + 1.
B := {B0 ∪B1, . . . , B0 ∪Bk} is an open cover of X . By Section 3.7b1 Hµ(βf−n) ≤

log cardβf−n ≤ log(2n cardBf−n). The Lebesgue number δ0 of B is also that of Bf−n
with respect to dfn. Since Bf−n is a minimal cover, every C ∈ Bf−n contains a point

xC not in any other element of Bf−n. The xC form a δ0-separated set. Consequently
hµ(f, β) ≤ htop(f) + log 2 and hµ(f, ξ) ≤ hµ(f, β) + 1 ≤ htop(f) + log 2 + 1. Therefore
hµ(f) = hµ(fn)/n ≤ (htop(fn) + log 2 + 1)/n = htop(f) + (log 2 + 1)/n for all n ∈ N
by Section 3.7i4 and Section 2.5f3, and hence hµ(f) ≤ htop(f). �

b. Slow entropy. Example 2.6.9 shows that contrary to the situation of exponential
growth, subexponential orbit growth cannot always be derived from properties of invariant
measures. However, using the modified topological a-entropy enttop

a (Φ) from Section 2.5i
eliminates the disparity between the topological and ergodic behavior in Example 2.6.9.
In this case the modified topological power entropy and the metric power entropy are both
zero.

Indeed, Proposition 4.4.1 extends to a-entropy.

PROPOSITION 4.4.2. Let f be a continuous map of a compact metric space X , µ an
f -invariant Borel probability measure. Then entµa(T ) ≤ enttop

a (T ) for any scale function
a and likewise for the “lower” counterparts ent.

The proof uses an inequality between the cardinalities of spanning sets in the topologi-
cal situation and in the Hamming metric. We give an inequality that is slightly stronger than
needed. Let Sd(f, ε, n, δ) be the minimal number of ðfn-ε-balls whose union has measure
at least 1 − δ. For a finite partition ξ = {C0, . . . , CN−1} such that µ(∂ξ) = 0 and δ > 0
take α > 0 such that µ(Uα(∂ξ)) < δ2, where Uα(A) denotes the open α-neighborhood of
A.
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PROPOSITION 4.4.3. [KT] SHξ (f, δ+
√
α, n, β+δ) ≤ Sd(f, α/2, n, β) for any β > 0.

It is quite probable that a counterpart of the Variational Principle below holds for the
modified topological a-entropy.

c. Measures of high complexity. The Kryloff–Bogoliouboff Theorem gives invari-
ant measures for standard dynamical systems. In the absence of unique ergodicity it is,
by analogy, natural to look for distinguished ones among the invariant measures. As we
saw, ergodic measures are distinguished as extreme points of the compact convex set of
invariant Borel probability measure, but in a particular context some of these may be more
interesting than others. A natural idea is to consider maxima of continuous functionals on
measures, such as integrals of action functions or forms, which are attained by compact-
ness (and, as extreme points, ergodic). This issue comes up in Lagrangian dynamics, see
the survey [S-BK] and [Mt].

At this stage, entropy suggests itself as a functional on measures for which one should
implement this scheme. More generally one may consider the “pressure” functional µ 7→∫
ϕdµ+hµ(f) for a given continuous function ϕ. Unfortunately, entropy does not always

depend continuously on the measure, and therefore neither boundedness nor existence of
a maximum can a priori be expected. We will see, however, that boundedness is not ex-
ceptional and that, while there is not always a maximum, the supremum can be described
explicitly.

The underlying reason is that measures assigning most weight to regions of high com-
plexity should have measure-theoretic entropy (or pressure) close to the topological en-
tropy (or pressure). This is indeed true, i.e., the topological entropy is the supremum of
the measure-theoretic entropies, and likewise for pressure (Section 2.5k). This is the con-
tent of the Variational Principle. It is an easy observation that existence of the maximum
follows from expansivity, and there is a further criterion for uniqueness of the maximizing
measure.

d. The Variational Principle.

THEOREM 4.4.4. Let f : X → X be a homeomorphism of a compact metric space X
and ϕ ∈ C(X). Then P (ϕ) = sup{hµ(ϕ) +

∫
ϕdµ µ ∈M(f)}.

We show this for the simpler case of entropy, i.e., ϕ = 0, via a proof due to Misi-
urewicz [Mi]. Including the function ϕ in the arguments adds enough bulk to the argument
to recommend this shortcut, while the ideas are the same. The argument is complete except
that we use the properties of entropy from Section 3.7b as well as Proposition 4.4.1.

PROOF. By Proposition 4.4.1 we need limn→∞NX(f, ε, n)/n ≤ supµ hµ(f) or:
Let En ⊂ X be an (n, ε)-separated set, νn :=

∑
x∈En δx/ card(En), where δx is

the probability measure supported on {x}, and µn :=
∑n−1
i=0 f

i
∗νn/n, where f∗µ(A) :=

µ(f−1(A)). Then there is an f -invariant weak*-accumulation point µ of (µn)n∈N with
limn→∞(1/n) log card(En) ≤ hµ(f).

For a sequence (nk)n∈N with limk→∞ log card(Enk) = limn→∞ log card(En) take
any accumulation point µ of (µnk)k∈N (by weak*-compactness of M); µ ∈ M(f) since
f∗µn − µn = (fn∗ νn − νn)/n and νn are probability measures. It is not hard to see that
there is a finite partition ξ with elements of diameter less than ε and ∂ξ :=

⋃
C∈ξ ∂C a µ-

null set (this implies limk→∞Hµnk
(ξf−q) = Hµ(ξf−q)). Now log card(En) = Hνn(ξf−n)
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since each C ∈ ξf−n contains at most one x ∈ En, so there are card(En) elements of

ξf−n with νn-measure 1/ card(En). For 0 ≤ k < q < n let a(k) := b(n − k)/qc (integer
part) and S = {0, 1, . . . , k, k + a(k)q + 1, . . . , n − 1}. Then card(S) ≤ 2q because
k+a(k)q ≥ n− q. Since {0, 1, . . . , n−1} = {k+ rq+ i 0 ≤ r < a(k), 0 < i ≤ q}∪S
we have

ξf−n =
( a(k)−1∨

r=0

f−(rq+k)(ξf−q)
)
∨
( ∨

i∈S
f−i(ξ)

)

and

log card(En) = Hνn(ξf−n) ≤
a(k)−1∑

r=0

Hνn(f−(rq+k)(ξf−q)) +
∑

i∈S
Hνn(f−i(ξ))

≤
a(k)−1∑

r=0

Hfrq+k∗ νn
(ξf−q) + 2q log card(ξ)

by Section 3.7b1,4. Thus by Section 3.7b6

q log card(En) =

q−1∑

k=0

Hνn(ξf−n) ≤
q−1∑

k=0

( a(k)−1∑

r=0

Hfrq+k∗ νn
(ξf−q) + 2q log card(ξ)

)

≤ nHµn(ξf−q) + 2q2 log card(ξ)

and limn→∞(1/n) log card(En) ≤ limk→∞Hµnk
(ξf−q)/q = Hµ(ξf−q)/q. Therefore

limn→∞(1/n) log card(En) ≤ hµ(f, ξ) ≤ hµ(f). �

REMARK. For a proof for pressure see [KH, Section 20.2]. Furthermore, this proof
of the variational principle immediately extends to the actions of Zk+ [Mi].

e. Existence of a maximizing measure. It is clear that a measure of maximal entropy
and measures of maximal pressure exist whenever metric entropy is an upper semicontin-
uous function of the measure. Here are two situations where this is the case.

If in the preceding construction of a measure of large entropy we use maximal (n, ε)-
separated sets En we obtain a measure µ such that limn→∞NX(f, ε, n)/n ≤ hµ(f). If f
is expansive and ε an expansivity constant then the left hand side is htop(f) (Section 2.5f6).
Therefore expansive homeomorphisms of a compact metric space have a measure of max-
imal entropy. This extends to the case of pressure.

A trivial case of existence of a measure of maximal pressure is that of htop(f) = 0.
Any measure has zero entropy and for ϕ ∈ C(X) the functional hµ(f)+

∫
ϕdµ =

∫
ϕdµ

attains its supremum by continuity and weak*-compactness.

f. Specification. Uniqueness of maximizing measures needs an assumption from topo-
logical dynamics. The corresponding notion was not introduced earlier because it is mostly
used when studying invariant measures.

Let f : X → X be a bijection of a set X . A specification S = (τ, P ) consists
of a finite collection τ = {I1, . . . , Im} of finite intervals Ii = [ai, bi] ⊂ Z and a map
P : T (τ) :=

⋃m
i=1 Ii → X such that for t1, t2 ∈ I ∈ τ we have f t2−t1(P (t1)) = P (t2).

S is said to be n-spaced if ai+1 > bi + n for all i ∈ {1, . . . ,m} and the minimal such n is



100 4. INVARIANT MEASURES IN TOPOLOGICAL DYNAMICS

called the spacing of S. We say that S parameterizes the collection {PI I ∈ τ} of orbit
segments of f .

We let T (S) := T (τ) and L(S) := L(τ) := bm − a1. If (X, d) is a metric space we
say that S is ε-shadowed by x ∈ X if d(fn(x), P (n)) < ε for all n ∈ T (S).

Thus, a specification is a parameterized union of orbit segments P �Ii of f .

If (X, d) is a metric space and f : X → X a homeomorphism then f is said to have
the specification property if for any ε > 0 there exists an M = Mε ∈ N such that any
M -spaced specification S is ε-shadowed by some x ∈ X and such that moreover for any
q ≥M + L(S) there is a period-q orbit ε-shadowing S.

An example of a specification in the full shift is given by fixing the entries of a se-
quence on finitely many index intervals, such as: ω−3 = 0, ω0 = 1, ω1 = 0, (ω17ω18ω19ω20ω21) =
(10110) (three intervals, spacing 2). Full shifts have the specification property; the required
spacing is related to the rank of a cylinder of size ε. Transitive subshifts of finite type also
have this property, but the spacing may need to be increased a little to allow for interme-
diate states to make a transition that is disallowed in a single step. There are other classes
of symbolic systems with specification, such as sofic systems [LM]. The linear expanding
maps Em of S1 and hyperbolic automorphisms of the torus (Section 6.5a) provide further
examples of maps with this property. See Section 6.7c for the principal application of
specification.

g. Uniqueness of maximal measures. Going beyond existence of maximizing mea-
sures by expansivity requires further hypotheses. The main assumption is that the map
f have the specification property. The secondary assumption is that, when one considers
pressure, the continuous function in question be in

Cf :=
{
ϕ ∈ C(X) ∃K, ε > 0 such that dfn(x, y) ≤ ε⇒ |Snϕ(x)− Snϕ(y)| ≤ K

}
.

This means that the statistical sums Snϕ(x) :=
∑n−1
i=0 ϕ(f i(x)), which are used to define

pressure (Proposition 2.5.6), change with the orbit segment in a way that can be controlled
entirely in terms of closeness of the orbit segments and independently of the length of
the segments considered. Since 0 ∈ Cf , entropy is a special case. This class is suffi-
ciently large and naturally defined in applications (Hölder functions for hyperbolic sets
[KH, Proposition 20.2.6]). This subject is presented in detail in [S-C].

Now we can present Bowen’s result about uniqueness of maximizing measures:

THEOREM 4.4.5. Let (X, d) be a compact metric space, f : X → X an expansive
homeomorphism with the specification property and ϕ ∈ Cf (X). Then there is exactly
one µϕ = µ ∈M(f) with hµ(f, ϕ) +

∫
ϕdµ = P (f, ϕ). It is mixing and, when counted

with ϕ-weights, periodic orbits are equidistributed.

A always, the special case ϕ = 0 is interesting and gives a unique measure of maximal
entropy, called the Bowen measure. One should note, by the way, that as a byproduct of
the proof one obtains positive topological entropy for f [KH, Theorem 18.5.5], unless
cardX ≤ 1.

SKETCH OF PROOF FOR ϕ = 0. Some results about periodic points in expansive sys-
tems with specification are needed. In Section 2.5f6 we found that Pn(f) ≤ N(f, ε, n).
Adding specification gives c1enhtop(f) ≤ Pn(f) ≤ c2e

nhtop(f) [KH, Theorem 18.5.5] by
showing that the growth of periodic points is multiplicative. In essence, specification is
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used to glue together orbits in Fix(fni), (i = 1, . . . , l) to an orbit in Fix(f lMε+
∑
ni). Up

to a constant this gives P∑ni(f) =
∏
Pni(f).

Now let µn be the f -invariant measure obtained by giving equal weights to the points
x ∈ Fix(fn). The preceding preliminaries give the following important fact. If B =
Bf (y, ε, n) is the ε-ball around y for the metric dfn in (2.4) and r ≥ n then

(4.1) µr(B) =
card Fix(fr) ∩B

Pr(f)
≥ const

e(r−n)htop(f)

erhtop(f)
= e−nhtop(f)/Cε,

where the inequality essentially uses that by specification there are enough r-periodic orbits
in B to ε-shadow any (r − n)-periodic orbit. The same statement evidently holds for any
limit point µ of (µn)n∈N. One can show that any such µ is ergodic (mixing, even), and
uniqueness follows by showing that if hν(f) = htop(f) for any invariant Borel probability
measure ν (such measures exist by expansivity) then ν = µ. To prove this claim one
need only verify (by ergodicity) that ν ⊥ µ implies hν(f) < htop(f). This argument uses
convexity of φ(x) = x log x ≥ −1/e via

(4.2) −
m∑

i=1

φ(ai) ≤
m∑

i=1

ai logm+
1

e
.

Fix A = f(A) ⊂ X such that µ(A) = 0, ν(A) = 1 and for n ∈ N take a partition
Bn = {βi}kni=1 such that Bf (xi, ε, n) ⊂ βi ⊂ Bf (xi, 2ε, n) for some xi. Expansivity
implies that there is a finite union Cn of elements of Bn such that (µ + ν)(Cn4A) → 0
as n→∞. Bn is a generating partition for fn, so, using (4.2)

nhν(f) ≤ Hν(Bn) = −
kn∑

i=1

φ(ν(βi)) = −
∑

βi⊂Cn
φ(ν(βi))−

∑

βi 6⊂Cn
φ(ν(βi))

≤ ν(Cn) log card{i βi ⊂ Cn}+ ν(Cn) log card{i βi 6⊂ Cn}+
2

e

≤ ν(Cn) log(Cεµ(Cn)) + ν(X r Cn) log(Cεµ(X r Cn)) + nhtop(f) +
2

e

by (4.1). Since ν(Cn) → 1 and µ(Cn) → 0 we get n(hν(f) − htop(f)) → −∞ as
n→∞. �

For a detailed presentation see [KH, Section 20.3], which follows the original proof
by Bowen [B3].

REMARK. Even for some systems with the specification property there are some func-
tions naturally related to dynamics, such as the logarithm of the unstable Jacobian (Sec-
tion 6.7d), which do not belong to the class Cf defined above and in fact the corresponding
maximal measure may not be unique (see [K3]).





CHAPTER 5

Smooth, Hamiltonian and Lagrangian dynamics

1. Differentiable dynamics

a. Differentiable dynamical systems. Differentiable dynamics deals with groups of
diffeomorphisms and semigroups of smooth transformations of finite-dimensional differ-
entiable (smooth) manifolds. Usually the “time”, i.e., the acting group or semigroup G,
is also assumed to possess a differentiable structure. This is trivially satisfied for discrete
groups, so any countable group or semigroup qualifies (countability follows from discrete-
ness by our standing assumption of second countability of the topology on G). Noninvert-
ible systems with continuous time are rarely considered in the setting of finite-dimensional
differentiable dynamics, so we exclude this possibility (as we did in our treatment of er-
godic theory). Accordingly, in the invertible case G is assumed to be a Lie group and the
standing assumption of differentiability in the time direction means that the action is gen-
erated by infinitesimal generators, i.e., by a homomorphism of the Lie algebra Lie(G) of
G into the Lie algebra Γ(TM) of vector fields on the phase space M . In the case of cyclic
dynamical systems we thus deal with a single vector field generating a smooth flow, i.e.,
an R-action, via solving an ordinary differential equation on M .

The preceding description must be qualified by noticing that, besides the natural global
situation Φ: G ×M → M of a G-action on the whole phase space, an important role in
differentiable dynamics is played by semilocal and local situations as described in Sec-
tion 5.1c and Section 5.1d. Furthermore, there are situations of “dynamics without time”,
where one looks at asymptotic behavior of noncompact leaves of a smooth foliation of
a compact space. This was first mentioned in Section 1.2a and is developed further in
Section 5.1e.

A differentiable dynamical system is also a topological one and thus concepts and
results from topological dynamics are applicable. The study of topological properties, in
the form of invariants as well as conjugacies, is one of the central themes in differentiable
dynamics. In fact, differentiable dynamical systems are more amenable to topological
classification than general topological dynamical systems. The theory of structural stability
is an outstanding example (see Section 6.2e, Section 6.7i and [S-H]).

For invertible and, more generally, nonsingular differentiable dynamical systems there
is also a natural invariant measure class, namely the Lebesgue, or smooth, class represented
by any measure that is given by a smooth positive density in any local coordinate system.
Existence of an invariant measure within this class is in general a highly nontrivial problem,
although for many classes of systems the answer is trivially negative. Criteria for existence
of such a measure are given by functional or differential equations, which are derived in
Section 5.2m. For a nontrivial application see Section 6.7e. On the other hand, there are
important specific classes of smooth dynamical systems that possess a smooth invariant
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measure connected to an invariant geometric structure. Some homogeneous and affine
dynamical systems, which appeared in Section 2.1b, Section 2.1c and Section 3.3c, are of
this kind. Other classes include Hamiltonian, Lagrangian and contact systems described
correspondingly in Section 5.3, Section 5.4 and Section 5.5. Hamiltonian dynamics is
the main subject of [S-LL, S-R, HZ], and [S-BK] deals with both the Hamiltonian and
Lagrangian case.

Finally, there is an important class of differentiable dynamical systems that usually do
not possess a smooth invariant measure. It is holomorphic systems acting on a complex
manifold, which are briefly discussed in Section 5.7.

b. Linearization. For every point p of the phase space we have a linear mapDfp : TpM →
TpM between tangent spaces, which is invertible if p is a regular point. In this case the
map may be approximated byDfp in a small neighborhood of p. Under iteration we obtain
the derivative Dfnp = Dffn−1(p) · · ·Dff(p)Dfp : TpM → Tfn(p)M . In the simplest case
of a periodic point p = fk(p) the behavior of the maps Dfnp is largely determined by the
single linear map Dfkp : TpM → TpM . The eigenvalues and Jordan block structure are
invariant.

For a nonperiodic point one deals with the product of a growing number of differ-
ent linear maps and for an individual orbit this product may not exhibit any regularity of
behavior in terms of n. Nevertheless, for “most” points the asymptotic growth is quite def-
inite, when measured on an exponential scale [S-BKP, Oseledets Multiplicative Ergodic
Theorem], [Os, Rg, W2]. Of course, the quality of approximation of fn by Dfnp on a
given neighborhood generally deteriorates as n increases. One of the central issues in dif-
ferentiable dynamics is to what extent conclusions about the asymptotic behavior of orbits
of nonlinear systems can be made based on the asymptotic behavior of the derivative.

c. Semilocal analysis. Unlike topological dynamics, where the restriction of a dy-
namical system to a closed invariant set belongs to the same category, natural invariant sets
for smooth systems (such as attractors and other isolated sets) are often not submanifolds.
See Section 5.2i and [R], [KH, Chapter 17] for typical examples. Still, the smooth origin
of these sets is often reflected in many features, such as approximate self-similarity.

These observations motivate the following framework of semilocal analysis, which we
first formulate for cyclic discrete time dynamical systems.

Let M be a differentiable manifold, U ⊂ M open, Λ ⊂ U closed (usually compact),
and f : U → M a differentiable map such that f(Λ) = Λ (but in the noninvertible case
not necessarily f−1(Λ) = Λ). In the invertible case f is assumed to be an embedding.
Semilocal analysis studies orbits in Λ itself as well as orbit segments contained in a small
open neighborhood V ⊂ U of Λ (which may differ from U ).

A simple illustration comes from the linear map f(x, y) = (2x, y/2) of the plane with
Λ = {0} and V an r-ball around (0, 0). While there is not much to be said about the
behavior of Λ itself, there are the sets A = {(0, y) 0 < |y| < r} of points whose positive
iterates stay in V and B = {(x, 0) 0 < |x| < r} of points whose negative semiorbit lies
in V . Any other point outside Λ leaves V in finite time, both in the positive and negative
direction, i.e., has only a finite orbit segment in V .

A particular setting for semilocal analysis that is suitable for a large class of problems
of great interest is provided by the Conley theory of isolating blocks [S-FM].
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For semilocal analysis in the case of groups or semigroups G more general than Z or
N we assume that the action of some generating set in G that includes a neighborhood of
the identity is defined in a common open neighborhood U of Λ. Then for each element of
G, we can study a neighborhood V ⊂ U of Λ, which in general depends on the element.

d. Local analysis. For a cyclic dynamical system the simplest case of local analysis
is the special case of the above semilocal situation where Λ consists of a single periodic
orbit. This is a classical problem, some aspects of which are described later (Section 5.2c
and Section 5.2h). The interest lies not with the orbit itself but with nearby orbits and orbit
segments, the primary issue being the description of the sets of points whose entire orbit or
whose positive or negative semiorbit are contained in a small neighborhood of the periodic
orbit. This extends to noncyclic dynamical systems in the same way as above.

However, there are compelling reasons to extend the domain of local analysis to non-
periodic orbits. We restrict this discussion to cyclic systems to avoid technicalities and to
look at the situation that is dominant in applications of local analysis anyway. Thus we
have a reference orbit (Φt(p))t∈G and a tube T around it. In the cases G = Z and G = N
the tube can be described as a sequence of neighborhoods of the points Φn(p) of uniform
“size” with coordinate systems inherited from appropriate coordinate charts. It is impor-
tant to keep in mind that these coordinate neighborhoods can, and in a compact space must,
overlap. In the case of a flow on an m-dimensional manifold M a tube is a smooth map
F : R ×Dm−1 → M , where Dm−1 is the unit ball in Rm−1, such that F(t, 0) = Φt(p)
and F�{t0}×Dm−1

is an embedding transverse to the flow. If M is compact or Riemannian

we assume that T is of “uniform thickness”, i.e., that with respect to the Riemannian met-
ric (any Riemannian metric in the compact case) the derivatives of F and their inverses are
uniformly bounded.

The point of local analysis is to trace orbit segments in the given tube or a smaller one,
i.e., to study orbits of points for time intervals during which they stay close to the reference
orbit. In this generality this is not particularly specific to the paradigms of dynamics.
For example, for the case of flows it is essentially the framework for the local study of
nonautonomous ordinary differential equations. What makes it specific is the juxtaposition
of its results to compactness of the phase space, which forces recurrence. This can make
it possible to use such nonstationary local analysis as a tool for the study of global or
semilocal properties. Various aspects of local analysis is discussed later in Section 7.3e,
Section 5.2c and Theorem 6.3.1 and also appear in [S-H, S-BKP].

e. Foliations and holonomy. A situation somewhat reminiscent of semilocal and lo-
cal analysis appears in the study of asymptotic properties of foliations of compact mani-
folds by (in general) noncompact submanifolds.

One approach to studying such foliations is to consider a finite system of transversals
Γ = {Γi}Ni=1 such that for sufficiently large R any R-ball on any leaf intersects at least
one of the transversals. Such a system is said to be relatively compact. If x ∈ Γi and
y ∈ Γj are connected by a curve γ in one leaf then we can define a local holonomy
map Hx,y,γ : U → V between some neighborhoods U ⊂ Γi and V ⊂ Γj of x and y,
respectively, by mapping x′ ∈ U to a point y′ ∈ V connected to x′ by a path γ′ close to γ
and lying in a leaf. Clearly this local map depends only on the homotopy class of γ, so in
the case of contractible leaves it is independent of γ. If one identifies holonomy maps that
coincide on the intersection of their domains, one obtains the holonomy semigroup with



106 5. SMOOTH, HAMILTONIAN AND LAGRANGIAN DYNAMICS

respect to the natural composition structure. Although different elements of the semigroup
have different domains, many ideas from dynamics can be used for studying foliations via
this semigroup.

This approach has been particularly successful with respect to codimension one folia-
tions, where local transversals are one-dimensional and the holonomy semigroup displays
many features of one-dimensional dynamical systems.

On the other hand, the case of foliations with one-dimensional leaves is quite similar
to the study of flows up to orbit equivalence. If the foliation is orientable, one can find a
vector field that is tangent to it and hence generates a flow, whose orbits are leaves. All
such flows are orbit equivalent. In the nonorientable case one can construct a double cover
with a vector field whose orbits project to the leaves of the foliation. A more general
situation appears for one-dimensional foliations with singularities. An important special
case is discussed in Section 8.4b.

f. Derivative extension and other bundle extensions. A differentiable manifold
comes with a variety of natural structures in the form of fibered bundles, which provide
invariant (coordinate free) global expressions of various differential operations. The func-
torial nature of these objects provides for canonical extensions of morphisms (differen-
tiable maps) to these bundles.

The following bundle extensions often appear in dynamics:

(1) the tangent and cotangent bundles of a manifold M , which are denoted by TM
and T ∗M , with their projectivizations SM (the sphere bundle) and S∗M , and

(2) tensor bundles, which are tensor products of various copies of TM and T ∗M ,
some of their subbundles, especially those of contravariant symmetric 2-tensors
and contravariant skew-symmetric tensors, and

(3) the frame bundle.
All these objects are of first order, i.e., they depend only on the C1 structure on
the manifold.

(4) the jet bundles Jk(M), which are defined for a Ck structure.

All of these objects generate natural extensions of differentiable dynamical systems
acting on M .

Of primary importance among these extensions is the derivative or differential Df of
the map f : U → M in the general semilocal setting of Section 5.1c (which, of course,
includes the case U = M ). It is a linear extension of f to TUM . Other bundle extensions
appear naturally in connection with the existence of various invariant structures which
cna be identified with sections of certain bundles. Examples are a smooth volume ele-
ment (mth exterior power of the cotangent bundle, where m = dimM ), a Riemannian or
pseudo-Riemannian metric (symmetric 2-tensors), or a symplectic form (skew-symmetric
2-forms).

g. Elliptic, parabolic, hyperbolic and partially hyperbolic behavior. We utilize
three paradigms to focus the discussion of dynamical systems on classes of systems for
which particular phenomena appear and for which special techniques apply. We call these
elliptic, parabolic and hyperbolic. Adjoined to the latter is a mixed partially hyperbolic
case. They are named in analogy with the behavior of linear maps. However, unlike in
the linear situation, these three classes do not give an exhaustive description, nor are the
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distinctions always unambiguous. The boundary between elliptic and parabolic dynamics
cannot be precisely defined in full generality.

The overview of these situations constitutes the content of the three final chapters of
this survey. The central point of this analysis is that each type of behavior of the linearized
system produces corresponding effects for the nonlinear system, including topological,
measure-theoretic and differentiable properties.

1. Hyperbolic systems. Linear hyperbolic maps are those with no eigenvalues of ab-
solute value 1. Note that this is an open condition.

For a smooth hyperbolic map f the derivativeDfn grows exponentially in some direc-
tions and shrinks exponentially in others. There are no “slow” (subexponential) directions.
In a compact phase space, hyperbolicity produces complex patterns of recurrence as well
as an abundance of invariant measures and many features of exponential complexity, so
long as at least some nontrivial recurrence is present. Positive entropy is among the conse-
quences.

2. Partially hyperbolic systems. Linear partially hyperbolic maps are those with a
mixture of eigenvalues off and on the unit circle.

Nonlinear partially hyperbolic systems are those with some fast growing/shrinking
exponential directions as well as “slow” directions. While linear partially hyperbolic maps
are simply those that do not fall into any of the three basic categories, nonlinear partially
hyperbolic systems are studied not so much with universality in mind, but with a focus on
those dynamical features that are dominated by the presence of exponential behavior. For
example, positive metric entropy (and hence topological entropy by Section 4.4d) forces
at least partial hyperbolicity, and it is natural to approach such systems with techniques
developed for hyperbolic dynamical systems.

3. Elliptic systems. Linear elliptic maps are those with all eigenvalues of absolute
value 1 and no Jordan block of size two or more.

For nonlinear maps ellipticity can be described by having in mind a certain similarity
to being locally isometric. In terms of the derivative this would be the case when ‖Dfn‖
does not grow with n or exhibits irregular oscillatory behavior of slowly growing magni-
tude without persistent growth.

4. Parabolic systems. Linear parabolic maps are those with all eigenvalues of abso-
lute value 1 but some Jordan blocks of size at least 2.

For nonlinear parabolic maps one has to allow subexponential (usually polynomial)
growth of Dfn with n. While the distinction from the elliptic case may not be entirely
unambiguous in these terms, the core of the parabolic paradigm is the local “shear” pattern
of the orbit structure, as exhibited in the linear case.

h. Prototype examples. Useful nontrivial examples of the three main classes of be-
havior appear immediately and in a natural way when one takes an affine example and
forces recurrence by compactification. In other words, one projects an affine example to a
torus. Specific examples are accordingly:

(1) Hyperbolic examples arise from projecting an appropriate linear map to a toral
automorphism (Section 6.5a).

(2) Partially hyperbolic examples arise the same way.
(3) Translations of Rn projected to Tn give elliptic examples in the form of the

translations Tγ (Example 2.1.1, Section 7.1d),
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(4) Unipotent affine maps project to parabolic examples, such as the maps An,α
(Section 4.3e) or AL,v (Section 8.3a).

Thus, the basic models of all types of behavior appear in the setting of affine maps of
the torus. In all cases under natural assumtions the maps are topologically transitive and
ergodic with respect to Lebesgue measure.

Further examples where the local structure of the phase space is not “flat”, but the
behavior of the derivative is uniform throughout the space appear in the setting of ho-
mogeneous dynamics introduced in Section 2.1b and Section 3.3c. See Section 4.3f and
Section 6.5e for typical parabolic examples of that kind and Section 6.5e for typical hyper-
bolic ones.

i. Low-dimensional and conformal dymanics. Since properties of the derivative
play the central role in differentiable dynamics it is natural to consider the situation where
the derivative has a particularly simple structure. The simplest kind of a linear map be-
tween two Euclidean spaces is a conformal map which is simply a scalar multiple of an
isometry. Correspondingly, a dynamical system acting on a manifold provided with Rie-
mannian metric is called conformal if its derivative at every noncritical point is a conformal
linear map. Since in dimension one any linear map is conformal this definition includes all
differentiable systems on one-dimensional manifolds. Conformality is an extra ingredient
which is added to the consequences of the intermediate value theorem to generate specific
properties of differentiable dynamical systems in one dimension (cf. Section 2.7a). The
Denjoy Theorem 5.1.1 is a classical example of such a property. See [S-JS] for a detailed
overview of differentiable dynamics in one dimension and [MS] for an in-depth account.

Conformal systems in real dimension two become holomorphic maps on a one-dimensional
complex manifold after introducing an appropriate complex structure (see Section 5.7).

For connected manifolds in dimension higher than two there are few conformal maps
and the dynamics of such maps is rather simple. However, conformal actions of some
groups such as actions of fundamental groups of compact hyperbolic manifolds on the
sphere at infinity, possess interesting dynamical properties. Furthermore, in the semilocal
setting there are many nontrivial examples of conformal maps (e.g., expanding ones) in
any dimension [P, Section 20].

j. Degree of differentiability of smooth dynamical systems. In virtually all situa-
tions that arise in differentiable dynamics it is safe and innocuous to assume that the phase
space possesses a C∞ structure, i.e., that in local coordinates one can differentiate as many
times as needed. The situation is quite different for the dynamical system itself. Simi-
larly to the rather large gap between general topological dynamical systems, even when
acting on a nice phase space such as a differentiable manifold, and differentiable dynami-
cal systems, there are considerable distinctions within the realm of differentiable dynamics
according to the degree of differentiability (either the differentiability of the dynamical
system or the number of derivatives used to define the topology in a space of dynamical
systems). In the subsequent chapters specific instances of these appear, so for now we only
make brief general comments.

C1 regularity is often sufficient for certain topological properties when the derivatives
exhibit sufficiently robust behavior [KH, Chapter 18]. On the other hand, a considerable
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amount of pathology may appear in C1 systems, in particular in relation to ergodic be-
havior [RY, Pu2]. When one moves from properties of individual systems to those preva-
lent in various classes of systems, C1 regularity and the C1 topology are distinguished
from higher regularity by the abundance of positive results. The Closing Lemma (The-
orem 5.2.10 [Pu1]) and necessary conditions for C1-structural stability [S-H, M3] are
outstanding examples. One can express this by saying that there are many C1 perturbation
constructions available that allow to control dynamical properties.

C1+ε for some ε > 0 (differentiability with Hölder continuous derivatives) is a stan-
dard regularity assumption in aspects of hyperbolic dynamics (both uniform and nonuni-
form) dealing with behavior with respect to invariant measures and other properties. In
fact, in the nonuniformly hyperbolic situation this assumption is needed throughout.

Conditions around C2 (e.g., bounded variation, absolute continuity, or a Zygmund
property of the first derivative) often appear in low-dimensional dynamics out of the need
to control the distortion caused by growing numbers of iterates. Many fundamental quali-
tative results depend on this kind of information [S-JS]. Here is a classical example.

THEOREM 5.1.1 (Denjoy Theorem). [S-JS], [KH, Theorem 12.1.1] A C1 circle dif-
feomorphism without periodic points whose derivative has bounded variation is topologi-
cally conjugate to a rotation.

In this result, one can replace bounded variation by a Zygmund condition [S-JS], but
not by a Hölder condition [KH, Section 12.2].

Varying finite numbers of derivatives (from 3 to a number growing with dimension)
are often required in elliptic problems in order to offset “small denominator” effects for the
type of return associated with “diophantine” behavior [S-LL], [Ms2].

Finally, a C∞ condition appears in a number of remarkable results where polynomial
approximation plays an essential role. The solution of the “Entropy Conjecture” [S-FM,
Sh] is one outstanding example. The existence of a measure with maximal entropy for
surface diffeomorphisms is another [Yd, N1, N2].

2. Basic concepts and constructions

a. Conjugacy. The natural functorial notion of conjugacy between smooth systems
is smooth conjugacy. In semilocal form (which includes global and local ones as special
cases) it is defined as follows: For k ≤ l ≤ r, M,N Cr manifolds, U ⊂M,V ⊂ N open,
two Cl maps f : U →M , g : V → N with invariant sets
Λf ⊂ U,Λg ⊂ V are said to be (locally) Ck conjugate if there is an open neighborhood
O ⊂ g(V ) of Λg and a Ck diffeomorphism h : O → U such that Λf ⊂ h(O) and f ◦ h =
h ◦ g. The global case is Λf = M , Λg = N .

It would seem particularly appropriate to concentrate on the case k = l of conjugacy
in the natural category, and there are important situations where this or the more general
case k ≥ l ≥ 1 are useful notions. In general, however, the most tractable notion is
topological conjugacy, i.e., the case k = 0 (Section 5.2f). The reason is that there are too
many invariants of smooth conjugacy, which causes smallness and irregularity of smooth
conjugacy classes.

Analogously to smooth conjugacy one can define smooth orbit equivalence (Sec-
tion 2.2a), smooth factors, and smooth orbit factors (Section 2.2f) by replacing continuity
of the conjugating map with differentiability. The distinction between smooth conjugacy
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versus smooth orbit equivalence of flows can be expressed by saying that smooth orbit
equivalence conjugates the transverse behavior of orbits and is closely related to conju-
gacy of corresponding section maps. For actions of Lie groups other than R the study of
orbit equivalence is closely related to foliation theory.

b. Equivalence of measures. Any differentiable manifold M carries a natural mea-
sure class. This class is represented in particular by any smooth positive measure, i.e., a
measure which is given by a positive differentiable density in any smooth coordinate sys-
tem on the manifold. If M is orientable, such a measure is determined by a volume form.
In general, a smooth positive measure on an n-dimensional manifold can be identified with
an odd n-form [KH, Section 5.1a]. Suppose µ and ν are two smooth positive measures on
the same manifold M (possibly with boundary). If M is not compact assume in addition
that µ = ν outside a compact set K.

THEOREM 5.2.1. If µ(K) = ν(K) then there exists a compactly supported diffeo-
morphism f : M →M such that f∗µ = ν

In particular ifM is compact then for any smooth positive measures µ and ν such that
µ(M) = ν(M) there exists a diffeomorphism f such that f∗µ = ν.

This is a more general form of Moser’s theorem [KH, Theorem 5.1.27]. For the treat-
ment of the case with boundary see [AK].

c. Local conjugacy and normal forms. (See also [KH, Section 6.6].) In the local
setting, where maps are considered in a neighborhood of a single periodic orbit, smooth
local conjugacies are more tractable than in the global case. The reason is that usually
no nontrivial recurrence appears in this picture and that those Ck conjugacy invariants
discussed below are in this case only attached to the single reference orbit.

Though this is a wide subject ([Bl] is a good survey), the basic plan for establishing
the possibility of smooth conjugacy is easy to outline. Suppose two maps f and g have
a common fixed point, which we may take to be 0 ∈ Rm. In order for f and g to be
smoothly conjugate in a neighborhood, the differentials at 0 must be conjugate linear maps
(by differentiating the conjugacy equation, see Section 5.2d) and may therefore be assumed
equal after a linear coordinate change. Furthermore, there are other local invariants of Ck

conjugacy associated with the kth jet at the reference orbit. These data are related to
coefficients in the kth order Taylor polynomial at the point in question—which of these
coefficients play a role is related to eigenvalue data.

The strategy now is to conjugate both f and g to their respective “normal forms” and
then to see whether these are equal. The normal form is uniquely defined and collects all
smooth local conjugacy invariants. To find the normal form of f at 0 write it as an as yet
unknown power series N with the same linear part as f . Solve the conjugacy equation
h ◦ f = N ◦ h for the power series of N and the conjugacy h by taking Dh|0 = Id and

then setting coefficients in N to zero whenever possible while comparing coefficients on
either side to inductively determine the coefficients of h.

The simplest normal form is N = Df , and usually many higher order coefficients
in N can actually be eliminated. But it is possible that for some coefficients there are
“accidental” cancellations of the h-coefficients in such a way that the corresponding N -
coefficient is uniquely determined by the corresponding one in f . These cancellations arise
when products of some eigenvalues coincide with an eigenvalue (“resonances”) and they
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give terms in the normal form that cannot be removed. Thus, one obtains power series for
h and N .

Now consider the case when the map f is analytic. If one can show that both se-
ries converge, one has an analytic conjugacy of f to a normal form. This normal form
is uniquely defined, so local analytic conjugacy between two maps is achieved by obtain-
ing and comparing normal forms, whose coefficients define higher jet invariants of local
analytic conjugacy.

For C∞ maps one starts from the (possibly divergent) Taylor series and goes through
the same formalism to obtain a normal form and formal conjugacy. One then needs to
prove that this corresponds to genuine maps. For Ck conjugacies one can go through the
same scheme but terminate at terms of order k. Again, one gets a (truncated) normal form
containing the invariants associated with the kth jet.

This scheme can be carried out in the general smooth hyperbolic case. In the analytic
category the issue of convergence of the normal form and the conjugacy, while tractable, is
highly nontrivial. The leading paradigm here as well as in the elliptic case is that of “small
denominators”. These correspond to “almost cancellations” and usually result in relatively
large coefficients in the conjugacy [Br].

d. Invariants. Various invariants of topological conjugacy discussed in Chapter 2 are
useful in the context of smooth dynamics. It is a great help, for example, that local analysis
(Section 5.1d) is available as a tool for the study of relative behavior of orbits including
such properties as expansiveness (Section 2.4d).

We mention some invariants of Ck conjugacy for k ≥ 1. This in particular will help
explain why in the global and most semilocal settings this conjugacy notion is usually too
narrow to be useful.

e. Periodic eigenvalue data. The simplest smooth conjugacy invariant is referred to
as periodic data or the Lyapunov cocycle: If Φg and Ψg are actions on M that are C1

conjugate via h, i.e., Φg ◦ h = h ◦ Ψg , and if x ∈ M is such that Ψg(x) = x for some
g ∈ G, then differentiation givesDΦg(h(x))Dh(x) = Dh(x)DΨg(x). Thus,DΦg(h(x))
andDΨg(x) are conjugate as linear maps and in particular they have the same eigenvalues,
etc. Therefore, under smooth conjugacy, the family of conjugacy classes of differentials
over periodic orbits is invariant. As we noted in Section 5.2c, even when the eigenvalue
data agree, there are higher jet invariants of Ck conjugacy associated with periodic points.
There are several interesting situations where in the global setting coincidence of all peri-
odic eigenvalue data gives (for global reasons) coincidence of all higher jet invariants and
C∞ conjugacy. An example is that of area-preserving C∞ Anosov diffeomorphisms of T2

(Theorem 6.7.6, [KH, Theorem 20.4.3]).
An easy but important observation is that these data can be changed by arbitrarily

smallCk-perturbations of a smooth system. Therefore there are no open smooth conjugacy
classes containing maps with periodic points. For C1 conjugacy this statement can be
strengthened considerably due to the C1-closing Lemma of Pugh [Pu1], which implies
that systems with a periodic point are C1-dense. Thus there are no C1 open Ck-conjugacy
classes at all (for k ≥ 1). This issue is discussed in the next subsection.

Still, smooth conjugacy and even some classification up to smooth conjugacy, often
on a subset of the phase space, appears in various natural situations. Such situations arise
in elliptic dynamics, typically by way of absence of periodic points, Theorem 7.3.5, and in
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hyperbolic dynamics, by explicitly or implicitly fixing periodic data (Section 6.7h, [S-H],
[KH, Theorem 20.4.3]). In the elliptic situation, however, it is almost always the case that
smooth classification excludes some values of invariants, such as the rotation number for
circle maps, or is achieved only on part of the phase space, as is the case in KAM theory,
where regions of instability are excluded.

Open Ck conjugacy classes for k ≥ 1 do appear in noncyclic dynamical systems
beginning from actions of Zm and Rm for m ≥ 2 and even more characteristically for
actions of higher-rank semisimple Lie groups and lattices in such groups [S-FK].

f. Stability. A dynamical system is said to be Ck-structurally stable if it is topolog-
ically conjugate to all sufficiently small Ck-perturbations. The case k = 1 is of primary
importance and is often referred to as just structural stability. For discrete time dynamical
systems this is the only natural notion of stability. For continuous time systems, e.g., flows
there is a weaker and in fact more natural notion of stability when any perturbed system
is topologically orbit equivalent to the unperturbed system, or, equivalently topologically
conjugate to a continuous time change of it. It is this weaker notion which is called struc-
tural stability for flows. The periods of periodic orbits are typical examples of invariants
of topological conjugacy which do not prevent topological orbit equivalence.

Ck-structural stability implies that all topological features of the transverse orbit struc-
ture of a dynamical system (described in terms of orbit conjugacy invariants) are imper-
vious to Ck perturbation. A related notion that reflects the point of view of stability of
topological properties is topological stability: A dynamical system is said to be topolog-
ically stable if it is a topological (orbit) factor of any sufficiently small C0 perturbation.
This means, in essence, that all topological features persist under perturbation, although
additional complexity might appear.

In the spirit of semilocal analysis there is a related stability notion. A differentiable
dynamical system is said to be Ω-stable or NW-stable if for any sufficiently small Ck

perturbation the restrictions of both systems to their nonwandering set (Section 2.3d) are
topologically orbit equivalent. The notion is natural because all nontrivial recurrence takes
place on the nonwandering set. C1-structural stability and Ω-stability have been character-
ized in terms of uniformly hyperbolic behavior of orbits (Section 6.7i, [S-H, R, M3]).

A related wide open question is about Ck structural stability for k ≥ 2. Nothing is
known about systems with this property and how much larger these classes are than those
of C1 structurally stable systems. It is unlikely that new phenomena appear, but for r ≥ 2
a striking lack of constructions of Cr-perturbations with controlled dynamical properties
and the failure of the closing lemma to hold in Cr for r ≥ 2 [Gt] (see Section 5.2p)
impedes progress in this direction.

g. Invariant manifolds and normal forms. The most natural kind of invariant sub-
sets for differentiable dynamical systems are embedded invariant submanifolds. Even if the
phase space is a compact manifold, such a submanifold may not be compact, e.g., an orbit
connecting two saddles of a vector field. However, compact and, more generally, complete
invariant submanifolds are of primary interest. In the compact case invariant manifolds of
the lowest dimesion are periodic orbits for maps and fixed points and periodic orbits for
flows. The first natural question concerning an invariant submanifold is its stability under
small perturbations of a dynamical system. A natural generalization of stability of a hy-
perbolic periodic orbit is stability of transversely hyperbolic compact invariant manifolds
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[HPS]. Another case of stability is that of Diophantine invariant tori in Hamiltonian and
some other types of systems (Theorem 7.3.6, Section 7.4c).

To describe the behavior near an invariant manifold N the normal forms approach
of Section 5.2c can be extended. Its applicability depends both on the dynamics on the
invariant manifold and on the properties of the linearized system in the transverse direction.
One might expect that when the dynamics on N is sufficiently simple the normal form can
be more readily available. One case where this approach is particularly successful is when
N is an invariant torus with a Diophantine translation (Section 7.2c).

h. Sections. The concept of sections was introduced in Section 1.2e and that of “re-
stricting” a dynamical system to a noninvariant set via the first-return map in Section 1.3f.
In the context of topological dynamics we noted the danger of discontinuities in the first-
return map (Section 2.2b), aside from the most basic problem that the induced map may
not be defined anywhere. A special choice of subset makes this construction useful for
local analysis in smooth flows.

For a nonwandering point p (periodic ones are of special interest) consider a small
hypersurface H containing p and transverse to the vector field V generating the flow ϕt,
a transversal. Then the first-return map φH to H is defined on an open set in a neigh-
borhood of p. While the continuity problems mentioned earlier do not disappear, they do
not affect the possibility of carrying out local analysis near a point of continuity of the
first-return map. Moreover, φH is smooth at continuity points (by transversality and the
implicit function theorem). Making convenient choices can be helpful: If the initial orbit
is periodic then for a sufficiently small transversal the first return time of this orbit is the
period and the orbit do not intersect the boundary of the transversal. Then the return map
is a local diffeomorphism in a neighborhood of its fixed point p and is amenable to local
analysis, which in turn gives information about the behavior of ϕt near the orbit od p. For
example, determining asymptotic stability of a periodic orbit can be carried out this way
[R, Theorem 8.4].

i. Inverse limits. The construction of inverse limits, introduced in Section 1.3i and
described for topological dynamical systems in Section 2.2g, can be applied in the setting
of smooth dynamics. Evidently this construction is purely topological in that the inverse
limit space usually does not have any smooth structure. On the other hand, for the natural
extension (Section 2.2h) some smoothness can often be salvaged by embedding the inverse
limit space into a bona fide smooth system as an attractor [Wl].

As an example, one may consider the covering E2 : S1 → S1, x 7→ 2x (mod 1). The
natural extension is obtained as the limit of twofold, fourfold, eightfold. . . covers of S1 and
can be seen in various ways to have a Cantor structure. It is locally the product of a Cantor
set with an interval. It can be represented as the attractor of the embedding f : M →M :=

S1×D2, whereD2 is the unit disk inR2, given by f(ϕ, x, y) =
(

2ϕ, 1
10x+ 1

2 cosϕ, 1
10y+

1
2 sinϕ

)
, where ϕ ∈ S1 and (x, y) ∈ D2, i.e., x2 + y2 ≤ 1 [KH, Section 17.1]. This

is known as the Smale attractor, solenoid, or a map derived from expanding (DE) [Sm]
(Figure 6.4, p. 140).

j. Suspensions. The suspension construction described in Section 1.3j can be carried
out for topological dynamical systems (Section 2.2j) and hence for smooth systems. It can
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be performed in such a way as to retain the smooth structure. For example, this construction
can be used to obtain a smooth action of a Lie group from a smooth action of a cocompact
discrete subgroup (lattice).

k. Cocycles and extensions. Cocycles were introduced in Section 1.3k and can be
studied in the topological context (Section 2.2k), hence also in the smooth one. In this
setting various cocycles associated with an action appear quite naturally, usually easily ex-
pressed in terms of canonical extensions to various bundles. Probably the most immediate
example is the differential itself. There are also several other constructs related to the dif-
ferential that have a multiplicative nature. An important example is the Jacobian Jf with
respect to a volume form Ω on the manifold defined by JfΩ = f ∗Ω (pullback), which is
a measure of the volume distortion by f as measured in terms of Ω. That this is a cocycle
is immediate. It is useful for the study of invariant measures.

l. Isometric extensions. Isometric extensions of differentiable dynamical systems
appear naturally in various problems coming from geometry, mechanics and number the-
ory. Isometric extensions of hyperbolic systems constitute a basic class of examples of
partially hyperbolic systems. If the orbit structure of the system in the base is sufficently
robust, isometric extensions often possess a rather regular orbit structure, e.g., their ergodic
components are smooth subbundles over the base. On the other hand, among such exten-
sions over systems with more fragile orbit structure one finds examples of nonstandard
behavior (such as minimal but not uniquely ergodic).

m. Smooth invariant measures. As mentioned in Section 5.1a, the smooth measure
class is invariant under smooth dynamical systems, but ascertaining the existence of an
invariant absolutely continuous measure requires some effort. Analogously to the unit
determinant criterion for volume preservation in Rn, a volume form Ω on a manifold is f -
invariant if the Jacobian Jf of f with respect to Ω is (identically) 1. Failing this, one looks
for an invariant measure of the form ρΩ for a nonnegative density function ρ : M → R.
Invariance of ρΩ means

∫
A
ρΩ =

∫
f−1(A)

ρ ◦ fΩ or Jfρ ◦ f = ρ.
In the noninvertible case one needs to consider all preimages of a point and thus re-

quires ρ(x) =
∑
y∈f−1({x})

ρ(y)

Jf(y)
for all x ∈M .

A useful point of view is that existence of a smooth invariant measure for a nonsingular
map is equivalent to existence of a fixed point of the Perron–Frobenius operator

(Fρ)(x) =
∑

y∈f−1({x})

ρ(y)

Jf(y)

on nonnegative measurable functions. This is a particular case of the general situation
described in Section 3.3b

In the case of a diffeomorphism an obvious necessary criterion for existence of an
invariant continuous positive density ρ is boundedness of {Jfn(x) n ∈ N, x ∈ M}:
Jfn(x) =

ρ(x)

ρ(fn(x))
≤ maxx∈M ρ(x)

minx∈M ρ(x)
.

This criterion is actually more than sufficient for existence of an invariant measure in
the Lebesgue class:
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PROPOSITION 5.2.2. Suppose f : M → M is an orientation-preserving diffeomor-
phism, Ω a volume form. If {Jfn(x) n ∈ Z} is bounded for almost every x ∈ M then
there is a Borel function ω : M → R+ such that ω ≥ 1/Jf and ωΩ is f -invariant. If
{Jfn(x) n ∈ Z, x ∈M} is bounded then ω is bounded.

PROOF. The solution ϕ :=supn∈N
∑n

i=0 Φ◦f−i ≥ Φ:=− log Jf of the cohomolog-
ical equation ϕ◦f−1−ϕ = −Φ, is a well-defined almost everywhere finite Borel function.
Write ω := eϕ ≥ 1/Jf to get

f∗ωΩ− ωΩ = eϕ◦f
−1

(Jf)−1Ω− eϕΩ = (eϕ◦f
−1

eΦ − eϕ)Ω = 0.

�

Note that the boundedness criterion implies in particular that Jfn = 1 on Fix(fn).
In the case of hyperbolic (Anosov) dynamical systems, this control of periodic data is suf-
ficient [S-H], [KH, Theorem 19.2.7]. On the other hand in that case the above periodic
conditions Jfn = 1 happen to be necessary for existence of even an absolutely continuous
invariant measure. Since any finite collection among these conditions is independent one
concludes that among Anosov systems (which are open in the space of diffeomorphisms)
those with an absolutely continuous invariant measure form a closed submanifold of infi-
nite codimension.

For noninvertible maps one can formulate analogous criteria, but the necessity of suc-
cessively tracking the possibilities of multiple preimages renders the description and the
arguments more involved. (See [KH, Section 5.1c,d] for the most basic example.)

n. Invariant distributions. Since smooth dynamical systems on a space X preserve
the class of smooth functions, one can look for invariant distributions on Ck(X), where
0 < k ≤ ∞ (k is then the order of the distribution). Other spaces of functions, such as
Hölder continuous or Sobolev, may also be considered.

1. Invariant distributions determined by measures. Invariant measures are evidently
a special case corresponding to k = 0, and there are also distributions that are obtained
as limits of linear combinations of invariant measures in the corresponding distribution
topologies, which are weaker than the weak*-topology for measures. We call such distri-
butions invariant distributions determined by measures. Often, all invariant distributions
are of this kind.

2. Uniqueness of invariant distribution. On the one end of the complexity scale are
minimal translations and linear flows on the torus where Lebesgue measure is the only
invariant distribution. This can be proven by looking at the Fourier coefficients of a dis-
tribution, i.e., its values on the characters, and verifying that invariance under a minimal
translation forces all but one of these to vanish.

3. Hyperbolic systems. On the other end of the complexity scale are various kinds of
hyperbolic systems, where the totality of invariant measures is quite rich (Section 6.7c).
Still, due to the Livschitz Theorem 6.7.2 for a locally maximal hyperbolic set, all invari-
ant distributions on the spaces of Hölder and smooth functions are determined by atomic
measures on periodic orbits.

4. Distributions not determined by measures. In the parabolic situation, however,
there usually are invariant distributions that are not determined by measures.
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EXAMPLE 5.2.3. For a circle diffeomorphism with a single parabolic fixed point at
0, such as x 7→ x + 1

10 sin2 πx (mod 1), the distribution D : C1(S1) → R, f 7→ f ′(0)
is not determined by a measure. (This is the same example as Example 2.4.2, which also
appeared in Section 4.3b.)

More interesting manifestations of this phenomenon appear in Section 8.2g, Sec-
tion 8.4f and Section 8.3b6.

5. Distributions and cocycle stability. If the space of functions is a Banach space then
the common kernel of invariant distributions is the closure of the space of coboundaries:
The latter is clearly in the kernel, but the Hahn–Banach Theorem gives equality.

Given a dynamical system and a class of functions (e.g., Hölder, smooth, Sobolev, or
analytic) on the phase space, a natural notion is cocycle stability. It can be rather vaguely
described as follows: Every function from the given class, on which all invariant distri-
butions vanish, is a coboundary with a transfer function of controllable, though possibly
lower, regularity.

Stability for C0 cocycles is impossible except when the space consists of finitely many
points [K7]. On the other hand, smooth cocycle stability is shared by such diverse classes
of systems as Diophantine translations on the torus (Proposition 7.3.2), locally maximal
hyperbolic sets (Theorem 6.7.2), parabolic systems, such as many affine unipotent maps
on the torus and flows on higher genus surfaces (Section 8.4f), and partially hyperbolic
systems, such as ergodic automorphisms of the torus [V1].

o. Transversality and Kupka–Smale theorem. The transversality notion from dif-
ferential topology has natural applications to smooth dynamics. The most basic one is to
periodic points.

DEFINITION 5.2.4. [KH, Chapter 7] Let M be a smooth manifold and K, N ⊂ M
smooth submanifolds. K and N are said to be transverse at x ∈ M if x /∈ K ∩ N or
TxK + TxN = TxM . We write K tx N . In particular, if dimK + dimN = dimM and
x ∈ K ∩M the latter condition is equivalent to TxK ∩ TxN = {0}.

We say thatK andN are transverse (to each other), writtenK t N , ifK tx N for all
x ∈ K ∩N . Manifolds K and M with boundary are said to be transverse if ∂K, Kr∂K,
∂M , M r ∂M are pairwise transverse.

Let 0 ≤ r ≤ ∞ and M a Cr manifold. Two submanifolds K1 and K2 of M are said
to be Cr-close if there exist a Cr manifold K0 and Cr embeddings fi : K0 → Ki such
that f1 and f2 are Cr-close.

A fixed point p = f(p) of a smooth map f : M → M is said to be transverse if
graph f t(p,p) ∆ in M ×M , where ∆ is the diagonal, i.e., if 1 is not an eigenvalue of
Dfp.

If K and M are compact transverse manifolds (possibly with boundary) then any
sufficiently small C1-perturbations K̃ and M̃ are transverse.

Transversality of periodic points implies persistence of such periodic points under C1

perturbations. Furthermore, transverse periodic points can be easily perturbed to hyper-
bolic ones.

The notion of transversality as such is of interest because of its innate persistence and
prevalence:
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THEOREM 5.2.5 (Transversality Theorem). [KH, Theorem A.3.20] Let M be a C∞

manifold of dimension m, and N ⊂ M a submanifold of dimension n. Then among the
k-dimensional submanifolds K ⊂M , those transverse to N are C∞-dense.

This fact is the major ingredient for the genericity result below.
Kupka–Smale diffeomorphisms are diffeomorphisms with only hyperbolic periodic

points and a transversality condition involving their stable and unstable manifolds. These
manifolds are discussed in detail in Chapter 6. They are the sets of points positively and
negatively asymptotic (respectively) to the periodic orbit, and they are injectively immersed
disks tangent to the contracting and expanding subspaces of the linearization correspond-
ingly.

DEFINITION 5.2.6. Suppose M is a Ck manifold, f ∈ Diffk(M). f is said to be
Kupka–Smale to order n (with respect to a given Riemannian metric) if all periodic points
of f of period at most n are hyperbolic and the ball of radius n in the stable manifold of any
x ∈ Fix fn is transverse to the ball of radius n in the unstable manifold of any y ∈ Fix fn.
f is called a Kupka–Smale diffeomorphism if it is Kupka–Smale to all orders.

THEOREM 5.2.7 (Kupka–Smale Theorem). Let 0 < r ≤ k ≤ ∞ and M a σ-compact
Ck manifold. Then for any n ∈ N, Kupka–Smale diffeomorphisms of order n are a Cr-
dense C1-open set in Diffk(M) and hence Kupka–Smale diffeomorphisms are a Cr-dense
C1-Gδ set in Diff(M).

This also works for flows, with the appropriate changes.

DEFINITION 5.2.8. A fixed point p of a local flow is said to be transverse if the
differential at p of any time-tmap for t 6= 0 does not have 1 as an eigenvalue. Equivalently,
the linear part of the vector field at p does not have 0 as an eigenvalue.

A periodic point p of period t > 0 for a flow is said to be transverse if 1 is a sim-
ple eigenvalue of the differential at p of the time-t map of the flow. Equivalently, p is a
transverse fixed point for the Poincaré map on a transversal to the flow near p.

A smooth flow is said to be a Kupka–Smale flow to order t if all fixed points and
all periodic orbits of period less than t are hyperbolic and the t-balls in their stable and
unstable manifolds are pairwise transverse. It is called a Kupka–Smale flow if it is a Kupka–
Smale flow to order t for all t > 0.

THEOREM 5.2.9 (Kupka–Smale Theorem). Let 0 < r ≤ k ≤ ∞ and M a compact
Ck manifold. Then for any t > 0, Kupka–Smale flows of order t are a Cr-dense C1-open
set and hence Kupka–Smale flows are a Cr-dense C1-Gδ set in the space of Cr flows.

p. Persistence of recurrence and closing lemma. For an individual dynamical sys-
tem there are no connections between different kinds of recurrent behavior except for the
general relations discussed in the context of topological dynamics (Section 2.2). However,
one may ask whether a certain kind of recurrence present in a system persists under per-
turbations, or whether there are perturbations that produce a stronger type of recurrence.
A particularly natural question is whether an orbit that almost returns to its initial position
can be approximated by a closed orbit of either the system itself or of a perturbed system.
Assertions that such things are possible are known as closing lemmas.

The closing of orbits for a given system is possible under certain conditions of a
generally hyperbolic type. In the uniformly hyperbolic case there is the Anosov closing
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lemma (Theorem 6.6.1). In the nonuniformly hyperbolic situation one can apply the clos-
ing lemma for regular orbits [KH, Theorem S.4.13] and the Ergodic Closing lemma by
Mañé [M2]. All of these statements are sophisticated cousins of the fairly simple fact that
a nonlinear map with hyperbolic linear part and an almost fixed point has in fact a fixed
point nearby (Theorem 6.1.1). In all of these closing lemmas the existence statement is
accompanied by an exponential estimate of closeness of the periodic orbit to the original
orbit segment.

In general, one cannot expect to be able to close an orbit segment by a perturbation
of the initial condition only, as irrational circle rotations show. Thus, a perturbation of the
system may be needed. The existence of such perturbations, coupled with the persistence
of the periodic points thus obtained (since every periodic point can be perturbed further
to become transverse and hence persistent), are the base of various genericity results that
go beyond Kupka–Smale type theorems. In order to prove a closing lemma one needs to
develop a general construction of perturbations that allows to control the properties of long
orbit segments. The crucial problem is that such a segment contains points that are close in
the phase space but separated by long time intervals. The fewer points on the segment are
affected by the perturbation, the better are the chances of controlling the outcome. Thus,
an effective construction would include sharply defined shifts in certain places and not
disturbing others. While such perturbations can be easily made small in C0 topology their
derivatives would tend to be large. As it turns out, a more sophisticated inductive approach
leads to a construction of C1-small perturbations with effectively controlled returns. The
result is known as the Pugh Closing Lemma

THEOREM 5.2.10. [Pu1] Let f be a Cr diffeomorphism of a compact differentiable
manifold, 1 ≤ r ≤ ∞, and x ∈ NW (f). Then there exists a Cr diffeomorphism g
arbitrarily close to f in the C1 topology, for which x is a periodic point. Furthermore,
given an open set U 3 x one can choose g in such a way that g = f outside U .

Naturally the period of x with respect to the perturbed map g depends on (and in
general grows with) the closeness of g to f and the smallness of the set U .

An important application of the Pugh closing lemma is the following genericity result.

THEOREM 5.2.11. [Pu1] In the space of C1 diffeomorphisms of a compact differ-
entiable manifold there is a dense Gδ subset of Kupka-Smale diffeomorphisms for which
periodic points are dense in the set of nonwandering points.

As was mentioned above, in this form the closing lemma is not true for C2 small
perturbations. In Gutierrez’s examples [Gt] there is a special point x0 for a diffeomorphism
f of T2 such that aC2-small perturbation cannot have periodic points near a nonwandering
point x 6= x0 if it agrees with f on a neighborhood of x0 or even if f − g vanishes to
sufficiently high order at x0. It is not known however, whether a closing lemma in higher
regularity holds without the localization condition, i.e., whether for any r > 1 there are
any Cr-small perturbations of f that make a nonwandering point periodic.

The Mañé Ergodic Closing Lemma is a further development that was obtained in the
course of Mañé’s efforts to prove the Stability Conjecture, which characterizes structural
stability by hyperbolic behavior. It is of independent interest:

THEOREM 5.2.12. Let f be a C1 diffeomorphism of a compact manifold. For every f -
invariant Borel probability measure almost every x ∈M can be closed by approximation,
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i.e., for every C1 neighborhood U of f and all ε > 0 there are an m ∈ N, a g ∈ U
and a y ∈ Fix(gm) such that max0≤i≤m d(f i(x), gi(y)) ≤ ε and g = f outside an
ε-neighborhood of Of (x).

Combining both of these closing results, Hayashi proved his Connecting Lemma,
which properly belongs to the hyperbolic setting [S-H]. It is the central ingredient for
proving the stability conjecture for flows.

3. Hamiltonian dynamics

Hamiltonian systems are classical objects in the theory of dynamical systems. They
naturally preserve volume. A detailed presentation of Hamiltonian and Lagrangian me-
chanics is given in [AM]; [HZ] presents new aspects in Hamiltonian dynamics closely
connected with the modern symplectic geometry.

a. Linear symplectic geometry. A 2-tensor α : E × E → R on a Euclidean space
E is said to be nondegenerate if α[ : E → E∗, v 7→ α(v, ·) is an isomorphism. It is said
to be antisymmetric or skew-symmetric if α(v, w) = −α(w, v). An antisymmetric 2-form
is nondegenerate if and only if E is even-dimensional and the nth exterior power αn is not
zero. A nondegenerate antisymmetric 2-form is called a symplectic form and a linear space
with a symplectic form, a symplectic linear space. The volume form αn is determined by
a symplectic form. If (E,α), (F, β) are symplectic linear spaces then a map T : E → F is
said to be symplectic if T ∗β = α.

Symplectic maps preserve volume and orientation and hence is invertible with Jaco-
bian 1, so the set of symplectic maps (E,α) → (E,α) is a group, called the symplectic
group of (E,α). A subspace V of a symplectic linear space (E,α) is said to be isotropic
if α�V = 0. An isotropic subspace has dimension at most n = dimE /2, in which case it
is said to be Lagrangian.

If a scalar product 〈·, ·〉 on E is fixed then α has a matrix representation A with
α(·, ·) = 〈·, A·〉. If α is a symplectic form then dimE = 2n for some n ∈ N and there
is a basis e1, . . . , e2n of E such that α(ei, en+i) = 1 if i = 1, . . . , n and α(ei, ej) = 0 if
|i − j| 6= n. Hence, if one fixes a scalar product with respect to which e1, . . . , e2n is an

orthonormal basis, thenA = J :=

(
0 I
−I 0

)
with respect to this basis, where I is the n×n

identity matrix. Thus this “adapted” basis above gives a decomposition of E as a direct
sum of two Lagrangian subspaces. In particular J defines the canonical symplectic form
on R2n. Alternatively, identify R2n with Cn and take the imaginary part of the standard
Hermitian inner product.

If T : (E,α)→ (F, β) is a symplectic map and λ is an eigenvalue of T then so are λ̄,

1/λ, 1/λ. If T has the form

(
A B
C D

)
with respect to a basis for which α(v, w) = 〈v, Jw〉

then AtC and BtD are symmetric and AtD − CtB = I .

b. Symplectic geometry. Let M be a smooth manifold. A differential 2-form ω
is said to be nondegenerate if it is nondegenerate at every point. If ω is nondegenerate
with dω = 0 then ω is said to be a symplectic form and (M,ω) a symplectic manifold.
Then [[X,Y ]] := ω(X,Y ) is called the Lagrange bracket of X and Y , and a subbundle of
TM is said to be isotropic (Lagrangian) if at every point p ∈ M it defines an isotropic
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(Lagrangian) subspace of TpM . A smooth submanifold is said to be isotropic (Lagrangian)
if its tangent bundle is isotropic (Lagrangian).

DEFINITION 5.3.1. A diffeomorphism f : (M,ω) → (N, η) between symplectic
manifolds with f∗η = ω is a symplectic diffeomorphism or symplectomorphism. If (M,ω) =
(N, η) it is also called a canonical transformation.

A differentiable embedding (i.e., injective nonsingular map) f : (M,ω) → (N, η)
such that f∗η = ω is called a symplectic embedding.

If (M,ω) is a symplectic manifold then M is even-dimensional and ωn is a volume
form. In particular M is orientable.

Unlike in the case of a Riemannian metric, it is possible to find a local chart such that
the symplectic form is in standard form at every point of the chart:

THEOREM 5.3.2 (Darboux, [KH, Theorem 5.5.9]). Let (M,ω) be a symplectic man-
ifold. For every point x ∈ M there exists a neighborhood U of x and coordinates
ϕ : U → R2n, referred to as Darboux or symplectic coordinates, such that ω is in standard

form
∑n
i=1 dxi ∧ dxi+n with respect to the basis

{
∂/∂x1, . . . , ∂/∂x2n

}
at every point

y ∈ U .

Thus there are no local invariants for symplectic diffeomorphisms or symplectic em-
beddings.

c. Examples of symplectic manifolds. The simplest example is R2n with the stan-
dard symplectic form

∑n
i=1 dxi ∧ dxi+n.

1. Tori. Since the standard symplectic form is invariant under translations it can be
projected to any torus R2n/Γ, where Γ is a lattice. However, on the torus the Dar-
boux Theorem is not true globally since there is an invariant, the cohomology class of
ω ∈ H2(T2n,R). For example, for different α = (α1, . . . , αn) ∈ Rn the forms ωα =∑
αi dxi ∧ dxi+n belong to different cohomology classes.

2. Cotangent bundles. For any differentiable manifold M the cotangent bundle T ∗M
possesses a canonically defined symplectic form ω, which is furthermore exact, i.e., ω =
dθ, where the Poincaré–Cartan form θ is canonically defined as well: An element of
TT ∗M can be viewed as a pair (v, w) ∈ Tx × T ∗xM . Then ω(v, w) = w(v). In lo-
cal coordinates, if (q1, . . . , qn) are coordinates on M and (p1, . . . , pn) the corresponding
coordinates in T ∗M with respect to the basis (dq1, . . . , dqn) then θ =

∑n
i=1 pi dqi and

ω = dθ =
∑n
i=1 dpi ∧ dqi. This class of symplectic manifolds plays a central role in

Lagrangian dynamics and hence in classical mechanics.
3. Kähler manifolds. Another important class of symplectic manifolds is related to

complex geometry. As was pointed out in Section 5.3a, the imaginary part of a Hermitian
form is a symplectic form. Thus, if one considers a complex n-dimensional manifold M
with Hermitian metric as a 2n-dimensional real manifold N , then this defines a nondegen-
erate two-form on TM . This form is closed if and only if the Hermitian metric is Kähler.
Thus any Kähler manifold is a symplectic manifold. The simplest compact examples are
Riemann surfaces (one-dimensional complex manifolds) with any Hermitian metric, and
complex projective space CP (n) with the symmetric metric.

d. Hamiltonian vector fields and flows. Let (M,ω) be a symplectic manifold, and
H : M → R a smooth function. Then the vector field XH = dH# defined by ωyXH =
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dH is called the Hamiltonian vector field associated with H or the symplectic gradient of
H . The flow ϕt with ϕ̇t = XH is called the Hamiltonian flow of the Hamiltonian H .

Thus, one can identify the space of Cr Hamiltonian flows, which is a closed linear
subspace of Γr(TM), with the space Cr+1(M,R).

Hamiltonian flows are actions by symplectomorphisms and hence preserve volume:

d

dt
ϕt
∗
ω = ϕt

∗
(£XHω) = ϕt

∗
(d(ωyXH) + (dωyXH))

= ϕt
∗
(d(ωyXH)) = ϕt

∗
(ddH) = 0.

On the other hand, there are symplectic flows that are not Hamiltonian. A flow generated
by a vector field v preserves the symplectic form ω if and only if

0 = £vω = dωyv + d(ωyv) = d(ωyv),

hence, if and only if ωyv is closed, whereas, if v generates a Hamiltonian flow then ωyv is
exact. Thus, if H1(M,R) = 0 then any symplectic flow is Hamiltonian, while otherwise
there are symplectic non-Hamiltonian flows. A simple example is given by a linear flow on
the two-dimensional torus with the standard volume 2-form dx∧ dy. It preserves area and
is hence symplectic. Its velocity vector field is constant 6= 0, so the Hamiltonian would
have to have constant nonzero gradient, which is false at its maximum. Equivalently, the
form ωyv for such a flow has constant coefficients and is closed but not exact.

An important observation is that H is constant along orbits of the Hamiltonian vector
field XH (preservation of energy):

£XHH = dHyXH = ωyXHyXH = 0.

See also Section 5.3f.
Notice that if two Hamiltonian fuctions have a common level surface then the corre-

sponding Hamiltonian vector fields on that surface are collinear and hence the Hamiltonian
flows on that surface are obtained by a time change from each other.

Hamiltonian flows arise in classical mechanics, where such systems are described by
the usual Hamiltonian equations

(5.1) q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
.

This is indeed a local representation of the Hamiltonian differential equation because the

vector field XH := (
∂H

∂pi
,−∂H

∂qi
) satisfies ωyXH = dH in Darboux (symplectic) coordi-

nates.

e. Symplectic invariants. For closed compact 2n-dimensional symplectic manifolds
the cohomology class of the symplectic form is the most obvious invariant. In particular,
this class determine the cohomology class of the nth exterior power of the symplectic
form,i.e., the total volume v(M) .

The volume, however, is an invariant for arbitrary symplectic manifolds, compact or
not, with or without boundary. In the noncompact case the volume may be infinite. Fur-
thermore the volume is monotone, i.e., if f : (M,ω) → (N, η) is a symplectic embedding
then v(N) ≤ v(M).
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By Theorem 5.2.1 the volume and Euler characteristic form a complete set of in-
variants of 2-dimensional compact symplectic manifolds with respect to a symplectic dif-
feomorphism. For n ≥ 2 there are further nontrivial monotone symplectic invariants of
2n-dimensional symplectic manifolds called symplectic capacities [HZ]. Let B(r) be the
open ball or radius r in R2n with the standard symplectic form ω0 =

∑n
i=1 xi ∧ xi+n and

Z(r) the cylinder {(x, . . . , x2n) ∈ R2n x2
1 + x2

n+1 < 1} with the same form.

DEFINITION 5.3.3. A function c defined on the class of symplectic manifolds of di-
mension 2n, possibly with boundary, with values inR+∪∞ is called a symplectic capacity
if it is monotone, c(M,αω) = |α|c(M,ω) for any α ∈ Rr {0} and

c(B(1), ω0) = π = c(Z(1), ω0).

An example of symplectic capacity is the Gromov width of (M,ω), which is defined
as the supremum of the values of πr2 for such r that the ball B(r) can be symplectically
embedded into (M,ω) [HZ].

The existence of capacities lies at the root of global rigidity properties of symplec-
tic structures and maps. Capacities also play the central role in the number of powerful
variational results about the existence of periodic orbits for Hamiltonian systems [S-HZ].

f. Poisson brackets. On a symplectic manifold (M,ω) the Poisson bracket of f, g : M →
R is defined by {f, g}:=[[Xf , Xg]] = df(Xg). In Darboux coordinates {f, g} =

∑n
i=1

( ∂f
∂qi

∂g

∂pi
−

∂f

∂pi

∂g

∂qi

)
. f, g are said to be in involution if {f, g} = 0.

Important pertinent facts are [AM, KH]

(1) (C∞(M), {·, ·}) is a Lie algebra, i.e., {{f, g}, h}+{{g, h}, f}+{{h, f}, g} = 0
(Jacobi identity).

(2) f is an integral of H , i.e., invariant under the Hamiltonian flow of H , if and only
if {f,H} = 0; in particular H is constant on orbits.

(3) If f, g are integrals of H then so is {f, g} (by the Jacobi identity).

The last property suggests a way of finding new integrals once several are known. This
may help at times, but often one only obtains integrals that are functions of known ones.

g. The Noether Theorem. Using Poisson brackets it is easy to obtain the following
result that symmetries produce integrals: If H is invariant under a one-parameter family
of symplectic transformations generated by a Hamiltonian f , then f is an integral of H
(because both statements are equivalent to {f,H} = 0).

This is easy to use when the phase space is a cotangent bundle and the symmetries
come from diffeomorphisms in the base. Standard applications are that translation in-
variance of H implies constant velocity of the center of mass; rotation invariance gives
constant angular momentum [KH, Section 5.5d].

h. Completely integrable systems, the Liouville–Arnold Theorem. Suppose (M,ω)
is a 2n-dimensional symplectic manifold, H = f1, f2, . . . , fn ∈ C∞(M), {fi, fj} = 0
(i, j = 1, . . . , n), and x ∈ M is such that the differentials Dfi are (pointwise) linearly
independent on Mz := {x ∈ M fi(x) = zi, i = 1, . . . , n}, i.e., there are n independent
integrals in involution. Then in a neighborhood of Mz one can find a symplectic change
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of coordinates to action-angle coordinates (y1, . . . , yn, ϕ1, . . . , ϕn) such that H depends
only on (y1, . . . , yn) [AM, Section 5.2].

This implies also that whenever Mz is compact, the given coordinate neighborhood is
foliated by invariant tori, on each of which the flow is linear.

The key idea of the proof is to use the first integrals in involution as Hamiltoninans
whose vector fields generate an Rn action on their common level manifolds. This man-
ifolds are Lagrangian. The action is transitive on every connected component. If any of
these manifolds is compact then the stationary subgroup of a point is a lattice, hence the
manifold is a torus. The ϕ coordinates come from parametrization of the level manifolds,
and the y coordinates from a proper combination of the first integrals.

Such systems are said to be completely integrable because explicit formulas for their
solutions can be found (the equations of motion can be integrated) by quadrature, i.e., in
terms of roots of inverses of antiderivatives [An1].

Since Hamiltonian systems preserve volume this result is also interesting from the
point of view of ergodic theory: The invariant manifolds described here capture much
of the ergodic decomposition of volume, because (in the generic case of nondegenerate
frequency function) the flow is an irrational linear flow on almost every invariant torus,
hence ergodic with respect to the (preserved) volume form on that torus. The few tori
with nontransitive flows can be relatively easily analyzed. The point is that the ergodic
decomposition, which in general consists of a partition into complicated sets, is presented
here in a smooth fashion with maximally regular conditional measures. We return to this
discussion in Chapter 7.

4. Lagrangian systems

a. The Euler–Lagrange equation. A Lagrangian dynamical system on a manifold
M , the configuration space, has phase space TM and the system is determined by the
Lagrangian L : TM → R via the Lagrange equation or Euler–Lagrange equation

(5.1)
d

dt

∂L

∂v
=
∂L

∂x
.

The form is independent of the local coordinate chart: If x = f(y) then v = ẋ = Dfẏ =
Dfw and

∂L

∂y
=
∂L

∂x

∂x

∂y
+
∂L

∂v

∂v

∂y
,

∂L

∂w
=
∂L

∂v

∂v

∂w
+
∂L

∂x

∂x

∂w
=
∂L

∂v

∂x

∂y

since
∂x

∂w
= 0. Along any curve we have

d

dt
x = v, so

d

dt

∂

∂y
x =

∂v

∂y
and both sides of

d

dt

∂L

∂w
− ∂L

∂y
=
( d
dt

∂L

∂v

)∂x
∂y

+
∂L

∂v

( d
dt

∂

∂y
x
)
− ∂L

∂x

∂x

∂y
− ∂L

∂v

∂v

∂y
=
( d
dt

∂L

∂v
− ∂L

∂x

)∂x
∂y

vanish together since
∂x

∂y
= Df is nonsingular.

In general, the dynamics is only determined for finite time. However, in the case
of compact M and L of the form L(x, v) = K(v) − V (x) with kinetic energy given
by a positive definite quadratic form K(v) = gx(v, v)/2, it is defined for all times and
determines a complete flow on TM , i.e., a flow defined for all t. This flow is essentially
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the Hamiltonian flow for the total energy H = gx(v, v)/2 + V (x). In particular, H is
invariant.

According to the Variational Principle of Hamilton (principle of least action), the so-
lutions of (5.1) are exactly the critical points of the action functional

∫ b
a
L(c(t), c′(t)) dt

with given endpoints (Section 5.6b).
Two Lagrangians L and L̃ generate the same flow if and only if L = L̃ + α + const

for some closed one-form α : TM → R.
In classical mechanics Lagrangians of the form L(x, v) = gx(v, v)/2 − V (x) for

some Riemannian metric g appear for the equations of motion of systems with holonomic
constraints with potential forces. Here g represents the kinetic energy and V the potential
energy of the system. The special case V = 0 gives the geodesic flow (Section 5.4c) for the
metric g. However, for all sufficiently high energy levels the Lagrangian flow is essentially
geodesic also when V 6= 0:

THEOREM 5.4.1. If c > supV then the solution curves with energy c for the La-
grangian L(x, v) = gx(v, v)/2 − V (x) are reparametrized geodesics for the metric (c −
V )g.

Put differently, motion at sufficiently high energies looks like free motion in a slightly
distorted space.

b. The Legendre transform. Over a Riemannian manifoldM there is a natural iden-
tification of the cotangent bundle T ∗M with TM via a map L : TM → T ∗M induced by
v 7→ 〈v, ·〉. The coordinates of a vector v ∈ TxM are given by the coefficients with respect
to the canonical basis ∂/∂xi and the coordinates of a form ω ∈ T ∗xM are given by the
coefficients with respect to the standard basis dxi dual to ∂/∂xi. Then

(5.2) L(x, v) :=
(
x,
∂K

∂v

)
,

where K(v) = gx(v, v)/2. If the xi are viewed as coordinates in the configuration space
M , then the vi are velocities and the variables pi = ∂K/∂vi are called momenta.

The map L transforms the Lagrange equation into the Hamiltonian equations (5.1)
with H the total energy because the Lagrange equation is ṗ = ∂L/∂q and H = 〈p, v〉−L,
hence

∂H

∂p
dp+

∂H

∂q
dq = dH = d(pq̇ − L) = q̇ dp− ∂L

∂q
dq = q̇ dp− ṗ dq.

The transformation L can be defined for Lagrangians that are C2 convex functions of
v (notice that we could use a Lagrangian L rather thanK in the definition of L). Thus such
a Lagrangian L determines a transformation L(x, v) = (x, ∂L/∂v) called the Legendre
transform. Notice, however, that in this case the Legendre transform is not linear in v any
more.

Another way of describing the Legendre transform is to call L : TM → T ∗M the fiber
derivative of the Lagrangian K and note that E and L are real-valued functions on TM
and H is a real-valued function on T ∗M . The orbits of the Lagrangian and Hamiltonian
system project to the same curves in M [AM].
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c. Geodesic flows. A particular Lagrangian system is free particle motion in the con-
figuration space M given by the Lagrangian L(x, v) = gx(v, v)/2. This Lagrangian sys-
tem as well as its restriction to the unit tangent bundle SM is called the geodesic flow of
(M, g). It preserves the total energy gx(v, v)/2 and hence the length of tangent vectors.
Its orbits project to geodesics in M . The geodesic flow on any compact or homogeneous
(transitive isometry group) manifold is a complete flow.

Geodesic flows are Hamiltonian flows in a natural way via the Legendre transform
because the cotangent bundle is naturally identified with the tangent bundle. Geodesic
flows preserve the product of the volume form on the manifold and the Euclidean volume
defined in the tangent space by the Riemannian metric as well as a volume form on every
hypersurface H = const, which is a sphere bundle {‖v‖ = const}. This volume is the
product of the Riemannian volume and the canonical (angular) volume on the spheres,
called the Liouville measure. If M is compact then the Liouville measure is finite and can
hence be normalized.

Geodesic flows are among the favorite subjects of study in dynamical systems. In
particular they provide excellent illustrations of

(1) completely integrable behavior (flat tori, ellipsoids, surfaces of revolution),
(2) uniform hyperbolicity (manifolds of negative sectional curvature, including sym-

metric spaces of noncompact type of rank one),
(3) partial hyperbolicity (symmetric spaces of noncompact type of rank greater than

one)[S-FK], and
(4) nonuniform hyperbolicity (manifolds of nonpositive sectional curvature of geo-

metric rank one)[S-K].

5. Contact systems

Contact structures are odd-dimensional counterparts of symplectic structures [By],
[KH, Section 5.6].

a. Contact forms and contact structures. Let M be a (2n− 1)-dimensional mani-
fold. A differential 1-form θ is called a contact form if the (2n−1)-form θ∧(dθ)n−1 is non-
degenerate. A contact form determines the codimension one distributionD :=Kerθ ⊂ TM
which is totally nonintegrable: Any two nearby points can be connected by a curve tangent
to the distribution. Differentiably this is expressed by the fact that iterated Lie brackets
of vector fields in the distribution generate the entire tangent space. Such a distribution
is called a contact structure on M and the pair (M,D) is called a contact manifold. The
same contact structure can be defined by different contact forms; any two such forms are
obtained from each other by multiplication by a nonvanishing scalar function.

Locally a contact form, similarly to a symplectic form, can be brought into a standard
form. In fact, the following result is a simple consequence of the Darboux Theorem 5.3.2
for symplectic forms.

Let θ0 = x1dy1 + · · ·+ xndyn + dz be the canonical contact form on R2n+1.

THEOREM 5.5.1. Let (M, θ) be a contact (2n + 1)-manifold. Then for x ∈ M there
exists a neighborhood U of x with coordinates in which θ = θ0.

PROOF. For x ∈M pick a neighborhood V0 of 0 in ker θx and let V = V0 × (−ε, ε),
U ′ = expV , U ′t = exp(V0 × {t}) ⊂ M . dθ restricted to U ′t is a symplectic form so
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by the Darboux Theorem Theorem 5.3.2 each y ∈ U ′t has a neighborhood Ut ⊂ U ′t on
which there are Darboux coordinates x1, . . . , xn, y1, . . . , yn, z, i.e., dθ =

∑
dxi∧dyi. On

U :=
⋃
−ε<t<ε Ut we thus have d(θ −∑ dxi ∧ dyi) = 0 whence θ =

∑
dxi ∧ dyi + dz

and x1, . . . , xn, y1, . . . , yn, z are the desired coordinates. �

Unlike a symplectic manifold which admits a variety of Hamiltonian vector fields,
a contact manifold comes furnished with a canonical vector field v which is defined by
vyθ = 1 and vydθ = 0. This is unique because the kernel of dθn is one-dimensional and
disjoint from that of θ by the nondegeneracy assumption. Note that the Lie derivative £vθ
vanishes since vyθ = const, so the flow of v, which is called the characteristic flow of the
contact form, preserves θ and hence all structures defined in terms of θ, in particular the
volume. Thus the characteristic flow provides a canonical example of a volume-preserving
flow.

Thus, the proper counterpart of a symplectic manifold is a contact structure whereas a
contact manifold corresponds to a symplectic manifold together with a Hamiltonian vector
field.

PROPOSITION 5.5.2. Suppose (M, θ) is a contact manifold. Then M can be embed-
ded into a symplectic manifold (N,ω) in such a way that the restriction of the ambient
symplectic form to M is dθ.

REMARK. A contact manifold embedded in this way is called a submanifold of con-
tact type.

PROOF. If N = M × R and ωx,t = d(etθx) then ωn = ent(ndt ∧ θ ∧ (dθ)n−1) is a
volume, so (N,ω) is a symplectic manifold and ω restricted to M × {0} is dθ. �

The following characterization is useful in applications of variational methods to Hamil-
tonian mechanics.

PROPOSITION 5.5.3. Let ω be the standard symplectic form onR2n andM = f−1(c) ⊂
R2n a level set of a smooth function f : R2n → R with c as a regular value. Then M is a
submanifold of contact type if and only if on a neighborhood U of M there is a vector field
ξ transverse to M for which £ξω = ω.

b. Hamiltonian systems preserving a 1-form. From the point of view of classical
mechanics the most important (or at least the most traditional) symplectic manifolds are
R2n with the standard symplectic structure and the cotangent bundle of a differentiable
manifold M (the configuration space of a mechanical system) with the symplectic form
ω described in Section 5.3c2. Notice that in both cases the symplectic manifold (phase
space) itself is not compact, although in the second case the configuration space M may
be compact; this is true in many important classical problems such as the motion of a rigid
body. Of course R2n can also be viewed as T ∗Rn, so the first case is a particular instance
of the second.

There is an important situation when the invariant 1-forms can be described in a par-
ticularly natural way. Notice that in the case of both R2n and T ∗M the form ω is not only
closed, but also exact. The 1-form θ defined by

∑n
i=1 pidqi—globally in the first case,

locally in the second—obviously satisfies dθ = ω. Notice that θ is defined on T ∗M inde-
pendently of the choice of local coordinates. Of course in general a Hamiltonian system
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on T ∗M does not preserve θ or any other 1-form whose exterior derivative is equal to ω.
Let us see what conditions the invariance of θ imposes on the Hamiltonian. One has

£XHθ = dθyXH + d(θyXH) = dH + d(θyXH).

Thus a 1-form θ is invariant if θyXH = −H . Local calculation in Darboux coordinates

gives θyXH = −∑ pi
∂H

∂pi
. Notice that the choice of Hamiltonian for a given vector field

XH is unique up to an additive constant. Thus we have proved the following fact:

PROPOSITION 5.5.4. The Hamiltonian vector field XH on T ∗M preserves the 1-form
θ if and only if the Hamiltonian can be chosen as positively homogeneous in p of degree
one, i.e., H(q, λp) = λH(q, p) for λ > 0.

There is a broader class of Hamiltonians that preserves the form θ along the hypersur-
faces H = const In this case the invariance condition becomes

d(θyXH)(ξ) = 0 if dH(ξ) = 0,

or in other words the function θyXH is constant on every connected component of the
hypersurface H = const This is satisfied if

θyXH = ϕ(H),

i.e., using Darboux coordinates,

H(q, λp) = Φ(λ)H(q, p),

where Φ′ = ϕ. If ϕ(λ) 6= 0 then such Hamiltonians will be called generalized homoge-
neous Hamiltonians (in p). Away from the zero section every such Hamiltonian is a func-
tion of a homogeneous Hamiltonian of degree one, namely, H1(q, p) = Φ−1(H(q, p)),
where Φ−1 is the inverse of Φ. An immediate calculation shows that Xρ(H) = ρ′XH for
any C1 function ρ, so the flow generated by a generalized homogeneous Hamiltonian is
obtained by a time change from the flow generated by a Hamiltonian that preserves θ and
the time change is constant on every surface H = const

c. Geodesic flows as contact systems. In particular, since the Hamiltonian of a geo-
desic flow is a quadratic function of p, it preserves the restriction of θ to any energy surface.
The phase space of the geodesic flow can be identified with the sphere bundle (the bundle
of positive rays) over the configuration space, which can be defined independently of the
choice of Riemannian metric. The corresponding contact structure does not depend on the
choice of metric either. However, the specific contact form whose characteriscic flow is
identified with the geodesic flow does depend on the metric.

6. Variational methods in dynamics

a. Variational description of orbits. It turns out that interesting orbits in some dy-
namical systems often can be found as special critical points of functionals defined on
appropriate auxiliary spaces of potential orbits. This idea goes back to the variational prin-
ciples in classical mechanics (Maupertuis, d’Alembert, Lagrange, Hamilton) which still
remain the foundation of most variational methods in dynamics. Variational principles
describe all orbit segments of a Lagrangian or Hamiltonian system as critical points of a



128 5. SMOOTH, HAMILTONIAN AND LAGRANGIAN DYNAMICS

functional. At that level a variational description does not have particular dynamical sig-
nificance. This appears when one extends the variational description from orbit segments
to special types of orbits such as periodic or heteroclinic ones [S-R], [KH, Chapter 9].

The study of critical points of functions in finite- or infinite-dimensional spaces has
two aspects: The local one dealing with the structure and stability of isolated critical points,
and the global one, sometimes called Morse theory, which deals with the relation between
the global topological properties of the space and the structure of critical points of functions
on that space.

The prototypical finite-dimensional local result is the Morse Lemma:

PROPOSITION 5.6.1. Let p be a nondegenerate critical point of a Cr function, r ≥ 2,
on a smooth manifold M . Then there exist 0 ≥ k ≥ n and a local Cr−2 coordinate system
(x1, . . . , xn) with p as the origin such that in these coordinates f is given by

f(x) = f(0) +
k∑

i=1

x2
i −

n∑

i=k+1

x2
i

The number k is called the Morse index of the point p. There are genereralizations of
the Morse Lemma and the notion of index for certain kinds of critical points of functions
in infinite-dimensional spaces.

In the infinite-dimensional situation sometimes orbits can identified as critical points
of finite Morse index. Various minimax or mountain pass arguments are used to find such
points. For a long time the applicability of variational methods to global and semilocal
problems in dynamics was restricted to situations of this type that appear in Lagrangian
dynamics and to Hamiltonian systems where a separation between the coordinates and
momenta can be made. Advances in the critical point theory allow to treat situations where
critical points have infinite index. See [S-R, S-HZ, HZ] for a more detailed discussion.

b. The least action principle in Lagrangian mechanics. (See also [S-BK].) Con-
sider a connected configuration space M and a Largangian L.

THEOREM 5.6.2 (Variational Principle of Hamilton/principle of least action). The so-
lution (x(t), v(t)) of (5.1), where v(t) = x′(t) for a ≤ t ≤ b, is a critical point of the
action functional ∫ b

a

L(c(t), c′(t)) dt

defined of the space of smooth curves c : [a, b] → M such that c(a) = x(a) and c(b) =
x(b). Conversely, any critical point is a solution of (5.1).

Under proper convexity assumptions (the strong Legendre condition), which in partic-
ular are satisied in the classical case L(x, v) = gx(v, v)/2 − V (x), the action functional
always has a minimum, which is unique if the endpoints are close enough. Thus for a
global solution (x(t), v(t)) of (5.1) with −∞ < t < ∞, any sufficiently small segment is
the unique minimum of the corresponding action functional.

In order to apply the least action principle to finding periodic orbits one should con-
sider the action functional on a space of periodic curves where the existence of sufficiently
nondegenerate critical points is guaranteed. The basic example of the difficulty inherent in
this approach appears when one considers all curves with a given period: The minima are
simply constant solutions corresponding to the maxima of V .
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On the other hand, if one considers periodic curves in a given nontrivial homotopy
class then at least for compact configuration spaces there are always nontrivial periodic
solutions. Thus, for example for a compact Rieamnnian manifoldM there is always at least
one closed geodesic (periodic orbit of the geodesic flow) in each nontrivial free homotopy
class of curves on M . If the fundamental group of M is sufficiently complicated then this
guarantees some growth of the number of closed geodesics measured by their length [KH,
Sections 9.6, 9.7].

A more sophisticated minimax type argument is involved in showing that any compact
Riemannian manifold has a closed geodesic.

The least action principle is also quite effective in finding special families of non-
closed geodesics both for tori and for compact surfaces of higher genus. In the former
case the geodesics form invariant laminations corresponding to the Aubry–Mather sets
(Section 7.2b) for a section map for the geodesic flow. In the latter the geodesics glob-
ally approximate the geodesics for the conformally equivalent metric of constant negative
curvature.

c. The action principle in Hamiltonian dynamics. (See also [S-HZ, HZ].) There
are several reasons to consider more general Hamiltonian systems than those discussed in
Section 5.3, namely those whose Hamiltonians explicitly depend on time. The solutions of
such systems are one-parameter families of symplectic diffeomorphisms without a group
property.

On the one hand, time-dependent Hamiltonian systems describe more general me-
chanical systems, e.g., those with a time-dependent potential field. If this dependence is
periodic in time, then the resulting dynamical systems lie wholly within the paradigm dis-
cussed in this chapter since the period map generates a discrete-time symplectic system in
the phase space. But it also turns out that time-dependent (in particular periodic) Hamilto-
nians provide a powerful technical tool for symplectic geometry and the study of orbits of
ordinary Hamiltonian systems. In particular they play a central role in the construction of
certain symplectic capacities [HZ].

The variational principle in phase space, whether for time-dependent Hamiltonians or
not, still requires a choice of coordinates that locally have the Darboux canonical form. In
a somewhat more abstract form this amounts to choosing two transverse foliations whose
leaves are Lagrangian submanifolds corresponding to “coordinates” and “momenta”. There
are of course cases where such a structure is given, i.e., for an open subset of R2n with the
standard symplectic structure, or for the cotangent bundle Section 5.3c2. The difference
between the least action principle of Hamilton and the action principle in the phase space
is that the space of candidate orbits is much larger in the latter case. They are curves in
the phase space whose initial and final coordidates are fixed, but there is no correlation
between the derivatives of the coordinates and the momenta.

THEOREM 5.6.3 (Action principle in the phase space). The solution of the system of
Hamiltonian equations 5.1 with time-dependent HamiltonianH for a ≤ t ≤ b. is a critical
point of the action functional

∫ b

a

(p(t)q′(t)−H(t, p(t), q(t)))dt



130 5. SMOOTH, HAMILTONIAN AND LAGRANGIAN DYNAMICS

defined on the space of smooth curves c : [a, b] → M such that c(a) = x(a) and c(b) =
x(b), where x(·) denotes the configuration space coordinate. Conversely, any critical point
is a solution of (5.1).

Since this action functional is defined on a much larger space than the Lagrangian
action functional in Section 5.6b, it is not a priori surprising that its critical points tend to
have infinite index. Sophisticated topological methods have been developed, culminating
in the Floer cohomology theory, to substitute for the more traditional Morse theory (“vari-
ational calculus at large” in a somewhat oldfashioned terminology) used in the Lagrangian
context.

7. Holomorphic dynamics

We would like to emphasize that holomorphic dynamics is not covered in any serious
way in the two volumes of the handbook to which this survey serves as an introduction. It
is planned that at least one-dimensional holomorphic dynamics will be covered in [DS2].
Thus the comments below are not meant as an introduction or an overview of the material
presented elsewhere but as a set of brief remarks about an extensive field that is naturally
connected with some of the material of these volumes.

a. Conformal dynamics. (Se also [MS, S-JS].) The underlying structure of this
branch of the theory of dynamical systems is a complex manifold (not necessarily com-
pact, an open set in Cn is an example) and a holomorphic map defined in a neighborhood
of a compact invariant set (the semilocal setting). The corresponding global situation is a
holomorphic map of a compact complex manifold (e.g., complex projective space CP (n))
into itself. Holomorphic maps, both in one and several complex variables, possess a cer-
tain rigidity, manifested both locally (Taylor coefficients at a point define the map in an
open set) and globally (Liouville Theorem, maximum modulus principle etc.). This sets
holomorphic dynamics apart from general differentiable dynamics (where different locally
defined maps can be easily glued together) and to a lesser extent Hamiltonian dynamics,
where there are no local restrictions either, but there are some global ones. In this re-
spect holomorphic dynamics is closer to the algebraic dynamics of translations and affine
maps on homogeneous spaces (Section 3.3c) although the dynamical paradigms for the
two areas tend to be quite different, e.g., no nice invariant measure is usually present in
the holomorphic case and dissipative behavior is quite common. One of the characteristic
features of holomorphic dynamics is the important role played by singularities of holo-
morphic maps. Since the singular set has positive complex codimension and hence real
codimension at least two the singularities tend to be more manageable than in the real,
even the real-analytic, case.

Holomorphic dynamics in one variable is well developed. In fact, the classical works
of Fatou, Julia and Montel appeared at a time when real differentiable dynamics, not to
mention ergodic theory, was in its infancy. It rests on two pillars: Conformality and uni-
formization. The former is an infinitesimal property. It is a characteristic property of
low-dimensional differentiable dynamics. From this point of view one can define the area
of conformal dynamics, which essentially includes differentiable dynamics in real dimen-
sion one and holomorphic dynamics in complex dimension one. That this short list is
exhaustive follows from the fact that any conformal map in real dimension two is holo-
morphic and that in higher dimension there are too few conformal maps (essentially only
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higher-dimensional counterparts of fractional linear transformations). The main technical
corollaries of conformality that are crucial for the analysis of a growing number of iterates
of a map, are various kinds of bounded distortion estimates. Thus, the emphasis on con-
formality brings together one-dimensional real dynamics and one-dimensional complex
holomorphic dynamics [MS].

On the other hand, uniformization, whose most elementary manifestation is the Rie-
mann mapping theorem and a more advanced one the Koebe uniformization theorem, is an
essentially one-dimensional complex phenomenon [S-JS].

For an introduction in one-dimensional complex dynamics see [Bd]; a more advanced
source is [CG].

b. Holomorphic maps in higher dimension. Multidimensional complex dynamics
is a much newer and less developed field. While neither conformality nor uniformization
are available, there are other powerful tools from complex analysis that make it possible
to understand the structure of certain classes of holomorphic maps (e.g., polynomials) to
a considerably greater degree than in the case of real differentiable dynamics. The basis
of those tools are extremal properties of holomorphic maps which allow, e.g., to prove
a proper formula for the topological entropy. A useful observation is that in complex
dimension two, hyperbolic behavior of invertible maps forces both stable and unstable
manifolds to be one-dimensional complex submanifolds. Thus, the dynamics on these
families of manifolds is conformal and some tools from one-dimensional complex analysis
can be adapted to this situation.

There is not yet a comprehensive monograph on holomorphic dynamics in higher di-
mension. [Si] can be recommended as a thorough and extensive survey with an excellent
list of references, [MNTU] contains an introduction and treatment of selected topics.





CHAPTER 6

Hyperbolic dynamics: Orbit instability and structural
stability

1. Introduction

a. The hyperbolic paradigm. The dynamics of hyperbolic systems is dominated by
exponential behavior of orbits relative to each other. While various distinct classes of
dynamical systems belong to the hyperbolic category, two central aspects of behavior stand
out as the main features.

The first is rich and pervasive recurrence of great complexity much like that found
in transitive topological Markov chains. For certain classes of hyperbolic dynamical sys-
tems this correspondence is, in fact, quite precise (almost-isomorphism, Section 2.2f; see
Section 6.7g). Accordingly, this recurrence is coupled with highly sensitive dependence
on initial conditions and exponential behavior in all aspects of orbit growth. Furthermore,
invariant measures abound.

The other central feature of hyperbolic systems is stability of the orbit structure as a
whole. This is manifested as strong C1 structural stability under uniformity assumptions,
and as persistence of essential aspects of the orbit complexity in general.

Among the three main paradigms (hyperbolic, elliptic, parabolic) this is the one where
one finds the linearization of a dynamical system to be most useful in studying the dynam-
ics. The exponential behavior of the linearization directly translates into various kinds of
exponential orbit behavior.

The combination of intricacy and robustness of the orbit structure on the one hand
with the utility of linearization on the other hand has fueled great interest in hyperbolicity.
In dealing with general structural questions, hyperbolic dynamics is by far the best devel-
oped and furthest advanced area in differentiable dynamics. Hyperbolicity is the leading
and in some sense the only available paradigm that explains complicated or “stochastic”
or “chaotic” behavior in differentiable dynamical systems of a general kind. In particular,
all rigorous work related to “strange attractors” involves establishing some sort of hyper-
bolic behavior. Thus it is natural that hyperbolicity pervades a large number of the surveys
in these volumes. The surveys [S-H, S-C, S-P, S-BKP, S-W, S-K] focus on various as-
pects of hyperbolic behavior, as do parts of the surveys [S-FK, S-FM, S-KSS, S-JS]. A
systematic introduction to hyperbolic dynamics is given in [KH, Chapters 6,17–20].

b. Hyperbolic linear maps. In the case of linear maps, hyperbolicity is defined in
terms of the spectrum: A continuous linear map A : X → X of a Banach space is said
to be hyperbolic if its spectrum (or rather, that of its complexification), Sp(A), does not
intersect the unit circle in C. Unlike ellipticity or parabolicity, this is an open condition:
There exist constants 0 < λ < 1 < µ such that Sp(A) ∩ {z ∈ C λ < |z| < µ} = ∅.

133
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We then say that A is (λ, µ)-hyperbolic. This implies that there are subspaces Es, Eu
with E = Es ⊕ Eu, A(Es) ⊂ Es, A(Eu) = Eu, Sp(A�Es ) = Sp(A) ∩ {|z| < 1}, and

Sp(A�Eu ) = Sp(A)∩{|z| > 1}. Indeed, one can easily find an “adapted” norm ‖ · ‖ such

that ‖A�Es ‖ ≤ λ, ‖(A�Eu )−1‖ ≤ 1/µ and ‖xs + xu‖ = max(‖xs‖, ‖xu‖) for xs ∈ Es
and xu ∈ Eu. It is the exponential behavior of orbits that dominates the dynamics and
makes it so different from that of elliptic or parabolic maps.

A consequence of this behavior is structural stability, a primitive precursor of which is
persistence of hyperbolic fixed points. We present a strong version of this result as an ex-
ample, but also because it provides one of the principal technical tools in the development
of the hyperbolic theory.

THEOREM 6.1.1 (Hyperbolic Fixed Point Theorem, [Y3]). Suppose 0 < λ < 1 < µ
and A : E → E is (λ, µ)-hyperbolic. If f : E → E is a map with ε := Lip(f − A) <
ε0 := min(1 − λ, 1 − µ−1) (see (2.5)) then f has a unique fixed point p ∈ E and ‖p‖ <
‖f(0)‖/(ε0 − ε).

This result is a fairly straightforward consequence of the Contraction Principle.

2. Main features of hyperbolic behavior

Here we describe those features that set hyperbolic dynamics apart from the rest of
differentiable dynamics, in particular from elliptic and parabolic dynamics. Some of the
descriptions given here are strictly correct only for the uniformly hyperbolic case but are
equally distinctive when formulated more carefully in greater generality. Much of the core
theory can be pushed to nonuniformly hyperbolic systems, and some aspects of partially
hyperbolic dynamical systems can be understood with hyperbolic techniques as well. This
is usually the case when the hyperbolic behavior so dominates the dynamics, that effects of
subexponential order do not play a role in the properties one looks at. Stable ergodicity of
partially hyperbolic systems is an example where this is a useful approach (Section 6.9c).

a. Growth of the orbit complexity. Hyperbolic systems exhibit exponential orbit
growth any way one measures it. Periodic orbits are isolated, hence finite in number for any
period, but grow at an exponential rate, if there is any nontrivial recurrence at all. This rate
can, in fact, be determined with remarkable precision (Section 6.7c, [S-H, S-P]). Likewise,
topological entropy is positive. The same goes for the homotopical and fundamental group
entropies (Section 2.5m).

b. Relative behavior of orbits. Expansiveness (Section 2.4d) is the most straighfor-
ward consequence of uniform hyperbolicity and in fact one of the reasons for the effective-
ness of symbolic representation for such systems. Various shadowing properties (see e.g.
Section 6.6c) also fall into this category. These properties are crucial for understanding the
nature of recurrence in hyperbolic systems.

c. Recurrence. In hyperbolic systems recurrence is far from uniform, but very per-
vasive and complex. Topological mixing is typically present, even though there are trivial
exceptions ( periodic components in the discrete time case and suspensions in the con-
tinuous time situation). Basically, hyperbolic dynamical systems can be decomposed into
mixing pieces (Theorem 6.7.1). The most effective and precise description, however, of the
orbit structure is that it corresponds precisely to a topological Markov chain. In fact, the
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study of shifts was directly motivated by hyperbolic dynamics. Markov models arise (topo-
logically or measurably) via the standard device of Markov partitions, which is outlined in
Section 6.7g and explained in [S-C]. It decomposes the phase space of a hyperbolic dy-
namical system in such a way that the map corresponds to a shift on allowed sequences of
partition elements. Up to negligible sets associated with the boundaries of the partition ele-
ments, the correspondence between points and sequences of partition elements (namely the
itineraries of points) is exact, i.e., it is an almost-isomorphism (Section 2.2f, Section 6.7g).
Hyperbolic dynamical systems are often obtained as the restriction of a smooth system to
an invariant set. Accordingly, the phase space may be a Cantor set and this coding may be
a conjugacy.

d. Invariant measures. The measure-theoretic structure of hyperbolic dynamics is
characterized by an abundance of invariant measures. Among these are evidently the many
(ergodic) measures concentrated on periodic orbits. The weak* closure of these contains
many more ergodic (indeed, mixing) measures, however. There is essentially one distin-
guished measure for each Hölder function on the phase space (Section 6.7c). See [S-C] for
detailed treatment.

e. Stability. Among the properties specific to the smooth category, structural stability
stands out. Hyperbolic dynamical systems are strongly C1 structurally stable. To be more
precise, the restriction to a hyperbolic set is always structurally stable, an Axiom A system
(Section 6.4a) with a transversality condition on stable and unstable leaves is structurally
stable, and a similar condition guarantees Ω-stability. Conversely, stability has been found
to characterize hyperbolic dynamical systems: The sufficient conditions just mentioned are
necessary as well. This is Mañé’s and Hayashi’s Stability Theorem [S-H], a high point in
the development of smooth dynamics. Why hyperbolic dynamical systems are structurally
stable is suggested by the Hyperbolic Fixed Point Theorem 6.1.1 [S-H, Y3], which, in fact,
implies structural stability.

The abundance of periodic points immediately gives a large and intricate set of moduli
of smooth conjugacy (Section 5.2a, Section 5.2c, Section 5.2e) that change nontrivially
under perturbations. While there are often further invariants of smooth conjugacy, there
are important situations where fixing these moduli determines a smooth equivalence class
(Section 6.7h).

f. Prevalence of semilocal phenomena. Hyperbolicity on a part of phase space is a
much more common phenomenon than hyperbolicity on the whole space. Accordingly,
semilocal analysis (locally maximal or isolated, in particular basic hyperbolic sets, Defini-
tion 6.4.2, [S-H, B1]) plays a central role in hyperbolic theory. Since such hyperbolic sets
often are totally disconnected this part of the theory does not involve any serious topologi-
cal considerations. Global hyperbolic theory deals with Anosov systems (Definition 6.4.3).
Global structures associated with such systems have nontrivial topology and impose var-
ious restriction on the topology of the phase space and the system itself. The problem
of topological classification of Anosov systems has proved worth pursuing but is not well
understood and even many simple-sounding special questions remain unanswered [S-H].
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3. Stable manifolds

Because hyperbolicity can be defined with varying degrees of stringency, we first ex-
hibit a fact central to most hyperbolic theory in order to illustrate what should be viewed
as the essence of local hyperbolic behavior.

THEOREM 6.3.1 (The Hadamard–Perron Theorem, [KH]). Let λ < µ and choose

0 < γ < min
(
1,
√
µ/λ−1

)
and 0 < δ < min

(
µ− λ

γ + 2 + 1/γ
,

µ− (1 + γ)2λ

(1 + γ)(γ2 + 2γ + 2)

)
.

For r ≥ 1 and for each m ∈ Z let fm : Rn → Rn be a (surjective) Cr diffeomorphism
such that

fm(x, y) = (Amx+ αm(x, y), Bmy + βm(x, y))

for (x, y) ∈ Rk ⊕Rn−k, where Am : Rk → Rk and Bm : Rn−k → Rn−k are linear maps
with ‖A−1

m ‖ ≤ µ−1, ‖Bm‖ ≤ λ and αm(0) = 0, βm(0) = 0, ‖αm‖C1 < δ, ‖βm‖C1 < δ.
Then there is

(1) a unique family (W+
m)m∈Z of k-dimensional C1 manifolds

W+
m = {(x, ϕ+

m(x)) x ∈ Rk} = graphϕ+
m

and
(2) a unique family (W−m)m∈Z of (n− k)-dimensional C1 manifolds

W−m = {(ϕ−m(y), y) y ∈ Rn−k} = graphϕ−m,

where ϕ+
m : Rk → Rn−k, ϕ−m : Rn−k → Rk, supm∈Z ‖Dϕ±m‖ < γ, and the following

properties hold:

(1) fm(W−m) = W−m+1, fm(W+
m) = W+

m+1.
(2) ‖fm(z)‖ < λ′‖z‖ for z ∈W−m , ‖f−1

m−1(z)‖ < (µ′)−1‖z‖ for z ∈W+
m ,

where λ′ := (1 + γ) (λ+ δ(1 + γ)) <
µ

1 + γ
− δ =: µ′.

(3) Let λ′ < ν < µ′. If ‖fm+L−1 ◦ · · · ◦ fm(z)‖ < CνL‖z‖ for all L ≥ 0 and some
C > 0 then z ∈W−m .
Similarly, if ‖f−1

m−L◦· · ·◦f−1
m−1(z)‖ ≤ Cν−L‖z‖ for all L ≥ 0 and some C > 0

then z ∈W+
m .

Finally, in the hyperbolic case λ < 1 < µ, the families (W+
m)m∈Z and (W−m)m∈Z consist

of Cr manifolds.

If one takes λ < 1 < µ from the start, then the hypotheses of the theorem describe
a family of maps that are C1 perturbations of a sequence of linear hyperbolic maps with
expanding subspace {0}×Rk and contracting subspace Rn−k ×{0}. Note that hyperbol-
icity, or, more generally, the rate conditions, are cast in terms of asymptotic behavior rather
than a spectral condition, although this is also possible (Section 6.4a).

The reason for considering families of maps lies in local analysis near a nonperiodic
orbit. The fm in the result above are local coordinate representations of the global map at
the mth iterate.

Note also that the above result, while stated for a discrete family of maps, is also
directly applicable to flows via time-one maps.
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4. Definitions

The Hadamard–Perron Theorem suggests several possible definitions of hyperbolicity
of a map. In each of these one requires the iterates of a map along orbits to be a family
of the kind described in the theorem. However, choices are possible as to the degree of
uniformity as well as whether to require strict hyperbolicity or partial hyperbolicity, i.e.,
whether to admit nontrivial center manifolds.

a. Hyperbolic sets.

DEFINITION 6.4.1. Let M be a smooth manifold, U ⊂ M a open, f : U → M a C1

embedding. An f -invariant set Λ is said to be hyperbolic if the linear map defined on the
space of bounded sections of TΛM by X 7→ Df ◦ X ◦ f−1 is hyperbolic in the sense
that the spectrum σ(f) of the complexification of this map (sometimes called the Mather
spectrum) is disjoint from the unit circle.

Equivalently, for some λ, µ with lambda < 1 < µ there is a decomposition TΛM =
E+ ⊕ E− such that DfxE±x = E±f(x) and

‖Dfn�E− ‖ ≤ Cλ
n, ‖Df−n�E+

‖ ≤ Cµ−n for n ∈ N.

This is called a (λ, µ)-splitting for Df |TΛM and is often considered also in situations
when λ and µ lie on the same side of 1.

Equivalently, following Alekseev [Ax], require that for some metric there exist λ <
1 < µ and γ > 0 such that for every x ∈ Λ there is a decomposition TxM = Sx⊕Tx with

DfxHx ⊂ IntHf(x) and Dfx
−1Vf(x) ⊂ IntVx,

where

Hx := {ξ + η ξ ∈ Sx, η ∈ Tx, ‖η‖ ≤ γ‖ξ‖},
Vx := {ξ + η ξ ∈ Sx, η ∈ Tx, ‖ξ‖ ≤ γ‖η‖},

and if furthermore ‖Dfxξ‖ ≥ µ‖ξ‖ for ξ ∈ Hx, and ‖Dfx−1ξ‖ ≥ λ−1‖ξ‖ for ξ ∈ Vf(x).
Hx and Vx are called invariant horizontal and vertical cone fields.

An embedding f : U → M is said to satisfy Axiom A if NW (f) is hyperbolic and
periodic points are dense in it. (The latter is not automatic [D] except in dimension 2 [NP],
although it is generic [Pu1].)

DEFINITION 6.4.2. A topologically transitive compact locally maximal (isolated) hy-
perbolic set is usually called a basic set.

This is motivated by the Spectral Decomposition Theorem 6.7.1, where such sets arise
as building blocks.

It is quite easy to see that E+
x and E−x have locally constant dimension and are contin-

uous, hence uniformly transverse. They are, in fact, Hölder continuous. Under restrictive
assumptions they may be differentiable, but they are C2 only in special situations [S-H].

To apply the Hadamard–Perron Theorem note that this is equivalent to existence of a
Riemannian metric (called a Lyapunov metric) on U such that for any x ∈ Λ the sequence
of differentials (Df)fn(x) : Tfn(x)M → Tfn+1(x)M , n ∈ Z, admits a (λ, µ)-splitting, i.e.,
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there exist decompositions Tfn(x)M = E+
fn(x) ⊕ E−fn(x) such that (Df)fn(x)E

±
fn(x) =

E±
fn+1(x)

and

‖(Df)fn(x)�E−
fn(x)

‖ ≤ λ, ‖(Df)−1
fn(x)�E+

fn+1(x)

‖ ≤ µ−1.

Therefore, one can choose, for each x ∈ Λ, a local coordinate system mapping x to
the origin and depending continuously on x, such that with respect to these coordinates f
satisfies the hypotheses of the Hadamard–Perron Theorem with uniform λ < 1 < µ.

DEFINITION 6.4.3. If for a diffeomorphism f of a compact manifold, the whole man-
ifold is a hyperbolic set then f is said to be an Anosov diffeomorphism.

Compact hyperbolic sets, Anosov diffeomorphisms, and related issues are surveyed
by [S-H].

b. Nonuniform hyperbolicity. Nonuniform hyperbolicity employs the same idea,
namely separation of all directions into exponenetially expanding and exponentially con-
tracting ones but does not require uniformity. Precise definitions are given in [S-BKP] and
for the present discussion it suffices to think of it as hyperbolicity of orbits without uniform
control. It should be noted that uniformity is abandoned both for the coefficients in front of
the contraction and expansion rates as well as the angles between the stable and unstable
subspaces.

c. Partial hyperbolicity. (See also [S-Bu].) Partial hyperbolicity requires a (λ, µ)-
splitting with λ < 1 or µ > 1, but not both. Often one requires TM = E+⊕E0⊕E− such
that Dfn�E0

has subexponential growth (usually) and ‖Df−n�E+
‖‖Dfn�E0

‖ ≤ λ < 1

and ‖Df−n�E0
‖‖Dfn�E−‖ ≤ λ for n ∈ N, i.e., E+ expands more than anything in E0

and E− contracts more than anything in E0. The “slow” distribution E0 is not necessarily
uniquely integrable. The extent to which these systems can be understood is limited by
the fact that no restriction is imposed on the “subexponential part” of their behavior. For
example, the product of any dynamical system with only subexponential expansion with
a hyperbolic dynamical system is partially hyperbolic. Accordingly, hyperbolic methods
may give some global insights but often do not help study the nonhyperbolic factor. But
hyperbolic techniques may well resolve global issues that are dominated by the hyperbolic
behavior. Stable ergodicity (Section 6.9c) is of this kind.

One can also consider nonuniformly partially hyperbolic systems [BKP].

d. Flows. A flow ϕt : M → M is said to be hyperbolic if TΛM = E0 ⊕ E+ ⊕ E−
such that E0 = 〈ϕ̇〉 6= {0}, DϕtxE±x = E±f(x) and ‖Dϕt�E− ‖ ≤ Cλt, ‖Dϕ−t�E+

‖ ≤
Cµt for t ≥ 0. E± are the strong subbundles, E0 ⊕E± the weak ones.

Other natural examples of partially hyperbolic systems are isometric extensions of
hyperbolic systems and elements of transversely hyperbolic actions of Rm.

e. Hölder regularity. The category of Hölder continuous functions and maps plays
an important role in hyperbolic dynamics. It is pervasive both in hypotheses and conclu-
sions of statements. Its importance is related to the basic fact that if d(xn, yn) is expo-
nentially small in n (hence summable) then so is d(f(xn), f(yn)) whenever f is Hölder
continuous. Here are a few specific examples of necessity. Hölder continuity of a function
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makes it a member of the class Cf in Section 4.4g for which equilibrium states are defined.
It is indispensable in the Livschitz Theorem. Absolute continuity of the invariant foliations
(Section 6.7e) requires the Anosov diffeomorphism to be C1+α [RY], even though some
more basic results may hold with only a C1 assumption.

Conversely, many of the objects naturally attached to hyperbolic dynamical systems
are Hölder continuous: Invariant subbundles and foliations, conjugacies, etc. The Hölder
exponent, by the way, is not determined primarily by that of the diffeomorphism, but rather
by relations between contraction and expansion rates.

For nonuniformly hyperbolic systems the C1+α hypothesis becomes entirely indis-
pensable [Pu2].

5. Examples

Several standard examples display the principal features of hyperbolic behavior in a
way that can be easily visualized.

FIGURE 6.1. A toral automorphism

a. Toral automorphisms. This example was mentioned before in Section 2.1c and
Section 5.1h. Any integerm×mmatrixAwith determinant±1 induces a map onRm/Zm,
which is hyperbolic whenever A is a hyperbolic linear map, i.e., has no eigenvalue on
the unit circle. Stable and unstable manifolds are simply translates of (projections of)
eigenspaces and are dense. By structural stability (Section 6.7h) C1-perturbations are also

examples, but topologically equivalent. Figure 6.1 illustrates A =

(
2 1
1 1

)
.

b. The Smale horseshoe. LetR be a rectangle in R2 and f : R→ R2 an embedding
such that R∩ f(R) consists of two “horizontal” rectangles R0 andR1 and the restriction
of f to the components Ri ⊂ f−1(R), i = 0, 1, of f−1(R) is a hyperbolic affine map,
contracting in the vertical direction and expanding in the horizontal direction. This implies

FIGURE 6.2. The horseshoe

thatR0 andR1 are “vertical” rectangles. One of the simplest ways to achieve this effect is
to bendR into the shape of a “horseshoe”, or permanent magnet, or into a G- or “paper clip”
shape. The maximal invariant subset of R is Λ =

⋂∞
n=−∞ f−n(R), which is a Cantor set

FIGURE 6.3. The paper clip

with a natural product structure. The local stable and unstable manifolds are vertical and
horizontal line segments.
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c. The Smale attractor. (See also Section 5.2i.) On the solid torus M = S1 ×D2,
whereD2 is the unit disk inR2, define coordinates (ϕ, x, y) such that ϕ ∈ S1 and x2+y2 ≤
1. Let

f : M →M, f(ϕ, x, y) =
(

2ϕ,
1

10
x+

1

2
cosϕ,

1

10
y +

1

2
sinϕ

)
.

If C = {θ}×D2 is a cross section then f(M) ∩C consists of two disjoint disks of radius
1/10. Λ :=

⋂
l∈N0

f l(M) is an attractor on which f is expanding. Locally it is the product
of a Cantor set with an interval, but it is connected. The stable manifolds are the sections
C = {θ} ×D2, the unstable manifold of each point is entirely contained in the attractor.

FIGURE 6.4. The Smale attractor

d. Suspensions. Any hyperbolic set for a diffeomorphism gives rise to a hyperbolic
set for a flow via the suspension construction (Section 1.3j, Section 2.2j, Section 5.2j).

e. Geodesic flows. The geodesic flow (Section 5.4c)) on the unit tangent bundle of a
negatively curved manifold is an Anosov flow [S-K, KH, Kb]. This is the primary example
of an Anosov flow and is surveyed carefully by [S-K].

1. Ergodicity. Due to the Hamiltonian structure, volume (Liouville measure) is in-
variant. Volume is ergodic, indeed mixing and Bernoulli, because it is an equilibrium state,
see Section 6.7c, Section 4.4g, [S-H, Ld], [KH, Theorem 20.4.1].

Ergodicity of volume was not initially obtained from the theory of equilibrium states,
and it is good to see more directly how the hyperbolic structure produces ergodicity. We
discuss this earlier approach due to Hopf and Anosov in Section 6.7e.

2. The hyperbolic plane and surfaces of constant negative curvature. A special case
allows an interpretation in terms of homogeneous dynamics (Section 2.1b, [KH, Section
17.5]). Consider the hyperbolic or Poincaré upper half plane H = {z ∈ C Im z > 0}
with the hyperbolic Riemannian metric

〈u+ iv, u′ + iv′〉z := Re
(u+ iv)(u′ − iv′)

(Im z)2
.

Note that angles agree with the Euclidean ones. The geodesics for this metric are the lines
x+ iR and semicircles with real center. The group PSL(2,R) (obtained from GL(2,R) by

identifying scalar multiples) acts isometrically by fractional linear transformations (

(
a b
c d

)
, z) 7→

az + b

cz + d
, and this action induces a transitive action on unit tangent vectors.

In order to obtain a flow on a compact manifold one consider factors by cocompact
lattices, i.e., compact surfaces of constant negative curvature.

3. Horocycles and stable manifolds. The unit tangent bundle SH can be identified

with PSL(2,R) byA 7→ Ai, where i is the upward unit vector at i. In particular,

(
et/2 0

0 et/2

)
i

parametrizes an orbit of the geodesic flow (corresponding to the geodesic t 7→ iet), so
the geodesic flow is algebraically described by the translations of PSL(2,R) by gt =(
et/2 0

0 et/2

)
. The strong stable manifold of i is the family of upward unit normals on
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R + i. The images of R + i under fractional linear transformations are called horocy-
cles. They are horizontal lines and circles tangent to R and hence orthogonal to geodesics.

R + i is parametrized (with unit speed) by

(
1 t
0 1

)
, whose left translations define the

horocycle flow ht on PSL(2,R) (Section 4.3f). This flow is fairly clearly parabolic. Lo-
cally it has precisely the “triangular” orbit structure described in Section 8.1c (not to be
confused with upper triangularity of the matrix). A simple way of seeing this is to note

that

(
1 t
0 1

)(
a b
c d

)
=

(
a+ tc b+ td
c d

)
, so these left translations act as a diagonal

action of two shears on the space of 2×2 matrices, of which PSL(2,R) is the submanifold
det−1({1}).

FIGURE 6.5. Geodesics and horocycles

Geometrically, horocycles are limit circles (hence the name) in thatR+i = ∂
(⋃

t>0B(iet, t)
)
.

Generally, horocycles are obtained as boundaries of limit balls. This latter construction
has the virtue of being independent of the algebraic structure, constant curvature, or di-
mension. On a simply connected Riemannian manifold with negative sectional curvature⋃
t>0 B(c(t), t) is convex for any geodesic c, and its boundary is called the horosphere for

ċ(0). The “inward” unit normal vector field (the one containing ċ(0)) is the strong stable
manifold of ċ(0). The other unit vector field is the strong unstable manifold for −ċ(0)
[KH].

Geodesic and horocycle flows satisfy the following commutation relation, which can
be deduced from direct computation:

g−s ◦ ht ◦ gs = hest for any s, t ∈ R.
It plays a central role in the study of dynamics of horocycle flows. It also allows to find by
direct algebraic calculations many dynamical properties of geodesic flows that in general
follow from hyperbolicity.

6. The core theory

Much of the theory of uniformly hyperbolic dynamical systems is described in [S-H,
S-C, S-P]. The nonuniform case is discussed in [S-BKP, S-W]. We present the com-
mon mechanism behind the core results of the theory and then showcase a few basic and
important results.

a. Applications of fixed point results. The Hyperbolic Fixed Point Theorem 6.1.1
(or the Contraction Principle) is the device that underlies most of the development of the
core of at least the uniform hyperbolic theory. It can be applied in proofs by viewing the
desired result as providing an object, such as a periodic point, an invariant manifold or a
conjugacy, and restating the asserted qualities of this object as a fixed point property. This
involves an appropriate, often infinite-dimensional, space of candidate objects on which
one can construct an action derived from the dynamical system at hand. The successes
of this approach are due to the notable fact that these derived actions inherit hyperbolicity
from the underlying dynamics. While not unrelated to the cleverness one shows in setting
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up the argument, this phenomenon is intrinsic to hyperbolicity in that it reflects the fact
that the linearization provides direct and meaningful information about the dynamics.

This approach yields the core of the theory, i.e., closing and shadowing results, local
and global stability, as well as invariant foliations or, more generally laminations. With
these tools in hand the development can proceed to finer investigations of the orbit struc-
ture (spectral decomposition, specification, Markov partitions) as well as further local and
global properties, the study of invariant measures, smooth aspects, etc.

It is interesting that there can be quite different proofs of one result, both along these
lines. The Hadamard–Perron Theorem is a case in point (as described also in [S-H]). It
can be proved by the graph transform method of Hadamard, which obtains the unstable
manifold as a fixed point of the action by the dynamics on candidate manifolds [KH]. But
one can also follow Perron’s approach, in which the local stable manifold is obtained as
the set of bounded orbits [Y3]. In this approach the candidate objects are not orbits, by
the way, and the fixed point property is not boundedness. Instead, an action is defined on
bounded “things”, and being an orbit is a fixed point property.

b. The Anosov Closing Lemma. Let (X, d) be a metric space, U ⊂ M open and
f : U → X . For a ∈ Z ∪ {−∞} and b ∈ Z ∪ {∞} a sequence (xn)a<n<b in U is called
an ε-orbit or ε-pseudo-orbit for f if d(xn+1, f(xn)) < ε for all a < n, n+ 1 < b.
It is said to be periodic if −∞ < a < b <∞ and d(f(xb), xa) < ε.
It is said to be δ-shadowed by the orbit O(x) of x ∈ U if d(xn, f

n(x)) < δ for all
a < n < b.

THEOREM 6.6.1 ([KH, Theorem 6.4.15]). Let Λ be a hyperbolic set for f : U → M .
Then there exists an open neighborhood V ⊃ Λ and C, ε0 > 0 such that for ε < ε0 and
any periodic ε-orbit (x0, . . . , xm−1) ⊂ V there is a point y ∈ U such that fm(y) =
y and dist(fk(y), xk) < Cε for k = 0, . . . ,m − 1. In fact, dist(fk(y), fk(x)) <
C αmin(k,m−k) · (dist(x, y) + dist(fm(x), fm(y))).

In particular, recurrent points are limits of periodic points. This is a strong statement
about the abundance of periodic points. If Λ is locally maximal the periodic point y is in
Λ.

SKETCH OF PROOF. f acts by (x0, . . . , xm−1) 7→ (f(xm−1), f(x1), . . . , f(xm−2))
on m-tuples of points [KH]. This action is easily seen to be hyperbolic and its fixed points
are periodic orbits of f . Apply Theorem 6.1.1. �

c. The Shadowing Lemma. (See also [KH, Theorem 18.1.2].)

THEOREM 6.6.2. Let M be a Riemannian manifold, U ⊂ M open, f : U → M a
diffeomorphism, and Λ ⊂ U a compact hyperbolic set for f . Then there is a neighborhood
U(Λ) ⊃ Λ such that whenever δ > 0 there is an ε > 0 such that every ε-orbit in U(Λ) is
δ-shadowed by an orbit of f .

A much more powerful counterpart of this result is the Shadowing Theorem [KH,
Theorem 18.1.3] about coherent shadowing of families of orbits.

SKETCH OF PROOF. Assume (after possible extension) that the pseudo-orbit is bi-
infinite. Then define an action as before: (xi)i∈Z 7→ (f(xi−1))i∈Z [KH]. Fixed points
give orbits for f and hyperbolicity is easy to check. Apply Theorem 6.1.1. �
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d. The Hartman–Grobman Theorem.

THEOREM 6.6.3. If T is a bounded hyperbolic linear map in a Banach spaceE and f
is sufficiently Lipschitz-close to T then there is a homeomorphism h such that h◦T = f ◦h.

This result is usually stated in a form more suitable for local analysis [S-H, KH],
which is where its utility lies. Since the result is not used in this survey we chose this form
in order to make it easier to outline the proof.

SKETCH OF PROOF. [Y3] Suppose both f = T +∆F and g = T +∆g are Lipschitz-
perturbations of T and seek h = Id +∆h such that f ◦ h = h ◦ g. This is equivalent to
T (∆h) + ∆F(∆h) = ∆h, where T (∆h) := T ◦∆h ◦ g−1 and

∆F(∆h) = ∆f ◦ (Id +∆h) ◦ g−1 + T ◦ g−1 − Id .

Check that T is hyperbolic and ∆F is Lipschitz-small, then apply the Hyperbolic Fixed
Point Theorem 6.1.1. �

The introduction of g is a device for showing invertibility of h by symmetry and
uniqueness.

e. Structural stability of hyperbolic sets. Compact locally maximal hyperbolic sets
are strongly C1 structurally stable.

As mentioned earlier, this is one of the outstanding features of uniformly hyperbolic
systems. This result can also be proved almost directly by applying the Hyperbolic Fixed
Point Theorem 6.1.1 to a cleverly constructed action on candidate conjugacies and em-
beddings [Y3]. Alternatively, one can employ a shadowing theorem that gives coherent
shadowing of entire families of orbits [KH, Theorems 18.1.3, 18.2.1].

By the way, with the invariant cone definition of hyperbolicity (Section 6.4a), it is
immediate that a C1 perturbation g of an embedding f with a hyperbolic set Λ in an
isolating neighborhood U is hyperbolic on its maximal invariant set K ⊂ U , but structural
stability requires that K is homeomorphic to Λ, and in particular nonempty.

This fundamental semilocal result is the starting point for the solution of global prob-
lems of C1-structural stability and Ω-stability (Section 5.2f,Section 6.7i). Necessary con-
ditions for the former were found by Palis and Smale [PaS] and for the latter essentially by
Robbin [R], with the concluding step by Robinson [Ro]. In both cases, hyperbolicity on
the nonwandering set is the principal condition, supplemented by a transversality condition
on global stable and unstable manifolds (described in the next subsection).

f. Invariant laminations. The Hadamard–Perron Theorem (Theorem 6.3.1) gives,
in each of these classes of hyperbolic dynamical systems, local stable and unstable mani-
folds. There are profound differences, however, in the structure of the resulting invariant
laminations.

1. Local leaves in the uniform case. For a compact hyperbolic set one obtains local
stable and unstable manifolds for every point, and these local leaves are compatible in that
the intersection of any two of them is open in either one. These local leaves are also of
uniform size, i.e., each of them contains an ε-ball around their base point, where ε > 0 is
uniform:

Let Λ be a hyperbolic set for a C1 embedding f : V → M such that Df on Λ admits
a (λ, µ)-splitting with λ < 1 < µ. Then for each x ∈ Λ there is a pair of embedded C1
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discs W s(x), W u(x), called the local stable manifold and the local unstable manifold of
x, respectively, such that

(1) TxW s(x) = E−x , TxW
u(x) = E+

x ;
(2) f(W s(x)) ⊂W s(f(x)), f−1(W u(x)) ⊂W u(f−1(x));
(3) for every δ > 0 there exists C(δ) such that for n ∈ N

dist(fn(x), fn(y)) < C(δ)(λ+ δ)n dist(x, y) for y ∈W s(x),

dist(f−n(x), f−n(y)) < C(δ)(µ− δ)−n dist(x, y) for y ∈W u(x);

(4) there exists β > 0 and a family of neighborhoods Ox containing the ball around
x ∈ Λ of radius β such that

W s(x) = {y fn(y) ∈ Ofn(x), n = 0, 1, 2, . . . },
Wu(x) = {y f−n(y) ∈ Of−n(x), n = 0, 1, 2, . . . }.

COROLLARY 6.6.4. The restriction of a diffeomorphism or flow to a hyperbolic set is
expansive (see Section 2.4d).

For d(x, y) sufficiently small the intersectionW s(x)∩W u(y) consists of exactly one point
[x, y]. Every point in its orbit is said to be heteroclinic to x and y. If the intersection is
transverse and x, y are periodic then interesting dynamics arises [KH, Theorem 6.5.5].

The local stable and unstable manifolds are not unique but by 3 and 4 for any two
local stable manifolds W s

1 (x) and W s
2 (x) satisfying the assertions of the theorem their

intersection contains an open neighborhood of x on each of them. Equivalently, one can
say that for some n ≥ 0 one has fn(W s

1 (f−n(x))) ⊂ W s
2 and fn(W s

2 (f−n(x))) ⊂ W s
1 .

In fact such a number n can be chosen uniformly for all x ∈ Λ. The same is true for local
unstable manifolds with n replaced by −n.

2. Global manifolds. This also implies that global stable and unstable manifolds

(6.1)

W̃ s(x) =

∞⋃

n=0

f−n(W s(fn(x)))

W̃u(x) =
∞⋃

n=0

fn(W u(f−n(x)))

are defined independently of a particular choice of local stable and unstable manifolds and
can be characterized topologically:

W̃ s(x) = {y ∈ U dist(fn(x), fn(y))→ 0, n→∞},
W̃u(x) = {y ∈ U dist(f−n(x), f−n(y))→ 0, n→∞}.

These manifolds are injectively immersed Euclidean spaces, but by no means embedded.
They are commonly dense.

For flows one analogously obtains strong and weak stable and unstable leaves tangent
to the corresponding subbundles. Weak leaves are foliated by strong ones.

3. Center manifolds. (See also [R, HPS, Kl].) Note that taking λ < 1 = µ in
the Hadamard–Perron Theorem one obtains center-unstable manifolds W cu and taking
λ = 1 < µ gives center-stable manifolds W cs. Their intersection gives (possibly zero-
dimensional) center manifolds, which are characterized by contraction/expansion that is
slower than λ and µ, respectively.
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DEFINITION 6.6.5. If TM = E+ ⊕ E0 ⊕ E− such that ‖Df−n�E+
‖‖Dfn�E0

‖ ≤
λ < 1 and ‖Df−n�E0

‖‖Dfn�E−‖ ≤ λ for n ∈ N then E0 is called a center direction.

This expresses the fact that E+ expands more than anything in E0 and E− contracts
more than anything in E0. If Dfn�E0

has subexponential growth then this corresponds to

the partially hyperbolic situation.
If E0 6= {0} then there are nontrivial center manifolds tangent to E0. In the case

of a Cr diffeomorphism (r ∈ N ∪ {∞}) the center-stable and center-unstable manifolds
are Ck for any integer k < r + 1, at least in a neighborhood of the base point. (The
weak-stable manifolds of a flow, however, are globally as smooth as the flow.) Unlike the
stable and unstable manifolds, center manifolds are not uniquely defined, even though it
may thus appear from the above theorem. The problem is that in concrete situations the
above result is applied via a localization procedure, which is benign with respect to strong
leaves, but not center leaves. For example, the flow on R2 generated by the vector field
(x2,−y) fixes the origin (only), for which the y-axis is the stable manifold but any curve
Ce1/xχ

(−∞,0)
(x) is a C∞ center stable manifold [R]. Local uniqueness of W cs holds,

however, when every neighborhood 0 ∈ U ⊂ W cs(0) contains a neighborhood 0 ∈ V ⊂
U such that

⋃
n∈N f

n(V ) ⊂ U [HPS, Theorem 5A.3]. This assumption averts problems
with the localization procedure is innocuous. Global uniqueness of center manifolds is a
different issue and can sometimes be assured by cone field conditions similar to those in
Section 6.4a.

A manifold is said to be normally hyperbolic if the rate conditions from Defini-
tion 6.6.5 hold for its tangent bundle in place of E0. The theory of normally hyperbolic
manifolds gives persistence results for perturbations of the map, and regularity results when
sharper estimates of the rate differences are imposed [HPS, R].

7. Developments of the theory

This section is essentially an abbreviated version of parts of [KH] with some mention
of subjects surveyed with slightly more detail in [S-H]. It is included for the sake of readers
interested in a compact overview of hyperboic theory

a. Spectral decomposition. The structure of the set of periodic points of a hyperbolic
set is rather intricate. This makes it an interesting object of study, but periodic points
are also remarkably useful as a technical tool in the study of hyperbolic sets. This is
due to their abundance both in the sense of exponential growth of the number of periodic
points with the period and that of reflecting much of the nonperiodic dynamics in ways that
made precise below. Density of periodic points in the nonwandering set (Anosov Closing
Lemma, Theorem 6.6.1) together with that of stable and unstable manifolds implies that
hyperbolic sets decompose into topologically transitive components:

THEOREM 6.7.1 (Spectral decomposition). Let M be a Riemannian manifold, U ⊂
M open, f : U →M a diffeomorphism, and Λ ⊂ U a compact locally maximal (isolated)
hyperbolic set for f (see Section 2.2e). Then there exist disjoint closed sets Λ1, . . . ,Λm
and a permutation σ of {1, . . . ,m} such that NW (f �Λ) =

⋃m
i=1 Λi, f(Λi) = Λσ(i), and

when σk(i) = i then fk�Λi is topologically mixing.
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This result is among the applications of the core theory (as opposed to being a direct
consequence of a fixed point result). It uses the stable manifold theorem. The transitive
components are obtained more or less constructively. Define an equivalence relation on
Per(f�Λ) by x ∼ y if and only if W u(x) ∩ W s(y) 6= ∅ and W s(x) ∩ W u(y) 6= ∅
with both intersections transverse at at least one point. Then each Λi is the closure of an
equivalence class [KH, Theorem 18.3.1].

b. The Livschitz Theorem. (See also [KH, Theorem 19.2.1.].)

THEOREM 6.7.2. If Λ is a transitive compact locally maximal hyperbolic set for an
embedding f : U → M and ϕ : Λ → R a Hölder continuous function such that fk(x) =

x =⇒ ∑k−1
i=0 ϕ(f i(x)) = 0 then ϕ = ψ ◦ f −ψ for some Hölder continuous ψ : Λ→ R,

i.e., (the cocycle generated by) ϕ is a coboundary. The transfer function ψ is unique up to
an additive constant.

SKETCH OF PROOF. Pick a point x with dense orbit. Fix ψ(x) and use ϕ = ψ ◦f −ψ
to define ψ on O(x). By the Anosov Closing Lemma (with exponential closeness) the
assumption on periodic orbits and Hölder continuity imply uniform continuity (in fact,
uniform Hölder continuity) of ϕ on O(x), hence the existence of a unique extension to
O(x) = Λ. �

This result is yet another manifestation of the abundance of periodic data: Periodic
points determine cohomology completely.

There are additional smoothness results in this situation to the effect that ψ is as regular
as ϕ [S-H].

c. Specification and equilibrium states. The spectral decomposition makes the fol-
lowing theorem of Bowen pertinent to any locally maximal hyperbolic set:

THEOREM 6.7.3. A locally maximal topologically mixing hyperbolic set has the spec-
ification property (Section 4.4f).

SKETCH OF PROOF [KH]. Use that stable and unstable leaves are uniformly dense in
a mixing hyperbolic set. If x is the last point of the first orbit segment of the specification
and y is the first point of the next segment let z = W u

ε (x)∩W s(f−N (y)). Taking N large
enough (this depends only on ε) ensures that fN (z) ε-shadows the second orbit segment,
and the first orbit segment is ε-shadowed also. Continue with the shadowing point at the
end of the second segment, connecting to the third in the same way. The changes to the
earlier portions are exponentially small, so they settle down independently of the number
of segments to be shadowed. �

Together with expansivity (Corollary 6.6.4) this implies that there is a unique equi-
librium state (Section 4.4g) for every Hölder continuous function on a mixing compact
locally maximal hyperbolic set. Invariant measures therefore abound.

Other consequences are positivity of topological entropy and an abundance of periodic
orbits, in terms of number as well as the possibility of approximating orbit segments and
invariant measures (Section 4.4).

As mentioned in Section 4.4g, this gives a fine growth asymptotic for periodic points:
c1e

nhtop(f) ≤ Pn(f) ≤ c2e
nhtop(f) [KH, Theorem 18.5.5], which, together with specifica-

tion, in turn implies positive entropy if there is more than one point. Orbit growth estimates
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as fine as those in Proposition 2.6.6 are possible via coding. A detailed discussion of equi-
librium states can be found in [S-C].

d. Sinai–Ruelle–Bowen measure. A hyperbolic set Λ is an attractor if and only if
for any point x ∈ Λ the unstable manifold W u(x) lies in Λ.

Among the many invariant Borel probability measures for a dynamical system with
a hyperbolic attractor, one is deemed especially noteworthy. This Sinai–Ruelle–Bowen
measure [S-H, S-C] is characterized as the asymptotic distribution of Lebesgue a.e. point in
a neighborhood of the set [S-C]. This suggests that computer pictures represent an attractor
by approximating the Sinai–Ruelle–Bowen measure on it, or that this is the “physically
observed” measure. It is obtained as the equilibrium state for log(Juf), where Juf is the
Jacobian of f on unstable leaves. Therefore it has all the expected stochastic complexity
(Section 4.4g).

e. Absolutely continuous invariant measures for Anosov systems. For an Anosov
system there are two Sinai–Ruelle–Bowen measures associated with positive and negative
time asymptotics. They coincide if and only if there is an absolutely continuous invariant
measure which then coincide with the Sinai–Ruelle–Bowen measure and is smooth. A use-
ful criterion for the existence of such a measure follows from the Livschitz Theorem 6.7.2
once one uses the cohomological criterion for existence of an absolutely continuous invari-
ant measure (Section 5.2m).

THEOREM 6.7.4. A topologically transitive Anosov diffeomorphism f has an abso-
lutely continuous invariant measure if and only if fn(x) = x⇒ Jfn(x) = 1.

f. Ergodicity of volume. Thus ergodicity of volume-preserving Anosov systems is a
corollary of the theory of equilibrium states (once volume is identified as the Sinai–Ruelle–
Bowen measure [KH, Theorem 20.4.1]).

However, the original approach retains its independent value because it can also be
applied to various classes of partially hyperbolic and nonuniformly hyperbolic systems. It
is based on the Hopf argument, first used by E. Hopf for geodesic flows on surfaces and
extended by Anosov to general Anosov systems [A]. A contemporary rendering of the
argument for geodesic flows is in [Bm], and [KH, Theorem 5.4.16] gives the argument
in a simple situation. The central analytic ingredient is absolute continuity of the local
holonomy maps of stable and unstable foliations (Section 5.1e). This produces essential
openness of ergodic components. Then density of stable an unstable leaves leads to global
ergodicity.

A good example of the applicability of the Hopf argument in the partially hyperbolic
situation is the proof of ergodicity of the time-one map for a geodesic flow on a com-
pact manifold of negative curvature. The additional structural feature is density of strong
stable and unstable leaves. This follows from the fact that geodesic flows preserve a con-
tact structure, which renders the strong foliations completely nonintegrable (Section 5.5a).
This means that any two points in the phase space can be connected by a path of finitely
many segments, each inside a strong leaf. Put differently, time is only locally meaningful,
and one can achieve a change in time by a path that never has a time component. This
accessibility property of the strong foliations plays a role in partially hyperbolic systems
in connection with the stable ergodicity problem (Section 6.9c).
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The proof of necessity of the periodic orbit condition in Theorem 6.7.4 is based on a
modified version of the Hopf argument.

g. Local product structure, Markov partitions. We say that a hyperbolic set has
local product structure if it is closed under the map [·, ·] (Section 6.6f). This is equivalent
to local maximality.

To build Markov partitions define a rectangle to be a subset R of a compact locally
maximal hyperbolic set Λ of small diameter that is closed under [·, ·] and the closure of
its interior (in the topology of Λ). For x ∈ R and i = s, u, let W i

R(x) := R ∩W i
loc(x).

A Markov partition is a finite cover of Λ by rectangles Ri with pairwise disjoint interiors
such that if x ∈ IntRi ∩ f−1(IntRj) then W u

Rj
(f(x)) ⊂ f(W u

Ri
(x)) and f(W s

Ri
(x)) ⊂

W s
Rj

(f(x)). Markov partitions of arbitrarily small diameter always exist for compact lo-
cally maximal hyperbolic sets [S-C], [KH, Section 18.7], and they provide a coding, i.e.,
an almost-isomorphism (Section 2.2f) to a topological Markov chain.

This coding preserves entropy, and can easily be shown to be benign as far as periodic
points go. One consequence is the following [KH]:

COROLLARY 6.7.5. Let Λ be a compact locally maximal hyperbolic set for f . Given
a Markov partition, f�Λ is a factor (via an almost-conjugacy) of the topological Markov
chain σA defined by allowed itineraries, which is topologically transitive (mixing) if and
only if f�Λ is, and has the same topological entropy as f �Λ . If Λ is totally disconnected

then the factor map is a conjugacy. If f�Λ is topologically mixing then |Pn(f�Λ) −
enhtop(f�Λ )| < Kλn for some λ < ehtop(f�Λ ), K > 0 (by Proposition 2.6.6).

h. Stability, moduli and smooth classification. Some results related to structural
stability are discussed in [S-H]. For Anosov systems, a remarkable extension of structural
stability is that all known examples of Anosov diffeomorphisms have been classified: Each
is topologically conjugate to a hyperbolic automorphism of an infranilmanifold, of which
toral automorphisms are the prime example. At the same time, it remains unknown whether
there may be further examples of Anosov diffeomorphisms. For Anosov flows, there is no
classification, and the question of existence of yet unknown Anosov flows seems even more
open [S-H]. A related issue is that all known Anosov diffeomorphisms are topologically
transitive, but it is not known whether this is the case for all Anosov diffeomorphisms. For
flows, there are nontransitive examples [FrW], but it is not clear just how exceptional this
is.

There is the large and intricate array of moduli of smooth conjugacy provided by pe-
riodic points alone such as local normal forms around such points. Furthermore, ergodic
invariant measures, which can be viewed as generalizations of periodic orbits, provide fur-
ther invariants such as Lyapunov characteristic exponents. Still, there are some classes of
hyperbolic systems in which a classification up to a smooth conjugacy is possible. One
example is that smooth area-preserving Anosov diffeomorphisms on T2 are smoothly clas-
sified by their eigenvalue data as defined in Section 5.2e:

THEOREM 6.7.6 ([KH, Theorem 20.4.3]). Suppose f, g : T2 → T2 are C2 area-
preserving Anosov diffeomorphisms and f ◦ h = h ◦ g for a homeomorphism h homotopic
to the identity. Then f and g are C1 conjugate if and only if their eigenvalues at corre-
sponding periodic points p and h(p) coincide.
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SKETCH OF PROOF. Both h and the logarithm ϕf = log(Juf) of the unstable Jaco-
bian are Hölder continuous [S-H, KH], so ψf := log(Juf) ◦ h has a unique equilibrium
state µf . The hypothesis implies that ψf and ϕg := log Jug have the same sums over pe-
riodic orbits. By the Livschitz Theorem they are cohomologous, which implies that they
have the same equilibrium state, i.e., µf = area. Equilibrium states are equivariant under
Hölder homeomorphism by construction, i.e., µf is the pullback of the equilibrium state
νf = area for ϕf by h. This means that h preserves area.

In dimension 2 the stable and unstable foliations for f and g are C1, i.e., there are
local C1 coordinates for f and g in which the foliations are linear. The image of area
under these coordinates is a measure with continuous density, which therefore induces
continuous densities on every leaf. Since h preserves area it preserves these densities. This
shows that on a leaf h is locally obtained by integration of a continuous density, hence is
itself C1. One can show that this implies C1-smoothness of h. �

In fact, if f, g ∈ C∞ then so is h. Here are some interesting consequences of this
result. The classification of Anosov diffeomorphisms on tori (or only T2) gives:

COROLLARY 6.7.7. If f : T2 → T2 is a C2 area-preserving Anosov diffeomorphism
and λ ∈ R such that for every x ∈ Fix fn the expanding eigenvalue of Dfn(x) is λn, then
f is C1 conjugate to a linear automorphism.

The case of ϕf a coboundary takes the following form:

COROLLARY 6.7.8. A C2 area-preserving Anosov diffeomorphism f : T2 → T2 with
hλ(f) = htop(f) is C1 conjugate to a linear automorphism.

i. The stability theorem. The celebrated Mañé–Hayashi Stability Theorem [M3,
Hy] characterizes hyperbolicity as necessary for structural stability. Mañé showed that
the sufficient conditions established by Robbin [R] and Robinson [Ro] (Section 6.2e) are
necessary for C1 structural stability. The precise statement of this result and the related
NW-Stability (or Ω-Stability) Theorem are given in [S-H], but the essence is that struc-
turally stable systems have hyperbolic nonwandering set with a transversality condition on
invariant manifolds. Note that the “dissipative part” is included now, unlike in the above
discussion of stability of hyperbolic sets. The continuous-time counterpart of Mañé’s re-
sult yielded only much later. It was proved by Hayashi. A central ingredient of the proof is
the Hayashi Connecting Lemma [S-H, Hy], which is based on the Pugh and Mañé closing
lemmas (Section 5.2p).

The stability theorem is one of the high points in the development of smooth dynamics.
A major component of the Smale program was the intent to pursue a classification of dif-
feomorphisms by topological type. The Stability Theorem identifies the open equivalence
classes, i.e., those systems, where such a scheme is feasible.

This, combined with the complete classification of known Anosov diffeomorphisms,
also calls attention to a different interpretation of the term “roughness” for structural sta-
bility (which was coined by the seminal 1937 paper “Systèmes grossiers” by Andronov
and Pontrjagin). It was intended to convey roughness in the sense of imperviousness to
perturbation, but if one takes the classification results for Anosov diffeomorphisms to indi-
cate a certain paucity of examples, one may think of “roughness” as expressing excessive
strength of the hypothesis of uniform hyperbolicity and inviting the study of dynamical
systems under “less rough” assumptions. Accordingly, the development of the theory of
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nonuniformly hyperbolic systems was motivated to a large extent to meet the demand in
applications (inside and outside of mathematics) to provide a theory adapted to systems
with less than uniform hyperbolicity.

8. The theory of nonuniformly hyperbolic systems

A serious survey of the theory of nonuniform hyperbolicity is given by [S-BKP], and
introduction can be found in [KH, Supplement] and in [P]; [S-K] discusses some aspects
related to geometry. A comprehensive treatment is in preparation [BKP]. This is not the
place to give the details of this extensive field. Nevertheless, the spirit of the work as well
as some aspects of its present state can be outlined.

a. Contrast with the uniform case. Although this theory shares with the uniform
one the use of linearization and other aspects of smoothness of the dynamical system,
one pervasive distinction is that the heart of the approach is in invariant measures. This
may be viewed as the intrinsically natural generalization, but is also closely connected to
the Oseledets Multiplicative Ergodic Theorem [S-BKP, Oseledets Multiplicative Ergodic
Theorem], [Os, Rg, W2]. Nevertheless, some results do not involve measure theory in
their statements. A nice example is that a C1+α diffeomorphism of a surface with positive
topological entropy has a (hyperbolic) periodic point [KH, P].

Before describing the theory of nonuniform hyperbolicity, it is good to recall the
collection of facts that embody the hyperbolic paradigm in the uniform case: Expansiv-
ity, closing and shadowing lemma, Livschitz theorem, spectral decomposition, Markov
partitions, equilibrium states, absolute continuity of foliations, ergodicity of volume, the
Bernoulli property of volume. After introducing the framework in which the theory is de-
veloped, we give the structural results aimed at recovering the features just listed for the
uniform case. This leads to a useful comparison between the two situations.

b. Lyapunov exponents and tempering. A proper definition of nonuniformly hy-
perbolic systems has to be preceded by that of Lyapunov exponents. Even when one is not
interested in the maximal possible generality, the natural setting is that of cocycles. How-
ever, for here we expressly consider the derivative extension which due to the triviality of
skew products in the measurable category (Proposition 3.2.3) can be given by a cocycle.
The Lyapunov exponents of an orbit O(x) are the exponential asymptotic growth rates of
vectors under iteration of the differential, i.e., χ+(x, v) := limm→∞(1/m) log ‖Dfn|xv‖.
The Oseledets Multiplicative Ergodic Theorem [S-BKP, Oseledets Multiplicative Ergodic
Theorem], [Os, Rg, W2] shows that with respect to an f -invariant Borel probability mea-
sure this is well-defined a.e. (on the regular set) and, at a given x, attains at most dimM
different values. Furthermore, there is a Lyapunov decomposition into subspaces corre-
sponding to the various Lyapunov exponents, whose dimension defines the multiplicity of
the corresponding exponent.

An important related device is that of tempering, which introduces coordinate changes
that bring the differential into a block form adapted to the Lyapunov decomposition and
the Lyapunov exponents. The price is a distortion (of lengths and angles) that may grow
exponentially, but at an arbitrarily slow rate.
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c. Hyperbolic measures and Pesin sets. Hyperbolic measures are those for which
all Lyapunov exponents are nonzero a.e. Note that up to this point there were no hyperbol-
icity assumptions of any kind. In fact, one of the strengths of the theory of nonuniformly
hyperbolic systems is that it can make some interesting statements about dynamical sys-
tems without any such assumption. On the other hand, the theory has brought new insights
into uniformly hyperbolic dynamics as well.

For hyperbolic measures, one has exponential behavior a.e., which is a much weaker
assumption than uniform hyperbolicity. To extend the theory of uniformly hyperbolic dy-
namical systems to this situation one uses that for any given hyperbolicity estimate (with
fixed constants) there is a (possibly empty) set, where this estimate holds, and that the
union of these sets is the entire regular set. In other words, there are sets of arbitrarily
large measure, called Pesin sets, on which one has uniformly hyperbolic conditions. One
of the difficulties is that these are not usually invariant. Nevertheless, one obtains invariant
laminations of a measurable kind. Often it is easier to work with approximations thereof
(admissible manifolds [KH]).

d. Stable manifolds. The Hadamard–Perron Theorem applied in the nonuniform case
also gives invariant laminations, but instead of uniformity in the size of leaves there is a
measurable lower bound only. The same goes for the angle between stable and unstable
leaves. In the uniform case the picture of stable leaves along an unstable one can be ar-
ranged (via local coordinates) as a horizontal line (unstable leaf) crossed by vertical ones.
The nonuniform situation is best imagined as a horizontal line with a “fence” of vertical
line segments, in the gaps of which there are somewhat crooked short line segments, be-
tween which there are much shorter line segments, some of them possibly quite close to
horizontal, etc.

Their lack of regularity nonwithstanding, the invariant families of stable and unsta-
ble manifolds do retain absolute continuity. Among the consequences is that the ergodic
decomposition of a hyperbolic measure consists of sets of positive measure, in particular,
there are at most countably many components.

e. Structural theory. Remarkably, several of the central results of the uniform theory
have counterparts in this setting [KH]. Among these are the Anosov Closing Lemma
(which produces a hyperbolic periodic point), the Shadowing Lemma, the existence of
Markov partitions (which here are approximate), and the Livschitz Theorem. There is also
a spectral decomposition of a Pesin set for a hyperbolic measure into a finite union of orbit
closures. While there is no structural stability, a vestige of it remains in certain stability
properties of hyperbolic measures under perturbation: If µ is a hyperbolic measure for
lim fn then it is a weak limit of hyperbolic measures µn for the fn.

1. Entropy and horseshoes. The theory also contains a beautiful result in line with
our division into elliptic–parabolic and hyperbolic dynamical systems: The entropy of an
ergodic hyperbolic measure, if positive, is approximated arbitrarily well by the topologi-
cal entropies of horseshoes [KH]. In the case of surfaces, positive entropy of a measure
implies hyperbolicity and hence by the Variational Principle the topological entropy is ap-
proximated by that of horseshoes. In other words, horseshoes are the mechanism for the
production of exponential orbit growth.

For interval maps the same happens even without smoothness.
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f. Sinai–Ruelle–Bowen measure. Because of its important role in the study of at-
tractors, especially numerical experiments, there is great interest in producing a counter-
part of the Sinai–Ruelle–Bowen measure outside the uniformly hyperbolic context. Simple
examples suggest some difficulty. Smooth systems may fail to have a Sinai–Ruelle–Bowen
measure even if hyperbolicity breaks down only in the most benign way. The example is
a hyperbolic automorphism of T2 perturbed so as to remain hyperbolic except at the fixed
point, where the derivative has an eigenvalue one and the other less than one [HY]. (This
is also an example of nonuniqueness of equilibrium states [K3].) It is interesting that the
introduction of benign singularities to the uniformly hyperbolic setting is not nearly as
problematic [C]. When studying attractors, an essential problem is that sets of positive
Lebesgue measure may have asymptotic distribution unrelated to the invariant measure of
interest.

Nevertheless, there are some remarkable successes. First of all, the equivalence of the
three characterizations of the Sinai–Ruelle–Bowen measure that constitute its main inter-
est (equilibrium state, absolute continuity on unstable leaves, asymptotic distribution for
Lebesgue-a.e. points [S-H, S-BKP]), have a useful counterpart in the nonuniform situation.
A measure satisfying Pesin’s entropy formula [S-BKP] (entropy is the integral of the pos-
itive Lyapunov exponents) is also absolutely continuous on unstable leaves and represents
the asymptotic distribution of a set of points of positive Lebesgue measure [Ld]. There-
fore it is clear what to look for, and such a measure is again called a Sinai–Ruelle–Bowen
measure.

The other success is that for some important attractors of nonuniform type, a Sinai–
Ruelle–Bowen measure has been found. The Hénon attractor (for appropriate parameters)
is the most prominent example [BY].

g. Comparison. The list of structural results that transfer (with appropriate modifi-
cation) from the uniform to the nonuniform situation is quite impressive, which can be
taken as a testament to the basic robustness of the hyperbolic paradigm. Closing, shad-
owing, spectral decomposition, Markov partitions and absolute continuity remain valid
with relatively moderate adjustment. Expansivity could be recovered in a substantially re-
stated fashion that is hardly worthwhile. A partial counterpart of ergodicity of volume is
positive measure of ergodic components for any absolutely continuous invariant measure
[S-BKP, P].

More difficulties appear in conjunction with the theory of equilibrium states. Those
with the Sinai–Ruelle–Bowen measure are a clear indication. Remarkably, uniqueness
(and ergodicity) of the measure of maximal entropy was proved recently for the case of
geodesic flows on rank 1 (weakly hyperbolic) manifolds [S-K].

9. Partial hyperbolicity

See[S-Bu] for a detailed account. As for nonuniformly hyperbolic systems, we can
ask, how much of the uniformly hyperbolic theory works in the partially hyperbolic situa-
tion (Section 6.4c).

a. Structural results. As suggested earlier, there is little reason to expect much of
the structural theory of the uniformly or nonuniformly hyperbolic situation to hold for all
partially hyperbolic systems, because the effects of the subexponential component in a
partially hyperbolic system can be substantial.
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Of expansivity, for example, there remains sensitive dependence on initial conditions,
i.e., for any point there are nearby points whose orbit moves away (simply make sure to
arrange for nontrivial distance in the hyperbolic direction). Likewise, product examples
show that closing and shadowing cannot be expected. If the subexponential direction is
integrable then one might hope for orbits that at least return to the same subexponential
leaf, even if not close to the starting point. Such results were obtained for geodesic flows
on nonpositively curved manifolds [BBES].

Ergodicity of volume or even ergodic components of positive measure can also not be
expected, because this fails for products or time one maps of suspensions. However, ruling
out situations of this kind does give results of some interest. There is a specific assumption
on the invariant manifolds that carries much of the hyperbolic theory to this setting.

b. Invariant foliations. In the partially hyperbolic situation the distributionsE+ and
E− are uniquely integrable to invariant laminations W u and W s, which satisfy 1–3 of
Section 6.6f1. The main difference to the hyperbolic case is that the dimensions of these
leaves do not sum to that of the ambient manifold.

How to overcome this defect is best explained in the case of a dynamical system that
is partially hyperbolic on a compact manifold M . In this case the invariant laminations are
foliations. The model situation that illustrates how hyperbolic effects may dominate the
dynamics, is that in which the distributions E± are smooth and E := E+ ⊕ E− is totally
nonintegrable. This means that the closure of the space of vector fields tangent to E under
the Lie bracket is TM . This happens in numerous homogeneous systems, such as time one
maps of geodesic flows of compact locally symmetric spaces of rank 1 [KH, Section 17.7]
or left translations of compact factors GL(n,R)/Γ by the one-parameter subgroup etA for
A diagonal with distinct elements [KSp].

Such systems have many properties similar to hyperbolic systems: Topological transi-
tivity, ergodicity and the Bernoulli property of the main invariant measures and exponential
decay of correlations for smooth functions. However, they usually have no periodic points.

The smoothness assumption of this discussion is fragile under perturbation, but it is not
essential. Without it, one can assume the accessibility property (Section 6.7e), which re-
quires no differentiability and produces the same local effect of connecting any two nearby
points by a path that is piecewise tangent to E. This is the key assumption for proving
persistence of topological transitivity [BP].

c. Stable ergodicity. Volume-preserving Anosov systems are stably ergodic, i.e., all
volume-preserving C2 perturbations are ergodic. This observation has led to the question
of which volume-preserving C2 diffeomorphisms have this property. Partially hyperbolic
systems that do not have an obvious product-like structure seem like a good candidate
and have been studied in this regard, beginning with time one maps for geodesic flows of
negatively curved manifolds [Wk].

Again, the required property is the accessibility property of the invariant foliations
(Section 6.7e). So far it is known that volume-preserving partially hyperbolic systems are
stably ergodic if they have the accessibility property and are dynamically coherent (the
center distribution is integrable to a foliation whose leaves foliate the stable and unstable
manifold of each of its elements). It is not known whether these additional hypotheses
can be dropped, but experts conjecture that stable ergodicity is generic in the partially
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hyperbolic volume-preserving class [GPS, PS]. In other words, volume is “prevalently”
ergodic.

Particularly substantial progress has been recently made in the case of partially hy-
perbolic dynamical systems in dimension three. In this case the central direction has to
be one-dimensional and carries a single Lyapunov exponent. It was established in many
situations that this exponent is prevalently nonvanishing and thus the conclusions of the
previous section apply [Do].

One conjectures furthermore that any open set of ergodic volume-preserving diffeo-
morphisms has an open dense subset of Bernoulli diffeomorphisms.



CHAPTER 7

Elliptic dynamics: Stable recurrent behavior

1. Introduction

a. Main features. The elliptic paradigm revolves around two features at the opposite
end of the orbit complexity scale from the exponential behavior captured by the hyper-
bolic paradigm. The first and most important is a remarkable persistence for fairly general
classes of conservative dynamical systems of stable behavior (in certain parts of the phase
space), which can be modeled on a translation of a torus. The other is is somewhat less
precise. It can be roughly described as the appearance of exceptionally precise simulta-
neous return of many orbits close to their initial positions. In this case no identifiable
complete set of models is available but certain typical features of both topological and
measure-theoretical behavior can be identified. The interaction between the properties of
the linearized and nonlinear systems is more subtle than in the hyperbolic case.

Both conceptually and technically, elliptic dynamics is related to hard analysis to
a greater extent than hyperbolic dynamics, where geometric and probabilistic ideas and
methods are very prominent. This is one of the reasons for the comparatively small role
elliptic dynamics plays in this volume. The survey [S-LL] is mostly dedicated to some of
the central issues in elliptic dynamics. Various questions related to elliptic dynamics are
also discussed in [S-JS, S-BK, S-KT].

b. Linear elliptic maps. For a linear map L : Rn → Rn the absence of growth in
both the positive and negative direction of time means that all eigenvalues of L have abso-
lute value 1 and no nontrivial Jordan blocks are present. Thus, for a linear map ellipticity is
equivalent to existence of an invariant scalar product or to conjugacy to a map of the form




1
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1 0
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. . .
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Rϕ1

0
. . .
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,

where Rϕ :=

(
cosϕ sinϕ
− sinϕ cosϕ

)
is the rotation by ϕ. Naturally, since Id = R0 and− Id =

Rπ we may assume that 1 and −1 appear at most once.
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Any orbit closure S is a finite union of tori, and the restriction of the map to S is the
product of a minimal translation on a torus and a cyclic permutation.

In the space of all linear maps, ellipticity is atypical and unstable: A typical small
perturbation of an elliptic map makes it nonelliptic. For symplectic linear maps in R2n ,
however, ellipticity is an open property. For n = 1 this is a familiar fact about SL(2,R).

If all eigenvalues have absolute value and the map has a nontrivial Jordan block present
then the growth of the norm is at least linear. This is why by very slow growth in a nonlinear
system we will usually mean growth of ‖Dfn‖ that is slower than linear. The latter marks
the transition to parabolic behavior discussed in the next chapter.

c. Isometries. The absence of growth in a nonlinear system in the topological or
smooth setting is best represented by the case of an isometry. The interplay between the
smooth structure and the topology generated by it produces several versions of the notion
of isometry and equicontinuity for a dynamical system. Restricting to the discrete time
case, we give definitions in increasing order of strength.

Assume f : M →M is a diffeomorphism of a compact connected differentiable man-
ifold.

1. Isometries via equicontinuity. {fn}n∈Z are equicontinuous with respect to some
metric d on X .

Alternatively, the f -invariant metric d′(x, y) = supn∈Z d(fn(x), fn(y)) is equivalent
to d.

The structure of isometries in the topological setting was described in Section 4.3d.
In particular, if f is topologically transitive then f is topologically conjugate to a minimal
translation. Note, however, that the conjugacy may not be differentiable (see below). In
fact, since such an f is uniquely ergodic (Corollary 4.3.6), the sole invariant measure is
absolutely continuous if the conjugacy is smooth.

Even in the absence of topological transitivity, it is possible to show that the orbit
closures are finite unions of tori (see Corollary 7.1.2 for the case of a smooth metric).

2. Isometries via equicontinuous derivatives. The sequence {Dfn}n∈Z of derivatives
is equicontinuous.

This implies the previous definition since d(f(x), f(y)) ≤ max ‖Df‖d(x, y). In
this case the norms ‖v‖n = max0≤|i|≤n ‖Df iv‖ on TM are all equivalent and ‖v‖∞ =
sup ‖v‖n = limn→∞ ‖v‖n is Df -invariant. However, the ‖ · ‖n are not in general Rie-
mannian metrics, but Finsler metrics. If f is topologically transitive (and hence minimal
by Proposition 2.2.4), ‖ · ‖∞ is, in fact, continuous. This can be deduced by considering
the norm on TM as a map that associates to a point x ∈ M the unit ball and using the
Hausdorff metric on the space of compact closed subsets of Rn to measure the distance
between such maps. Since ‖ · ‖∞ is the pointwise limit of increasing continuous norms
‖ · ‖n the map described above possesses a natural semicontinuity. But then the set where
the oscillation of this function is at least ε is closed and by minimality either M or empty.
The first possibility easily gives a contradiction. Furthermore, by a similar argument, one
can show existence of an invariant continuous Riemannian metric.

3. Riemannian isometries. f preserves a smooth Riemannian metric on M .

THEOREM 7.1.1. Any diffeomorphism f of a compact manifold that preserves a smooth
Riemannian metric can be included in a smooth action of the group Tk ×F by isometries,
where F is a finite abelian group.
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PROOF. The group of isometries of a compact Riemannian manifold is a compact Lie
group G in which {fn}n∈Z is embedded such that its closure is an abelian subgroup of G,
hence as described. �

COROLLARY 7.1.2. Every orbit closure of f is a product of a torus and a finite group
and the action of f on it is smoothly equivalent to a translation.

Thus, from the dynamical point of view, nonlinear isometries of manifolds do not look
too different from linear isometries of Rn.

d. Distinction between different classes of isometries. Even in the simplest situ-
ation, namely for minimal diffeomorphisms of the circle, the preceding definitions are
distinct.

By the Denjoy Theorem 5.1.1 a C2 circle diffeomorphism without periodic points is
topologically conjugate to a rotation and hence preserves some metric. Thus it satisfies the
first of the three definitions. However, the conjugacy may be singular (Theorem 7.5.8.1,
[KH, Theorem 12.5.1]) and hence no continuous Riemannian metric is preserved, i.e., the
second definition is not satisfied. We call a diffeomorphism that is topologically but not
smoothly conjugate to a translation Tγ of the torus a nonstandard smooth realization of Tγ
in the topological category. Later (see Corollary 7.5.5) we will discuss a similar concept of
nonstandard smooth realization in the measurable category, where the place of topological
conjugacy is taken by metric isomorphism. In that case even the phase space may not be
homeomorphic to the torus.

If the second definition is satisfied then a continuous Riemannian metric is preserved
and in the circle case the conjugacy to a rotation is C1. But there are examples of C∞

circle diffeomorphisms for which the conjugacy is C1 but not C2 (Theorem 7.5.8.3, [KH,
Theorem 12.6.1]), so no C1 Riemannian metric is preserved and the third definition is not
satisfied.

All these effects appear for irrational rotation numbers that are exceptionally well
approximable by rationals (Liouville numbers). For other rotation numbers (Diophantine
numbers, see Section 7.3b) the third definition is always satisfied (Theorem 7.3.5). This
dichotomy between the Liouville and Diophantine paradigms plays a central role in the
subsequent discussion.

e. Completely integrable systems. In the case of a general (not minimal) isometry
one can generalize the structural description given by Theorem 7.1.1. Ignoring the finite
part for the moment (e.g., by passing to an iterate), one may ask which translation is con-
jugate to the restriction of a given isometry to an orbit closure. To make this question
precise, one needs to choose proper cyclic coordinates on each torus (this can be done up
to the action of SL(n,Z)). If one compares the translations thus obtained on different tori,
the coordinates need to be chosen in agreement. This is certainly easy to do locally in a
neighborhood of a regular orbit. Then clearly the translations are the same on all nearby
tori.

A natural generalization of this situation is a diffeomorphism for which the phase
space (or at least an open dense subset) splits into invariant tori, on each of which the
diffeomorphism is smoothly conjugate to a translation, but not necessarily the same one
for different tori. According to our definition, such a system is not elliptic on the whole
phase space. In fact, it is parabolic on the union of those invariant tori (although hyperbolic
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behavior may be present on the nowhere dense complement). However, on each torus, such
a diffeomorphism is elliptic.

This situation, modified in an obvious way for flows, appears naturally in Hamilton-
ian dynamics. The Liouville–Arnold Theorem (Section 5.3h) tells us that this happens
whenever a Hamiltonian flow on 2n-dimensional symplectic manifold has n independent
integrals in involution, i.e., with pairwise vanishing Poisson brackets, whose joint level sets
are compact.

Completely integrable systems occupy a distinguished place in dynamics. There are
multiple compelling reasons for this. One is related to the symplectic action-angle vari-
ables (I, ω) for such a system, which are provided by the Liouville–Arnold Theorem (Sec-
tion 5.3h). They bring it into a simple form where the Hamiltonian depends only on the
action variable I , which therefore gives first integrals. These action-angle variables can
be found by quadrature, i.e., by integration of explicitly present data, the taking of square
roots, and inversion of functions [An1]. Furthermore, in these coordinates the solutions
can be written explicitly as

Ik(t) = I0

ωk(t) = ω0 + α(I0)t,

where αk(I0) =
∂H

∂Ik |I=I0
is the frequency vector. Therefore, the Hamiltonian equations

can be explicitly integrated (solved) in the original coordinates as well.
A completely integrable system is said to be nondegenerate at I = I0 if I0 is a regular

point for α, i.e.,

det(
∂αk
∂Il |I=I0

) 6= 0.

To find explicit solutions of the equations of motion was, of course, the central goal of
mechanics until Poincaré. Hence the search for and attention given to integrable cases in
important problems involving parameters, such as the motion of a rigid body.

Beginning with Poincaré, it was understood that complete integrability is rather ex-
ceptional and that there are intrinsic obstructions to solving the equations explicitly. Still,
completely integrable systems hold their place and even enjoyed a major revival as a re-
search topic for two reasons.

First, and this is central for the present setting, many important problems in mechanics
can be viewed as perturbations of completely integrable systems (see Section 7.4b). The
motion of the solar system is a prime example with the Kepler model (no interaction be-
tween planets) being the completely integrable system in question [Ms3, An3, Pc], [An1,
Appendix 8]. The second is the relation between complete integrability and the presence
of symmetries in the system, which are of great interest to physics. The Noether Theorem
(Section 5.3g) provides the correspondence between symmetries and integrals. Thus, find-
ing integrals can be accomplished by finding symmetries. There are interesting situations,
however, in which the situation is reversed in that system is shown to be integrable without
having sufficiently many apparent symmetries, i.e., there are “hidden symmetries”, which
are found by finding the corresponding integrals [Ms3]. An early example is the geodesic
flow on the triaxial ellipsoid where the integrals were found by Jacobi.

2. The setting for elliptic dynamics
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a. Perturbation problem and Diophantine conditions. As follows from the pre-
vious discussion, the basic paradigm of elliptic behavior in dynamics (no growth in the
linearized system accompanied by recurrence in the phase space) is represented essentially
by a single class of models: translations and linear flows on tori. The principal content
of the investigation of elliptic phenomena in dynamics is thus the search for traces of be-
havior represented by these simple models within various classes of systems. The most
general orbit behavior in differentiable dynamical systems is expected to be unstable and
complicated (see Chapter 6, [S-BKP, S-H]). So, in order to look for stable behavior or its
traces, one usually needs to have a point of departure where elliptic behavior is observed.
Thus, elliptic dynamics deals mostly with perturbations of systems with recognized elliptic
behavior.

For a perturbation of a single translation of a torus the natural question is: under what
condition is such a perturbation differentiably conjugate to this or a nearby translation?
This problem is local in the space of dynamical systems but global in the phase space.
The answer is provided in terms of the rotation number and Diophantine conditions (Sec-
tion 7.2c, Section 7.4a ). In low-dimensional situations (diffeomorphisms of the circle and
flows on the two-dimensional torus) the corresponding global problem (in the space of
dynamical systems) can also be successfully investigated (see Section 7.3b).

However, the most significant part of the perturbation approach deals with perturba-
tions of nontransitive systems with elliptic behavior, namely completely integrable Hamil-
tonian systems and their counterparts in the volume-preserving category. The question is
to find some orbits that exhibit behavior similar to that on the invariant tori of the unper-
turbed system. It is not generally expected and is, in fact, unusual, that such orbits fill the
whole phase space of the perturbed system or even an open subset of it. This subject is
essentially semilocal in character, since the approach is to take a single invariant torus of
the unperturbed system and to find certain motions for the perturbed ones that remain in a
sufficiently small neighborhood of it. The most natural approach would be to look for an
invariant torus for the perturbed system, such that the restriction of the perturbation to that
torus is conjugate to the unperturbed system on the reference torus. Its success depends
on certain nondegeneracy conditions for the unperturbed system and again on Diophan-
tine conditions on the rotation vector for the original torus. Different variations of these
conditions will be discussed in due time (Section 7.3c, Section 7.4c). This approach usu-
ally goes under the name of KAM theory after Kolmogorov, who discovered the principal
phenomena, Arnold who provided proofs of Kolmogorov’s results and Moser, who greatly
extended the approach and gave it a convenient form. Further elaboration will be provided
in the next two sections and detailed discussion can be found in [S-LL] and a different
volume of this series [DS2].

Due to its semilocal character, this approach may be applied even when the system
under consideration is not a small perturbation of a completely integrable system in the
whole phase space. It is sufficient that in a part of the phase space, the system looks
like such a perturbation. This happens naturally if the system is a Hamiltonian system
with m degrees of freedom (i.e., with 2m-dimensional phase space) and has an isotropic
invariant torus of dimension k ≤ m. Certain conditions on the linearized system on the
torus (essentially nonhyperbolicity) are needed to consider the system in a neighborhood of
the torus as a small perturbation of a completely integrable system. Further conditions on
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the higher jets on the torus ensure nondegeneracy. The most natural cases of this situation
appear for

(1) k = 0: fixed point, which must be elliptic in order for the outlined method to
apply, although if it is partially hyperbolic the analysis sometimes can be carried
out within the center manifold of the point

(2) k = 1: elliptic periodic orbit; the same comment applies
(3) k = m: Lagrangian invariant torus.

Another aspect of the perturbation problem concerns perturbations of a pure nontran-
sitive isometry. In this case, various pathologies are possible and one is concerned more
with the possibility of obtaining a certain type of behavior (e.g., topological transitivity,
ergodicity, minimality or unique ergodicity). Among the questions that arise in this area
are those of existence of nonstandard realizations of translations and other models, and
genericity of certain types of behavior. This approach is discussed in Section 7.2f and
Section 7.5d.

b. Circle diffeomorphisms and twist maps. In some low-dimensional situations,
elliptic behavior or some traces of it may be found without a perturbation assumption. The
two main cases are

(1) diffeomorphisms of the circle (see Theorem 5.1.1, Section 7.3b and [S-JS]), and
(2) some Hamiltonian systems with two degrees of freedom and similar systems.

These include geodesic flows on the two-torus with an arbitrary Riemannian
metric, billiards in smooth convex domains, and forced one-dimensional oscil-
lations. The analysis of all these situations can be reduced to that of twist maps
[KH, Section 9.3].

Detailed discussions of twist maps can be found in [S-BK], [KH, Section 9.3, Chapter 13].
Here we provide just a brief introduction.

Consider the open cylinder C := S1 × (0, 1). Its universal cover is the strip S =
R× (0, 1) with the projection π : S → C, (x, y) 7→ ([x], y). A lift of a map f : C → C is
a map F = (F1, F2) : S → S such that π ◦ F = f ◦ π. Thus, F1 commutes with integer
shifts in the x-direction, while F2 is periodic in the first variable.

DEFINITION 7.2.1. A (surjective) diffeomorphism f : C → C = S1 × (0, 1) is said
to be an area-preserving twist map if

(1) f preserves area,
(2) f preserves orientation,
(3) f “preserves boundary components”, i.e., there exists an ε > 0 such that f(S1 ×

(0, ε)) ⊂ S1 × (0, 1/2), and,
(4) if F = (F1, F2) is a lift of f then F1(x, ·) is monotone increasing for each x.

An area-preserving twist diffeomorphism is said to be uniform if
∂

∂y
F1(x, y) ≥ λ > 0.

FIGURE 7.1. A twist map
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Note that a twist map may not extend continuously to the closed cylinder. There are
obvious modifications of these definitions for S1 × I , where I is any finite or infinite
interval of the real line.

For x ∈ R let T (x) = (limy→0 F1(x, y), limy→1 F1(x, y)). Define the twist interval
as the set of rotation numbers of those circle homeomorphisms that possess a lift H to R
with the property that for some x ∈ R we have Hn+1(x) ∈ T (Hn(x)) for all n ∈ Z. The
twist interval is defined up to an integer translation.

Less formally, the twist interval consist of those rotation numbers for which some
dynamics with this rotation number on the circle is compatible with the twist map.

The first main conclusion of the theory of twist maps is that for any number α from
the twist interval there is a closed invariant minimal set Oα that projects injectively to the
cyclic coordinate and such that the dynamics preserves the cyclic order of orbits on Oα.
This implies that the rotation number of f on Oα can be defined, and it turns out to be α
[KH, Theorem 13.2.6].

Obviously Oα is a periodic orbit when α is rational. Such orbits are often called
Birkhoff periodic orbits [KH, Section 9.3]. For an irrational α the set Oα can be either an
invariant curve or a Cantor set similar to the exceptional Denjoy minimal sets for homeo-
morphisms of the circle. These Cantor sets are called Aubry–Mather sets .

Which of these two possibilities holds for a particular map and a particular rotation
number is the central question in the analysis of twist maps. In general terms, the answer
depends on how far the map is from an integrable one and on the arithmetic properties of
the number α.

A remarkable fact is that while for circle diffeomorphisms irrational rotation number
and C2 regularity guarantee topological conjugacy to the corresponding rotation (Theo-
rem 5.1.1), Aubry–Mather sets necessarily appear in most smooth or real-analytic twist
diffeomorphisms, since the sets of rotation numbers for which invariant circles exist are
usually nowhere dense.

Twist maps provide an excellent setting for applications of variational methods in
dynamics (Section 5.6). Due to the discrete time nature of the situation many technical
difficulties related to describing the proper spaces of candidate orbits disappear. Variational
methods produce Birkhoff periodic orbits, Aubry-Mather sets (either directly or as limits
of Birkhoff periodic orbits), various heteroclinic orbits, orbits with prescribed asymptotic
or oscillating behavior in regions of instsbility (Section 7.3d), etc.

c. Diophantine and Liouvillian behavior. (See also [La].) A vector γ = (γ1, . . . , γm) ∈
Rm satisfies a resonance relation if its coordinates and 1 are rationally dependent, i.e., if∑m

i=1 kiγi = l for some (k1, . . . , km, l) ∈ Zm+1 r {0}. The translation Tγ on Tm is
minimal if and only if γ (which is, of course, defined only up to an addition of an integer
vector) does not satisfy any resonance relation (Example 2.2.2, Proposition 2.2.4).

The dynamics of a minimal translation Tγ as well as the properties of its perturbations
depend on the appearance of approximate resonances, i.e., such integers k1, . . . , km, l that
|l −∑m

i=1 kiγi| is small. A convenient way to measure the quality of approximate reso-
nances is to compare |l−∑m

i=1 kiγi|with functions of k1, . . . , km, l, e.g., (max(k1, . . . , km))−α

for various α > 0.
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In general, the appearance of good “almost exact” approximate resonances leads to
instability in the dynamics, whereas the presence of only moderate approximate resonances
is related to stability.

DEFINITION 7.2.2. A vector γ ∈ Rm is said to be Diophantine if there exist C,α > 0
such that

|
m∑

i=1

kiγi − l| ≥ C(max(k1, . . . , km))−α

for any (k1, . . . , km, l) ∈ Zm+1 r {0} [La].
The translation Tγ of the torus Tm where γ is a Diophantine vector will be called a

Diophantine translation.

The opposite type of arithmetic appears when the coordinates of the vector are si-
multaneously well approximable by rational numbers. Such vectors are sometimes called
Liouvillian. The corresponding minimal translations on the torus, which we will also call
Liouvillian, are exceptionally well approximable by periodic translations.

Between these two cases lies the situation, where very good approximate resonances
appear, but no simultaneous approximation with the same denominators. The correspond-
ing minimal translations are very well approximable by nonminimal nonperiodic transla-
tions, which may be Diophantine on lower-dimensional tori. This case tends to show more
similarity with the Liouvillian than with the Diophantine situation.

The case m = 1 plays a special role in elliptic dynamics. In this case Diophantine and
Liouvillian conditions reduce to restrictions on the speed of approximation of an irrational
number by rationals from above and below, respectively, and no intermediate case appears
(Definition 7.3.1).

The notion of Diophantine behavior for flows is slightly different. A vector γ ∈
Rm is said to be weakly Diophantine if there exist C,α > 0 such that |∑m

i=1 kiγi| ≥
C(max(k1, . . . , km))−α for any (k1, . . . , km) ∈ Zmr {0}. We will call a constant vector
field and the corresponding linear flow on the torus Diophantine if its right-hand side is a
weakly Diophantine vector.

d. The Newton method. The central role in establishing stability of elliptic behavior
is played by a high-powered variant of the Newton method. This method, which lies at
the heart of KAM theory, was discovered by Kolmogorov and developed systematically by
Moser, who also used some earlier ideas of Nash.

We outline the application of this method following [Ms2] for a situation similar to
the one above, where one seeks a smooth or analytic conjugacy.

The idea is to cast the conjugacy equation as an implicit-function problem rather than
a fixed-point problem as in structural stability or in highly dissipative situations. Therefore
the Newton method is suitable for finding smooth and analytic conjugacies and it works
in many nonhyperbolic problems. However, its applicability is restricted to perturbation
problems, i.e., situations where f and g are close to each other.

Write the conjugacy equation as

g = F(f, h) := h−1 ◦ f ◦ h.
The main feature of the operator F is the “group property”:

(7.1) F(f, ϕ ◦ ψ) = F(F(f, ϕ), ψ), F(f, Id) = f.
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As in the elementary Newton method, we want to linearize the operator and hence we need
to assume that there is a linear structure on a neighborhood of (g, Id) in the appropriate
functional space and that f is close to g. Then one can linearize F on this neighborhood.
Write D1F and D2F for the partial differentials with respect to f and h, respectively. To
look for an “approximate solution” h = Id +w of the conjugacy equation linearized at
(g, Id), write

F(f, h) = F(g, Id) +D1F(g, Id)(f − g) +D2F(g, Id)(h− Id) +R(f, h),

whereR(f, h) is of second order in (f−g, h−Id). In other words, if h solves the linearized
equation (obtained by droppingR), then w = h− Id is a solution of

F(g, Id) +D1F(g, Id)(f − g) +D2F(g, Id)w = g.

Using that D1F(g, Id) = Id (since F(·, Id) = Id(·) by (7.1)), this simplifies to

(f − g) +D2F(g, Id)w = 0.

If D2F(g, Id) is invertible, then w = − (D2F(g, Id))
−1
u, where u = f − g. In this case,

w is of the same order as u, and substituting h = Id +w into F(f, h) we obtain a function
f1 = h−1 ◦ f ◦ h = F(f, h) = g +R(f, h), so the size of u1 = f1 − g = R(f, h) should
be of second order in the size of u = f − g. To justify this, one needs to estimate the
difference between F and its linearization near (g, Id).

Thus, consider an iterative process as follows. Assuming that f1, . . . , fn have been
constructed, we solve the equation

fn − g +D2F(g, Id)wn+1 = 0

and set

hn+1 = hn ◦ (Id +wn+1) and fn+1 = (Id +wn+1)−1 ◦ fn ◦ (Id +wn).

The last step of the construction is the proof of convergence of the sequence hn in an
appropriate topology. It follows from the same estimates that provide the fast decrease of
the size of the fn − g.

Notice that at every step the linear part is inverted at (g, Id), rather than at the interme-
diate points as in the elementary Newton method. This is why the method can be applied
in nonhyperbolic situations.

e. Fast periodic approximation in dynamics. The property of fast rational approx-
imation for numbers or vectors has counterparts in dynamics both in the measurable and
the smooth context.

One such property is rigidity for a measure-preserving transformation (Section 3.6e),
which provides for a systematic uniform return of most initial conditions. It does not,
however, imply ergodicity and hence is not a sufficiently adequate generalization of the
properties of the best rational approximation of irrational numbers that arises from the
continued fraction expansion. A dynamical interpretation of the approximation of an irra-
tional number α by a rational pn/qn in lowest terms is that the rotationRα is approximated
by a cyclic permutation of qn small intervals of equal size. The quality of this approxima-
tion depends on |α − (pn/qn)| and is particularly good for Liouvillian numbers. Thus, a
proper measure-theoretic counterpart of this situation is the property of good periodic ap-
proximation as well as its refinement involving the speed of approximation (Section 3.6e,
[CFS]).
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Good periodic approximation implies a variety of properties: ergodicity, simple spec-
trum, rigidity and, hence, singularity of the maximal spectral type (Section 3.4q) and ab-
sence of mixing. While any ergodic translation on an abelian group allows good periodic
approximation, this property is also compatible with weak mixing and a variety of more
exotic properties [S-KT, K7]. Furthermore, approximation with sufficiently high speed
implies that the maximal spectral type is concentrated on certain sets of Liouvillian num-
bers [KS], thus generalizing properties of eigenvalues for Liouvillian translations.

Fast periodic approximation and similar methods are used in two different ways: an-
alyzing properties of given systems, and producing (or “designing”) examples of systems
within particular classes with various prescribed properties. The latter purpose requires a
particular kind of convergence of approximations, and purely measure-theoretic concepts
and methods are insufficient for constructing smooth examples. Thus, various concepts of
fast periodic approximation in the smooth category have been developed. The most use-
ful and successful is the conjugation-approximation method outlined in Section 7.2f and
Section 7.5b. Among the applications of this method is the construction of nonstandard
smooth realizations of translations of the torus on different manifolds (i.e., a system with
a smooth invariant measure that is measure-theoretically but not topologically conjugate
to a toral translation), nonstandard smooth realizations of some other systems and smooth
models of some systems, whose natural models are not smooth (e.g., some translations
on infinite-dimensional tori and solenoids). Some of these ideas are further developed in
[S-KT].

f. The conjugation-approximation method. (See also [AK].) The general outline
of this method is as follows.

Let {St}t∈R/Z be a smooth circle action on a compact manifold M , possibly with
boundary. Choose p0/q0 ∈ Q and f0 := Sp0/q0 . Inductively define

pn+1

qn+1
=
pn
qn

+
1

knlnq2
n

=
pnknlnqn + 1

knlnq2
n

and periodic maps

(7.2) fn = Hn ◦ Spn/qn ◦H−1
n

with rapidly increasing periods, where

Hn+1 = Hn ◦ hn+1andhn+1 ◦ S1/qn = S1/qn ◦ hn+1.

Thus, at the nth step of the construction the parameters are the diffeomorphism hn and
the integers kn and ln. The roles played by of these parameters are quite different. First,
one fixes kn to make the orbits of the next step of the construction sufficiently long. The
diffeomorphism hn is then chosen to provide controlled behavior of the conjugacies of the
finite group (Sk/(knqn))k∈N of isometries. Now Hn is likely to have large derivative, and
so ln is chosen large enough to guarantee closeness of fn+1 to fn with sufficiently many
derivatives to guarantee convergence of the sequence fn in the C∞ topology.

The power and flexibility of the method comes from the fact that in contrast to the
Newton method this convergence is not connected with any convergence of the conjugat-
ing diffeomorphisms Hn. Without loss of generality we can assume that the circle action
S preserves volume λ. Then the maps Hn may either preserve a volume λ, thus guaran-
teeing that the limit diffeomorphism is volume-preserving, or the weak limit points of the
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sequence (Hn)∗(λ) may be controlled, producing invariant measures with desired exotic
properties. Furthermore, for any specified k ≥ 0 the sequence Hn may converge in the
Ck topology but not in the Ck+1 topology (Section 7.5b), or diverge in C0 but converge
in probability (leading to nonstandard smooth realizations of the rotation Rlimn→∞ pn/qn),
or diverge in probability in a controlled fashion (producing required ergodic properties or
even a measurable conjugacy of f with a transformation other than a rotation).

3. Diophantine phenomena with a single frequency

a. Linear stability of Diophantine behavior. The Diophantine–Liouvillian dichotomy
is particularly clear and unambiguous in the case of a single frequency, i.e., where the un-
derlying isometry is a rotation of the circle or the linear flow on the two-torus. We describe
this situation in some detail. In these cases the motion is determined by a single number
α, the angle of rotation or the slope of the flow. Diophantine conditions correspond to
restrictions on the speed of approximation of α by rationals.

DEFINITION 7.3.1. α ∈ R is said to satisfy the Diophantine condition with exponent
β ≥ 0 and constant C > 0 if

|α− (p/q)| ≥ C/q2+β

for all p, q ∈ Z, q 6= 0 [S-JS, Definition 5.3]. Denote the set of all such numbers by Dβ,C .
The number α is said to be Diophantine if it satisfies a Diophantine condition for some
β,C > 0, Liouvillian otherwise, i.e., if there are sequences pn, qn ∈ Z such that

(7.1) |α− pn
qn
| = o(q−γn ) for all γ > 0.

Almost every number satisfies the Diophantine condition with any positive exponent
β and a constant depending on β, i.e.,

⋂
β>0

⋃
C Dβ,C has full measure. Notice that each

set Dβ,C is closed and nowhere dense. The set of Liouvillian numbers has Hausdorff
dimension zero but is a dense Gδ , hence topologically significant.

Here is a simple example how this dichotomy is reflected in the dynamical properties
of the rotation. It shows how Diophantine conditions help to deal with problems of small
denominators.

PROPOSITION 7.3.2. The number α is Diophantine if and only if every R-valued C∞

cocycle over the rotation Rα is C∞ cohomologous to a constant.

PROOF. ϕ(x) =
∑

n∈Z ϕn exp 2πinx is C∞ if and only if |ϕn| = o(|n|−γ) for all
γ > 0. The cohomological equation takes the form ϕ(x) − ϕ0 = h(x + α) − h(x), from
where the Fourier coefficients hn = ϕn/(exp 2πinα − 1) of h are uniquely determined
for n 6= 0. Thus the Diophantine condition on α guarantees that the hn decay faster than
any negative power of n.

Conversely, suppose α is Liouvillian and choose sequences pn, qn ∈ Z satisfying
(7.1). Define ϕ by choosing the Fourier coefficients ϕqn = |α− (pn/qn)|1/2 and ϕm = 0

otherwise. By (7.1)ϕ isC∞, but the Fourier coefficients of h are hqn = |α−(pn/qn)|1/2/(exp 2πiqnα−
1) ≈ |α− (pn/qn)|−1/2 →∞, which precludes the existence of even an L1 solution. �

COROLLARY 7.3.3. IfRα is a rotation by a Diophantine angle andϕ is aC∞ function
then

∑N−1
n=0 ϕ ◦Rα −

∫
ϕ = O(1/N) in any Cr-norm.
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Using the connection between cocycles and time changes (Section 1.3m), one imme-
diately obtains the following result due to Kolmogorov.

PROPOSITION 7.3.4. Any C∞ time change of a linear flow on T2 with Diophantine
slope is C∞ conjugate to a linear flow.

b. Smooth linearization of circle diffeomorphisms. (See also [S-JS].) A much
deeper nonlinear counterpart of Proposition 7.3.2 is the following theorem of Yoccoz [Y1],
which followed and completed the pioneering work of Herman [Hm1].

THEOREM 7.3.5. The number α is Diophantine if and only if every C∞ diffeomor-
phism of the circle with rotation number α is C∞ conjugate to the rotation Rα.

There is a similar result giving necessary and sufficient conditions for analytic con-
jugacy of analytic diffeomorphisms to a rotation [Y2], [S-JS, Theorem 6.5]. As might
be expected, the condition on the rotation number (Brjuno condition) is weaker than the
Diophantine requirement but it is still expressed in terms of the speed of rational approxi-
mation.

On the other hand, more specific Diophantine conditions guarantee finitely smooth
conjugacy of Cr diffeomorphisms to a rotation (with some loss of regularity) [KO1],
[S-JS, Theorem 5.2]. At the opposite end of the scale are results for the most “robust” Dio-
phantine numbers, i.e., those with exponent 0. Such numbers are said to be of constant type
because the inequality |α − (p/q)| > C/q2 for all p, q ∈ Z, q 6= 0 is equivalent to bound-

edness of all coefficients am in the continued fraction expansion α = a0 +
1

a1 +
1

a2 + . . .

.

For diffeomorphisms with rotation numbers of constant type, sufficient regularity condi-
tions for existence of an absolutely continuous conjugacy to a rotation are below C2 and
are remarkably close to the condition required for continuous conjugacy [KO2], [S-JS,
Proposition 11].

Note that the set of numbers of constant type has measure zero but Hausdorff dimen-
sion one.

c. The invariant curve theorem. Consider the following semilocal situation. Let M
be a two-dimensional differentiable manifold with an area form ω, U ⊂ M an open set,
Γ ⊂ U a C∞ closed curve f : U →M a C∞ embedding such that f(Γ) = Γ. Assume the
rotation number of f�Γ is a Diophantine number α. Then by Theorem 7.3.5 f �Γ is C∞

conjugate to the rotationRα. Using the normal forms approach (Section 5.2c, Section 5.2g)
it is possible to show that there are C∞ coordinates (x, y) in a neighborhood of Γ where x
is a cyclic coordinate, such that ω = dx ∧ dy and

f(x, y) = (x+ α+ h1(x, y), y + cxk + h2(x, y))

where k is a natural number, c a constant and the functions h1 and h2 vanish with all their
derivatives of all orders at y = 0. We call the curve Γ nonflat if c 6= 0 and nondegenerate
if in addition k = 1.

The following theorem, which we reproduce in a slightly imprecise form, is the pro-
totype result of KAM theory and is proved using the method of Section 7.2d.
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THEOREM 7.3.6 ([Rm]). Assume that the curve Γ is nonflat. Let g = f + r be a C∞

map sufficiently close to f ; the number of derivatives of r that are required to be small
and the estimates on the size of these derivatives depend on β and C in the Diophantine
condition, and k and c above. Then g has a unique smooth invariant curve Γ′ close to Γ,
given by the equation y = φ(x), with rotation number α.

Applying Theorem 7.3.6 to Diophantine numbers sufficiently close to α one obtains

COROLLARY 7.3.7. If the curve Γ in nondegenerate then Γ′ is the limit of other
smooth invariant curves for g from both sides.

d. Twist maps; nondegenerate case.
1. Integrable twist maps. Any map of the cylinder of the form f(x, y) = (x+g(y), y),

where g is a monotone increasing differentiable function, is an area-preserving twist dif-
feomorphism (Definition 7.2.1). Such maps are called integrable twist maps. If g ′ > 0
then this map is a uniform twist diffeomorphism, and it is said to be an integrable uniform
twist diffeomorphism.

Integrable twist maps are simple examples of completely integrable discrete time sys-
tems because all circles y = const are invariant. The nondegeneracy assumption ensures
that the set of rotation numbers of the invariant circles contains an interval.

2. Regular invariant circles. Description of what remains of this foliation by invari-
ant circles when a nondegenerate integrable twist map is perturbed (in the area-preserving
category) is a special case of KAM-theory which deals with perturbations of completely
integrable systems (Section 7.4c, [S-LL]) . Precise statements require rather careful for-
mulation, but the picture is easy to describe. For a twist map f we will call any invariant
closed curve of the form graphφ where φ : S1 → R an invariant circle for f .

Perturbations in a sufficiently fine topology generically have only a reduced collection
of invariant circles.

The nonminimal circles with rational rotation numbers and most of the circles with
Liouvillean rotation numbers are usually the first to break up, with finite sets of Birkhoff
periodic orbits taking the place of the former and Aubry–Mather sets (Section 7.2b) taking
the place of the latter. Each Aubry–Mather set is embeddable in a (noninvariant) circle.

Circles with Diophantine rotation number are the most robust, and they make up an
invariant set of positive measure. Thus, a perturbation of a nondegenerate integrable twist
has a set of large measure of invariant Diophantine circles. In fact, the measure of the
complement to the set of invariant circles goes to zero as the perturbations approach the
integrable system. Preservation of these circles is proved using Theorem 7.3.6 but careful
estimates are needed to make sure that all curves corresponding to Diophantine numbers
with fixed β and C remain for any sufficiently small perturbation. Let us call the invari-
ant circles whose existence follows from Theorem 7.3.6 regular. In particular, given any
proper closed subinterval I of the twist interval and a perturbation which is sufficently
small to a given sufficiently high order r ≥ 4 of derivatives, there are regular invariant
circles with all rotation numbers from the set I ∩Dβ,C .

3. Global structure of invariant circles. In order to understand the global orbit struc-
ture of the perturbed map the following general fact about twist maps is useful.

PROPOSITION 7.3.8. All invariant circles of a given area-preserving twist map φ are
Lipschitz graphs with the fixed Lipschitz constant. The limit of a sequence of invariant
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circles is an invariant circle. There is at most one invariant circle with a given rotation
number and rotation number is continuous on the set of invariant circles.

COROLLARY 7.3.9. The set R(f) of rotation numbers of invariant circles of a twist
map f is closed.

4. Regions of instability. Between invariant circles there are regions of instability.
These regions correspond to complementary intervals to the setR(f).

The boundary components of any region of instability are invariant circles with ro-
tation numbers corresponding to the endpoints of these intervals, but they are not regular
since by Corollary 7.3.7 any regular invariant circle is a limit of other regular circles from
both sides.

The dynamics in the regions of instability is complicated. In particular they contain
Aubry–Mather sets with rotation numbers from the corresponding complementary inter-
val. Each region of instability also contains orbits traveling from one boundary component
to the other in either direction as well as orbits oscillating between the boundary com-
ponents. They also typically contain periodic orbits with remarkable semilocal behavior.
There are “necklaces” of alternating hyperbolic and elliptic periodic points, with typically
heteroclinic tangles between the hyperbolic ones. This means that there is an abundance
of horseshoes (Section 6.5b, [KH, Theorem 6.5.5]) in this ring, hence exponentially com-
plex dynamics (positive topological entropy, etc.). The elliptic points also contribute to the
complexity of the picture, because a neighborhood of each of them looks much like the
entire picture (Section 7.3e): Invariant circles separating regions of instability in which hy-
perbolic and elliptic periodic points alternate. . . Despite the great complexity of this orbit
structure, a certain basic stability has been achieved by confining each orbit to an invariant
circle or the narrow region between two invariant circles.

Several changes occur when the perturbation becomes larger. A quantitative change
is that the regions of instability widen. A qualitative change is that increasingly more
invariant circles break up. The order in which they do so is affected greatly by arithmetic.
The disappearance of the Diophantine invariant circles progresses according to the strength
of the Diophantine condition on the rotation number. Those with the smallest exponent,
such as the one with the golden mean as rotation number, typically survive the longest,
even though macroscopic perturbations eventually break up even these.

In fact, for any given Diophantine rotation number in the twist interval a correspond-
ing invariant circle will persist under sufficiently small perturbations. For any Liouvillian
invariant circle one can produce arbitrarily small perturbations that destroy it, but no per-
turbation will destroy all of them immediately (see Section 7.5c).

e. Neighborhood of an elliptic fixed point. This is a situation very similar to the
one which appeared in Theorem 7.3.6 for the nonflat but degenerate case. Using polar
coordinates, a smooth area-preserving map f of the plane for which 0 is an elliptic fixed
point, i.e., Df has eigenvalues e±2πiα for some α ∈ R, can be brought (up to terms
that vanish with all derivatives at the origin) into the Birkhoff normal form (Section 5.2c)
(θ, r) 7→ (θ + ω(r2), r) near 0, where ω is given by a (in general formal) power series.
For technical reasons a finite number of rational α’s have to be excluded. Then, unless
ω = const, we can separate the leading nonconstant term in ω to produce an integrable
twist so that the map f can be viewed as its small perturbation. This twist is degenerate
since ω′(0) = 0. But it is nondegenerate for sufficiently small r away from zero. One can
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extend this to a smooth area-preserving twist in S1×R and then apply perturbation results
like the ones above to obtain persistence of some invariant curves.

Therefore one obtains a picture just like the one described for area-preserving per-
turbations of nondegenerate integrable twists. Even among analytic perturbations those
with such complicated dynamics are generic in a strong sense, i.e., for any k ∈ N, even
among those perturbations whose k-jet at the fixed point agrees with the original map, the
complicated ones are generic [Gn].

f. Caustics in convex billiards and related problems. (See also [Lz, Zh].) A con-
vex billiard is the flow of free unit speed motion in a convex region, with “optical” reflec-
tion at the boundary (Figure 7.1), i.e., angle of incidence=angle of reflection. A natural

FIGURE 7.1. A convex billiard

section for this flow is given by inward vectors on the boundary. Since their length is nor-
malized, one can parametrize it by S1 × (0, π) using a parameter on the boundary and the
reflection angle. Thus, the phase space is a cylinder (or annulus), and the section map is
a twist map (Figure 7.1, p. 160). After slight reparametrization, it is area-preserving, and
strict convexity makes it nondegenerate. When the region is an ellipse, the billiard map is
an integrable twist. This is closely related to the abundance of caustics, i.e., curves whose
tangents are reflected into tangents to the same curve. Generally, the existence of (convex)
caustics is closely related to the existence of invariant circles for the billiard map. Ana-
lytic geometry shows that all confocal ellipses and hyperbolae are caustics of the ellipse
(for the hyperbolae tangencies alternate between branches). The integrability is related to

FIGURE 7.2. Elliptic billiard with confocal ellipses and hyperbolas

that of the geodesic flow on the ellipsoid, which was discovered by Jacobi. Caustics are
often envelopes of families of trajectories, and are therefore easily visible in a reflective
metal ring. A question, unanswered since Birkhoff posed it, is whether the elliptic billiard

FIGURE 7.3. An envelope

table is the only one with an open set of caustics. The issue is that, while one can easily
perturb a twist map in such a way that a selected set of invariant circles persists (by sup-
porting the perturbation away from this set), one cannot localize perturbations arising from
deformations of the billiard table in a like fashion because a boundary point corresponds
to a curve connecting the boundary components of the cylinder. An extreme example of
breakdown of any semblance of integrability is the impossibility of convex caustics when
there is a flat boundary point ([KH, Proposition 13.5.3], this is not so hard to see using
the mirror equation of geometric optics). Furthermore, there are also delicate estimates
that confine all convex caustics to small neighborhoods of the boundary as the minimal
boundary curvature decreases to 0 [GkK].
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g. Preservation of Diophantine circles without twist. While the twist condition
pervades the theory of invariant circles and arises naturally from the mechanical systems
that motivated this work, there is recent remarkable work showing that to some extent
arithmetic conditions alone can provide for the presence of invariant circles. Specifically,
Herman proved that for an area-preserving map with a smooth invariant closed curve Γ
with Diophantine rotation number α has invariant curves arbitrary close to Γ. This gives
new information compared to Theorem 7.3.6 when the curve Γ is flat. Naturally in this
case there may be many curves with the same rotation number. In the case of Liouvil-
lean rotation number on the boundary there may be no invariant circles inside altogether
(Section 7.5d).

4. Diophantine phenomena with several frequencies

Due to the greater technical difficulty of this subject, including the need for elaborate
notations, we restrict ourselves to a brief outline without presenting precise formulations,
let alone sketches of proofs. For a detailed overview see [S-LL]. We will emphasize both
similarities and differences with the previous case.

a. Perturbation of linear maps and vector fields on the torus. (See also [Ms2].)
The global conjugacy results like Theorem 7.3.5 do not hold in higher dimension, i.e.,
for maps of the torus Tn, n ≥ 2 and for flows on Tn, n ≥ 3. Aside from obvious
reasons (no topological conjugacy to a rotation in general) it is not known whether any
diffeomorphism of Tn, n ≥ 2 that is topologically conjugate to a Diophantine rotation
is smoothly conjugate to it. However, for small perturbations of rotations and linear
flows the conjugacy holds. A convenient way to formulate such a perturbation result is to
consider an n-parameter family of maps or vector fields close to the family of translations
or vector fields near a given Diophantine translation (corr. vector field). Then under proper
assumptions on size and regularity such a family contains a unique element differentiably
conjugate to the given translation (corr. vector field). An example of such a family of
diffeomorphisms is

fλ(x) = x+ α+ h(x) + λ,

where α is a Diophantine vector and h is small with sufficiently many derivaives. Similarly,
for vector fields one may consider

dx

dt
= α+ h(x) + λ

for a weakly Diophantine α.

b. Stability problem in celestial mechanics. Poincaré’s prize-winning memoir on
the question of the stability of the solar system showed that the difficulty of this ques-
tion had been seriously underestimated. Generically, there are no integrals other than the
classical ones, so attempts to recognize integrability, for example, have little promise. On
the other hand, because of the smallness of the planetary masses compared to that of the
sun, our solar system is relatively close to a superposition of two-body problems, which is
integrable.

The traditional approach in celestial mechanics concentrated on establishig stability
of motions for such a perturbed system for a finite but sufficiently long length of time,
via normal forms, asymptotic series and the like. Neither Poincaré, who pioneered the
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qualitative approach to celestical mechanics, nor Birkhoff, who was the leading figure in
the field in the first half of the twentieth century, seem to have realized that stability for
infinite time may take place in substantial portions of the phase space. One can speculate
that if they had had computers at their disposal they would have stumbled upon the invariant
tori by computer simulation.

The crucial insight into the problem was achieved by Kolmogorov in the fifties. Kol-
mogorov discovered that under certain nondegeneracy conditions a large set of invariant
tori of an integrable Hamiltonian system survive under any sufficiently small perturbation.
This produces a large invariant set with genuine elliptic behavior.

c. The Kolmogorov theorem in the nondegenerate Hamiltonian case. (See also
[An2, Ms2].) The core result of KAM theory is a multidimensional version of Theo-
rem 7.3.6 in the nondegenerate case. It deals with a perturbation of a Hamiltonian sys-
tem with n degrees of freedom defined in a neighborhood of a Lagrangian (hence n-
dimensional) invariant torus T . It is assumed that the Hamiltonian vector field restricted to
T is conjugate to a constant Diophantine vector field. Assuming furthermore a nondegen-
eracy condition for the Hessian of the Hamiltonian in the direction transverse to the torus
T one deduces existence and uniqueness of an invariant torus T ′ for the perturbed Hamil-
tonian system near T such that the perturbed system on T ′ is differentiably conjugate to
the unperturbed system on T .

For systems with two degrees of freedom this result can be derived from Theorem 7.3.6
by restricting the Hamiltonian flow to the constant energy surface and taking a section map
near the torus T .

This basic result is then applied to a perturbation of a globally defined completely
integrable mechanical system. By the Liouville–Arnold Theorem (Section 5.3h) a nonde-
generate completely integrable mechanical system (Section 7.1e) decomposes (in regions
with compact level sets) into a foliation by tori on each of which the dynamics is that of a
linear flow, and the set of whose rotation vectors has nonempty interior. From the point of
view of mechanics, this is the natural generalization of nondegenerate twist maps. Sym-
plectic perturbations of such a system have a set of invariant tori of almost full measure,
and the order of their breakup is related to the arithmetic properties of their rotation vec-
tor. There are also regions of instability containing periodic orbits around which a similar
scaled picture appears (a nice picture is in [AM]).

Unlike in the two-dimensional situation, however, the n-dimensional invariant tori
do not separate the 2n-dimensional phase space. Therefore, stability in the sense of a
priori boundedness of orbits is not an automatic consequence in the same way as for twist
maps. Indeed, there is a phenomenon discovered by Arnold and called Arnold diffusion:
Some orbits of an arbitrarily small perturbation of a completely integrable system near an
invariant torus may drift a finite distance away from the torus or even leave any compact
part of the phase space.

An important qualitative consequence of the Kolmogorov theorem is nonergodicity
(with respect to volume) of open sets of Hamiltonian systems on the level surfaces of
the Hamiltonian. This contrasts with ergodicity of open sets of Hamiltonian systems that
are obtained by perturbing geodesic flows on compact manifolds of negative curvature
(Section 6.5e, Section 6.7f).
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d. Degenerate case and stability of the solar system. Kolmogorov’s result is not
directly applicable to the solar system because the nondegeneracy assumption does not
hold. This question was treated by Arnold [An3]. See [S-LL] for a description of this
important and technically complicated subject.

e. Frequency locking for special symplectic structures. (See also [HZ].) M. Her-
man [Hm2, Hm3] noticed that the stability results mentioned in Section 7.4a can be di-
rectly applied to obtain instances of differentiable stability (differentiable conjugacy of all
nearby systems) for Hamiltonian systems for some special symplectic structures on the
torus. Specifically, consider the symplectic form

dx2 ∧ dx1 + dx4 ∧ dx3 + α1dx3 ∧ dx2 + α2dx1 ∧ dx3

on T4, where (α1, α2) is a Diophantine vector. The Hamiltonian vector field with the
Hamiltonian H0(x) = x4 is actually the constant vector field (α1, α2, 1, 0) and hence it
is Diophantine on every three-dimensional torus H0 = const. Perturbing the Hamiltonian
one obtains the one-parameter family of perturbed flows on the level surfaces. Each of
these flows can be made conjugate to the original linear flow by adding a constant. As it
turns out, due to the Hamiltonian structure of the flows, these constants must vanish.

f. Preservation of tori in the volume-preserving category. As we pointed out there
is a substantial difference between the conclusions of KAM theory in the case of one and
several frequencies. In the former case all orbits of the perturbed system stay forever near
invariant tori of the unperturbed system while in the latter there is a diffusion for some
orbits away from these tori. The reason of course is that for area-preserving maps of
surfaces invariant circles locally divide the phase space (and the invariant tori for systems
with two degrees of freedom locally divide the manifolds of constant energy).

Using proper modifications of the KAM techniques Herman, Xia and others [X] found
a generalization of the low-dimensional results in the volume-preserving category. The
semilocal situation for these results in the discrete time case is as follows.

The unperturbed system is defined on Tn × [−ε, ε] and has the form f(x, t) = (x +
α(t), t) where the function α : [−ε, ε] → Rn satisfies a Diophantine type nondegeneracy
condition. One considers volume-preserving perturbations that preserve the torus t = 0.
Then if the perturbation is sufficiently small in theCr topology, where r depends on the
Diophantine conditions, most of Tn × [−ε, ε] is filled by Diophantine invariant tori close
to the tori t = const. Notice that the rotation numbers on the tori of the perturbed map
will in general be different from those for the unperturbed one. Under global conditions
on the unperturbed map this leads to global results for an open set of volume-preserving
diffeomorphisms, which imply in particular nonergodicity with respect to volume and con-
finement of orbits near the tori of the unperturbed system.

5. Liouvillian phenomena

a. Linear instability of Liouvillian behavior. While we already know that Liouvil-
lian rotations do not possess stability of smooth cocycles (Proposition 7.3.2), the behavior
of smooth cocycles over some Liouvillian rotations exhibits various more specialized types
of exotic behavior than simply failing to be a smooth coboundary. We first describe a phe-
nomenon that produces examples of minimal real analytic nonergodic transformations as
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well as real analytic time changes in a linear flow on T2 with highly discontinuous eigen-
functions. Namely, there is an analytic function ϕ such that ϕ(x) = Φ(x+ α)− Φ(x) for
a very discontinuous Φ. A strong notion of discontinuity is the following:

DEFINITION 7.5.1. LetX , Y be topological spaces and µ a measure onX . A measur-
able map f : X → Y is said to be metrically dense with respect to µ if µ(U ∩f−1(V )) > 0
for all nonempty open U ⊂ X , V ⊂ Y .

PROPOSITION 7.5.2. There exists α ∈ R and an analytic function ϕ : S1 → R such
that ϕ(x) = Φ(x + α) − Φ(x) with Φ: S1 → R measurable and metrically dense with
respect to Lebesgue measure.

SKETCH OF PROOF. It is convenient to switch to multiplicative notation on the circle
by considering it as the unit circle inC. Then x 7→ x+α becomes z 7→ λz with λ = e2πiα.
Take the Dirichlet kernel

Dq,m : S1 → R, Dq,m(z) =
m−1∑

j=1

(zjq + z−jq).

Its density is concentrated around the qth roots of unity. Inductively define Φn =
∑n
k=1 CkDqk,mk(z),

choosing the parameters of the construction such that Φn converges in probability to a
metrically dense function Φ, pn/qn → α ∈ R r Q very rapidly, and Φn ◦ Rpn/qn − Φn
converges in the real-analytic topology to a function ϕ, so Φ ◦Rα − Φ = ϕ. �

To produce minimal nonergodic examples we use:

PROPOSITION 7.5.3 ([KH, Propositions 4.2.5,6]). Consider the torus T2, a function
ϕ : S1 → R, and a map f : (x, y) 7→ (x+ α, y + ϕ(x)) of T2 with α ∈ RrQ.

(1) If ϕ(x) = Φ(x+α)−Φ(x) for some Lebesgue measurable function Φ: S1 → R
then for any ergodic invariant measure, f is metrically isomorphic to the rotation
Rα and there are uncountably many different ergodic invariant measures.

(2) Either ϕ(x) = Φ(x + α) − Φ(x) + r1α + r2 for some continuous Φ: S1 → R
and r1, r2 ∈ Q or f is minimal.

The first conclusion is due to the observation that h−1 ◦ f ◦ h(x, y) = (x + α, y)
for h(x, y) = (x, y + Φ(x)), which implies that any invariant measure for f projects
to Lebesgue measure, so the invariant ergodic measures for f are exactly the measures
induced from measures on circles, and the graph of Φ + c for any c ∈ R supports such a
measure.

COROLLARY 7.5.4. There exist analytic minimal nonergodic diffeomorphisms of T2.

PROOF. Let f : T2 → T2, (x, y) 7→ (x + α, y + ϕ(x)), where ϕ is as in Proposi-
tion 7.5.2. By Proposition 7.5.3 f has distinct ergodic invariant measures, hence it has
nonergodic invariant measures. If f were not minimal then by Proposition 7.5.3 we would
have ϕ(x) = ψ(x+α)−ψ(x)+r1α+r2 for some continuous ψ : S1 → R and r1, r2 ∈ Q.
Suppose r = r1α + r2 < 0 (the case r < 0 is similar). Then F = ψ − Φ satisfies
F (x + α) = F (x) − r > F (x) for all x ∈ S1, whereas there is a set F−1(−∞, c) of
positive measure, contradicting the Poincaré Recurrence Section 3.4c. �

Using Section 1.3m as in the Diophantine case, one obtains
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COROLLARY 7.5.5. There exists a real-analytic time-change of an irrational linear
flow on T2 that is metrically isomorphic to the linear flow but whose nonconstant eigen-
functions are metrically dense as maps from the torus to the unit circle

This is an example of a nonstandard smooth realization (Section 7.1d) of the linear
flow as well as the translations that comprise it.

Existence of an eigenfunction for the special flow over a measure-preserving trans-
formation T with roof function ϕ implies that exp i(a + bϕ) is a coboundary for some
a, b ∈ R. Another phenomenon related to cocycles over Liouvillian rotations leads to the
absence of solutions not only of the ordinary additive cohomological equation but of the
above multiplicative cohomological equations as well.

THEOREM 7.5.6 ([K7]). Let h(z) =
∑
n6=0 hnz

n be a C2 real valued function on S1

with zero average. Let Rα be a rotation on S1,

|α− pn/qn|qn∑∞
k=1 |hkqn |

→ 0 and
|hqn |∑∞
k=1 |hkqn |

> c > 0

for some pn/qn ∈ Q. Then exp ir(h0 + h(z)) is not a coboundary for any h0 and r and
consequently the special flow over Rα built under the function h0 + h(z) is weakly mixing
for all h0.

Since the conditions of the last theorem are satisfied for many real analytic functions
h and numbers α one can pass from special flows to time changes as before to get

COROLLARY 7.5.7. There exists a real-analytic time-change of an irrational linear
flow on T2 that is weakly mixing.

b. Circle diffeomorphisms with Liouvillian rotation numbers. For smooth and an-
alytic circle diffeomorphisms with extremely well approximable rotation number, the con-
jugacy to a rotation and hence the invariant measure tend to be singular. Arnold’s theorem
[KH, Theorem 12.5.1] exposes singularity of the conjugacies as a generic phenomenon in
typical one-parameters families of real-analytic maps.

On the other hand, the properties of conjugacies for specially constructed diffeo-
morphisms can be carefully controlled by the conjugation-approximation method (Sec-
tion 7.2f), an inductive construction that produces C∞ diffeomorphisms with irrational
(but very well approximable) rotation number with virtually every possible degree of reg-
ularity of the conjugacy to the rotation. Specifically, we can make the conjugacy singular,
absolutely continuous without being Lipschitz, and Cr without being Cr+1 for any r ∈ N.

The phenomenon of having a singular conjugacy to a rotation is generic in the follow-
ing sense: In the C∞-closure of the set of C∞ circle diffeomorphisms C∞ conjugate to
a rotation there is a residual set of diffeomorphisms that are conjugate to a rotation by a
singular homeomorphism. This implies that diffeomorphisms that are conjugate to a circle
rotation via an absolutely continuous homeomorphism, in particular a Lipschitz continuous
or smooth one, form a set of first category.

THEOREM 7.5.8 ([KH, Theorem 12.6.1]). Given any neighborhoodU of 0 inC∞(S1)
and i ∈ {1, 2, 3} there exist α and aC∞ diffeomorphism f of S1 such that f−Rα ∈ U and
f is conjugate to Rα via a conjugacy h that has the ith of the following three properties:

(1) h is singular.
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(2) h is absolutely continuous but not Lipschitz continuous.
(3) h is Cr but not Cr+1, where r ∈ N is arbitrary.

SKETCH OF PROOF. Take α to be the limit of αn = pn/qn ∈ Q, where αn+1 =
αn + βn and βn = 1/Knqn with Kn chosen below so as to ensure smoothness of f .
For each n take An = Id +an : S1 → S1 with an(x + (1/qn−1)) = an(x) and set
hn = A1 ◦ · · · ◦ An, fn := hn ◦ Rpn/qn ◦ h−1

n . To find out how to choose Kn so that
fn → f in the C∞ topology, set

fn+1,K = hn+1 ◦Rpn/qn ◦R1/Kqn ◦ h−1
n+1

= hn ◦An+1 ◦Rpn/qn ◦R1/Kqn ◦A−1
n+1 ◦ h−1

n

= hn ◦Rpn/qn ◦An+1 ◦R1/Kqn ◦A−1
n+1 ◦ h−1

n

(since An+1 commutes with R1/qn ). Then fn+1,K → fn in the C∞ topology as K →∞,
and one can take Kn large enough so that the sequence defined by fn+1 = fn+1,Kn

converges in the C∞ topology to a function f with f −Rα ∈ U , as desired.
Choose the C0 norm of an such that hn+1 is soC0-close to hn that hn → h uniformly

(and the same holds for the inverses), where h : S1 → S1 is a monotone surjective map.
Since fn ◦ hn = hn ◦Rpn/qn we have f ◦ h = h ◦Rα. h is a homeomorphism because if
h maps an interval to a point then it maps its image under Rα to a point as well, and since
finitely many such images cover S1 this is impossible by surjectivity.

There is enough freedom left in the choice of the an to produce any one of the three
properties in the statement �

c. Destruction and preservation of Liouvillian circles for twist maps. An individ-
ual circle with irrational but very well approximable (e.g., Liouvillian) rotation number
disappears under a typical arbitrarily small perturbation of an integrable twist map. In-
stead of this circle, an Aubry-Mather set appears Section 7.2b. However, there are always
“unexpected” invariant circles.

THEOREM 7.5.9. Any sufficiently small perturbation of an integrable twist always
has, in addition to the Diophantine invariant circles, uncountably many invariant circles
with Liouvillian rotation numbers.

SKETCH OF PROOF. We will use Corollary 7.3.9. The set of invariant circles is closed
and intersects any vertical segment in a closed set. If this set contains an interval then there
are countably many invariant circles with rational rotation number and uncountably many
invariant circles with Liouvillean rotation number. Thus we may assume that the setR(f)
is nowhere dense. We need to show that R(f) contains uncountably many Liouvillean
numbers. By the Baire category theorem this will follow if we show that R(f) is not con-
tained in a set Dβ,C (Definition 7.3.1). But this follows from the fact that the boundary
circles of the regions of instability are not regular (Section 7.3d), hence their rotation num-
bers cannot all belong to a single set Dβ,C . Since such boundary circles are dense in the
set of invariant circles, the statement follows. �

d. Perturbations of isometries in higher dimension. (See also [AK, FH, GuK].)
The general method outlined in Section 7.2f can be used to construct perturbations of
isometries that arise from nontransitive circle actions. The main idea is that the space
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of orbits of such an action is sufficiently large to allow enough freedom in choosing the
conjugating maps hn in the inductive step of the construction.

There are two versions of the method. One of them aims at establishing ergodic prop-
erties of the perturbed system with respect to a particular invariant measure, usually a vol-
ume. In this case almost every orbit of the limit map has to exhibit the desired properties,
and this is achieved by controlling orbit segments of rapidly growing length away from sets
of measure decreasing to zero in the inductive steps. This allows to disregard such things
as the presence of boundaries, of singular orbits, nontriviality of certain bundles, etc.

In the other version such properties as minimality, unique ergodicity or a description
of all invariant measures are produced. In this situation all orbits of the limit map need to
be controlled. Aside from stronger assumptions such as free (rather than nontrivial) action
of S1, the constructions in these cases tend to be more subtle and elaborate.

We make some comments on the constructions of the first kind. Let M be an m-
dimensional manifold, not necessarily compact and possibly with boundary. An action
of S1 preserves a smooth Riemannian metric (by taking any metric and averaging it with
respect to the action), and hence a volume. Furthermore, there is an open dense set of
orbits that have the same period, which without loss of generality may be assumed equal
to one. Let N be the space of orbits of the action, Nq the space of orbits of the subgroup
q−1Z/Z ⊂ S1 of order q. The action projects into Nq . Naturally, an open dense set of
orbits of the projected action has period 1/q. There is an S1-invariant closed set A of
volume zero such that M \ A with the S1 action is diffeomorphic to a direct product of
an open ball Bm−1 with S1 with the fiberwise action. This allows to construct a coherent
sequence of fundamental domains Fq for the actions of q−1Z/Z. A particular way to
construct the conjugation map hn is to take a compactly supported diffeomorphism of Fqn
and extend it to a diffeomorphism f of M that commutes with the action of q−1

n Z/Z. In
particular, one can pick a sufficiently large number kn and constuct hn in the above manner
so that most orbits of (knqn)−1Z/Z will be almost uniformly distributed in Nqn . This will
produce ergodicity of the limit diffeomorphism.

Another source of maps commuting with the action of S1 and hence q−1
n Z/Z are

nonconstant shifts along the orbits.
Combining these two types of constructions produces a great variety of properties,

both purely ergodic and related to the differentiable structure of the limit map. The first
category includes a prescribed number of ergodic components for the volume, weak mix-
ing, nonstandardness in the sense of Kakutani equivalence, etc. An example of a property
of the second kind is the existence of a measurable discontinuous invariant Riemannian
metric, which may coexist with weak mixing [GuK].



CHAPTER 8

Parabolic dynamics: A special case of intermediate orbit
growth

1. Introduction

a. Systems with intermediate orbit growth. The two preceding chapters presented
an overview of the two extremes among the widespread types of phenomena in differen-
tiable dynamics. These may be termed “stable” (elliptic) and “random” (hyperbolic and
partially hyperbolic) motions, as in the title of a classical exposition by Moser [Ms1].

What remains is a grey middle ground of subexponential behavior with zero entropy
that cannot be covered by the elliptic paradigms of stability and fast periodic approxima-
tion. At present, there is no way to attempt a classification of the characteristic phenomena
for this kind of behavior. This is to a large extent due to the problem that the lineariza-
tion is in general not well structured and not sufficiently representative of the nonlinear
behavior. Furthermore, the outer boundary of the usefulness of the elliptic paradigm is
not sufficiently well-defined. For example, its applicability to arbitrary interval exchange
transformations (Section 4.3g) is open to question. However, there is a type of behavior
within this intermediate class that is modeled well enough by the infinitesimal and local
“shear” orbit structure of unipotent linear maps. It is this kind of behavior that we call
parabolic, and whose typical features we aim to identify.

The survey [S-MT] deals with parabolic dynamics, as does a substantial part of [S-KSS].

b. Parabolic linear paradigm: Jordan blocks and polynomial growth. From the
dynamical point of view, a parabolic linear map, i.e., one that has only eigenvalues of
absolute value one and possesses some nontrivial Jordan blocks, is characterized by the
presence of some isometric directions (corresponding to the eigenspaces) and polynomial
growth in both the positive and negative direction of time for all other vectors. Of course,
this growth is achieved by shifts relative to each other of invariant affine subspaces parallel
to the sum of the eigenspaces. In every such space the map acts isometrically.

Parabolicity is an exceptional and hence unstable phenomenon in all natural spaces of
linear maps. For example, in SL(2,R) parabolic matrices, characterized by the condition
|trA| = 2, separate the open sets of elliptic and hyperbolic matrices. Accordingly, one may
expect parabolic behavior of nonlinear systems to be exceptional and generally unstable
under perturbations. There are, however, special situations, where parabolic behavior is
the norm due to low-dimensionality or special properties of the dynamical systems under
consideration.

c. Nonlinear systems with parabolic linear part: Local shear. Parabolic phenom-
ena in nonlinear systems appear in several ways. One is the uniform parabolicity best

177
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represented by affine and homogeneous unipotent examples (Section 8.3a, Section 8.3b).
Various classes of skew-products such as smooth distal systems (Section 2.4a) also belong
to that class. In this case, the relative behavior of orbits throughout the phase space resem-
bles that of parabolic linear systems. Another way for parabolicity to appear for typical
orbits is the presence of nonuniformities in the system. Such nonuniformities may have the
form of outright singularities, as in billiards and mechanical systems involving collisions
(Section 8.5), or special features, such as hyperbolic fixed points, which are exceptional by
themselves, but have a long-term influence on typical orbits. Smooth flows on surfaces of
higher genus are the most typical examples of the latter effect (Section 8.4).

Parabolic systems are characterized by triangular (or block-triangular) derivative at a
typical orbit, corresponding to the corner of which there is usually an integrable distribution
with isometric behavior. Then there are invariant filtrations for the linearized system, which
are usually integrable. The relative behavior of leaves of an invariant foliation within the
next one is also usually isometric. Thus, separation of nearby orbits is achieved via a
“shear”, rather than by outright expansion of distances.

d. Parabolic systems with singularities. Smooth dynamical systems with singular-
ities are important objects of study, because singularities may be an essential intrinsic
feature of the system (such as collisions in mechanical systems) or may appear as a result
of applying constructions such as section maps for flows. Singularities introduce an es-
sentially new feature compared to smooth or even topological systems. By encountering
a discontinuity, orbits may instantaneously diverge. The usual mechanisms of divergence
(infinitesimal and local growth) help to make these events more likely. Thus the complex-
ity of orbit behavior is produced by a combination of “cutting” at singularities and local
expansion, which may become extreme near singularities due to unbounded derivatives.

In assessing the influence of singularities and, in particular, in deciding whether be-
havior in such a system should be classified as parabolic, one needs to modify the criteria
put forward for the smooth case. A good indicator of parabolicity is nontrivial polynomial
(or subexponential) growth of the complexity of the orbit structure. Example 2.6.9 shows
that different ways of measuring this complexity may lead to classifying the same system
as elliptic or parabolic.

It is interesting to note that when cutting is not accompanied by expansion or where
expansion is slow outside of the singularities, the system tends to display at least some
features of parabolic behavior. A prototypical class of examples is that of interval ex-
change maps (Section 4.3g), which are piecewise isometries. In other words, systems with
singularities that are locally elliptic or parabolic, tend to be parabolic.

2. Main features of parabolic behavior

Unlike in the hyperbolic and elliptic situation there are no general theorems that iden-
tify parabolic behavior in broad classes of dynamical systems. Therefore we take a “botani-
cal” approach in this chapter. After going through the list of characteristic common features
of parabolic systems, we describe known representatives of each species individually.

a. Growth of the orbit complexity. Parabolic systems exhibit a distinctly subexpo-
nential pattern of the global orbit behavior. This should not be confused with a requirement
of subexponential infinitesimal or local orbit growth. For example, hyperbolic saddles are
an essential feature of area-preserving flows on surfaces of higher genus (Section 8.4),
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which are quite typical parabolic systems. A characteristic feature of parabolic systems is
the coincidence of the upper and lower topological power entropies and that the (thereby
well-defined) topological power entropy enttop

p (Section 2.5i) is finite, but not zero. See also
Section 3.7l. The cases where entp = 0 (see Section 2.5h) and enttop

p > 0 (Example 2.6.9)
represent the border area between elliptic and parabolic behavior.

b. Relative behavior of orbits. The “shear” structure of the linearized system leads
to the following crucial phenomenon: Once two orbits come close to each other, they stay
close for a certain time, which is usually commensurate to a negative power of the distance.
Thereafter, for a much longer time they maintain a distance that is moderate, but bounded
from below.

Thus, each close encounter is followed by a controlled period of separation. This is
in stark contrast with typical hyperbolic behavior and is a root cause of the comparative
uniformity of the orbit structure in parabolic systems.

c. Recurrence. In terms of recurrence, parabolic behavior is associated with some
uniformity of recurrence and as such is closer to elliptic than to (partially) hyperbolic dy-
namics. In the elliptic situation, minimality is characteristic for the topologically transitive
case, and a general elliptic system typically decomposes into disjoint regular minimal orbit
closures. In the parabolic case, minimality is still among the prevalent types of recurrence,
especially for systems of algebraic origin (Section 8.3), but it is not automatic for topo-
logically transitive systems. Nevertheless, orbit closures are typically regular (essentially
submanifolds of the phase space), and in the topologically transitive case there is usually
an open subset of dense orbits, a phenomenon called quasi-minimality. This is prevalent
for area-preserving flow on surfaces (Section 8.4). The exceptional set of nondense orbits
is often a finite union of orbits.

d. Invariant measures. Analogously to the way recurrence typically presents itself
in parabolic systems, the structure of the space of invariant measures in a parabolic system
is much closer to that in the elliptic situation than to the hyperbolic or partially hyperbolic
scenarios.

1. Essential unique ergodicity. Unique ergodicity is still the most characteristic be-
havior in the minimal case. In the quasi-minimal situation there likewise is usually only
one “dominant” invariant measure that is positive on open sets, accompanied by an (of-
ten finite) collection of invariant measures, which are often quite regular. In this “quasi
uniquely ergodic” case the totality of invariant measures usually has a simple structure that
is well-understood. Note, however, that deviations from uniform distribution with respect
to the dominant invariant measure are often inevitable due to the presence of semiorbits
asymptotic to the exceptional set. Such is the case for flows on surfaces. For algebraic
systems due to a remarkable result of Ratner [S-KSS] each orbit is uniformly distributed
according to a certain invariant measure.

2. Essential finiteness of the set of invariant measures. Another possible feature, which
also appears in elliptic systems with Liouvillian recurrence, is the presence of several er-
godic measures that share the dominant component. Their number is often finite and related
to the geometry of the system (Theorem 8.4.5). An essential difference from the elliptic
case is that in natural finite-parameter families of systems minimality and unique ergod-
icity appear in distinct ways, even though both are still prevalent. Nonminimality only
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appears, when the parameters satisfy some algebraic relations and is hence restricted to
a countable union of positive-codimension submanifolds of the parameter space (Corol-
lary 8.4.4). In contrast, unique ergodicity holds for a set of parameters of full measure,
whose complement has a more complicated structure (Section 8.4d).

e. Mixing properties. For mixing behavior in parabolic systems it is important that
the local triangular, or shear, structure provides locally for an invariant isometric factor.
This factor may or may not be globally integrable. If it is not, then the system is topologi-
cally mixing.

In the integrable case there is, globally, an isometric factor. In extreme cases it may
be the identity, such as for completely integrable systems. However, one can still define
mixing relative to this factor. Topological mixing relative to an isometric factor means that
whenever A is an open set that projects onto the isometric factor, then

(8.1) (for all open B )(∃N ∈ N)(∀n ≥ N) fn(A) ∩B 6= ∅.

Topological mixing is one area where the boundary between the elliptic and parabolic
situations cannot be clearly drawn. While the leading elliptic paradigm, equicontinuity
of iterates and smooth rigidity associated with fast periodic approximation (Section 7.3b),
are incompatible with (8.1) for any proper open subset A, it is probably possible to have,
for example, topologically mixing nonstandard smooth realizations of some rotations or
translations on the torus.

On the other hand, for parabolic systems without an isometric factor, the behavior
with respect to an invariant measure supported on the dominant set is characterized by
the presence of moderate mixing. The weakest such property, which holds in all known
cases, is mild mixing (Section 3.6g). The possibility of mixing (Section 3.6h) is much less
clear. It seems that both mixing and its absence are fully compatible with parabolic be-
havior. Uniformly parabolic systems are mixing, unless they have an isometric factor, but
otherwise mixing is dependent on rather subtle estimates of the power of local “shearing”
(Section 8.4e).

For systems with an isometric factor, mixing appears for functions orthogonal to all
eigenfunctions or, equivalently, for sets independent of all sets from the isometric σ-
algebra. Furthermore, uniformly parabolic systems have countable Lebesgue spectrum
in the orthogonal complement to eigenfunctions and are multiply mixing (Section 3.6h)
whenever they are mixing. On the other hand, maybe some systems with nonuniform
parabolicity are mixing without being multiply mixing, or have absolutely continuous spec-
trum of finite multiplicity. Neither of these situations is known to hold for any measure-
preserving transformation.

f. Decay of correlations. As mentioned in Section 3.1, the speed of correlation de-
cay with respect to an invariant measure is not an invariant, while the convergence of
correlations to 0 is simply equivalent to mixing. For mixing smooth dynamical systems,
an interesting and important problem is to find the rate of correlation decay for particu-
lar classes of functions, primarily those of smooth or Hölder continuous functions. For
parabolic systems, not much about this is known in general. However, for systems of an
algebraic nature and others that exhibit uniformly parabolic behavior, polynomial decay of
correlations seems to be typical.
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g. Invariant distributions. An interesting feature of parabolic systems, which sets it
apart from both elliptic and hyperbolic systems, is the presence of invariant distributions
(Section 5.2n) that are not determined by measures (Example 5.2.3). There are two typical
paradigms:

(1) The presence of infinitely many independent distributions of a particular order
(Section 8.3b6).

(2) The existence of a finite (but growing) number of invariant distributions for any
finite order (Section 8.4f).

h. Speed of convergence of ergodic averages. There is a connection between invari-
ant distributions and the speed of convergence of ergodic averages for some natural classes
of functions such as smooth or characteristic functions of nice sets. For parabolic systems
the speed is typically given by a negative power of time. The estimates improve when more
and more invariant distributions vanish [FFo].

i. Rigidity of the measurable orbit structure. The measurable structure with re-
spect to the dominant invariant measure tends to be fairly rigid and to determine the dif-
ferentiable structure. Specifically this means that within a given class of parabolic systems
(such as horocycle flows [Ra1]) any measurable isomorphism is smooth and in fact of a
very special kind. Furthermore, these properties include full descriptions of measurable
centralizers, factors, and joinings of the systems within a given class in algebraic terms.

All of these present a sharp contrast with the hyperbolic situation, where all interest-
ing invariant measures are Bernoulli. In this situation the centralizer of a system is huge
and consequently, once two systems are isomorphic there is a huge variety of different
isomorphisms. Thus, the measurable structure carries very little information about the
differentiable one.

3. Parabolic systems with uniform structure

Natural classes of parabolic systems are provided by algebraic dynamics, i.e., ho-
mogeneous and affine maps and flows on homogeneous spaces of Lie groups [S-KSS,
Chapter 4].

a. Affine maps on the torus. Let L ∈ SL(m,Z) be a quasi-unipotent matrix, i.e.,
all eigenvalues are roots of unity, and assume L has some nontrivial Jordan blocks. For
v ∈ Rn let AL,v : Tm → Tm, x 7→ Ax + v (mod 1). The simplest prototype examples

correspond to L =




1 1
. . .

. . .
1 1

1


 and v = (α, 0, . . . , 0) with α ∈ R r Q, and

were denoted by An,α in Section 4.3e. Let E be the sum of the eigenspaces of L. It is
always rational and hence projects to a rational torus in Tm. Thus, there is a natural factor
of AL,v on a lower-dimensional torus, with isometric behavior in the fibers. It is also a
quasi-unipotent affine map. Continuing inductively, we arrive at a pure translation.

PROPOSITION 8.3.1. A map AL,v is is always distal (Section 2.4a). It is minimal if
and only if the translation factor is. In this case, AL,v is uniquely ergodic.
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Further properties of these maps fit well into the general scheme outlined in the previ-
ous section

(1) If AL,v is minimal then L2(Tm, λ) = H0 ⊕ EL, where H0 is the invariant
space spanned by eigenfunctions of the unitary operator UAL,v , and UAL,v has
countable Lebesgue spectrum in the space EL.

(2) There are infinitely many independent invariant distributions for AL,v on the
space of functions with absolutely convergent Fourier series, and these span the
space of invariant distributions.

(3) entp(AL,v) = k − 1, where k is the maximal size of a Jordan block of L. In
particular, entp(An,α) = n.

b. Homogeneous dynamics for nonabelian groups. (See also [S-KSS].) Parabolic
behavior also appears in homogeneous maps and flows on homogeneous spaces of non-
abelian Lie groups. Recall that an element g of a Lie group G is said to be unipotent
if (Adg − Id)k = 0 for some k ∈ N (i.e., all eigenvalues of Adg are 1). It is said to
be quasi-unipotent if all eigenvalues of Adg are on the unit circle. The action of the left
translations Lg on the space of right-invariant vector fields on G is given by the linear op-
erator Adg . Thus, for any nonabelian Lie group G, any discrete subgroup Γ < G and any
quasi-unipotent g ∈ G, the left rotation Lg on G/Γ is parabolic.

Two special examples of this kind merit particular attention.

EXAMPLE 8.3.2. Nilflows: Here G is a simply connected nonabelian nilpotent Lie
group and g ∈ G does not belong to the center of G. Nilflows are distal (Section 2.4a).

EXAMPLE 8.3.3. Unipotent translations on semisimple groups, in particular the horo-

cycle flow (Section 4.3f), where G = SL(2,R) and ht =

(
1 t
0 1

)
. These systems are not

distal since they do not have isometric factors.

The dynamical and ergodic properties of these homogeneous maps and flows is the
most complete illustration of the characteristic features of parabolic dynamics we just de-
scribed.

(1) Every orbit closure is a homogeneous submanifold (Ratner’s topological theorem
[Ra3]).

(2) Every ergodic invariant measure is Haar measure on a homogeneous submani-
fold, in particular, minimality implies unique ergodicity (Ratner’s measure-theoretic
theorem [Ra4]).

(3) In general, Haar measure has a mixture of discrete and countable Lebesgue spec-
trum. Nilflows provide an example where both components are present and their
properties are close to those of affine unipotent maps on the torus.

(4) In the semisimple case and many others, Haar measure has countable Lebesgue
spectrum. In this case, there is mixing of all orders.

(5) Smooth functions have polynomial decay of correlations.
(6) For G = SL(2,R) if only principal and discrete series appear in the represen-

tation of G on L2(C/Γ), then there are infinitely many invariant distributions
of fixed order, and they determine all invariant distributions. If there are also
representations from the complementary series, infinitely many distributions of
growing orders also appear.
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(7) If g ∈ G is quasi-unipotent, Γ is a cocompact lattice and Lg the induced trans-
lation on G/Γ then entp(Lg) = k − 1, where k is the size of the largest Jordan
block of Adg .

c. Extensions. Parabolic behavior is inherited by compact group extensions and iso-
metric extensions (Section 2.2i). Furthermore as we already saw, some extensions of
isometries and other systems with elliptic behavior are parabolic. In general, the apper-
ance of parabolic behavior in an extension depends on the “shear” produced by the cocycle
generating the extension.

Naturally, in order to discuss parabolic behavior properly, one needs to assume a
smooth structure throughout the construction. It is interesting that, while no transitive
translations on compact nonabelian groups exist, even irrational rotations of the circle have
transitive and uniquely ergodic compact group extensions with nonabelian fiber.

d. Time changes. Time changes are another construction that preserves the uniformly
parabolic behavior while (in general) destroying the homogeneous structure. Ratner [Ra2]
showed that many typical properties of horocycle flows including rigidity of measurable
orbit strucute extend to a broad class of time changes of such flows.

4. Flows on surfaces

This subject is developed in [KH, Chapter 14].

a. Section maps. Smooth flows on compact surfaces that preserve a measure whose
support is the whole surface, are examples of parabolicity in a setting that is not algebraic or
connected to isometric behavior. The leading case is the area-preserving one. Locally, the
triangular structure near any reference orbit arises naturally by way of the orbit foliation,
i.e., the invariance of the generating vector field. Interesting effects may be produced
already by slowing down the velocity in a fixed point free flow on the torus to produce
an isolated fixed point. This case is a useful model where explicit calculations are greatly
simplified.

However, the really essential case appears on surfaces of genus greater than one, where
the presence of fixed points is unavoidable due to the Poincaré-Hopf index formula. As-
suming that all fixed points are isolated, the invariant measure condition guarantees that
all fixed points are either centers or saddles (possibly multiple ones). Then there are only
finitely many fixed points, while by area-preservation and the Poincaré Recurrence The-
orem (Section 3.4c) recurrent points are dense. Therefore [KH, Proposition 14.1.4], for
any transversal to the flow, the return map is defined and continuous except possibly at
finitely many points (the last intersections of the incoming separatrices of the saddles with
the transversal), and at those points both one-sided limits exist. In fact, one can consider
the flux of the invariant measure through the transversal and thus find a reparametrization
such that the induced map is an interval exchange map (Section 4.3g). Furthermore, in the
area-preserving case, this reparametrization is smooth. In summary we have:

THEOREM 8.4.1. For area-preserving flows with only isolated singularities the return
map to any transversal is smoothly conjugate to an interval exchange.

Thus, the transverse aspects of the dynamics of the flow are competely reducible to
those of interval exchanges. As we mentioned above, interval exchange transformations
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represent a borderline situation between elliptic and parabolic behavior. To be more pre-
cise, aperiodic interval exchanges do exhibit linear orbit growth, but in certain situations
this is just an artifact, such as for the exchange of two intervals, which is semiconjugate
to a rotation via identification of the endpoints of the interval (cf. Example 2.6.9). Fur-
thermore, even genuine interval exchange maps, e.g., weakly mixing exchanges of three
intervals [KS], often allow good periodic approximation (Section 3.6e), which is typical
for elliptic rather than parabolic behavior.

However, these distinctions are irrelevant, when one considers not only the transverse
dynamics of flows with fixed points, but the full dynamics including time-change aspects.
Parabolicity appears due to “shearing” near the fixed points, which slows various orbits
down according to their distance from the incoming separatrices. Thus, for example, even
the time change of an irrational linear flow on the torus with zero velocity at some point
displays parabolic behavior, despite the fact that it has rotations as natural section maps.

It is interesting that the presence of hyperbolic fixed points in this situation does not
produce hyperbolicity in the return map. The mechanism of neutralizing the hyperbolic
effect is that the slowdown of orbits near the saddles concentrates the splitting of orbits
into a singularity of the return map (at which the return times diverge). Another interesting
observation is that, contrary to superficial intuition, nondegenerate saddles, i.e., hyperbolic
fixed points, produce less “shearing” effects than nonhyperbolic degenerate saddles. In
some cases this may result in such significant distinctions as absence versus presence of
mixing (Section 8.4e).

b. Measured foliations. A generalization of the notion of an area-preserving flow
on a surface is that of a measured foliation [FLP]. It turned out to be extremely fruitful
for the Teichmüller theory [S-MT] as well as for the Nielsen–Thurston theory of surface
homeomorphisms [S-FM]. A measured foliation on a surface (possibly with boundary) is
a foliation with one-dimensional leaves that has a transverse holonomy-invariant measure
that is positive on open sets and whose singularities are isolated and of the “generalized
saddle” type. A “generalized saddle” is a fixed point with N 6= 2 saddle-like sectors
bounded by prongs as separatrices. For N = 2k it is topologically an ordinary saddle
of multiplicity k − 1, for odd N it is locally nonorientable. The index of such a saddle
is (2 − N)/2 and the usual Poincaré-Hopf formula holds. The basic cases are N = 1
(a return point) with index 1/2 and N = 3 (a half-saddle) with index −1/2. Measured
foliations provide another interesting example of dynamics without time (Section 1.2c).
Ordinary foliations with one-dimensional leaves generated by nonvanishing line fields can
be made into flows by lifting to a double cover. Similarly a measured foliation can be
made orientable by passing to an appropriate finite branched cover that branches over all
singularities with odd number of prongs.

As an interesting example, on the sphere there are measured foliations with nontriv-
ial recurrence and dense leaves with four one-prong saddles. These appear as stable and
unstable “foliations” for pseudo-Anosov type diffeomorphisms, which provided the first
examples of area-preserving sphere maps with stochastic behavior [K3]. Among the foli-
ations with half saddles are the stable and unstable “foliations” of generic pseudo-Anosov
diffeomorphisms on surfaces of genus at least two [S-FM, FLP, GK].

c. Topological properties. A saddle connection is an orbit that is positively and neg-
atively asymptotic to (not necessarily distinct) saddles.
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THEOREM 8.4.2 ([KH, Theorem 14.6.3]). Let M be a surface of genus g and ϕ a
flow with finitely many fixed points that preserves a measure positive on open sets. Then
M decomposes invariantly as M =

⋃k
i=1 Pi ∪

⋃l
j=1 Tj ∪ C, where the Pi are periodic

components (open sets of periodic orbits), the Tj are transitive components (open with
every semiorbit dense except incoming separatrices of fixed points), and C is a finite union
of fixed points and saddle connections. Furthermore, l ≤ g.

A flow on a surface (possibly with boundary) is said to be quasiminimal if it has finitely
many fixed points and every semiorbit other than a fixed point or a separatrix of a saddle
is dense. Thus, the closure of any transitive component is a surface with a quasiminimal
flow.

COROLLARY 8.4.3. Transitivity, topological mixing and quasiminimality are equiv-
alent for flows on compact surfaces that have finitely many fixed points and preserve a
measure positive on open sets.

Periodic components can appear in two different ways. If such a component contains
an orbit homologous to zero (and hence consists of only such orbits) then this component
persists under small perturbations in the space of area-preserving vector fields. We call
such periodic components stable. Stable periodic components appear around centers but
they may also be present in flows whose only fixed points are saddles. An example is a
flow on the orientable surface of genus two obtained by taking two flows on the torus with
a hole formed by a homoclinic loop of a single saddle and connecting these by a collar
filled with closed orbits. Equivalently, glue two toral flows with a single center each along
closed orbits around the centers (deleting neighborhoods of the centers).

An area-preserving flow on a surface (possibly with a boundary) is said to be irre-
ducible if it has no stable periodic components. The statement of Theorem 8.4.2 can be re-
fined in an obvious way by taking out stable periodic components and dividing the rest into
irreducible components. This situation differs only in minor ways from the leading case
of an irreducible flow on a closed compact surface. There are open sets of area-preserving
irreducible flows on the torus and on all closed compact surfaces (orientable or not) with
Euler characteristic ≤ −2. Any area-preserving flow on the sphere, the projective plane or
the Klein bottle has an open dense set of stable periodic orbits. A somewhat less familiar
fact is that on the nonorientable surface of genus −1 an open dense set of area-preserving
flows have this property, although irreducible flows also exist. Flows in the interior of
the space of irreducible flows are said to be stably irreducible. To study flows with mul-
tiple saddles one defines the notions of irreducibility and stable irreducibility subject to
restrictions on the structure of the saddles.

Thus, for further study of nontrivial dynamical behavior the quasiminimal case is the
main one. Furthermore, it is prevalent among irreducible flows, as will be shown later.

COROLLARY 8.4.4. If there are no saddle connections then the flow is quasiminimal.

d. Invariant measures and smooth orbit classification. It is quite remarkable that
the restriction on the number of quasiminimal components has a counterpart in the restric-
tion on the number of ergodic invariant measures supported by these components.

THEOREM 8.4.5 ([St], [KH, Theorem 14.7.6]). For any area-preserving flow on a
compact surface of genus g there are at most g ergodic nonatomic invariant measures.
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Furthermore, for any k with 1 ≤ k ≤ g there exists a quasiminimal area-preserving flow
that has exactly k nonatomic ergodic invariant measures.

SKETCH OF PROOF. The transverse smooth structure for area-preserving flows is lo-
cally (in the space of vector fields) determined by finitely many parameters [KH, Sec-
tion 14.7c]. First among these are the number of saddles and their indices. If each saddle
is generic among those with given index, continuous parameters may be defined as fluxes
through a basis of the first homology group H1(M,F,R) relative to the set F of fixed
points. These are defined up to a common scalar multiple and fix the fundamental class of
the flow in the cohomology group H1(M,F,R). Thus, orbit equivalence is determined by
the projectivization of the fundamental class. Restriction of the fundamental class to the
groupH1(M,R), which is naturally embedded intoH1(M,F,R), gives an element which
is Poincaré dual to the asymptotic cycle (Section 2.3f) with respect to the invariant area
measure. The orbit equivalence between nearby vector fields with the same fundamental
class is Lipschitz continuous everywhere and smooth outside of F . The total number of
parameters is maximal for flows with nondegenerate saddles, for which it is 4g − 4.

The estimate on the number of nonatomic ergodic invariant measures is obtained in
three steps. First one notices that such a measure is defined by its fluxes through a basis in
H1(M,F,R), thus defining an element of H1(M,F,R). Then one sees that, in fact, this
element is determined by its restriction to absolute cycles, i.e., the asymptotic cycle, thus
decreasing the dimension of the space of ergodic measures to no more than 2g. Finally,
from the fact that different orbits of the flow do not intersect and using typical orbits for
various invariant measures, one deduces that asymptotic cycles of various measures are in
involution with respect to the intersection form, which is a symplectic form. This gives the
final estimate. �

Notice that a constant time change multiplies the fundamental class by a scalar. Thus,
both minimality and unique ergodicity depend only on the projectivization of the funda-
mental class. Both minimality and unique ergodicity are, in fact, prevalent among irre-
ducible volume-preserving flows. For minimality, this follows immediately from Corol-
lary 8.4.4 because the presence of a saddle connection means that the flux through some
relative cycle vanishes. Thus we have

THEOREM 8.4.6. For values of the projectivized fundamental class outside of a count-
able union of codimension one submanifolds, the corresponding irreducible flows are
quasiminimal.

There are similar statements for flows with multiple saddles and for flows with stable
periodic components.

Prevalence of unique ergodicity follows from the corresponding result for interval
exchange transformations (Section 4.3g).

THEOREM 8.4.7. There is a set of full measure in the space of projectivized funda-
mental classes for which the corresponding irreducible area-preserving flows are uniquely
ergodic.

The value of the fundamental class does not determine the topological type of even a
quasiminimal flow globally in the space of vector fields [Lv]. An alternative parametriza-
tion for the topological types of area-preserving flows follows from the Thurston parametriza-
tion of the boundary of the Teichmüller space [S-MT, FLP] and, in fact, gives a global
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parametrization up to a topological conjugacy homotopic to the identity modulo some re-
arrangement of saddle connections. Most of the boundary is identified with generic (and
hence nonorientable) measured foliations (Section 8.4b), so in order to include flows, one
needs a careful analysis of the lower-dimensional strata of the boundary. While Thurston’s
parametrization brings a better view of the global geometry of a general area-preserving
flow, it does not give any significant new dynamical information, either in terms of topo-
logical recurrence or of invariant measures.

The analysis of this and the previous subsection extends more or less straightforwardly
from the case of flows to general measured foliations. In particular the stable and unstable
“foliations ” of pseudo-Anosov and generalized pseudo-Anosov maps are uniquely ergodic
[FLP]. For prevalence of unique ergodicity among measured foliations see [Ms2].

e. Mixing and return-time singularities. A conjugacy between the section map of
an area-preserving flow on a compact surface and an interval exchange transformation T
produces a metric conjucacy between the flow and a special flow over T . The roof function
for the special flow is the return time for the section map and can be expressed through the
flux parameter. It is convenient to assume that the transversal itself is a cycle relative
to F , i.e., that is it is either closed or has endpoints in F . The roof function is positive
and differentiable everywhere except for the last points of intersection of the incoming
separatrices of the saddles with the transversal, where it goes to infinity on both sides. The
set S of these points contains all discontinuity points of T and cardS ≤ 4g. In the case of
a closed transversal the conjugacy with the special flow is, in fact, differentiable outside of
F , where it is undefined. The singularities of the return function produce a strong shear,
which may cause mixing.

The following result is not directly applicable to the case of area-preserving flows, but
it demonstrates that the transverse behavior is not sufficient for mixing when augmented
by only a moderate shear.

THEOREM 8.4.8 ([CFS, K5]). Let T : I → I be an interval exchange transformation.
There exists N ∈ N such that for any measurable A ⊂ I and any n ∈ N there are
n1, n2, . . . , nN > n with A ⊂ ⋃Ni=1 T

ni(A).
Let τ : I → R be of bounded variation and ϕ the special flow over T with roof function

τ . Then there exist N ∈ N and V ∈ R such that for any measurable set A and any n ∈ N
there are n1, n2, . . . , nN > n with A ⊂ ⋃Ni=1

⋃V
t=0 ϕ

ni+tA.

Since these conclusions give arbitrarily late returns to A with relative measure at least
1/N (rather than λ(A)), they preclude mixing.

COROLLARY 8.4.9. Neither an interval exchange transformation nor a special flow
over an interval exchange transformation with roof function of bounded variation is mixing
with respect to any invariant measure.

This result implies absence of mixing for billiards in rational polygons on their ergodic
components (Corollary 8.5.2).

Mild mixing (Section 3.6g) is possible already for an exchange of three intervals,
although most of such interval exchanges are rigid [KS].

Thus, unboundedness of the return function is essential for mixing behavior. As it
turns out, nondegenerate hyperbolic saddles produce logarithmic singularities, while de-
generate saddles produce stronger power singularities. In both cases, singularities are
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symmetric up to a bounded function. As was shown by Kocergin [Kc1], logarithmic singu-
larities are not sufficient by themselves to produce mixing for the special flow. Specifically,
he proves absence of mixing for special flows over a rotation with only symmetric logarith-
mic singularities. Thus, there are area-preserving flows with nondegenerate singularities
that are not mixing because a rotation appears as a section map.

On the other hand, Kocergin [Kc2] shows that an ergodic area-preserving flow is mix-
ing if there is at least one degenerate saddle. Thus, power singularities (symmetric or not)
are sufficient to produce mixing in the special flow over an interval exchange transforma-
tion, while symmetric logarithmic singularities are not. It is not known whether for a flow
with only nondegenerate saddles the combination of transversal dispersion and weak shear
can cause mixing, even though neither phenomenon is sufficient by itself.

Interestingly, nonsymmetric logarithmic singularities do produce mixing [Kc2, KhS],
although such singularities do not appear from smooth area-preserving flows.

f. Invariant distributions and smooth classification. While a classification of area-
preserving flows up to smooth orbit equivalence is essentially given by the projectivized
fundamental class (Section 8.4d), a classification up to flow equivalence (smooth or topo-
logical) has to take time changes into account. This involves a classification of cocycles
(Section 1.3m). We know already from the simpler situation on the torus that the Dio-
phantine and Liouvillian situations produce strikingly different pictures with respect to
cocycles and time changes (Proposition 7.3.2, Proposition 7.5.2), and one should expect
similar problems in the higher genus case.

However, the basis for any kind of classification of smooth cocycles is to determine the
set of invariant distributions, because their vanishing determines the closure of the space of
coboundaries (Section 5.2n). Some invariant distributions are related to the behavior near
the singularities in that they are determined by the normal form at the singularities, which,
in general, depends on infinitely many paramenters.

To concentrate on the essential dynamical phenomena, one should consider time changes
that are trivial near the singular set, and the cocycles corresponding to them. Forni [Fo]
found a complete classification of such cocycles. The picture here is quite different both
from isometries (no nontrivial invariant distributions) and from uniformly parabolic sys-
tems of transverse dimension greater than one (infinitely many independent distributions
of a certain order). Forni found that for area-preserving flows there are finitely many non-
trivial invariant distributions of any finite order r but their number goes to infinity with
r.

Furthermore, there is a counterpart of the cocycle rigidity for Diophantine rotations
and translations of the torus: For almost every value of the fundamental class, a sufficiently
smooth cocyle in the kernel of the proper set of invariant distributions is a coboundary (with
a transfer function of lower regularity).

5. Billiards in polygons and polyhedra and related systems

This subject is systematically developed in the survey [S-MT]. See also [Ta].

a. Billiard flow and the section map. Polygonal billiards are dynamical systems
that display both a moderate expansion of parabolic type and cutting due to singularities.
Certain subclasses of polygonal billiards clearly fall within the parabolic paradigm and
have, in fact, been analyzed quite comprehensively. But the general case remains somewhat
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elusive, and, while certain features of parabolic behavior are unmistakably present, no good
hold on the global complexity of the orbit structure has been achieved yet.

Consider a connected polygonal domain P in the plane, which need not be convex or
even simply connected. As in Section 7.3f, the billiard flow in P is defined on the spaceM
of unit tangent vectors with foot points inside P or on the boundary and pointing inside.
A tangent vector moves along its axis with unit speed and upon reaching the boundary in-
stantaneously reflects from it, i.e., changes its direction according to the rule of optics “the
angle of incidence is equal to the angle of reflection”. Ambiguities appear for an orbit hit-
ting a vertex. We are not concerned with such orbits per se, but, of course, the presence of
vertices is responsible for discontinuities, which are essential features of polygonal billiard
flows.

Locally, the billiard flow is essentially linear, so its infinitesimal and local orbit struc-
tures coincide. They are, in fact, unipotent: There are two isometric directions, that of
the flow itself and one corresponding to parallel translation of the reference tangent vector
perpendicularly to its axis. There is one direction of linear growth corresponding to the ro-
tation with fixed foot point. Thus, locally there is a double eigenvalue one and one Jordan
block of size two. The billiard flow clearly preserves the phase volume.

Reflections do not change this pattern. The commonly used device of “unfolding”
replaces the reflection of an orbit by reflection of the polygon, continuing the orbit along
the same straight line.

FIGURE 8.1. Unfolding

Clearly, any orbit not hitting a vertex is completely determined by its encounters (point
and direction) with the boundary. Thus the set S of vectors with foot points on the boundary
provides a natural section for the billiard flow. It can be viewed as the cylinder (for a simply
connected polygon) or as a union of several cylinders. Vectors with foot points on a given
side form a rectangle parametrized by the length parameter l and the angle ϕ with the side.
The corresponding section map, which is defined for vectors that do not hit any side of
any of these rectangles, is called the billiard map. It is piecewise linear in the coordinates
(l, ϕ) and has a local triangular structure with a single Jordan block of size two inherited
from the billiard flow.

The decomposition of the boundary into sides provides a natural procedure for coding
of the billiard map. The resulting symbolic systems are certainly not of finite type and
their properties are not easily identifiable. Still, it is a useful tool in studying orbit growth
in billiards [K8].

b. Integrable billiards. One might expect that the local triangular structure described
above sometimes integrates and produces a one-parameter family of invariant manifolds.
In the most straightforward way, this only happens for a limited collection of polygons,
namely those which tile the plane by the group generated by reflections in their sides, or,
equivalently, have all angles of the form π/p, p = 2, 3, 4, 6. This list includes rectangles,
the equilateral triangle and two right triangles. Such billiards are said to be integrable. For
integrable billiards a complete unfolding is produced by the tiling and hence the billiard
flow is reduced to an invariant subset of the completely integrable geodesic flow on the flat
torus, which splits into invariant tori with linear flows. Notice in particular that in this case
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FIGURE 8.2. Complete unfolding

FIGURE 8.3. Fundamental domains

orbits hitting the vertices can be uniquely extended through the vertices.

c. Rational billiards and quadratic differentials. The situation is much more inter-
esting, when the integrable structure is allowed to possess some singularities.

1. Rational polygons and the angle integral.

DEFINITION 8.5.1. A polygon is said to be rational if the angle between any two of
its sides is a rational multiple of π.

Equivalently, a polygon is rational if the linear part (i.e., the factor Λ consisting of
rotations and reflections) of the group generated by reflections in its sides is finite. Thus,
for a rational billiard, the direction of a vector in the phase space may take only finitely
many values under the flow evolution, namely, the values corresponding to the orbit of the
initial direction under the finite group Λ. In other words, the billiard flow has a first integral
called the angle integral, and each level surface of the angle integral is the union of finitely
many copies of P .

Correspondingly, for the billiard map, there are invariant sets, each of which is a union
of finitely many intervals. Since the section map preserves the area element sinϕdϕdl,
each invariant set can be reparametrized as the unit interval in such a way that the billiard
map acts as an interval exchange transformation (all arguments above neglect the ambigui-
ties appearing in the finite discontinuity sets). Thus, the billiard map for a rational polygon
splits into a one-parameter family of interval exchange transformations. It is easy to see
that for each interval exchange the return time is a piecewise linear function. Thus, the
billiard flow splits into one-parameter family of invariant sets on each of which it is iso-
morphic to the special flow over an interval exchange transformation with piecewise linear
roof function. Since piecewise linear functions have bounded variation, Corollary 8.4.9
implies:

COROLLARY 8.5.2. The billiard flow in a rational billiard is not mixing on any level
surface of the angle integral.

We also obtain a reasonably complete description of ergodic invariant measures for
rational billiards: every such measure is concentrated on a single level surface of the angle
integral and every level surface can carry only a fixed number (depending on P ) of different
nonatomic ergodic measures. Furthermore, the support of any such measure is a domain on
the level surface. Atomic measures appear in continuous families and only for countably
many values of the angle integral. The number of periodic families for each level is again
bounded by the same constant.

2. The associated Riemann surface. There is a more geometric and altogether more
elegant way of describing the structure of billiards in rational polygons. The survey
[S-MT] extensively discusses this, so we give only a brief outline (see also [Gk2]).

Copies of the polygon corresponding to the values of the angle coordinate for a fixed
value of the angle integral (i.e., an orbit of the finite group Λ) are glued together according
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to the unfolding of the trajectories. The result is a compact topological surface with an
obvious smooth structure outside of finitely many points corresponding to the vertices of
P . In fact, the surface carries not only a smooth structure, but a complex analytic structure,
and is thus a Riemann surface with a linear flow, which has singularities at the vertices.
The resulting surface is the same for all regular values of the angle integral, so there is,
in fact, a single Riemann surface with a one-parameter family of linear flows, which is
generated by vector fields obtained from each other by rotations. This is easily identified
with a quadratic differential on the Riemann surface. Notice that in the simple integrable
case the singularities of the quadratic differential and hence of the corresponding linear
flows are, in fact, removable. In the general case, the linear flows may be slowed down at
their singularities to produce area-preserving smooth flows, which were discussed in the
previous section.

Not all quadratic differentials appear from the billiard construction because those that
do have a certain symmetry and are thus rather special. However, any quadratic differential
on a Riemann surface generates a one-parameter family of line fields and, subject to an
orientability condition, those line fields generate a one-parameter family of flows with the
same behavior as described above for the billiards.

For an interesting class of billiards, called almost integrable billiards, which is inter-
mediate to general rational billiards and integrable ones, see [S-MT, Section 1.5], [Gk1].

d. Prevalence of minimality and unique ergodicity in rational billiards. As we
pointed out, a rational billiard defines a one-parameter family of interval exchange trans-
formations. Recall that both minimality and unique ergodicity are typical properties of
interval exchange transformations, albeit in a different way: minimality holds outside of
a countable union of finite codimension submanifolds in the parameter space and unique
ergodicity holds on a somewhat smaller set of full measure. One may expect the one-
parameter families appearing in rational billiards to be typical and hence to intersect the
nonminimal set in a countable subset and the set on nonuniquely ergodic interval exchanges
in a set of Lebesgue measure zero. This is indeed the case [S-MT, KZ, KMS]. While the
result for minimality is a fairly simple corollary of the no-saddle-connections criterion
(Corollary 8.4.4), the original proof of prevalence of unique ergodicity uses the powerful
machinery of Teichmüller theory [KMS]. A more elementary proof was later found by
Boshernitzan [Bs].

The conclusion is thus that any rational billiard is (quasi)-minimal for all but countably
many level surfaces of the angle integral and is uniquely ergodic (modulo a convention
about the orbits hitting vertices) for a set of values of the angle integral that is of full
Lebesgue measure.

e. Topologically transitive and ergodic irrational billiards. As the denominators
of the angles of a rational billiard grow, each level surface of the angle integral becomes
more and more dense and more and more uniformly distributed in the phase space M of
the billiard flow. This simple observation, combined with the prevalence of minimality and
ergodicity of most level surfaces for rational billiards, makes it possible to apply a rather
general approximation construction to obtain irrational billiards that are topologically tran-
sitive and ergodic with respect to the invariant phase volume in the whole phase space
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[KMS]. In fact, the set of such billiards is residual with respect to the natural parametriza-
tion of these spaces. These ergodic billiards are counterparts of interval exchange transfor-
mation with extreme Liouvillian behavior, an exceptionally good simultaneous approxima-
tion of the vector of lengths defining the interval exchange. Unfortunately, these billiards
may not be typical for irrational behavior. It is not known whether these or any irrational
billiards are mixing.

Nothing is known about the possible nature of a singular invariant measure in general
polygonal billiards.

f. Subexponential behavior in polygonal billiards. There are various characteris-
tics of the global orbit complexity for an arbitrary polygonal billiard. These characteristics
can be divided into topological ones, which deal with the total complexity, and those deal-
ing with behavior with respect to Lebesgue measure.

Topological characteristics include asymptotic growth of the number of generalized
diagonals, i.e., orbits connecting vertices, growth of the number of different codes, topo-
logical a-entropy for the corresponding symbolic systems etc.

The only known general results in this direction assert subexponentiality of all these
asymptotics without any specific estimates on the growth rate [K8]. This implies in partic-
ular that the topological entropy of the symbolic system associated to a polygonal billiard
is zero and that the entropy of the billiard map and the billiard flow with respect to any
invariant measure is also equal to zero.

On the other hand, the growth characteristics with respect to Lebesgue measure are
known to be polynomial. More specifically, the natural coding of the billiard map produces
a partition, which is not a topological generator (because the coding does not distinguish
periodic orbits within a parallel family) but is a generator with respect to Lebesgue measure
as well as any other nonatomic ergodic invariant measure [K8]. Then the entropy of the
corresponding iterated partition with respect to Lebesgue measure grows like O(log n).
This, of course, implies finiteness of the power metric entropy (Section 3.7l).

Furthermore, one can extend the calculation of the growth of generalized diagonals by
fixing any two points p and q inside the billiard table or on its boundary and by counting the
asymptotic growth of the number of orbit segments connecting these points. No estimate
better than subexponential is available for any fixed pair of points, but if one averages the
number of segments of length at most T over all p and q then the growth of the average is
quadratic in T . Notice that for rational billiards the number of generalized diagonals grows
quadratically with multipcicative bounds that depend on the arithmetic of the angles and
thus cannot be extended to other billiards [S-MT].

g. Geodesic flows on locally flat surfaces. A class of systems that is close to polyg-
onal billiards and can be analyzed by the same methods with similar degree of success,
consists of geodesic flows on compact surfaces with a Riemannian metric that is flat except
for a finite number of singular points. The Riemann surfaces that appear in the construction
associated with rational billiards are of that kind (Section 8.5c). The locally flat Riemann-
ian metric in question is obtained from flat metrics inside the copies of the billiard table
making up the surface. These metrics are glued seamlessly across the sides but produce
singularities around the vertices making the total angle around each vertex a multiple of
2π. The latter fact is due to the rationality of the billiard.
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A more general construction includes a simplicial decomposition of a surface with a
Euclidean metric in each triangle. As in the case of billiards, the orbits of the geodesic
flow are defined as long as they do not hit singular points. If all angles of all triangles
are rational multiples of π, the conclusions of the theory of rational billiards extend to the
geodesic flow on such a surface.

See [S-MT] for a discussion of certain typical properties of flows on flat surfaces
which are not available for billiards.

h. Billiards in polyhedra. A natural generalization of the constructions of billiards
and locally flat geodesic flows is to higher dimension. In particular, consider a polyhedron
P in the m-dimensional euclidean space. The billiard flow is defined on the space of
tangent vectors with footpoints inside P or on the boundary and pointing inside. Similarly
to the two-dimensional case the flow is defined as long as an orbit does not hit a face of
codimension greater than one. The billiard map is again defined as the first return map on
the boundary.

The billiard flow and billiard map in a polyhedron are parabolic, the latter having
locallym−1 Jordan blocks of size two. Thus the local orbit growth is linear. The vanishing
of topological entropy and other subexponentiality results from Section 8.5f extend to this
case [GkH]. One can also define and fully analyze integrable polygonal billiards as those
for which the “table” P tiles the space. However, there is no good counterpart to the notion
of a rational polygonal billiard. While the latter form dense subsets in the natural spaces of
polygonal billiards, polyhedral billiards that possess enough first integrals are exceedingly
rare. Symmetry is not of sufficient help. For example, even the dynamics of the billiard
inside the regular tetrahedron is not well understood!
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Vol. 1—Warsaw, Astérisque bf 49, Société Mathematique de France, Paris, 1977, 37–59
[FLP] Albert Fathi, Francois Laudenbach, Valentin Poenaru: Travaux de Thurston sur les surfaces, Séminaire
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tions, Publications Mathématiques de l’Institut des Hautes Études Scientifiques 49 (1979) 5–233

[Hm2] Michael Robert Herman: Exemple de flots Hamiltoniens dont aucune perturbation en topologie C∞

n’a d’orbites periodiques sur un ouvert de surfaces d’energies, Comptes Rendus de l’Académie des
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C∞ des orbites recurrentes de flots Hamiltoniens, Comptes Rendus de l’Académie des Sciences -
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nulle, Ergodic Theory and Dynamical Systems 1 (1981), no. 1, 65–76

[HPS] Morris W. Hirsch, Charles C. Pugh, Michael Shub: Invariant manifolds, Springer Lecture Notes in
Mathematics 583, 1977

[Ho] Eberhard Hopf: Ergodentheorie, Ergebnisse der Mathematik und ihrer Grenzgebiete 5. Band, Springer
Verlag, Berlin, New York, 1937

[Hos] Bernard Host: Mixing of all orders and pairwise independent joining of systems with singular spec-
trum, Israel Journal of Mathematics 76 (1991), no. 3, 289–298

[HY] Hu Yi Hu, Lai Sang Young: Nonexistence of SBR measures for some diffeomorphisms that are “almost
Anosov”, Ergodic Theory and Dynamical Systems 15 (1995), no. 1, 67–76

[HK] Steven Hurder, Anatole Katok: Differentiability, rigidity and Godbillon–Vey classes for Anosov flows,
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Hautes Études Scientifiques 59 (1984) 143–161

[PS] Charles Pugh, Michael Shub: Stable ergodicity and partial hyperbolicity, in “International Confer-
ence on Dynamical Systems (Montevideo, 1995)”, 182–187, Longman, Harlow, 1996; Stably ergodic
dynamical systems and partial hyperbolicity, Journal of Complexity 13 (1997), no. 1, 125–179

[Rg] Madabusi S. Raghunathan: A proof of Oseledec’s multiplicative ergodic theorem, Israel Journal of
Mathematics 32 (1979), no. 4, 356–362

[Ra1] Marina Ratner: Rigidity of horocycle flows, Annals of Mathematics (2) 115 (1982), no. 3, 597–614
[Ra2] Marina Ratner: Rigidity of time changes for horocycle flows, Acta Math. 156 (1986), no. 1–2, 1–32
[Ra3] Marina Ratner: Ragunathan’s topological conjecture and distributions of unipotent flows, Duke Math-

ematical Journal 63 (1991), no. 1, 235–280
[Ra4] Marina Ratner: On Ragunathan’s measure conjecture, Annals of Mathematics (2) 134 (1991), no. 3,

545–607
[R] Joel Robbin: A structural stability theorem, Annals of Mathematics (2) 94 (1971), 447–493
[Ro] Clark Robinson: Structural stability of C1 diffeomorphisms, Journal of Differential Equations 22

(1976), no. 1, 28–73
[RY] Clark Robinson, Lai Sang Young: Nonabsolutely continuous foliations for an Anosov diffeomorphism,

Inventiones Math. 61 (1980), no. 2, 159–176
[Rk1] Vladimir Abramovich Rokhlin: On the fundamental ideas of measure theory, Translations of the

American Mathematical Society (1) 10 (1962)
[Rk2] Vladimir Abramovich Rokhlin: Lectures on the entropy theory of transformations with invariant mea-
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